]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/media/v4l2-core/v4l2-mem2mem.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / media / v4l2-core / v4l2-mem2mem.c
1 /*
2 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
3 *
4 * Helper functions for devices that use videobuf buffers for both their
5 * source and destination.
6 *
7 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
8 * Pawel Osciak, <pawel@osciak.com>
9 * Marek Szyprowski, <m.szyprowski@samsung.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 */
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19
20 #include <media/media-device.h>
21 #include <media/videobuf2-v4l2.h>
22 #include <media/v4l2-mem2mem.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-fh.h>
26 #include <media/v4l2-event.h>
27
28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
30 MODULE_LICENSE("GPL");
31
32 static bool debug;
33 module_param(debug, bool, 0644);
34
35 #define dprintk(fmt, arg...) \
36 do { \
37 if (debug) \
38 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
39 } while (0)
40
41
42 /* Instance is already queued on the job_queue */
43 #define TRANS_QUEUED (1 << 0)
44 /* Instance is currently running in hardware */
45 #define TRANS_RUNNING (1 << 1)
46 /* Instance is currently aborting */
47 #define TRANS_ABORT (1 << 2)
48
49
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
54
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
59 };
60
61 static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
65 };
66
67 /**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_unregister_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_unregister_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_unregister_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_unregister_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @m2m_ops: driver callbacks
92 */
93 struct v4l2_m2m_dev {
94 struct v4l2_m2m_ctx *curr_ctx;
95 #ifdef CONFIG_MEDIA_CONTROLLER
96 struct media_entity *source;
97 struct media_pad source_pad;
98 struct media_entity sink;
99 struct media_pad sink_pad;
100 struct media_entity proc;
101 struct media_pad proc_pads[2];
102 struct media_intf_devnode *intf_devnode;
103 #endif
104
105 struct list_head job_queue;
106 spinlock_t job_spinlock;
107 struct work_struct job_work;
108
109 const struct v4l2_m2m_ops *m2m_ops;
110 };
111
112 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
113 enum v4l2_buf_type type)
114 {
115 if (V4L2_TYPE_IS_OUTPUT(type))
116 return &m2m_ctx->out_q_ctx;
117 else
118 return &m2m_ctx->cap_q_ctx;
119 }
120
121 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
122 enum v4l2_buf_type type)
123 {
124 struct v4l2_m2m_queue_ctx *q_ctx;
125
126 q_ctx = get_queue_ctx(m2m_ctx, type);
127 if (!q_ctx)
128 return NULL;
129
130 return &q_ctx->q;
131 }
132 EXPORT_SYMBOL(v4l2_m2m_get_vq);
133
134 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
135 {
136 struct v4l2_m2m_buffer *b;
137 unsigned long flags;
138
139 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
140
141 if (list_empty(&q_ctx->rdy_queue)) {
142 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
143 return NULL;
144 }
145
146 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
147 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
148 return &b->vb;
149 }
150 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
151
152 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
153 {
154 struct v4l2_m2m_buffer *b;
155 unsigned long flags;
156
157 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
158
159 if (list_empty(&q_ctx->rdy_queue)) {
160 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
161 return NULL;
162 }
163
164 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
165 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
166 return &b->vb;
167 }
168 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
169
170 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
171 {
172 struct v4l2_m2m_buffer *b;
173 unsigned long flags;
174
175 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
176 if (list_empty(&q_ctx->rdy_queue)) {
177 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
178 return NULL;
179 }
180 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
181 list_del(&b->list);
182 q_ctx->num_rdy--;
183 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
184
185 return &b->vb;
186 }
187 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
188
189 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
190 struct vb2_v4l2_buffer *vbuf)
191 {
192 struct v4l2_m2m_buffer *b;
193 unsigned long flags;
194
195 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
196 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
197 list_del(&b->list);
198 q_ctx->num_rdy--;
199 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
200 }
201 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
202
203 struct vb2_v4l2_buffer *
204 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
205
206 {
207 struct v4l2_m2m_buffer *b, *tmp;
208 struct vb2_v4l2_buffer *ret = NULL;
209 unsigned long flags;
210
211 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
212 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
213 if (b->vb.vb2_buf.index == idx) {
214 list_del(&b->list);
215 q_ctx->num_rdy--;
216 ret = &b->vb;
217 break;
218 }
219 }
220 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
221
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
225
226 /*
227 * Scheduling handlers
228 */
229
230 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
231 {
232 unsigned long flags;
233 void *ret = NULL;
234
235 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
236 if (m2m_dev->curr_ctx)
237 ret = m2m_dev->curr_ctx->priv;
238 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
239
240 return ret;
241 }
242 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
243
244 /**
245 * v4l2_m2m_try_run() - select next job to perform and run it if possible
246 * @m2m_dev: per-device context
247 *
248 * Get next transaction (if present) from the waiting jobs list and run it.
249 *
250 * Note that this function can run on a given v4l2_m2m_ctx context,
251 * but call .device_run for another context.
252 */
253 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
254 {
255 unsigned long flags;
256
257 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
258 if (NULL != m2m_dev->curr_ctx) {
259 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
260 dprintk("Another instance is running, won't run now\n");
261 return;
262 }
263
264 if (list_empty(&m2m_dev->job_queue)) {
265 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
266 dprintk("No job pending\n");
267 return;
268 }
269
270 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
271 struct v4l2_m2m_ctx, queue);
272 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274
275 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
276 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
277 }
278
279 /*
280 * __v4l2_m2m_try_queue() - queue a job
281 * @m2m_dev: m2m device
282 * @m2m_ctx: m2m context
283 *
284 * Check if this context is ready to queue a job.
285 *
286 * This function can run in interrupt context.
287 */
288 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
289 struct v4l2_m2m_ctx *m2m_ctx)
290 {
291 unsigned long flags_job, flags_out, flags_cap;
292
293 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
294
295 if (!m2m_ctx->out_q_ctx.q.streaming
296 || !m2m_ctx->cap_q_ctx.q.streaming) {
297 dprintk("Streaming needs to be on for both queues\n");
298 return;
299 }
300
301 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
302
303 /* If the context is aborted then don't schedule it */
304 if (m2m_ctx->job_flags & TRANS_ABORT) {
305 dprintk("Aborted context\n");
306 goto job_unlock;
307 }
308
309 if (m2m_ctx->job_flags & TRANS_QUEUED) {
310 dprintk("On job queue already\n");
311 goto job_unlock;
312 }
313
314 spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
315 if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
316 && !m2m_ctx->out_q_ctx.buffered) {
317 dprintk("No input buffers available\n");
318 goto out_unlock;
319 }
320 spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
321 if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
322 && !m2m_ctx->cap_q_ctx.buffered) {
323 dprintk("No output buffers available\n");
324 goto cap_unlock;
325 }
326 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
327 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
328
329 if (m2m_dev->m2m_ops->job_ready
330 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
331 dprintk("Driver not ready\n");
332 goto job_unlock;
333 }
334
335 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
336 m2m_ctx->job_flags |= TRANS_QUEUED;
337
338 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
339 return;
340
341 cap_unlock:
342 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
343 out_unlock:
344 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
345 job_unlock:
346 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
347 }
348
349 /**
350 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
351 * @m2m_ctx: m2m context
352 *
353 * Check if this context is ready to queue a job. If suitable,
354 * run the next queued job on the mem2mem device.
355 *
356 * This function shouldn't run in interrupt context.
357 *
358 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
359 * and then run another job for another context.
360 */
361 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
362 {
363 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
364
365 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
366 v4l2_m2m_try_run(m2m_dev);
367 }
368 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
369
370 /**
371 * v4l2_m2m_device_run_work() - run pending jobs for the context
372 * @work: Work structure used for scheduling the execution of this function.
373 */
374 static void v4l2_m2m_device_run_work(struct work_struct *work)
375 {
376 struct v4l2_m2m_dev *m2m_dev =
377 container_of(work, struct v4l2_m2m_dev, job_work);
378
379 v4l2_m2m_try_run(m2m_dev);
380 }
381
382 /**
383 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
384 * @m2m_ctx: m2m context with jobs to be canceled
385 *
386 * In case of streamoff or release called on any context,
387 * 1] If the context is currently running, then abort job will be called
388 * 2] If the context is queued, then the context will be removed from
389 * the job_queue
390 */
391 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
392 {
393 struct v4l2_m2m_dev *m2m_dev;
394 unsigned long flags;
395
396 m2m_dev = m2m_ctx->m2m_dev;
397 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
398
399 m2m_ctx->job_flags |= TRANS_ABORT;
400 if (m2m_ctx->job_flags & TRANS_RUNNING) {
401 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
402 if (m2m_dev->m2m_ops->job_abort)
403 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
404 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
405 wait_event(m2m_ctx->finished,
406 !(m2m_ctx->job_flags & TRANS_RUNNING));
407 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
408 list_del(&m2m_ctx->queue);
409 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
410 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
411 dprintk("m2m_ctx: %p had been on queue and was removed\n",
412 m2m_ctx);
413 } else {
414 /* Do nothing, was not on queue/running */
415 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
416 }
417 }
418
419 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
420 struct v4l2_m2m_ctx *m2m_ctx)
421 {
422 unsigned long flags;
423
424 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
425 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
426 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
427 dprintk("Called by an instance not currently running\n");
428 return;
429 }
430
431 list_del(&m2m_dev->curr_ctx->queue);
432 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
433 wake_up(&m2m_dev->curr_ctx->finished);
434 m2m_dev->curr_ctx = NULL;
435
436 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
437
438 /* This instance might have more buffers ready, but since we do not
439 * allow more than one job on the job_queue per instance, each has
440 * to be scheduled separately after the previous one finishes. */
441 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
442
443 /* We might be running in atomic context,
444 * but the job must be run in non-atomic context.
445 */
446 schedule_work(&m2m_dev->job_work);
447 }
448 EXPORT_SYMBOL(v4l2_m2m_job_finish);
449
450 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
451 struct v4l2_requestbuffers *reqbufs)
452 {
453 struct vb2_queue *vq;
454 int ret;
455
456 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
457 ret = vb2_reqbufs(vq, reqbufs);
458 /* If count == 0, then the owner has released all buffers and he
459 is no longer owner of the queue. Otherwise we have an owner. */
460 if (ret == 0)
461 vq->owner = reqbufs->count ? file->private_data : NULL;
462
463 return ret;
464 }
465 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
466
467 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
468 struct v4l2_buffer *buf)
469 {
470 struct vb2_queue *vq;
471 int ret = 0;
472 unsigned int i;
473
474 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
475 ret = vb2_querybuf(vq, buf);
476
477 /* Adjust MMAP memory offsets for the CAPTURE queue */
478 if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
479 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
480 for (i = 0; i < buf->length; ++i)
481 buf->m.planes[i].m.mem_offset
482 += DST_QUEUE_OFF_BASE;
483 } else {
484 buf->m.offset += DST_QUEUE_OFF_BASE;
485 }
486 }
487
488 return ret;
489 }
490 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
491
492 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
493 struct v4l2_buffer *buf)
494 {
495 struct video_device *vdev = video_devdata(file);
496 struct vb2_queue *vq;
497 int ret;
498
499 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
500 if (!V4L2_TYPE_IS_OUTPUT(vq->type) &&
501 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
502 dprintk("%s: requests cannot be used with capture buffers\n",
503 __func__);
504 return -EPERM;
505 }
506 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
507 if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
508 v4l2_m2m_try_schedule(m2m_ctx);
509
510 return ret;
511 }
512 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
513
514 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
515 struct v4l2_buffer *buf)
516 {
517 struct vb2_queue *vq;
518
519 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
520 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
521 }
522 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
523
524 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
525 struct v4l2_buffer *buf)
526 {
527 struct video_device *vdev = video_devdata(file);
528 struct vb2_queue *vq;
529
530 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
531 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
532 }
533 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
534
535 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
536 struct v4l2_create_buffers *create)
537 {
538 struct vb2_queue *vq;
539
540 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
541 return vb2_create_bufs(vq, create);
542 }
543 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
544
545 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
546 struct v4l2_exportbuffer *eb)
547 {
548 struct vb2_queue *vq;
549
550 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
551 return vb2_expbuf(vq, eb);
552 }
553 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
554
555 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
556 enum v4l2_buf_type type)
557 {
558 struct vb2_queue *vq;
559 int ret;
560
561 vq = v4l2_m2m_get_vq(m2m_ctx, type);
562 ret = vb2_streamon(vq, type);
563 if (!ret)
564 v4l2_m2m_try_schedule(m2m_ctx);
565
566 return ret;
567 }
568 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
569
570 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
571 enum v4l2_buf_type type)
572 {
573 struct v4l2_m2m_dev *m2m_dev;
574 struct v4l2_m2m_queue_ctx *q_ctx;
575 unsigned long flags_job, flags;
576 int ret;
577
578 /* wait until the current context is dequeued from job_queue */
579 v4l2_m2m_cancel_job(m2m_ctx);
580
581 q_ctx = get_queue_ctx(m2m_ctx, type);
582 ret = vb2_streamoff(&q_ctx->q, type);
583 if (ret)
584 return ret;
585
586 m2m_dev = m2m_ctx->m2m_dev;
587 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
588 /* We should not be scheduled anymore, since we're dropping a queue. */
589 if (m2m_ctx->job_flags & TRANS_QUEUED)
590 list_del(&m2m_ctx->queue);
591 m2m_ctx->job_flags = 0;
592
593 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
594 /* Drop queue, since streamoff returns device to the same state as after
595 * calling reqbufs. */
596 INIT_LIST_HEAD(&q_ctx->rdy_queue);
597 q_ctx->num_rdy = 0;
598 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
599
600 if (m2m_dev->curr_ctx == m2m_ctx) {
601 m2m_dev->curr_ctx = NULL;
602 wake_up(&m2m_ctx->finished);
603 }
604 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
605
606 return 0;
607 }
608 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
609
610 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
611 struct poll_table_struct *wait)
612 {
613 struct video_device *vfd = video_devdata(file);
614 __poll_t req_events = poll_requested_events(wait);
615 struct vb2_queue *src_q, *dst_q;
616 struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
617 __poll_t rc = 0;
618 unsigned long flags;
619
620 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
621 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
622
623 poll_wait(file, &src_q->done_wq, wait);
624 poll_wait(file, &dst_q->done_wq, wait);
625
626 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
627 struct v4l2_fh *fh = file->private_data;
628
629 poll_wait(file, &fh->wait, wait);
630 if (v4l2_event_pending(fh))
631 rc = EPOLLPRI;
632 if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
633 return rc;
634 }
635
636 /*
637 * There has to be at least one buffer queued on each queued_list, which
638 * means either in driver already or waiting for driver to claim it
639 * and start processing.
640 */
641 if ((!src_q->streaming || src_q->error ||
642 list_empty(&src_q->queued_list)) &&
643 (!dst_q->streaming || dst_q->error ||
644 list_empty(&dst_q->queued_list))) {
645 rc |= EPOLLERR;
646 goto end;
647 }
648
649 spin_lock_irqsave(&dst_q->done_lock, flags);
650 if (list_empty(&dst_q->done_list)) {
651 /*
652 * If the last buffer was dequeued from the capture queue,
653 * return immediately. DQBUF will return -EPIPE.
654 */
655 if (dst_q->last_buffer_dequeued) {
656 spin_unlock_irqrestore(&dst_q->done_lock, flags);
657 return rc | EPOLLIN | EPOLLRDNORM;
658 }
659 }
660 spin_unlock_irqrestore(&dst_q->done_lock, flags);
661
662 spin_lock_irqsave(&src_q->done_lock, flags);
663 if (!list_empty(&src_q->done_list))
664 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
665 done_entry);
666 if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
667 || src_vb->state == VB2_BUF_STATE_ERROR))
668 rc |= EPOLLOUT | EPOLLWRNORM;
669 spin_unlock_irqrestore(&src_q->done_lock, flags);
670
671 spin_lock_irqsave(&dst_q->done_lock, flags);
672 if (!list_empty(&dst_q->done_list))
673 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
674 done_entry);
675 if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
676 || dst_vb->state == VB2_BUF_STATE_ERROR))
677 rc |= EPOLLIN | EPOLLRDNORM;
678 spin_unlock_irqrestore(&dst_q->done_lock, flags);
679
680 end:
681 return rc;
682 }
683 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
684
685 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
686 struct vm_area_struct *vma)
687 {
688 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
689 struct vb2_queue *vq;
690
691 if (offset < DST_QUEUE_OFF_BASE) {
692 vq = v4l2_m2m_get_src_vq(m2m_ctx);
693 } else {
694 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
695 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
696 }
697
698 return vb2_mmap(vq, vma);
699 }
700 EXPORT_SYMBOL(v4l2_m2m_mmap);
701
702 #if defined(CONFIG_MEDIA_CONTROLLER)
703 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
704 {
705 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
706 media_devnode_remove(m2m_dev->intf_devnode);
707
708 media_entity_remove_links(m2m_dev->source);
709 media_entity_remove_links(&m2m_dev->sink);
710 media_entity_remove_links(&m2m_dev->proc);
711 media_device_unregister_entity(m2m_dev->source);
712 media_device_unregister_entity(&m2m_dev->sink);
713 media_device_unregister_entity(&m2m_dev->proc);
714 kfree(m2m_dev->source->name);
715 kfree(m2m_dev->sink.name);
716 kfree(m2m_dev->proc.name);
717 }
718 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
719
720 static int v4l2_m2m_register_entity(struct media_device *mdev,
721 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
722 struct video_device *vdev, int function)
723 {
724 struct media_entity *entity;
725 struct media_pad *pads;
726 char *name;
727 unsigned int len;
728 int num_pads;
729 int ret;
730
731 switch (type) {
732 case MEM2MEM_ENT_TYPE_SOURCE:
733 entity = m2m_dev->source;
734 pads = &m2m_dev->source_pad;
735 pads[0].flags = MEDIA_PAD_FL_SOURCE;
736 num_pads = 1;
737 break;
738 case MEM2MEM_ENT_TYPE_SINK:
739 entity = &m2m_dev->sink;
740 pads = &m2m_dev->sink_pad;
741 pads[0].flags = MEDIA_PAD_FL_SINK;
742 num_pads = 1;
743 break;
744 case MEM2MEM_ENT_TYPE_PROC:
745 entity = &m2m_dev->proc;
746 pads = m2m_dev->proc_pads;
747 pads[0].flags = MEDIA_PAD_FL_SINK;
748 pads[1].flags = MEDIA_PAD_FL_SOURCE;
749 num_pads = 2;
750 break;
751 default:
752 return -EINVAL;
753 }
754
755 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
756 if (type != MEM2MEM_ENT_TYPE_PROC) {
757 entity->info.dev.major = VIDEO_MAJOR;
758 entity->info.dev.minor = vdev->minor;
759 }
760 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
761 name = kmalloc(len, GFP_KERNEL);
762 if (!name)
763 return -ENOMEM;
764 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
765 entity->name = name;
766 entity->function = function;
767
768 ret = media_entity_pads_init(entity, num_pads, pads);
769 if (ret)
770 return ret;
771 ret = media_device_register_entity(mdev, entity);
772 if (ret)
773 return ret;
774
775 return 0;
776 }
777
778 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
779 struct video_device *vdev, int function)
780 {
781 struct media_device *mdev = vdev->v4l2_dev->mdev;
782 struct media_link *link;
783 int ret;
784
785 if (!mdev)
786 return 0;
787
788 /* A memory-to-memory device consists in two
789 * DMA engine and one video processing entities.
790 * The DMA engine entities are linked to a V4L interface
791 */
792
793 /* Create the three entities with their pads */
794 m2m_dev->source = &vdev->entity;
795 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
796 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
797 if (ret)
798 return ret;
799 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
800 MEM2MEM_ENT_TYPE_PROC, vdev, function);
801 if (ret)
802 goto err_rel_entity0;
803 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
804 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
805 if (ret)
806 goto err_rel_entity1;
807
808 /* Connect the three entities */
809 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
810 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
811 if (ret)
812 goto err_rel_entity2;
813
814 ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
815 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
816 if (ret)
817 goto err_rm_links0;
818
819 /* Create video interface */
820 m2m_dev->intf_devnode = media_devnode_create(mdev,
821 MEDIA_INTF_T_V4L_VIDEO, 0,
822 VIDEO_MAJOR, vdev->minor);
823 if (!m2m_dev->intf_devnode) {
824 ret = -ENOMEM;
825 goto err_rm_links1;
826 }
827
828 /* Connect the two DMA engines to the interface */
829 link = media_create_intf_link(m2m_dev->source,
830 &m2m_dev->intf_devnode->intf,
831 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
832 if (!link) {
833 ret = -ENOMEM;
834 goto err_rm_devnode;
835 }
836
837 link = media_create_intf_link(&m2m_dev->sink,
838 &m2m_dev->intf_devnode->intf,
839 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
840 if (!link) {
841 ret = -ENOMEM;
842 goto err_rm_intf_link;
843 }
844 return 0;
845
846 err_rm_intf_link:
847 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
848 err_rm_devnode:
849 media_devnode_remove(m2m_dev->intf_devnode);
850 err_rm_links1:
851 media_entity_remove_links(&m2m_dev->sink);
852 err_rm_links0:
853 media_entity_remove_links(&m2m_dev->proc);
854 media_entity_remove_links(m2m_dev->source);
855 err_rel_entity2:
856 media_device_unregister_entity(&m2m_dev->proc);
857 kfree(m2m_dev->proc.name);
858 err_rel_entity1:
859 media_device_unregister_entity(&m2m_dev->sink);
860 kfree(m2m_dev->sink.name);
861 err_rel_entity0:
862 media_device_unregister_entity(m2m_dev->source);
863 kfree(m2m_dev->source->name);
864 return ret;
865 return 0;
866 }
867 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
868 #endif
869
870 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
871 {
872 struct v4l2_m2m_dev *m2m_dev;
873
874 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
875 return ERR_PTR(-EINVAL);
876
877 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
878 if (!m2m_dev)
879 return ERR_PTR(-ENOMEM);
880
881 m2m_dev->curr_ctx = NULL;
882 m2m_dev->m2m_ops = m2m_ops;
883 INIT_LIST_HEAD(&m2m_dev->job_queue);
884 spin_lock_init(&m2m_dev->job_spinlock);
885 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
886
887 return m2m_dev;
888 }
889 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
890
891 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
892 {
893 kfree(m2m_dev);
894 }
895 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
896
897 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
898 void *drv_priv,
899 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
900 {
901 struct v4l2_m2m_ctx *m2m_ctx;
902 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
903 int ret;
904
905 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
906 if (!m2m_ctx)
907 return ERR_PTR(-ENOMEM);
908
909 m2m_ctx->priv = drv_priv;
910 m2m_ctx->m2m_dev = m2m_dev;
911 init_waitqueue_head(&m2m_ctx->finished);
912
913 out_q_ctx = &m2m_ctx->out_q_ctx;
914 cap_q_ctx = &m2m_ctx->cap_q_ctx;
915
916 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
917 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
918 spin_lock_init(&out_q_ctx->rdy_spinlock);
919 spin_lock_init(&cap_q_ctx->rdy_spinlock);
920
921 INIT_LIST_HEAD(&m2m_ctx->queue);
922
923 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
924
925 if (ret)
926 goto err;
927 /*
928 * Both queues should use same the mutex to lock the m2m context.
929 * This lock is used in some v4l2_m2m_* helpers.
930 */
931 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
932 ret = -EINVAL;
933 goto err;
934 }
935 m2m_ctx->q_lock = out_q_ctx->q.lock;
936
937 return m2m_ctx;
938 err:
939 kfree(m2m_ctx);
940 return ERR_PTR(ret);
941 }
942 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
943
944 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
945 {
946 /* wait until the current context is dequeued from job_queue */
947 v4l2_m2m_cancel_job(m2m_ctx);
948
949 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
950 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
951
952 kfree(m2m_ctx);
953 }
954 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
955
956 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
957 struct vb2_v4l2_buffer *vbuf)
958 {
959 struct v4l2_m2m_buffer *b = container_of(vbuf,
960 struct v4l2_m2m_buffer, vb);
961 struct v4l2_m2m_queue_ctx *q_ctx;
962 unsigned long flags;
963
964 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
965 if (!q_ctx)
966 return;
967
968 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
969 list_add_tail(&b->list, &q_ctx->rdy_queue);
970 q_ctx->num_rdy++;
971 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
972 }
973 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
974
975 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
976 struct vb2_v4l2_buffer *cap_vb,
977 bool copy_frame_flags)
978 {
979 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
980
981 if (copy_frame_flags)
982 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
983 V4L2_BUF_FLAG_BFRAME;
984
985 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
986
987 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
988 cap_vb->timecode = out_vb->timecode;
989 cap_vb->field = out_vb->field;
990 cap_vb->flags &= ~mask;
991 cap_vb->flags |= out_vb->flags & mask;
992 cap_vb->vb2_buf.copied_timestamp = 1;
993 }
994 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
995
996 void v4l2_m2m_request_queue(struct media_request *req)
997 {
998 struct media_request_object *obj, *obj_safe;
999 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1000
1001 /*
1002 * Queue all objects. Note that buffer objects are at the end of the
1003 * objects list, after all other object types. Once buffer objects
1004 * are queued, the driver might delete them immediately (if the driver
1005 * processes the buffer at once), so we have to use
1006 * list_for_each_entry_safe() to handle the case where the object we
1007 * queue is deleted.
1008 */
1009 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1010 struct v4l2_m2m_ctx *m2m_ctx_obj;
1011 struct vb2_buffer *vb;
1012
1013 if (!obj->ops->queue)
1014 continue;
1015
1016 if (vb2_request_object_is_buffer(obj)) {
1017 /* Sanity checks */
1018 vb = container_of(obj, struct vb2_buffer, req_obj);
1019 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1020 m2m_ctx_obj = container_of(vb->vb2_queue,
1021 struct v4l2_m2m_ctx,
1022 out_q_ctx.q);
1023 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1024 m2m_ctx = m2m_ctx_obj;
1025 }
1026
1027 /*
1028 * The buffer we queue here can in theory be immediately
1029 * unbound, hence the use of list_for_each_entry_safe()
1030 * above and why we call the queue op last.
1031 */
1032 obj->ops->queue(obj);
1033 }
1034
1035 WARN_ON(!m2m_ctx);
1036
1037 if (m2m_ctx)
1038 v4l2_m2m_try_schedule(m2m_ctx);
1039 }
1040 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1041
1042 /* Videobuf2 ioctl helpers */
1043
1044 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1045 struct v4l2_requestbuffers *rb)
1046 {
1047 struct v4l2_fh *fh = file->private_data;
1048
1049 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1050 }
1051 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1052
1053 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1054 struct v4l2_create_buffers *create)
1055 {
1056 struct v4l2_fh *fh = file->private_data;
1057
1058 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1059 }
1060 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1061
1062 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1063 struct v4l2_buffer *buf)
1064 {
1065 struct v4l2_fh *fh = file->private_data;
1066
1067 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1068 }
1069 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1070
1071 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1072 struct v4l2_buffer *buf)
1073 {
1074 struct v4l2_fh *fh = file->private_data;
1075
1076 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1077 }
1078 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1079
1080 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1081 struct v4l2_buffer *buf)
1082 {
1083 struct v4l2_fh *fh = file->private_data;
1084
1085 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1086 }
1087 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1088
1089 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1090 struct v4l2_buffer *buf)
1091 {
1092 struct v4l2_fh *fh = file->private_data;
1093
1094 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1095 }
1096 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1097
1098 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1099 struct v4l2_exportbuffer *eb)
1100 {
1101 struct v4l2_fh *fh = file->private_data;
1102
1103 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1104 }
1105 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1106
1107 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1108 enum v4l2_buf_type type)
1109 {
1110 struct v4l2_fh *fh = file->private_data;
1111
1112 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1113 }
1114 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1115
1116 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1117 enum v4l2_buf_type type)
1118 {
1119 struct v4l2_fh *fh = file->private_data;
1120
1121 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1122 }
1123 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1124
1125 /*
1126 * v4l2_file_operations helpers. It is assumed here same lock is used
1127 * for the output and the capture buffer queue.
1128 */
1129
1130 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1131 {
1132 struct v4l2_fh *fh = file->private_data;
1133
1134 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1135 }
1136 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1137
1138 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1139 {
1140 struct v4l2_fh *fh = file->private_data;
1141 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1142 __poll_t ret;
1143
1144 if (m2m_ctx->q_lock)
1145 mutex_lock(m2m_ctx->q_lock);
1146
1147 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1148
1149 if (m2m_ctx->q_lock)
1150 mutex_unlock(m2m_ctx->q_lock);
1151
1152 return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1155