]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/media/v4l2-core/videobuf2-core.c
[media] v4l: vb2: Add a function to discard all DONE buffers
[mirror_ubuntu-bionic-kernel.git] / drivers / media / v4l2-core / videobuf2-core.c
1 /*
2 * videobuf2-core.c - V4L2 driver helper framework
3 *
4 * Copyright (C) 2010 Samsung Electronics
5 *
6 * Author: Pawel Osciak <pawel@osciak.com>
7 * Marek Szyprowski <m.szyprowski@samsung.com>
8 *
9 * The vb2_thread implementation was based on code from videobuf-dvb.c:
10 * (c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/err.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/poll.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/freezer.h>
25 #include <linux/kthread.h>
26
27 #include <media/v4l2-dev.h>
28 #include <media/v4l2-fh.h>
29 #include <media/v4l2-event.h>
30 #include <media/v4l2-common.h>
31 #include <media/videobuf2-core.h>
32
33 static int debug;
34 module_param(debug, int, 0644);
35
36 #define dprintk(level, fmt, arg...) \
37 do { \
38 if (debug >= level) \
39 pr_debug("vb2: %s: " fmt, __func__, ## arg); \
40 } while (0)
41
42 #ifdef CONFIG_VIDEO_ADV_DEBUG
43
44 /*
45 * If advanced debugging is on, then count how often each op is called
46 * successfully, which can either be per-buffer or per-queue.
47 *
48 * This makes it easy to check that the 'init' and 'cleanup'
49 * (and variations thereof) stay balanced.
50 */
51
52 #define log_memop(vb, op) \
53 dprintk(2, "call_memop(%p, %d, %s)%s\n", \
54 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
55 (vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
56
57 #define call_memop(vb, op, args...) \
58 ({ \
59 struct vb2_queue *_q = (vb)->vb2_queue; \
60 int err; \
61 \
62 log_memop(vb, op); \
63 err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0; \
64 if (!err) \
65 (vb)->cnt_mem_ ## op++; \
66 err; \
67 })
68
69 #define call_ptr_memop(vb, op, args...) \
70 ({ \
71 struct vb2_queue *_q = (vb)->vb2_queue; \
72 void *ptr; \
73 \
74 log_memop(vb, op); \
75 ptr = _q->mem_ops->op ? _q->mem_ops->op(args) : NULL; \
76 if (!IS_ERR_OR_NULL(ptr)) \
77 (vb)->cnt_mem_ ## op++; \
78 ptr; \
79 })
80
81 #define call_void_memop(vb, op, args...) \
82 ({ \
83 struct vb2_queue *_q = (vb)->vb2_queue; \
84 \
85 log_memop(vb, op); \
86 if (_q->mem_ops->op) \
87 _q->mem_ops->op(args); \
88 (vb)->cnt_mem_ ## op++; \
89 })
90
91 #define log_qop(q, op) \
92 dprintk(2, "call_qop(%p, %s)%s\n", q, #op, \
93 (q)->ops->op ? "" : " (nop)")
94
95 #define call_qop(q, op, args...) \
96 ({ \
97 int err; \
98 \
99 log_qop(q, op); \
100 err = (q)->ops->op ? (q)->ops->op(args) : 0; \
101 if (!err) \
102 (q)->cnt_ ## op++; \
103 err; \
104 })
105
106 #define call_void_qop(q, op, args...) \
107 ({ \
108 log_qop(q, op); \
109 if ((q)->ops->op) \
110 (q)->ops->op(args); \
111 (q)->cnt_ ## op++; \
112 })
113
114 #define log_vb_qop(vb, op, args...) \
115 dprintk(2, "call_vb_qop(%p, %d, %s)%s\n", \
116 (vb)->vb2_queue, (vb)->v4l2_buf.index, #op, \
117 (vb)->vb2_queue->ops->op ? "" : " (nop)")
118
119 #define call_vb_qop(vb, op, args...) \
120 ({ \
121 int err; \
122 \
123 log_vb_qop(vb, op); \
124 err = (vb)->vb2_queue->ops->op ? \
125 (vb)->vb2_queue->ops->op(args) : 0; \
126 if (!err) \
127 (vb)->cnt_ ## op++; \
128 err; \
129 })
130
131 #define call_void_vb_qop(vb, op, args...) \
132 ({ \
133 log_vb_qop(vb, op); \
134 if ((vb)->vb2_queue->ops->op) \
135 (vb)->vb2_queue->ops->op(args); \
136 (vb)->cnt_ ## op++; \
137 })
138
139 #else
140
141 #define call_memop(vb, op, args...) \
142 ((vb)->vb2_queue->mem_ops->op ? \
143 (vb)->vb2_queue->mem_ops->op(args) : 0)
144
145 #define call_ptr_memop(vb, op, args...) \
146 ((vb)->vb2_queue->mem_ops->op ? \
147 (vb)->vb2_queue->mem_ops->op(args) : NULL)
148
149 #define call_void_memop(vb, op, args...) \
150 do { \
151 if ((vb)->vb2_queue->mem_ops->op) \
152 (vb)->vb2_queue->mem_ops->op(args); \
153 } while (0)
154
155 #define call_qop(q, op, args...) \
156 ((q)->ops->op ? (q)->ops->op(args) : 0)
157
158 #define call_void_qop(q, op, args...) \
159 do { \
160 if ((q)->ops->op) \
161 (q)->ops->op(args); \
162 } while (0)
163
164 #define call_vb_qop(vb, op, args...) \
165 ((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
166
167 #define call_void_vb_qop(vb, op, args...) \
168 do { \
169 if ((vb)->vb2_queue->ops->op) \
170 (vb)->vb2_queue->ops->op(args); \
171 } while (0)
172
173 #endif
174
175 /* Flags that are set by the vb2 core */
176 #define V4L2_BUFFER_MASK_FLAGS (V4L2_BUF_FLAG_MAPPED | V4L2_BUF_FLAG_QUEUED | \
177 V4L2_BUF_FLAG_DONE | V4L2_BUF_FLAG_ERROR | \
178 V4L2_BUF_FLAG_PREPARED | \
179 V4L2_BUF_FLAG_TIMESTAMP_MASK)
180 /* Output buffer flags that should be passed on to the driver */
181 #define V4L2_BUFFER_OUT_FLAGS (V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME | \
182 V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_TIMECODE)
183
184 static void __vb2_queue_cancel(struct vb2_queue *q);
185
186 /**
187 * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
188 */
189 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
190 {
191 struct vb2_queue *q = vb->vb2_queue;
192 void *mem_priv;
193 int plane;
194
195 /*
196 * Allocate memory for all planes in this buffer
197 * NOTE: mmapped areas should be page aligned
198 */
199 for (plane = 0; plane < vb->num_planes; ++plane) {
200 unsigned long size = PAGE_ALIGN(q->plane_sizes[plane]);
201
202 mem_priv = call_ptr_memop(vb, alloc, q->alloc_ctx[plane],
203 size, q->gfp_flags);
204 if (IS_ERR_OR_NULL(mem_priv))
205 goto free;
206
207 /* Associate allocator private data with this plane */
208 vb->planes[plane].mem_priv = mem_priv;
209 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
210 }
211
212 return 0;
213 free:
214 /* Free already allocated memory if one of the allocations failed */
215 for (; plane > 0; --plane) {
216 call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
217 vb->planes[plane - 1].mem_priv = NULL;
218 }
219
220 return -ENOMEM;
221 }
222
223 /**
224 * __vb2_buf_mem_free() - free memory of the given buffer
225 */
226 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
227 {
228 unsigned int plane;
229
230 for (plane = 0; plane < vb->num_planes; ++plane) {
231 call_void_memop(vb, put, vb->planes[plane].mem_priv);
232 vb->planes[plane].mem_priv = NULL;
233 dprintk(3, "freed plane %d of buffer %d\n", plane,
234 vb->v4l2_buf.index);
235 }
236 }
237
238 /**
239 * __vb2_buf_userptr_put() - release userspace memory associated with
240 * a USERPTR buffer
241 */
242 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
243 {
244 unsigned int plane;
245
246 for (plane = 0; plane < vb->num_planes; ++plane) {
247 if (vb->planes[plane].mem_priv)
248 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
249 vb->planes[plane].mem_priv = NULL;
250 }
251 }
252
253 /**
254 * __vb2_plane_dmabuf_put() - release memory associated with
255 * a DMABUF shared plane
256 */
257 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
258 {
259 if (!p->mem_priv)
260 return;
261
262 if (p->dbuf_mapped)
263 call_void_memop(vb, unmap_dmabuf, p->mem_priv);
264
265 call_void_memop(vb, detach_dmabuf, p->mem_priv);
266 dma_buf_put(p->dbuf);
267 memset(p, 0, sizeof(*p));
268 }
269
270 /**
271 * __vb2_buf_dmabuf_put() - release memory associated with
272 * a DMABUF shared buffer
273 */
274 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
275 {
276 unsigned int plane;
277
278 for (plane = 0; plane < vb->num_planes; ++plane)
279 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
280 }
281
282 /**
283 * __setup_lengths() - setup initial lengths for every plane in
284 * every buffer on the queue
285 */
286 static void __setup_lengths(struct vb2_queue *q, unsigned int n)
287 {
288 unsigned int buffer, plane;
289 struct vb2_buffer *vb;
290
291 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
292 vb = q->bufs[buffer];
293 if (!vb)
294 continue;
295
296 for (plane = 0; plane < vb->num_planes; ++plane)
297 vb->v4l2_planes[plane].length = q->plane_sizes[plane];
298 }
299 }
300
301 /**
302 * __setup_offsets() - setup unique offsets ("cookies") for every plane in
303 * every buffer on the queue
304 */
305 static void __setup_offsets(struct vb2_queue *q, unsigned int n)
306 {
307 unsigned int buffer, plane;
308 struct vb2_buffer *vb;
309 unsigned long off;
310
311 if (q->num_buffers) {
312 struct v4l2_plane *p;
313 vb = q->bufs[q->num_buffers - 1];
314 p = &vb->v4l2_planes[vb->num_planes - 1];
315 off = PAGE_ALIGN(p->m.mem_offset + p->length);
316 } else {
317 off = 0;
318 }
319
320 for (buffer = q->num_buffers; buffer < q->num_buffers + n; ++buffer) {
321 vb = q->bufs[buffer];
322 if (!vb)
323 continue;
324
325 for (plane = 0; plane < vb->num_planes; ++plane) {
326 vb->v4l2_planes[plane].m.mem_offset = off;
327
328 dprintk(3, "buffer %d, plane %d offset 0x%08lx\n",
329 buffer, plane, off);
330
331 off += vb->v4l2_planes[plane].length;
332 off = PAGE_ALIGN(off);
333 }
334 }
335 }
336
337 /**
338 * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
339 * video buffer memory for all buffers/planes on the queue and initializes the
340 * queue
341 *
342 * Returns the number of buffers successfully allocated.
343 */
344 static int __vb2_queue_alloc(struct vb2_queue *q, enum v4l2_memory memory,
345 unsigned int num_buffers, unsigned int num_planes)
346 {
347 unsigned int buffer;
348 struct vb2_buffer *vb;
349 int ret;
350
351 for (buffer = 0; buffer < num_buffers; ++buffer) {
352 /* Allocate videobuf buffer structures */
353 vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
354 if (!vb) {
355 dprintk(1, "memory alloc for buffer struct failed\n");
356 break;
357 }
358
359 /* Length stores number of planes for multiplanar buffers */
360 if (V4L2_TYPE_IS_MULTIPLANAR(q->type))
361 vb->v4l2_buf.length = num_planes;
362
363 vb->state = VB2_BUF_STATE_DEQUEUED;
364 vb->vb2_queue = q;
365 vb->num_planes = num_planes;
366 vb->v4l2_buf.index = q->num_buffers + buffer;
367 vb->v4l2_buf.type = q->type;
368 vb->v4l2_buf.memory = memory;
369
370 /* Allocate video buffer memory for the MMAP type */
371 if (memory == V4L2_MEMORY_MMAP) {
372 ret = __vb2_buf_mem_alloc(vb);
373 if (ret) {
374 dprintk(1, "failed allocating memory for "
375 "buffer %d\n", buffer);
376 kfree(vb);
377 break;
378 }
379 /*
380 * Call the driver-provided buffer initialization
381 * callback, if given. An error in initialization
382 * results in queue setup failure.
383 */
384 ret = call_vb_qop(vb, buf_init, vb);
385 if (ret) {
386 dprintk(1, "buffer %d %p initialization"
387 " failed\n", buffer, vb);
388 __vb2_buf_mem_free(vb);
389 kfree(vb);
390 break;
391 }
392 }
393
394 q->bufs[q->num_buffers + buffer] = vb;
395 }
396
397 __setup_lengths(q, buffer);
398 if (memory == V4L2_MEMORY_MMAP)
399 __setup_offsets(q, buffer);
400
401 dprintk(1, "allocated %d buffers, %d plane(s) each\n",
402 buffer, num_planes);
403
404 return buffer;
405 }
406
407 /**
408 * __vb2_free_mem() - release all video buffer memory for a given queue
409 */
410 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
411 {
412 unsigned int buffer;
413 struct vb2_buffer *vb;
414
415 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
416 ++buffer) {
417 vb = q->bufs[buffer];
418 if (!vb)
419 continue;
420
421 /* Free MMAP buffers or release USERPTR buffers */
422 if (q->memory == V4L2_MEMORY_MMAP)
423 __vb2_buf_mem_free(vb);
424 else if (q->memory == V4L2_MEMORY_DMABUF)
425 __vb2_buf_dmabuf_put(vb);
426 else
427 __vb2_buf_userptr_put(vb);
428 }
429 }
430
431 /**
432 * __vb2_queue_free() - free buffers at the end of the queue - video memory and
433 * related information, if no buffers are left return the queue to an
434 * uninitialized state. Might be called even if the queue has already been freed.
435 */
436 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
437 {
438 unsigned int buffer;
439
440 /*
441 * Sanity check: when preparing a buffer the queue lock is released for
442 * a short while (see __buf_prepare for the details), which would allow
443 * a race with a reqbufs which can call this function. Removing the
444 * buffers from underneath __buf_prepare is obviously a bad idea, so we
445 * check if any of the buffers is in the state PREPARING, and if so we
446 * just return -EAGAIN.
447 */
448 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
449 ++buffer) {
450 if (q->bufs[buffer] == NULL)
451 continue;
452 if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
453 dprintk(1, "preparing buffers, cannot free\n");
454 return -EAGAIN;
455 }
456 }
457
458 /* Call driver-provided cleanup function for each buffer, if provided */
459 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
460 ++buffer) {
461 struct vb2_buffer *vb = q->bufs[buffer];
462
463 if (vb && vb->planes[0].mem_priv)
464 call_void_vb_qop(vb, buf_cleanup, vb);
465 }
466
467 /* Release video buffer memory */
468 __vb2_free_mem(q, buffers);
469
470 #ifdef CONFIG_VIDEO_ADV_DEBUG
471 /*
472 * Check that all the calls were balances during the life-time of this
473 * queue. If not (or if the debug level is 1 or up), then dump the
474 * counters to the kernel log.
475 */
476 if (q->num_buffers) {
477 bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
478 q->cnt_wait_prepare != q->cnt_wait_finish;
479
480 if (unbalanced || debug) {
481 pr_info("vb2: counters for queue %p:%s\n", q,
482 unbalanced ? " UNBALANCED!" : "");
483 pr_info("vb2: setup: %u start_streaming: %u stop_streaming: %u\n",
484 q->cnt_queue_setup, q->cnt_start_streaming,
485 q->cnt_stop_streaming);
486 pr_info("vb2: wait_prepare: %u wait_finish: %u\n",
487 q->cnt_wait_prepare, q->cnt_wait_finish);
488 }
489 q->cnt_queue_setup = 0;
490 q->cnt_wait_prepare = 0;
491 q->cnt_wait_finish = 0;
492 q->cnt_start_streaming = 0;
493 q->cnt_stop_streaming = 0;
494 }
495 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
496 struct vb2_buffer *vb = q->bufs[buffer];
497 bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
498 vb->cnt_mem_prepare != vb->cnt_mem_finish ||
499 vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
500 vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
501 vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
502 vb->cnt_buf_queue != vb->cnt_buf_done ||
503 vb->cnt_buf_prepare != vb->cnt_buf_finish ||
504 vb->cnt_buf_init != vb->cnt_buf_cleanup;
505
506 if (unbalanced || debug) {
507 pr_info("vb2: counters for queue %p, buffer %d:%s\n",
508 q, buffer, unbalanced ? " UNBALANCED!" : "");
509 pr_info("vb2: buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
510 vb->cnt_buf_init, vb->cnt_buf_cleanup,
511 vb->cnt_buf_prepare, vb->cnt_buf_finish);
512 pr_info("vb2: buf_queue: %u buf_done: %u\n",
513 vb->cnt_buf_queue, vb->cnt_buf_done);
514 pr_info("vb2: alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
515 vb->cnt_mem_alloc, vb->cnt_mem_put,
516 vb->cnt_mem_prepare, vb->cnt_mem_finish,
517 vb->cnt_mem_mmap);
518 pr_info("vb2: get_userptr: %u put_userptr: %u\n",
519 vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
520 pr_info("vb2: attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
521 vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
522 vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
523 pr_info("vb2: get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
524 vb->cnt_mem_get_dmabuf,
525 vb->cnt_mem_num_users,
526 vb->cnt_mem_vaddr,
527 vb->cnt_mem_cookie);
528 }
529 }
530 #endif
531
532 /* Free videobuf buffers */
533 for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
534 ++buffer) {
535 kfree(q->bufs[buffer]);
536 q->bufs[buffer] = NULL;
537 }
538
539 q->num_buffers -= buffers;
540 if (!q->num_buffers) {
541 q->memory = 0;
542 INIT_LIST_HEAD(&q->queued_list);
543 }
544 return 0;
545 }
546
547 /**
548 * __verify_planes_array() - verify that the planes array passed in struct
549 * v4l2_buffer from userspace can be safely used
550 */
551 static int __verify_planes_array(struct vb2_buffer *vb, const struct v4l2_buffer *b)
552 {
553 if (!V4L2_TYPE_IS_MULTIPLANAR(b->type))
554 return 0;
555
556 /* Is memory for copying plane information present? */
557 if (NULL == b->m.planes) {
558 dprintk(1, "multi-planar buffer passed but "
559 "planes array not provided\n");
560 return -EINVAL;
561 }
562
563 if (b->length < vb->num_planes || b->length > VIDEO_MAX_PLANES) {
564 dprintk(1, "incorrect planes array length, "
565 "expected %d, got %d\n", vb->num_planes, b->length);
566 return -EINVAL;
567 }
568
569 return 0;
570 }
571
572 /**
573 * __verify_length() - Verify that the bytesused value for each plane fits in
574 * the plane length and that the data offset doesn't exceed the bytesused value.
575 */
576 static int __verify_length(struct vb2_buffer *vb, const struct v4l2_buffer *b)
577 {
578 unsigned int length;
579 unsigned int plane;
580
581 if (!V4L2_TYPE_IS_OUTPUT(b->type))
582 return 0;
583
584 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
585 for (plane = 0; plane < vb->num_planes; ++plane) {
586 length = (b->memory == V4L2_MEMORY_USERPTR)
587 ? b->m.planes[plane].length
588 : vb->v4l2_planes[plane].length;
589
590 if (b->m.planes[plane].bytesused > length)
591 return -EINVAL;
592
593 if (b->m.planes[plane].data_offset > 0 &&
594 b->m.planes[plane].data_offset >=
595 b->m.planes[plane].bytesused)
596 return -EINVAL;
597 }
598 } else {
599 length = (b->memory == V4L2_MEMORY_USERPTR)
600 ? b->length : vb->v4l2_planes[0].length;
601
602 if (b->bytesused > length)
603 return -EINVAL;
604 }
605
606 return 0;
607 }
608
609 /**
610 * __buffer_in_use() - return true if the buffer is in use and
611 * the queue cannot be freed (by the means of REQBUFS(0)) call
612 */
613 static bool __buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
614 {
615 unsigned int plane;
616 for (plane = 0; plane < vb->num_planes; ++plane) {
617 void *mem_priv = vb->planes[plane].mem_priv;
618 /*
619 * If num_users() has not been provided, call_memop
620 * will return 0, apparently nobody cares about this
621 * case anyway. If num_users() returns more than 1,
622 * we are not the only user of the plane's memory.
623 */
624 if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
625 return true;
626 }
627 return false;
628 }
629
630 /**
631 * __buffers_in_use() - return true if any buffers on the queue are in use and
632 * the queue cannot be freed (by the means of REQBUFS(0)) call
633 */
634 static bool __buffers_in_use(struct vb2_queue *q)
635 {
636 unsigned int buffer;
637 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
638 if (__buffer_in_use(q, q->bufs[buffer]))
639 return true;
640 }
641 return false;
642 }
643
644 /**
645 * __fill_v4l2_buffer() - fill in a struct v4l2_buffer with information to be
646 * returned to userspace
647 */
648 static void __fill_v4l2_buffer(struct vb2_buffer *vb, struct v4l2_buffer *b)
649 {
650 struct vb2_queue *q = vb->vb2_queue;
651
652 /* Copy back data such as timestamp, flags, etc. */
653 memcpy(b, &vb->v4l2_buf, offsetof(struct v4l2_buffer, m));
654 b->reserved2 = vb->v4l2_buf.reserved2;
655 b->reserved = vb->v4l2_buf.reserved;
656
657 if (V4L2_TYPE_IS_MULTIPLANAR(q->type)) {
658 /*
659 * Fill in plane-related data if userspace provided an array
660 * for it. The caller has already verified memory and size.
661 */
662 b->length = vb->num_planes;
663 memcpy(b->m.planes, vb->v4l2_planes,
664 b->length * sizeof(struct v4l2_plane));
665 } else {
666 /*
667 * We use length and offset in v4l2_planes array even for
668 * single-planar buffers, but userspace does not.
669 */
670 b->length = vb->v4l2_planes[0].length;
671 b->bytesused = vb->v4l2_planes[0].bytesused;
672 if (q->memory == V4L2_MEMORY_MMAP)
673 b->m.offset = vb->v4l2_planes[0].m.mem_offset;
674 else if (q->memory == V4L2_MEMORY_USERPTR)
675 b->m.userptr = vb->v4l2_planes[0].m.userptr;
676 else if (q->memory == V4L2_MEMORY_DMABUF)
677 b->m.fd = vb->v4l2_planes[0].m.fd;
678 }
679
680 /*
681 * Clear any buffer state related flags.
682 */
683 b->flags &= ~V4L2_BUFFER_MASK_FLAGS;
684 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK;
685 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
686 V4L2_BUF_FLAG_TIMESTAMP_COPY) {
687 /*
688 * For non-COPY timestamps, drop timestamp source bits
689 * and obtain the timestamp source from the queue.
690 */
691 b->flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
692 b->flags |= q->timestamp_flags & V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
693 }
694
695 switch (vb->state) {
696 case VB2_BUF_STATE_QUEUED:
697 case VB2_BUF_STATE_ACTIVE:
698 b->flags |= V4L2_BUF_FLAG_QUEUED;
699 break;
700 case VB2_BUF_STATE_ERROR:
701 b->flags |= V4L2_BUF_FLAG_ERROR;
702 /* fall through */
703 case VB2_BUF_STATE_DONE:
704 b->flags |= V4L2_BUF_FLAG_DONE;
705 break;
706 case VB2_BUF_STATE_PREPARED:
707 b->flags |= V4L2_BUF_FLAG_PREPARED;
708 break;
709 case VB2_BUF_STATE_PREPARING:
710 case VB2_BUF_STATE_DEQUEUED:
711 /* nothing */
712 break;
713 }
714
715 if (__buffer_in_use(q, vb))
716 b->flags |= V4L2_BUF_FLAG_MAPPED;
717 }
718
719 /**
720 * vb2_querybuf() - query video buffer information
721 * @q: videobuf queue
722 * @b: buffer struct passed from userspace to vidioc_querybuf handler
723 * in driver
724 *
725 * Should be called from vidioc_querybuf ioctl handler in driver.
726 * This function will verify the passed v4l2_buffer structure and fill the
727 * relevant information for the userspace.
728 *
729 * The return values from this function are intended to be directly returned
730 * from vidioc_querybuf handler in driver.
731 */
732 int vb2_querybuf(struct vb2_queue *q, struct v4l2_buffer *b)
733 {
734 struct vb2_buffer *vb;
735 int ret;
736
737 if (b->type != q->type) {
738 dprintk(1, "wrong buffer type\n");
739 return -EINVAL;
740 }
741
742 if (b->index >= q->num_buffers) {
743 dprintk(1, "buffer index out of range\n");
744 return -EINVAL;
745 }
746 vb = q->bufs[b->index];
747 ret = __verify_planes_array(vb, b);
748 if (!ret)
749 __fill_v4l2_buffer(vb, b);
750 return ret;
751 }
752 EXPORT_SYMBOL(vb2_querybuf);
753
754 /**
755 * __verify_userptr_ops() - verify that all memory operations required for
756 * USERPTR queue type have been provided
757 */
758 static int __verify_userptr_ops(struct vb2_queue *q)
759 {
760 if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
761 !q->mem_ops->put_userptr)
762 return -EINVAL;
763
764 return 0;
765 }
766
767 /**
768 * __verify_mmap_ops() - verify that all memory operations required for
769 * MMAP queue type have been provided
770 */
771 static int __verify_mmap_ops(struct vb2_queue *q)
772 {
773 if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
774 !q->mem_ops->put || !q->mem_ops->mmap)
775 return -EINVAL;
776
777 return 0;
778 }
779
780 /**
781 * __verify_dmabuf_ops() - verify that all memory operations required for
782 * DMABUF queue type have been provided
783 */
784 static int __verify_dmabuf_ops(struct vb2_queue *q)
785 {
786 if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
787 !q->mem_ops->detach_dmabuf || !q->mem_ops->map_dmabuf ||
788 !q->mem_ops->unmap_dmabuf)
789 return -EINVAL;
790
791 return 0;
792 }
793
794 /**
795 * __verify_memory_type() - Check whether the memory type and buffer type
796 * passed to a buffer operation are compatible with the queue.
797 */
798 static int __verify_memory_type(struct vb2_queue *q,
799 enum v4l2_memory memory, enum v4l2_buf_type type)
800 {
801 if (memory != V4L2_MEMORY_MMAP && memory != V4L2_MEMORY_USERPTR &&
802 memory != V4L2_MEMORY_DMABUF) {
803 dprintk(1, "unsupported memory type\n");
804 return -EINVAL;
805 }
806
807 if (type != q->type) {
808 dprintk(1, "requested type is incorrect\n");
809 return -EINVAL;
810 }
811
812 /*
813 * Make sure all the required memory ops for given memory type
814 * are available.
815 */
816 if (memory == V4L2_MEMORY_MMAP && __verify_mmap_ops(q)) {
817 dprintk(1, "MMAP for current setup unsupported\n");
818 return -EINVAL;
819 }
820
821 if (memory == V4L2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
822 dprintk(1, "USERPTR for current setup unsupported\n");
823 return -EINVAL;
824 }
825
826 if (memory == V4L2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
827 dprintk(1, "DMABUF for current setup unsupported\n");
828 return -EINVAL;
829 }
830
831 /*
832 * Place the busy tests at the end: -EBUSY can be ignored when
833 * create_bufs is called with count == 0, but count == 0 should still
834 * do the memory and type validation.
835 */
836 if (vb2_fileio_is_active(q)) {
837 dprintk(1, "file io in progress\n");
838 return -EBUSY;
839 }
840 return 0;
841 }
842
843 /**
844 * __reqbufs() - Initiate streaming
845 * @q: videobuf2 queue
846 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
847 *
848 * Should be called from vidioc_reqbufs ioctl handler of a driver.
849 * This function:
850 * 1) verifies streaming parameters passed from the userspace,
851 * 2) sets up the queue,
852 * 3) negotiates number of buffers and planes per buffer with the driver
853 * to be used during streaming,
854 * 4) allocates internal buffer structures (struct vb2_buffer), according to
855 * the agreed parameters,
856 * 5) for MMAP memory type, allocates actual video memory, using the
857 * memory handling/allocation routines provided during queue initialization
858 *
859 * If req->count is 0, all the memory will be freed instead.
860 * If the queue has been allocated previously (by a previous vb2_reqbufs) call
861 * and the queue is not busy, memory will be reallocated.
862 *
863 * The return values from this function are intended to be directly returned
864 * from vidioc_reqbufs handler in driver.
865 */
866 static int __reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
867 {
868 unsigned int num_buffers, allocated_buffers, num_planes = 0;
869 int ret;
870
871 if (q->streaming) {
872 dprintk(1, "streaming active\n");
873 return -EBUSY;
874 }
875
876 if (req->count == 0 || q->num_buffers != 0 || q->memory != req->memory) {
877 /*
878 * We already have buffers allocated, so first check if they
879 * are not in use and can be freed.
880 */
881 if (q->memory == V4L2_MEMORY_MMAP && __buffers_in_use(q)) {
882 dprintk(1, "memory in use, cannot free\n");
883 return -EBUSY;
884 }
885
886 /*
887 * Call queue_cancel to clean up any buffers in the PREPARED or
888 * QUEUED state which is possible if buffers were prepared or
889 * queued without ever calling STREAMON.
890 */
891 __vb2_queue_cancel(q);
892 ret = __vb2_queue_free(q, q->num_buffers);
893 if (ret)
894 return ret;
895
896 /*
897 * In case of REQBUFS(0) return immediately without calling
898 * driver's queue_setup() callback and allocating resources.
899 */
900 if (req->count == 0)
901 return 0;
902 }
903
904 /*
905 * Make sure the requested values and current defaults are sane.
906 */
907 num_buffers = min_t(unsigned int, req->count, VIDEO_MAX_FRAME);
908 num_buffers = max_t(unsigned int, num_buffers, q->min_buffers_needed);
909 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
910 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
911 q->memory = req->memory;
912
913 /*
914 * Ask the driver how many buffers and planes per buffer it requires.
915 * Driver also sets the size and allocator context for each plane.
916 */
917 ret = call_qop(q, queue_setup, q, NULL, &num_buffers, &num_planes,
918 q->plane_sizes, q->alloc_ctx);
919 if (ret)
920 return ret;
921
922 /* Finally, allocate buffers and video memory */
923 allocated_buffers = __vb2_queue_alloc(q, req->memory, num_buffers, num_planes);
924 if (allocated_buffers == 0) {
925 dprintk(1, "memory allocation failed\n");
926 return -ENOMEM;
927 }
928
929 /*
930 * There is no point in continuing if we can't allocate the minimum
931 * number of buffers needed by this vb2_queue.
932 */
933 if (allocated_buffers < q->min_buffers_needed)
934 ret = -ENOMEM;
935
936 /*
937 * Check if driver can handle the allocated number of buffers.
938 */
939 if (!ret && allocated_buffers < num_buffers) {
940 num_buffers = allocated_buffers;
941
942 ret = call_qop(q, queue_setup, q, NULL, &num_buffers,
943 &num_planes, q->plane_sizes, q->alloc_ctx);
944
945 if (!ret && allocated_buffers < num_buffers)
946 ret = -ENOMEM;
947
948 /*
949 * Either the driver has accepted a smaller number of buffers,
950 * or .queue_setup() returned an error
951 */
952 }
953
954 q->num_buffers = allocated_buffers;
955
956 if (ret < 0) {
957 /*
958 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
959 * from q->num_buffers.
960 */
961 __vb2_queue_free(q, allocated_buffers);
962 return ret;
963 }
964
965 /*
966 * Return the number of successfully allocated buffers
967 * to the userspace.
968 */
969 req->count = allocated_buffers;
970
971 return 0;
972 }
973
974 /**
975 * vb2_reqbufs() - Wrapper for __reqbufs() that also verifies the memory and
976 * type values.
977 * @q: videobuf2 queue
978 * @req: struct passed from userspace to vidioc_reqbufs handler in driver
979 */
980 int vb2_reqbufs(struct vb2_queue *q, struct v4l2_requestbuffers *req)
981 {
982 int ret = __verify_memory_type(q, req->memory, req->type);
983
984 return ret ? ret : __reqbufs(q, req);
985 }
986 EXPORT_SYMBOL_GPL(vb2_reqbufs);
987
988 /**
989 * __create_bufs() - Allocate buffers and any required auxiliary structs
990 * @q: videobuf2 queue
991 * @create: creation parameters, passed from userspace to vidioc_create_bufs
992 * handler in driver
993 *
994 * Should be called from vidioc_create_bufs ioctl handler of a driver.
995 * This function:
996 * 1) verifies parameter sanity
997 * 2) calls the .queue_setup() queue operation
998 * 3) performs any necessary memory allocations
999 *
1000 * The return values from this function are intended to be directly returned
1001 * from vidioc_create_bufs handler in driver.
1002 */
1003 static int __create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1004 {
1005 unsigned int num_planes = 0, num_buffers, allocated_buffers;
1006 int ret;
1007
1008 if (q->num_buffers == VIDEO_MAX_FRAME) {
1009 dprintk(1, "maximum number of buffers already allocated\n");
1010 return -ENOBUFS;
1011 }
1012
1013 if (!q->num_buffers) {
1014 memset(q->plane_sizes, 0, sizeof(q->plane_sizes));
1015 memset(q->alloc_ctx, 0, sizeof(q->alloc_ctx));
1016 q->memory = create->memory;
1017 }
1018
1019 num_buffers = min(create->count, VIDEO_MAX_FRAME - q->num_buffers);
1020
1021 /*
1022 * Ask the driver, whether the requested number of buffers, planes per
1023 * buffer and their sizes are acceptable
1024 */
1025 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1026 &num_planes, q->plane_sizes, q->alloc_ctx);
1027 if (ret)
1028 return ret;
1029
1030 /* Finally, allocate buffers and video memory */
1031 allocated_buffers = __vb2_queue_alloc(q, create->memory, num_buffers,
1032 num_planes);
1033 if (allocated_buffers == 0) {
1034 dprintk(1, "memory allocation failed\n");
1035 return -ENOMEM;
1036 }
1037
1038 /*
1039 * Check if driver can handle the so far allocated number of buffers.
1040 */
1041 if (allocated_buffers < num_buffers) {
1042 num_buffers = allocated_buffers;
1043
1044 /*
1045 * q->num_buffers contains the total number of buffers, that the
1046 * queue driver has set up
1047 */
1048 ret = call_qop(q, queue_setup, q, &create->format, &num_buffers,
1049 &num_planes, q->plane_sizes, q->alloc_ctx);
1050
1051 if (!ret && allocated_buffers < num_buffers)
1052 ret = -ENOMEM;
1053
1054 /*
1055 * Either the driver has accepted a smaller number of buffers,
1056 * or .queue_setup() returned an error
1057 */
1058 }
1059
1060 q->num_buffers += allocated_buffers;
1061
1062 if (ret < 0) {
1063 /*
1064 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
1065 * from q->num_buffers.
1066 */
1067 __vb2_queue_free(q, allocated_buffers);
1068 return -ENOMEM;
1069 }
1070
1071 /*
1072 * Return the number of successfully allocated buffers
1073 * to the userspace.
1074 */
1075 create->count = allocated_buffers;
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * vb2_create_bufs() - Wrapper for __create_bufs() that also verifies the
1082 * memory and type values.
1083 * @q: videobuf2 queue
1084 * @create: creation parameters, passed from userspace to vidioc_create_bufs
1085 * handler in driver
1086 */
1087 int vb2_create_bufs(struct vb2_queue *q, struct v4l2_create_buffers *create)
1088 {
1089 int ret = __verify_memory_type(q, create->memory, create->format.type);
1090
1091 create->index = q->num_buffers;
1092 if (create->count == 0)
1093 return ret != -EBUSY ? ret : 0;
1094 return ret ? ret : __create_bufs(q, create);
1095 }
1096 EXPORT_SYMBOL_GPL(vb2_create_bufs);
1097
1098 /**
1099 * vb2_plane_vaddr() - Return a kernel virtual address of a given plane
1100 * @vb: vb2_buffer to which the plane in question belongs to
1101 * @plane_no: plane number for which the address is to be returned
1102 *
1103 * This function returns a kernel virtual address of a given plane if
1104 * such a mapping exist, NULL otherwise.
1105 */
1106 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1107 {
1108 if (plane_no > vb->num_planes || !vb->planes[plane_no].mem_priv)
1109 return NULL;
1110
1111 return call_ptr_memop(vb, vaddr, vb->planes[plane_no].mem_priv);
1112
1113 }
1114 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1115
1116 /**
1117 * vb2_plane_cookie() - Return allocator specific cookie for the given plane
1118 * @vb: vb2_buffer to which the plane in question belongs to
1119 * @plane_no: plane number for which the cookie is to be returned
1120 *
1121 * This function returns an allocator specific cookie for a given plane if
1122 * available, NULL otherwise. The allocator should provide some simple static
1123 * inline function, which would convert this cookie to the allocator specific
1124 * type that can be used directly by the driver to access the buffer. This can
1125 * be for example physical address, pointer to scatter list or IOMMU mapping.
1126 */
1127 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1128 {
1129 if (plane_no > vb->num_planes || !vb->planes[plane_no].mem_priv)
1130 return NULL;
1131
1132 return call_ptr_memop(vb, cookie, vb->planes[plane_no].mem_priv);
1133 }
1134 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1135
1136 /**
1137 * vb2_buffer_done() - inform videobuf that an operation on a buffer is finished
1138 * @vb: vb2_buffer returned from the driver
1139 * @state: either VB2_BUF_STATE_DONE if the operation finished successfully
1140 * or VB2_BUF_STATE_ERROR if the operation finished with an error.
1141 * If start_streaming fails then it should return buffers with state
1142 * VB2_BUF_STATE_QUEUED to put them back into the queue.
1143 *
1144 * This function should be called by the driver after a hardware operation on
1145 * a buffer is finished and the buffer may be returned to userspace. The driver
1146 * cannot use this buffer anymore until it is queued back to it by videobuf
1147 * by the means of buf_queue callback. Only buffers previously queued to the
1148 * driver by buf_queue can be passed to this function.
1149 *
1150 * While streaming a buffer can only be returned in state DONE or ERROR.
1151 * The start_streaming op can also return them in case the DMA engine cannot
1152 * be started for some reason. In that case the buffers should be returned with
1153 * state QUEUED.
1154 */
1155 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1156 {
1157 struct vb2_queue *q = vb->vb2_queue;
1158 unsigned long flags;
1159 unsigned int plane;
1160
1161 if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1162 return;
1163
1164 if (!q->start_streaming_called) {
1165 if (WARN_ON(state != VB2_BUF_STATE_QUEUED))
1166 state = VB2_BUF_STATE_QUEUED;
1167 } else if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1168 state != VB2_BUF_STATE_ERROR)) {
1169 state = VB2_BUF_STATE_ERROR;
1170 }
1171
1172 #ifdef CONFIG_VIDEO_ADV_DEBUG
1173 /*
1174 * Although this is not a callback, it still does have to balance
1175 * with the buf_queue op. So update this counter manually.
1176 */
1177 vb->cnt_buf_done++;
1178 #endif
1179 dprintk(4, "done processing on buffer %d, state: %d\n",
1180 vb->v4l2_buf.index, state);
1181
1182 /* sync buffers */
1183 for (plane = 0; plane < vb->num_planes; ++plane)
1184 call_void_memop(vb, finish, vb->planes[plane].mem_priv);
1185
1186 /* Add the buffer to the done buffers list */
1187 spin_lock_irqsave(&q->done_lock, flags);
1188 vb->state = state;
1189 if (state != VB2_BUF_STATE_QUEUED)
1190 list_add_tail(&vb->done_entry, &q->done_list);
1191 atomic_dec(&q->owned_by_drv_count);
1192 spin_unlock_irqrestore(&q->done_lock, flags);
1193
1194 if (state == VB2_BUF_STATE_QUEUED)
1195 return;
1196
1197 /* Inform any processes that may be waiting for buffers */
1198 wake_up(&q->done_wq);
1199 }
1200 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1201
1202 /**
1203 * vb2_discard_done() - discard all buffers marked as DONE
1204 * @q: videobuf2 queue
1205 *
1206 * This function is intended to be used with suspend/resume operations. It
1207 * discards all 'done' buffers as they would be too old to be requested after
1208 * resume.
1209 *
1210 * Drivers must stop the hardware and synchronize with interrupt handlers and/or
1211 * delayed works before calling this function to make sure no buffer will be
1212 * touched by the driver and/or hardware.
1213 */
1214 void vb2_discard_done(struct vb2_queue *q)
1215 {
1216 struct vb2_buffer *vb;
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&q->done_lock, flags);
1220 list_for_each_entry(vb, &q->done_list, done_entry)
1221 vb->state = VB2_BUF_STATE_ERROR;
1222 spin_unlock_irqrestore(&q->done_lock, flags);
1223 }
1224 EXPORT_SYMBOL_GPL(vb2_discard_done);
1225
1226 /**
1227 * __fill_vb2_buffer() - fill a vb2_buffer with information provided in a
1228 * v4l2_buffer by the userspace. The caller has already verified that struct
1229 * v4l2_buffer has a valid number of planes.
1230 */
1231 static void __fill_vb2_buffer(struct vb2_buffer *vb, const struct v4l2_buffer *b,
1232 struct v4l2_plane *v4l2_planes)
1233 {
1234 unsigned int plane;
1235
1236 if (V4L2_TYPE_IS_MULTIPLANAR(b->type)) {
1237 /* Fill in driver-provided information for OUTPUT types */
1238 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1239 bool bytesused_is_used;
1240
1241 /* Check if bytesused == 0 for all planes */
1242 for (plane = 0; plane < vb->num_planes; ++plane)
1243 if (b->m.planes[plane].bytesused)
1244 break;
1245 bytesused_is_used = plane < vb->num_planes;
1246
1247 /*
1248 * Will have to go up to b->length when API starts
1249 * accepting variable number of planes.
1250 *
1251 * If bytesused_is_used is false, then fall back to the
1252 * full buffer size. In that case userspace clearly
1253 * never bothered to set it and it's a safe assumption
1254 * that they really meant to use the full plane sizes.
1255 */
1256 for (plane = 0; plane < vb->num_planes; ++plane) {
1257 struct v4l2_plane *pdst = &v4l2_planes[plane];
1258 struct v4l2_plane *psrc = &b->m.planes[plane];
1259
1260 pdst->bytesused = bytesused_is_used ?
1261 psrc->bytesused : psrc->length;
1262 pdst->data_offset = psrc->data_offset;
1263 }
1264 }
1265
1266 if (b->memory == V4L2_MEMORY_USERPTR) {
1267 for (plane = 0; plane < vb->num_planes; ++plane) {
1268 v4l2_planes[plane].m.userptr =
1269 b->m.planes[plane].m.userptr;
1270 v4l2_planes[plane].length =
1271 b->m.planes[plane].length;
1272 }
1273 }
1274 if (b->memory == V4L2_MEMORY_DMABUF) {
1275 for (plane = 0; plane < vb->num_planes; ++plane) {
1276 v4l2_planes[plane].m.fd =
1277 b->m.planes[plane].m.fd;
1278 v4l2_planes[plane].length =
1279 b->m.planes[plane].length;
1280 }
1281 }
1282 } else {
1283 /*
1284 * Single-planar buffers do not use planes array,
1285 * so fill in relevant v4l2_buffer struct fields instead.
1286 * In videobuf we use our internal V4l2_planes struct for
1287 * single-planar buffers as well, for simplicity.
1288 *
1289 * If bytesused == 0, then fall back to the full buffer size
1290 * as that's a sensible default.
1291 */
1292 if (V4L2_TYPE_IS_OUTPUT(b->type))
1293 v4l2_planes[0].bytesused =
1294 b->bytesused ? b->bytesused : b->length;
1295 else
1296 v4l2_planes[0].bytesused = 0;
1297
1298 if (b->memory == V4L2_MEMORY_USERPTR) {
1299 v4l2_planes[0].m.userptr = b->m.userptr;
1300 v4l2_planes[0].length = b->length;
1301 }
1302
1303 if (b->memory == V4L2_MEMORY_DMABUF) {
1304 v4l2_planes[0].m.fd = b->m.fd;
1305 v4l2_planes[0].length = b->length;
1306 }
1307 }
1308
1309 /* Zero flags that the vb2 core handles */
1310 vb->v4l2_buf.flags = b->flags & ~V4L2_BUFFER_MASK_FLAGS;
1311 if ((vb->vb2_queue->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) !=
1312 V4L2_BUF_FLAG_TIMESTAMP_COPY || !V4L2_TYPE_IS_OUTPUT(b->type)) {
1313 /*
1314 * Non-COPY timestamps and non-OUTPUT queues will get
1315 * their timestamp and timestamp source flags from the
1316 * queue.
1317 */
1318 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1319 }
1320
1321 if (V4L2_TYPE_IS_OUTPUT(b->type)) {
1322 /*
1323 * For output buffers mask out the timecode flag:
1324 * this will be handled later in vb2_internal_qbuf().
1325 * The 'field' is valid metadata for this output buffer
1326 * and so that needs to be copied here.
1327 */
1328 vb->v4l2_buf.flags &= ~V4L2_BUF_FLAG_TIMECODE;
1329 vb->v4l2_buf.field = b->field;
1330 } else {
1331 /* Zero any output buffer flags as this is a capture buffer */
1332 vb->v4l2_buf.flags &= ~V4L2_BUFFER_OUT_FLAGS;
1333 }
1334 }
1335
1336 /**
1337 * __qbuf_mmap() - handle qbuf of an MMAP buffer
1338 */
1339 static int __qbuf_mmap(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1340 {
1341 __fill_vb2_buffer(vb, b, vb->v4l2_planes);
1342 return call_vb_qop(vb, buf_prepare, vb);
1343 }
1344
1345 /**
1346 * __qbuf_userptr() - handle qbuf of a USERPTR buffer
1347 */
1348 static int __qbuf_userptr(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1349 {
1350 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1351 struct vb2_queue *q = vb->vb2_queue;
1352 void *mem_priv;
1353 unsigned int plane;
1354 int ret;
1355 int write = !V4L2_TYPE_IS_OUTPUT(q->type);
1356 bool reacquired = vb->planes[0].mem_priv == NULL;
1357
1358 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1359 /* Copy relevant information provided by the userspace */
1360 __fill_vb2_buffer(vb, b, planes);
1361
1362 for (plane = 0; plane < vb->num_planes; ++plane) {
1363 /* Skip the plane if already verified */
1364 if (vb->v4l2_planes[plane].m.userptr &&
1365 vb->v4l2_planes[plane].m.userptr == planes[plane].m.userptr
1366 && vb->v4l2_planes[plane].length == planes[plane].length)
1367 continue;
1368
1369 dprintk(3, "userspace address for plane %d changed, "
1370 "reacquiring memory\n", plane);
1371
1372 /* Check if the provided plane buffer is large enough */
1373 if (planes[plane].length < q->plane_sizes[plane]) {
1374 dprintk(1, "provided buffer size %u is less than "
1375 "setup size %u for plane %d\n",
1376 planes[plane].length,
1377 q->plane_sizes[plane], plane);
1378 ret = -EINVAL;
1379 goto err;
1380 }
1381
1382 /* Release previously acquired memory if present */
1383 if (vb->planes[plane].mem_priv) {
1384 if (!reacquired) {
1385 reacquired = true;
1386 call_void_vb_qop(vb, buf_cleanup, vb);
1387 }
1388 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1389 }
1390
1391 vb->planes[plane].mem_priv = NULL;
1392 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1393
1394 /* Acquire each plane's memory */
1395 mem_priv = call_ptr_memop(vb, get_userptr, q->alloc_ctx[plane],
1396 planes[plane].m.userptr,
1397 planes[plane].length, write);
1398 if (IS_ERR_OR_NULL(mem_priv)) {
1399 dprintk(1, "failed acquiring userspace "
1400 "memory for plane %d\n", plane);
1401 ret = mem_priv ? PTR_ERR(mem_priv) : -EINVAL;
1402 goto err;
1403 }
1404 vb->planes[plane].mem_priv = mem_priv;
1405 }
1406
1407 /*
1408 * Now that everything is in order, copy relevant information
1409 * provided by userspace.
1410 */
1411 for (plane = 0; plane < vb->num_planes; ++plane)
1412 vb->v4l2_planes[plane] = planes[plane];
1413
1414 if (reacquired) {
1415 /*
1416 * One or more planes changed, so we must call buf_init to do
1417 * the driver-specific initialization on the newly acquired
1418 * buffer, if provided.
1419 */
1420 ret = call_vb_qop(vb, buf_init, vb);
1421 if (ret) {
1422 dprintk(1, "buffer initialization failed\n");
1423 goto err;
1424 }
1425 }
1426
1427 ret = call_vb_qop(vb, buf_prepare, vb);
1428 if (ret) {
1429 dprintk(1, "buffer preparation failed\n");
1430 call_void_vb_qop(vb, buf_cleanup, vb);
1431 goto err;
1432 }
1433
1434 return 0;
1435 err:
1436 /* In case of errors, release planes that were already acquired */
1437 for (plane = 0; plane < vb->num_planes; ++plane) {
1438 if (vb->planes[plane].mem_priv)
1439 call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1440 vb->planes[plane].mem_priv = NULL;
1441 vb->v4l2_planes[plane].m.userptr = 0;
1442 vb->v4l2_planes[plane].length = 0;
1443 }
1444
1445 return ret;
1446 }
1447
1448 /**
1449 * __qbuf_dmabuf() - handle qbuf of a DMABUF buffer
1450 */
1451 static int __qbuf_dmabuf(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1452 {
1453 struct v4l2_plane planes[VIDEO_MAX_PLANES];
1454 struct vb2_queue *q = vb->vb2_queue;
1455 void *mem_priv;
1456 unsigned int plane;
1457 int ret;
1458 int write = !V4L2_TYPE_IS_OUTPUT(q->type);
1459 bool reacquired = vb->planes[0].mem_priv == NULL;
1460
1461 memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1462 /* Copy relevant information provided by the userspace */
1463 __fill_vb2_buffer(vb, b, planes);
1464
1465 for (plane = 0; plane < vb->num_planes; ++plane) {
1466 struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1467
1468 if (IS_ERR_OR_NULL(dbuf)) {
1469 dprintk(1, "invalid dmabuf fd for plane %d\n",
1470 plane);
1471 ret = -EINVAL;
1472 goto err;
1473 }
1474
1475 /* use DMABUF size if length is not provided */
1476 if (planes[plane].length == 0)
1477 planes[plane].length = dbuf->size;
1478
1479 if (planes[plane].length < q->plane_sizes[plane]) {
1480 dprintk(1, "invalid dmabuf length for plane %d\n",
1481 plane);
1482 ret = -EINVAL;
1483 goto err;
1484 }
1485
1486 /* Skip the plane if already verified */
1487 if (dbuf == vb->planes[plane].dbuf &&
1488 vb->v4l2_planes[plane].length == planes[plane].length) {
1489 dma_buf_put(dbuf);
1490 continue;
1491 }
1492
1493 dprintk(1, "buffer for plane %d changed\n", plane);
1494
1495 if (!reacquired) {
1496 reacquired = true;
1497 call_void_vb_qop(vb, buf_cleanup, vb);
1498 }
1499
1500 /* Release previously acquired memory if present */
1501 __vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1502 memset(&vb->v4l2_planes[plane], 0, sizeof(struct v4l2_plane));
1503
1504 /* Acquire each plane's memory */
1505 mem_priv = call_ptr_memop(vb, attach_dmabuf, q->alloc_ctx[plane],
1506 dbuf, planes[plane].length, write);
1507 if (IS_ERR(mem_priv)) {
1508 dprintk(1, "failed to attach dmabuf\n");
1509 ret = PTR_ERR(mem_priv);
1510 dma_buf_put(dbuf);
1511 goto err;
1512 }
1513
1514 vb->planes[plane].dbuf = dbuf;
1515 vb->planes[plane].mem_priv = mem_priv;
1516 }
1517
1518 /* TODO: This pins the buffer(s) with dma_buf_map_attachment()).. but
1519 * really we want to do this just before the DMA, not while queueing
1520 * the buffer(s)..
1521 */
1522 for (plane = 0; plane < vb->num_planes; ++plane) {
1523 ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1524 if (ret) {
1525 dprintk(1, "failed to map dmabuf for plane %d\n",
1526 plane);
1527 goto err;
1528 }
1529 vb->planes[plane].dbuf_mapped = 1;
1530 }
1531
1532 /*
1533 * Now that everything is in order, copy relevant information
1534 * provided by userspace.
1535 */
1536 for (plane = 0; plane < vb->num_planes; ++plane)
1537 vb->v4l2_planes[plane] = planes[plane];
1538
1539 if (reacquired) {
1540 /*
1541 * Call driver-specific initialization on the newly acquired buffer,
1542 * if provided.
1543 */
1544 ret = call_vb_qop(vb, buf_init, vb);
1545 if (ret) {
1546 dprintk(1, "buffer initialization failed\n");
1547 goto err;
1548 }
1549 }
1550
1551 ret = call_vb_qop(vb, buf_prepare, vb);
1552 if (ret) {
1553 dprintk(1, "buffer preparation failed\n");
1554 call_void_vb_qop(vb, buf_cleanup, vb);
1555 goto err;
1556 }
1557
1558 return 0;
1559 err:
1560 /* In case of errors, release planes that were already acquired */
1561 __vb2_buf_dmabuf_put(vb);
1562
1563 return ret;
1564 }
1565
1566 /**
1567 * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1568 */
1569 static void __enqueue_in_driver(struct vb2_buffer *vb)
1570 {
1571 struct vb2_queue *q = vb->vb2_queue;
1572 unsigned int plane;
1573
1574 vb->state = VB2_BUF_STATE_ACTIVE;
1575 atomic_inc(&q->owned_by_drv_count);
1576
1577 /* sync buffers */
1578 for (plane = 0; plane < vb->num_planes; ++plane)
1579 call_void_memop(vb, prepare, vb->planes[plane].mem_priv);
1580
1581 call_void_vb_qop(vb, buf_queue, vb);
1582 }
1583
1584 static int __buf_prepare(struct vb2_buffer *vb, const struct v4l2_buffer *b)
1585 {
1586 struct vb2_queue *q = vb->vb2_queue;
1587 struct rw_semaphore *mmap_sem;
1588 int ret;
1589
1590 ret = __verify_length(vb, b);
1591 if (ret < 0) {
1592 dprintk(1, "plane parameters verification failed: %d\n", ret);
1593 return ret;
1594 }
1595 if (b->field == V4L2_FIELD_ALTERNATE && V4L2_TYPE_IS_OUTPUT(q->type)) {
1596 /*
1597 * If the format's field is ALTERNATE, then the buffer's field
1598 * should be either TOP or BOTTOM, not ALTERNATE since that
1599 * makes no sense. The driver has to know whether the
1600 * buffer represents a top or a bottom field in order to
1601 * program any DMA correctly. Using ALTERNATE is wrong, since
1602 * that just says that it is either a top or a bottom field,
1603 * but not which of the two it is.
1604 */
1605 dprintk(1, "the field is incorrectly set to ALTERNATE for an output buffer\n");
1606 return -EINVAL;
1607 }
1608
1609 vb->state = VB2_BUF_STATE_PREPARING;
1610 vb->v4l2_buf.timestamp.tv_sec = 0;
1611 vb->v4l2_buf.timestamp.tv_usec = 0;
1612 vb->v4l2_buf.sequence = 0;
1613
1614 switch (q->memory) {
1615 case V4L2_MEMORY_MMAP:
1616 ret = __qbuf_mmap(vb, b);
1617 break;
1618 case V4L2_MEMORY_USERPTR:
1619 /*
1620 * In case of user pointer buffers vb2 allocators need to get
1621 * direct access to userspace pages. This requires getting
1622 * the mmap semaphore for read access in the current process
1623 * structure. The same semaphore is taken before calling mmap
1624 * operation, while both qbuf/prepare_buf and mmap are called
1625 * by the driver or v4l2 core with the driver's lock held.
1626 * To avoid an AB-BA deadlock (mmap_sem then driver's lock in
1627 * mmap and driver's lock then mmap_sem in qbuf/prepare_buf),
1628 * the videobuf2 core releases the driver's lock, takes
1629 * mmap_sem and then takes the driver's lock again.
1630 */
1631 mmap_sem = &current->mm->mmap_sem;
1632 call_void_qop(q, wait_prepare, q);
1633 down_read(mmap_sem);
1634 call_void_qop(q, wait_finish, q);
1635
1636 ret = __qbuf_userptr(vb, b);
1637
1638 up_read(mmap_sem);
1639 break;
1640 case V4L2_MEMORY_DMABUF:
1641 ret = __qbuf_dmabuf(vb, b);
1642 break;
1643 default:
1644 WARN(1, "Invalid queue type\n");
1645 ret = -EINVAL;
1646 }
1647
1648 if (ret)
1649 dprintk(1, "buffer preparation failed: %d\n", ret);
1650 vb->state = ret ? VB2_BUF_STATE_DEQUEUED : VB2_BUF_STATE_PREPARED;
1651
1652 return ret;
1653 }
1654
1655 static int vb2_queue_or_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b,
1656 const char *opname)
1657 {
1658 if (b->type != q->type) {
1659 dprintk(1, "%s: invalid buffer type\n", opname);
1660 return -EINVAL;
1661 }
1662
1663 if (b->index >= q->num_buffers) {
1664 dprintk(1, "%s: buffer index out of range\n", opname);
1665 return -EINVAL;
1666 }
1667
1668 if (q->bufs[b->index] == NULL) {
1669 /* Should never happen */
1670 dprintk(1, "%s: buffer is NULL\n", opname);
1671 return -EINVAL;
1672 }
1673
1674 if (b->memory != q->memory) {
1675 dprintk(1, "%s: invalid memory type\n", opname);
1676 return -EINVAL;
1677 }
1678
1679 return __verify_planes_array(q->bufs[b->index], b);
1680 }
1681
1682 /**
1683 * vb2_prepare_buf() - Pass ownership of a buffer from userspace to the kernel
1684 * @q: videobuf2 queue
1685 * @b: buffer structure passed from userspace to vidioc_prepare_buf
1686 * handler in driver
1687 *
1688 * Should be called from vidioc_prepare_buf ioctl handler of a driver.
1689 * This function:
1690 * 1) verifies the passed buffer,
1691 * 2) calls buf_prepare callback in the driver (if provided), in which
1692 * driver-specific buffer initialization can be performed,
1693 *
1694 * The return values from this function are intended to be directly returned
1695 * from vidioc_prepare_buf handler in driver.
1696 */
1697 int vb2_prepare_buf(struct vb2_queue *q, struct v4l2_buffer *b)
1698 {
1699 struct vb2_buffer *vb;
1700 int ret;
1701
1702 if (vb2_fileio_is_active(q)) {
1703 dprintk(1, "file io in progress\n");
1704 return -EBUSY;
1705 }
1706
1707 ret = vb2_queue_or_prepare_buf(q, b, "prepare_buf");
1708 if (ret)
1709 return ret;
1710
1711 vb = q->bufs[b->index];
1712 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1713 dprintk(1, "invalid buffer state %d\n",
1714 vb->state);
1715 return -EINVAL;
1716 }
1717
1718 ret = __buf_prepare(vb, b);
1719 if (!ret) {
1720 /* Fill buffer information for the userspace */
1721 __fill_v4l2_buffer(vb, b);
1722
1723 dprintk(1, "prepare of buffer %d succeeded\n", vb->v4l2_buf.index);
1724 }
1725 return ret;
1726 }
1727 EXPORT_SYMBOL_GPL(vb2_prepare_buf);
1728
1729 /**
1730 * vb2_start_streaming() - Attempt to start streaming.
1731 * @q: videobuf2 queue
1732 *
1733 * Attempt to start streaming. When this function is called there must be
1734 * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1735 * number of buffers required for the DMA engine to function). If the
1736 * @start_streaming op fails it is supposed to return all the driver-owned
1737 * buffers back to vb2 in state QUEUED. Check if that happened and if
1738 * not warn and reclaim them forcefully.
1739 */
1740 static int vb2_start_streaming(struct vb2_queue *q)
1741 {
1742 struct vb2_buffer *vb;
1743 int ret;
1744
1745 /*
1746 * If any buffers were queued before streamon,
1747 * we can now pass them to driver for processing.
1748 */
1749 list_for_each_entry(vb, &q->queued_list, queued_entry)
1750 __enqueue_in_driver(vb);
1751
1752 /* Tell the driver to start streaming */
1753 ret = call_qop(q, start_streaming, q,
1754 atomic_read(&q->owned_by_drv_count));
1755 q->start_streaming_called = ret == 0;
1756 if (!ret)
1757 return 0;
1758
1759 dprintk(1, "driver refused to start streaming\n");
1760 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1761 unsigned i;
1762
1763 /*
1764 * Forcefully reclaim buffers if the driver did not
1765 * correctly return them to vb2.
1766 */
1767 for (i = 0; i < q->num_buffers; ++i) {
1768 vb = q->bufs[i];
1769 if (vb->state == VB2_BUF_STATE_ACTIVE)
1770 vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1771 }
1772 /* Must be zero now */
1773 WARN_ON(atomic_read(&q->owned_by_drv_count));
1774 }
1775 return ret;
1776 }
1777
1778 static int vb2_internal_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1779 {
1780 int ret = vb2_queue_or_prepare_buf(q, b, "qbuf");
1781 struct vb2_buffer *vb;
1782
1783 if (ret)
1784 return ret;
1785
1786 vb = q->bufs[b->index];
1787
1788 switch (vb->state) {
1789 case VB2_BUF_STATE_DEQUEUED:
1790 ret = __buf_prepare(vb, b);
1791 if (ret)
1792 return ret;
1793 break;
1794 case VB2_BUF_STATE_PREPARED:
1795 break;
1796 case VB2_BUF_STATE_PREPARING:
1797 dprintk(1, "buffer still being prepared\n");
1798 return -EINVAL;
1799 default:
1800 dprintk(1, "invalid buffer state %d\n", vb->state);
1801 return -EINVAL;
1802 }
1803
1804 /*
1805 * Add to the queued buffers list, a buffer will stay on it until
1806 * dequeued in dqbuf.
1807 */
1808 list_add_tail(&vb->queued_entry, &q->queued_list);
1809 q->queued_count++;
1810 vb->state = VB2_BUF_STATE_QUEUED;
1811 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
1812 /*
1813 * For output buffers copy the timestamp if needed,
1814 * and the timecode field and flag if needed.
1815 */
1816 if ((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
1817 V4L2_BUF_FLAG_TIMESTAMP_COPY)
1818 vb->v4l2_buf.timestamp = b->timestamp;
1819 vb->v4l2_buf.flags |= b->flags & V4L2_BUF_FLAG_TIMECODE;
1820 if (b->flags & V4L2_BUF_FLAG_TIMECODE)
1821 vb->v4l2_buf.timecode = b->timecode;
1822 }
1823
1824 /*
1825 * If already streaming, give the buffer to driver for processing.
1826 * If not, the buffer will be given to driver on next streamon.
1827 */
1828 if (q->start_streaming_called)
1829 __enqueue_in_driver(vb);
1830
1831 /* Fill buffer information for the userspace */
1832 __fill_v4l2_buffer(vb, b);
1833
1834 /*
1835 * If streamon has been called, and we haven't yet called
1836 * start_streaming() since not enough buffers were queued, and
1837 * we now have reached the minimum number of queued buffers,
1838 * then we can finally call start_streaming().
1839 */
1840 if (q->streaming && !q->start_streaming_called &&
1841 q->queued_count >= q->min_buffers_needed) {
1842 ret = vb2_start_streaming(q);
1843 if (ret)
1844 return ret;
1845 }
1846
1847 dprintk(1, "qbuf of buffer %d succeeded\n", vb->v4l2_buf.index);
1848 return 0;
1849 }
1850
1851 /**
1852 * vb2_qbuf() - Queue a buffer from userspace
1853 * @q: videobuf2 queue
1854 * @b: buffer structure passed from userspace to vidioc_qbuf handler
1855 * in driver
1856 *
1857 * Should be called from vidioc_qbuf ioctl handler of a driver.
1858 * This function:
1859 * 1) verifies the passed buffer,
1860 * 2) if necessary, calls buf_prepare callback in the driver (if provided), in
1861 * which driver-specific buffer initialization can be performed,
1862 * 3) if streaming is on, queues the buffer in driver by the means of buf_queue
1863 * callback for processing.
1864 *
1865 * The return values from this function are intended to be directly returned
1866 * from vidioc_qbuf handler in driver.
1867 */
1868 int vb2_qbuf(struct vb2_queue *q, struct v4l2_buffer *b)
1869 {
1870 if (vb2_fileio_is_active(q)) {
1871 dprintk(1, "file io in progress\n");
1872 return -EBUSY;
1873 }
1874
1875 return vb2_internal_qbuf(q, b);
1876 }
1877 EXPORT_SYMBOL_GPL(vb2_qbuf);
1878
1879 /**
1880 * __vb2_wait_for_done_vb() - wait for a buffer to become available
1881 * for dequeuing
1882 *
1883 * Will sleep if required for nonblocking == false.
1884 */
1885 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1886 {
1887 /*
1888 * All operations on vb_done_list are performed under done_lock
1889 * spinlock protection. However, buffers may be removed from
1890 * it and returned to userspace only while holding both driver's
1891 * lock and the done_lock spinlock. Thus we can be sure that as
1892 * long as we hold the driver's lock, the list will remain not
1893 * empty if list_empty() check succeeds.
1894 */
1895
1896 for (;;) {
1897 int ret;
1898
1899 if (!q->streaming) {
1900 dprintk(1, "streaming off, will not wait for buffers\n");
1901 return -EINVAL;
1902 }
1903
1904 if (!list_empty(&q->done_list)) {
1905 /*
1906 * Found a buffer that we were waiting for.
1907 */
1908 break;
1909 }
1910
1911 if (nonblocking) {
1912 dprintk(1, "nonblocking and no buffers to dequeue, "
1913 "will not wait\n");
1914 return -EAGAIN;
1915 }
1916
1917 /*
1918 * We are streaming and blocking, wait for another buffer to
1919 * become ready or for streamoff. Driver's lock is released to
1920 * allow streamoff or qbuf to be called while waiting.
1921 */
1922 call_void_qop(q, wait_prepare, q);
1923
1924 /*
1925 * All locks have been released, it is safe to sleep now.
1926 */
1927 dprintk(3, "will sleep waiting for buffers\n");
1928 ret = wait_event_interruptible(q->done_wq,
1929 !list_empty(&q->done_list) || !q->streaming);
1930
1931 /*
1932 * We need to reevaluate both conditions again after reacquiring
1933 * the locks or return an error if one occurred.
1934 */
1935 call_void_qop(q, wait_finish, q);
1936 if (ret) {
1937 dprintk(1, "sleep was interrupted\n");
1938 return ret;
1939 }
1940 }
1941 return 0;
1942 }
1943
1944 /**
1945 * __vb2_get_done_vb() - get a buffer ready for dequeuing
1946 *
1947 * Will sleep if required for nonblocking == false.
1948 */
1949 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1950 struct v4l2_buffer *b, int nonblocking)
1951 {
1952 unsigned long flags;
1953 int ret;
1954
1955 /*
1956 * Wait for at least one buffer to become available on the done_list.
1957 */
1958 ret = __vb2_wait_for_done_vb(q, nonblocking);
1959 if (ret)
1960 return ret;
1961
1962 /*
1963 * Driver's lock has been held since we last verified that done_list
1964 * is not empty, so no need for another list_empty(done_list) check.
1965 */
1966 spin_lock_irqsave(&q->done_lock, flags);
1967 *vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1968 /*
1969 * Only remove the buffer from done_list if v4l2_buffer can handle all
1970 * the planes.
1971 */
1972 ret = __verify_planes_array(*vb, b);
1973 if (!ret)
1974 list_del(&(*vb)->done_entry);
1975 spin_unlock_irqrestore(&q->done_lock, flags);
1976
1977 return ret;
1978 }
1979
1980 /**
1981 * vb2_wait_for_all_buffers() - wait until all buffers are given back to vb2
1982 * @q: videobuf2 queue
1983 *
1984 * This function will wait until all buffers that have been given to the driver
1985 * by buf_queue() are given back to vb2 with vb2_buffer_done(). It doesn't call
1986 * wait_prepare, wait_finish pair. It is intended to be called with all locks
1987 * taken, for example from stop_streaming() callback.
1988 */
1989 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1990 {
1991 if (!q->streaming) {
1992 dprintk(1, "streaming off, will not wait for buffers\n");
1993 return -EINVAL;
1994 }
1995
1996 if (q->start_streaming_called)
1997 wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1998 return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
2001
2002 /**
2003 * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
2004 */
2005 static void __vb2_dqbuf(struct vb2_buffer *vb)
2006 {
2007 struct vb2_queue *q = vb->vb2_queue;
2008 unsigned int i;
2009
2010 /* nothing to do if the buffer is already dequeued */
2011 if (vb->state == VB2_BUF_STATE_DEQUEUED)
2012 return;
2013
2014 vb->state = VB2_BUF_STATE_DEQUEUED;
2015
2016 /* unmap DMABUF buffer */
2017 if (q->memory == V4L2_MEMORY_DMABUF)
2018 for (i = 0; i < vb->num_planes; ++i) {
2019 if (!vb->planes[i].dbuf_mapped)
2020 continue;
2021 call_void_memop(vb, unmap_dmabuf, vb->planes[i].mem_priv);
2022 vb->planes[i].dbuf_mapped = 0;
2023 }
2024 }
2025
2026 static int vb2_internal_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2027 {
2028 struct vb2_buffer *vb = NULL;
2029 int ret;
2030
2031 if (b->type != q->type) {
2032 dprintk(1, "invalid buffer type\n");
2033 return -EINVAL;
2034 }
2035 ret = __vb2_get_done_vb(q, &vb, b, nonblocking);
2036 if (ret < 0)
2037 return ret;
2038
2039 switch (vb->state) {
2040 case VB2_BUF_STATE_DONE:
2041 dprintk(3, "returning done buffer\n");
2042 break;
2043 case VB2_BUF_STATE_ERROR:
2044 dprintk(3, "returning done buffer with errors\n");
2045 break;
2046 default:
2047 dprintk(1, "invalid buffer state\n");
2048 return -EINVAL;
2049 }
2050
2051 call_void_vb_qop(vb, buf_finish, vb);
2052
2053 /* Fill buffer information for the userspace */
2054 __fill_v4l2_buffer(vb, b);
2055 /* Remove from videobuf queue */
2056 list_del(&vb->queued_entry);
2057 q->queued_count--;
2058 /* go back to dequeued state */
2059 __vb2_dqbuf(vb);
2060
2061 dprintk(1, "dqbuf of buffer %d, with state %d\n",
2062 vb->v4l2_buf.index, vb->state);
2063
2064 return 0;
2065 }
2066
2067 /**
2068 * vb2_dqbuf() - Dequeue a buffer to the userspace
2069 * @q: videobuf2 queue
2070 * @b: buffer structure passed from userspace to vidioc_dqbuf handler
2071 * in driver
2072 * @nonblocking: if true, this call will not sleep waiting for a buffer if no
2073 * buffers ready for dequeuing are present. Normally the driver
2074 * would be passing (file->f_flags & O_NONBLOCK) here
2075 *
2076 * Should be called from vidioc_dqbuf ioctl handler of a driver.
2077 * This function:
2078 * 1) verifies the passed buffer,
2079 * 2) calls buf_finish callback in the driver (if provided), in which
2080 * driver can perform any additional operations that may be required before
2081 * returning the buffer to userspace, such as cache sync,
2082 * 3) the buffer struct members are filled with relevant information for
2083 * the userspace.
2084 *
2085 * The return values from this function are intended to be directly returned
2086 * from vidioc_dqbuf handler in driver.
2087 */
2088 int vb2_dqbuf(struct vb2_queue *q, struct v4l2_buffer *b, bool nonblocking)
2089 {
2090 if (vb2_fileio_is_active(q)) {
2091 dprintk(1, "file io in progress\n");
2092 return -EBUSY;
2093 }
2094 return vb2_internal_dqbuf(q, b, nonblocking);
2095 }
2096 EXPORT_SYMBOL_GPL(vb2_dqbuf);
2097
2098 /**
2099 * __vb2_queue_cancel() - cancel and stop (pause) streaming
2100 *
2101 * Removes all queued buffers from driver's queue and all buffers queued by
2102 * userspace from videobuf's queue. Returns to state after reqbufs.
2103 */
2104 static void __vb2_queue_cancel(struct vb2_queue *q)
2105 {
2106 unsigned int i;
2107
2108 /*
2109 * Tell driver to stop all transactions and release all queued
2110 * buffers.
2111 */
2112 if (q->start_streaming_called)
2113 call_void_qop(q, stop_streaming, q);
2114
2115 if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
2116 for (i = 0; i < q->num_buffers; ++i)
2117 if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE)
2118 vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2119 /* Must be zero now */
2120 WARN_ON(atomic_read(&q->owned_by_drv_count));
2121 }
2122
2123 q->streaming = 0;
2124 q->start_streaming_called = 0;
2125 q->queued_count = 0;
2126
2127 /*
2128 * Remove all buffers from videobuf's list...
2129 */
2130 INIT_LIST_HEAD(&q->queued_list);
2131 /*
2132 * ...and done list; userspace will not receive any buffers it
2133 * has not already dequeued before initiating cancel.
2134 */
2135 INIT_LIST_HEAD(&q->done_list);
2136 atomic_set(&q->owned_by_drv_count, 0);
2137 wake_up_all(&q->done_wq);
2138
2139 /*
2140 * Reinitialize all buffers for next use.
2141 * Make sure to call buf_finish for any queued buffers. Normally
2142 * that's done in dqbuf, but that's not going to happen when we
2143 * cancel the whole queue. Note: this code belongs here, not in
2144 * __vb2_dqbuf() since in vb2_internal_dqbuf() there is a critical
2145 * call to __fill_v4l2_buffer() after buf_finish(). That order can't
2146 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2147 */
2148 for (i = 0; i < q->num_buffers; ++i) {
2149 struct vb2_buffer *vb = q->bufs[i];
2150
2151 if (vb->state != VB2_BUF_STATE_DEQUEUED) {
2152 vb->state = VB2_BUF_STATE_PREPARED;
2153 call_void_vb_qop(vb, buf_finish, vb);
2154 }
2155 __vb2_dqbuf(vb);
2156 }
2157 }
2158
2159 static int vb2_internal_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2160 {
2161 int ret;
2162
2163 if (type != q->type) {
2164 dprintk(1, "invalid stream type\n");
2165 return -EINVAL;
2166 }
2167
2168 if (q->streaming) {
2169 dprintk(3, "already streaming\n");
2170 return 0;
2171 }
2172
2173 if (!q->num_buffers) {
2174 dprintk(1, "no buffers have been allocated\n");
2175 return -EINVAL;
2176 }
2177
2178 if (q->num_buffers < q->min_buffers_needed) {
2179 dprintk(1, "need at least %u allocated buffers\n",
2180 q->min_buffers_needed);
2181 return -EINVAL;
2182 }
2183
2184 /*
2185 * Tell driver to start streaming provided sufficient buffers
2186 * are available.
2187 */
2188 if (q->queued_count >= q->min_buffers_needed) {
2189 ret = vb2_start_streaming(q);
2190 if (ret) {
2191 __vb2_queue_cancel(q);
2192 return ret;
2193 }
2194 }
2195
2196 q->streaming = 1;
2197
2198 dprintk(3, "successful\n");
2199 return 0;
2200 }
2201
2202 /**
2203 * vb2_streamon - start streaming
2204 * @q: videobuf2 queue
2205 * @type: type argument passed from userspace to vidioc_streamon handler
2206 *
2207 * Should be called from vidioc_streamon handler of a driver.
2208 * This function:
2209 * 1) verifies current state
2210 * 2) passes any previously queued buffers to the driver and starts streaming
2211 *
2212 * The return values from this function are intended to be directly returned
2213 * from vidioc_streamon handler in the driver.
2214 */
2215 int vb2_streamon(struct vb2_queue *q, enum v4l2_buf_type type)
2216 {
2217 if (vb2_fileio_is_active(q)) {
2218 dprintk(1, "file io in progress\n");
2219 return -EBUSY;
2220 }
2221 return vb2_internal_streamon(q, type);
2222 }
2223 EXPORT_SYMBOL_GPL(vb2_streamon);
2224
2225 static int vb2_internal_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2226 {
2227 if (type != q->type) {
2228 dprintk(1, "invalid stream type\n");
2229 return -EINVAL;
2230 }
2231
2232 /*
2233 * Cancel will pause streaming and remove all buffers from the driver
2234 * and videobuf, effectively returning control over them to userspace.
2235 *
2236 * Note that we do this even if q->streaming == 0: if you prepare or
2237 * queue buffers, and then call streamoff without ever having called
2238 * streamon, you would still expect those buffers to be returned to
2239 * their normal dequeued state.
2240 */
2241 __vb2_queue_cancel(q);
2242
2243 dprintk(3, "successful\n");
2244 return 0;
2245 }
2246
2247 /**
2248 * vb2_streamoff - stop streaming
2249 * @q: videobuf2 queue
2250 * @type: type argument passed from userspace to vidioc_streamoff handler
2251 *
2252 * Should be called from vidioc_streamoff handler of a driver.
2253 * This function:
2254 * 1) verifies current state,
2255 * 2) stop streaming and dequeues any queued buffers, including those previously
2256 * passed to the driver (after waiting for the driver to finish).
2257 *
2258 * This call can be used for pausing playback.
2259 * The return values from this function are intended to be directly returned
2260 * from vidioc_streamoff handler in the driver
2261 */
2262 int vb2_streamoff(struct vb2_queue *q, enum v4l2_buf_type type)
2263 {
2264 if (vb2_fileio_is_active(q)) {
2265 dprintk(1, "file io in progress\n");
2266 return -EBUSY;
2267 }
2268 return vb2_internal_streamoff(q, type);
2269 }
2270 EXPORT_SYMBOL_GPL(vb2_streamoff);
2271
2272 /**
2273 * __find_plane_by_offset() - find plane associated with the given offset off
2274 */
2275 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2276 unsigned int *_buffer, unsigned int *_plane)
2277 {
2278 struct vb2_buffer *vb;
2279 unsigned int buffer, plane;
2280
2281 /*
2282 * Go over all buffers and their planes, comparing the given offset
2283 * with an offset assigned to each plane. If a match is found,
2284 * return its buffer and plane numbers.
2285 */
2286 for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2287 vb = q->bufs[buffer];
2288
2289 for (plane = 0; plane < vb->num_planes; ++plane) {
2290 if (vb->v4l2_planes[plane].m.mem_offset == off) {
2291 *_buffer = buffer;
2292 *_plane = plane;
2293 return 0;
2294 }
2295 }
2296 }
2297
2298 return -EINVAL;
2299 }
2300
2301 /**
2302 * vb2_expbuf() - Export a buffer as a file descriptor
2303 * @q: videobuf2 queue
2304 * @eb: export buffer structure passed from userspace to vidioc_expbuf
2305 * handler in driver
2306 *
2307 * The return values from this function are intended to be directly returned
2308 * from vidioc_expbuf handler in driver.
2309 */
2310 int vb2_expbuf(struct vb2_queue *q, struct v4l2_exportbuffer *eb)
2311 {
2312 struct vb2_buffer *vb = NULL;
2313 struct vb2_plane *vb_plane;
2314 int ret;
2315 struct dma_buf *dbuf;
2316
2317 if (q->memory != V4L2_MEMORY_MMAP) {
2318 dprintk(1, "queue is not currently set up for mmap\n");
2319 return -EINVAL;
2320 }
2321
2322 if (!q->mem_ops->get_dmabuf) {
2323 dprintk(1, "queue does not support DMA buffer exporting\n");
2324 return -EINVAL;
2325 }
2326
2327 if (eb->flags & ~(O_CLOEXEC | O_ACCMODE)) {
2328 dprintk(1, "queue does support only O_CLOEXEC and access mode flags\n");
2329 return -EINVAL;
2330 }
2331
2332 if (eb->type != q->type) {
2333 dprintk(1, "invalid buffer type\n");
2334 return -EINVAL;
2335 }
2336
2337 if (eb->index >= q->num_buffers) {
2338 dprintk(1, "buffer index out of range\n");
2339 return -EINVAL;
2340 }
2341
2342 vb = q->bufs[eb->index];
2343
2344 if (eb->plane >= vb->num_planes) {
2345 dprintk(1, "buffer plane out of range\n");
2346 return -EINVAL;
2347 }
2348
2349 if (vb2_fileio_is_active(q)) {
2350 dprintk(1, "expbuf: file io in progress\n");
2351 return -EBUSY;
2352 }
2353
2354 vb_plane = &vb->planes[eb->plane];
2355
2356 dbuf = call_ptr_memop(vb, get_dmabuf, vb_plane->mem_priv, eb->flags & O_ACCMODE);
2357 if (IS_ERR_OR_NULL(dbuf)) {
2358 dprintk(1, "failed to export buffer %d, plane %d\n",
2359 eb->index, eb->plane);
2360 return -EINVAL;
2361 }
2362
2363 ret = dma_buf_fd(dbuf, eb->flags & ~O_ACCMODE);
2364 if (ret < 0) {
2365 dprintk(3, "buffer %d, plane %d failed to export (%d)\n",
2366 eb->index, eb->plane, ret);
2367 dma_buf_put(dbuf);
2368 return ret;
2369 }
2370
2371 dprintk(3, "buffer %d, plane %d exported as %d descriptor\n",
2372 eb->index, eb->plane, ret);
2373 eb->fd = ret;
2374
2375 return 0;
2376 }
2377 EXPORT_SYMBOL_GPL(vb2_expbuf);
2378
2379 /**
2380 * vb2_mmap() - map video buffers into application address space
2381 * @q: videobuf2 queue
2382 * @vma: vma passed to the mmap file operation handler in the driver
2383 *
2384 * Should be called from mmap file operation handler of a driver.
2385 * This function maps one plane of one of the available video buffers to
2386 * userspace. To map whole video memory allocated on reqbufs, this function
2387 * has to be called once per each plane per each buffer previously allocated.
2388 *
2389 * When the userspace application calls mmap, it passes to it an offset returned
2390 * to it earlier by the means of vidioc_querybuf handler. That offset acts as
2391 * a "cookie", which is then used to identify the plane to be mapped.
2392 * This function finds a plane with a matching offset and a mapping is performed
2393 * by the means of a provided memory operation.
2394 *
2395 * The return values from this function are intended to be directly returned
2396 * from the mmap handler in driver.
2397 */
2398 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2399 {
2400 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2401 struct vb2_buffer *vb;
2402 unsigned int buffer = 0, plane = 0;
2403 int ret;
2404 unsigned long length;
2405
2406 if (q->memory != V4L2_MEMORY_MMAP) {
2407 dprintk(1, "queue is not currently set up for mmap\n");
2408 return -EINVAL;
2409 }
2410
2411 /*
2412 * Check memory area access mode.
2413 */
2414 if (!(vma->vm_flags & VM_SHARED)) {
2415 dprintk(1, "invalid vma flags, VM_SHARED needed\n");
2416 return -EINVAL;
2417 }
2418 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2419 if (!(vma->vm_flags & VM_WRITE)) {
2420 dprintk(1, "invalid vma flags, VM_WRITE needed\n");
2421 return -EINVAL;
2422 }
2423 } else {
2424 if (!(vma->vm_flags & VM_READ)) {
2425 dprintk(1, "invalid vma flags, VM_READ needed\n");
2426 return -EINVAL;
2427 }
2428 }
2429 if (vb2_fileio_is_active(q)) {
2430 dprintk(1, "mmap: file io in progress\n");
2431 return -EBUSY;
2432 }
2433
2434 /*
2435 * Find the plane corresponding to the offset passed by userspace.
2436 */
2437 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2438 if (ret)
2439 return ret;
2440
2441 vb = q->bufs[buffer];
2442
2443 /*
2444 * MMAP requires page_aligned buffers.
2445 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2446 * so, we need to do the same here.
2447 */
2448 length = PAGE_ALIGN(vb->v4l2_planes[plane].length);
2449 if (length < (vma->vm_end - vma->vm_start)) {
2450 dprintk(1,
2451 "MMAP invalid, as it would overflow buffer length\n");
2452 return -EINVAL;
2453 }
2454
2455 ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2456 if (ret)
2457 return ret;
2458
2459 dprintk(3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2460 return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(vb2_mmap);
2463
2464 #ifndef CONFIG_MMU
2465 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2466 unsigned long addr,
2467 unsigned long len,
2468 unsigned long pgoff,
2469 unsigned long flags)
2470 {
2471 unsigned long off = pgoff << PAGE_SHIFT;
2472 struct vb2_buffer *vb;
2473 unsigned int buffer, plane;
2474 int ret;
2475
2476 if (q->memory != V4L2_MEMORY_MMAP) {
2477 dprintk(1, "queue is not currently set up for mmap\n");
2478 return -EINVAL;
2479 }
2480
2481 /*
2482 * Find the plane corresponding to the offset passed by userspace.
2483 */
2484 ret = __find_plane_by_offset(q, off, &buffer, &plane);
2485 if (ret)
2486 return ret;
2487
2488 vb = q->bufs[buffer];
2489
2490 return (unsigned long)vb2_plane_vaddr(vb, plane);
2491 }
2492 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2493 #endif
2494
2495 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2496 static int __vb2_cleanup_fileio(struct vb2_queue *q);
2497
2498 /**
2499 * vb2_poll() - implements poll userspace operation
2500 * @q: videobuf2 queue
2501 * @file: file argument passed to the poll file operation handler
2502 * @wait: wait argument passed to the poll file operation handler
2503 *
2504 * This function implements poll file operation handler for a driver.
2505 * For CAPTURE queues, if a buffer is ready to be dequeued, the userspace will
2506 * be informed that the file descriptor of a video device is available for
2507 * reading.
2508 * For OUTPUT queues, if a buffer is ready to be dequeued, the file descriptor
2509 * will be reported as available for writing.
2510 *
2511 * If the driver uses struct v4l2_fh, then vb2_poll() will also check for any
2512 * pending events.
2513 *
2514 * The return values from this function are intended to be directly returned
2515 * from poll handler in driver.
2516 */
2517 unsigned int vb2_poll(struct vb2_queue *q, struct file *file, poll_table *wait)
2518 {
2519 struct video_device *vfd = video_devdata(file);
2520 unsigned long req_events = poll_requested_events(wait);
2521 struct vb2_buffer *vb = NULL;
2522 unsigned int res = 0;
2523 unsigned long flags;
2524
2525 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
2526 struct v4l2_fh *fh = file->private_data;
2527
2528 if (v4l2_event_pending(fh))
2529 res = POLLPRI;
2530 else if (req_events & POLLPRI)
2531 poll_wait(file, &fh->wait, wait);
2532 }
2533
2534 if (!V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLIN | POLLRDNORM)))
2535 return res;
2536 if (V4L2_TYPE_IS_OUTPUT(q->type) && !(req_events & (POLLOUT | POLLWRNORM)))
2537 return res;
2538
2539 /*
2540 * Start file I/O emulator only if streaming API has not been used yet.
2541 */
2542 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2543 if (!V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_READ) &&
2544 (req_events & (POLLIN | POLLRDNORM))) {
2545 if (__vb2_init_fileio(q, 1))
2546 return res | POLLERR;
2547 }
2548 if (V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_WRITE) &&
2549 (req_events & (POLLOUT | POLLWRNORM))) {
2550 if (__vb2_init_fileio(q, 0))
2551 return res | POLLERR;
2552 /*
2553 * Write to OUTPUT queue can be done immediately.
2554 */
2555 return res | POLLOUT | POLLWRNORM;
2556 }
2557 }
2558
2559 /*
2560 * There is nothing to wait for if no buffers have already been queued.
2561 */
2562 if (list_empty(&q->queued_list))
2563 return res | POLLERR;
2564
2565 if (list_empty(&q->done_list))
2566 poll_wait(file, &q->done_wq, wait);
2567
2568 /*
2569 * Take first buffer available for dequeuing.
2570 */
2571 spin_lock_irqsave(&q->done_lock, flags);
2572 if (!list_empty(&q->done_list))
2573 vb = list_first_entry(&q->done_list, struct vb2_buffer,
2574 done_entry);
2575 spin_unlock_irqrestore(&q->done_lock, flags);
2576
2577 if (vb && (vb->state == VB2_BUF_STATE_DONE
2578 || vb->state == VB2_BUF_STATE_ERROR)) {
2579 return (V4L2_TYPE_IS_OUTPUT(q->type)) ?
2580 res | POLLOUT | POLLWRNORM :
2581 res | POLLIN | POLLRDNORM;
2582 }
2583 return res;
2584 }
2585 EXPORT_SYMBOL_GPL(vb2_poll);
2586
2587 /**
2588 * vb2_queue_init() - initialize a videobuf2 queue
2589 * @q: videobuf2 queue; this structure should be allocated in driver
2590 *
2591 * The vb2_queue structure should be allocated by the driver. The driver is
2592 * responsible of clearing it's content and setting initial values for some
2593 * required entries before calling this function.
2594 * q->ops, q->mem_ops, q->type and q->io_modes are mandatory. Please refer
2595 * to the struct vb2_queue description in include/media/videobuf2-core.h
2596 * for more information.
2597 */
2598 int vb2_queue_init(struct vb2_queue *q)
2599 {
2600 /*
2601 * Sanity check
2602 */
2603 if (WARN_ON(!q) ||
2604 WARN_ON(!q->ops) ||
2605 WARN_ON(!q->mem_ops) ||
2606 WARN_ON(!q->type) ||
2607 WARN_ON(!q->io_modes) ||
2608 WARN_ON(!q->ops->queue_setup) ||
2609 WARN_ON(!q->ops->buf_queue) ||
2610 WARN_ON(q->timestamp_flags &
2611 ~(V4L2_BUF_FLAG_TIMESTAMP_MASK |
2612 V4L2_BUF_FLAG_TSTAMP_SRC_MASK)))
2613 return -EINVAL;
2614
2615 /* Warn that the driver should choose an appropriate timestamp type */
2616 WARN_ON((q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
2617 V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN);
2618
2619 INIT_LIST_HEAD(&q->queued_list);
2620 INIT_LIST_HEAD(&q->done_list);
2621 spin_lock_init(&q->done_lock);
2622 init_waitqueue_head(&q->done_wq);
2623
2624 if (q->buf_struct_size == 0)
2625 q->buf_struct_size = sizeof(struct vb2_buffer);
2626
2627 return 0;
2628 }
2629 EXPORT_SYMBOL_GPL(vb2_queue_init);
2630
2631 /**
2632 * vb2_queue_release() - stop streaming, release the queue and free memory
2633 * @q: videobuf2 queue
2634 *
2635 * This function stops streaming and performs necessary clean ups, including
2636 * freeing video buffer memory. The driver is responsible for freeing
2637 * the vb2_queue structure itself.
2638 */
2639 void vb2_queue_release(struct vb2_queue *q)
2640 {
2641 __vb2_cleanup_fileio(q);
2642 __vb2_queue_cancel(q);
2643 __vb2_queue_free(q, q->num_buffers);
2644 }
2645 EXPORT_SYMBOL_GPL(vb2_queue_release);
2646
2647 /**
2648 * struct vb2_fileio_buf - buffer context used by file io emulator
2649 *
2650 * vb2 provides a compatibility layer and emulator of file io (read and
2651 * write) calls on top of streaming API. This structure is used for
2652 * tracking context related to the buffers.
2653 */
2654 struct vb2_fileio_buf {
2655 void *vaddr;
2656 unsigned int size;
2657 unsigned int pos;
2658 unsigned int queued:1;
2659 };
2660
2661 /**
2662 * struct vb2_fileio_data - queue context used by file io emulator
2663 *
2664 * @cur_index: the index of the buffer currently being read from or
2665 * written to. If equal to q->num_buffers then a new buffer
2666 * must be dequeued.
2667 * @initial_index: in the read() case all buffers are queued up immediately
2668 * in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2669 * buffers. However, in the write() case no buffers are initially
2670 * queued, instead whenever a buffer is full it is queued up by
2671 * __vb2_perform_fileio(). Only once all available buffers have
2672 * been queued up will __vb2_perform_fileio() start to dequeue
2673 * buffers. This means that initially __vb2_perform_fileio()
2674 * needs to know what buffer index to use when it is queuing up
2675 * the buffers for the first time. That initial index is stored
2676 * in this field. Once it is equal to q->num_buffers all
2677 * available buffers have been queued and __vb2_perform_fileio()
2678 * should start the normal dequeue/queue cycle.
2679 *
2680 * vb2 provides a compatibility layer and emulator of file io (read and
2681 * write) calls on top of streaming API. For proper operation it required
2682 * this structure to save the driver state between each call of the read
2683 * or write function.
2684 */
2685 struct vb2_fileio_data {
2686 struct v4l2_requestbuffers req;
2687 struct v4l2_plane p;
2688 struct v4l2_buffer b;
2689 struct vb2_fileio_buf bufs[VIDEO_MAX_FRAME];
2690 unsigned int cur_index;
2691 unsigned int initial_index;
2692 unsigned int q_count;
2693 unsigned int dq_count;
2694 unsigned int flags;
2695 };
2696
2697 /**
2698 * __vb2_init_fileio() - initialize file io emulator
2699 * @q: videobuf2 queue
2700 * @read: mode selector (1 means read, 0 means write)
2701 */
2702 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2703 {
2704 struct vb2_fileio_data *fileio;
2705 int i, ret;
2706 unsigned int count = 0;
2707
2708 /*
2709 * Sanity check
2710 */
2711 if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2712 (!read && !(q->io_modes & VB2_WRITE))))
2713 return -EINVAL;
2714
2715 /*
2716 * Check if device supports mapping buffers to kernel virtual space.
2717 */
2718 if (!q->mem_ops->vaddr)
2719 return -EBUSY;
2720
2721 /*
2722 * Check if streaming api has not been already activated.
2723 */
2724 if (q->streaming || q->num_buffers > 0)
2725 return -EBUSY;
2726
2727 /*
2728 * Start with count 1, driver can increase it in queue_setup()
2729 */
2730 count = 1;
2731
2732 dprintk(3, "setting up file io: mode %s, count %d, flags %08x\n",
2733 (read) ? "read" : "write", count, q->io_flags);
2734
2735 fileio = kzalloc(sizeof(struct vb2_fileio_data), GFP_KERNEL);
2736 if (fileio == NULL)
2737 return -ENOMEM;
2738
2739 fileio->flags = q->io_flags;
2740
2741 /*
2742 * Request buffers and use MMAP type to force driver
2743 * to allocate buffers by itself.
2744 */
2745 fileio->req.count = count;
2746 fileio->req.memory = V4L2_MEMORY_MMAP;
2747 fileio->req.type = q->type;
2748 q->fileio = fileio;
2749 ret = __reqbufs(q, &fileio->req);
2750 if (ret)
2751 goto err_kfree;
2752
2753 /*
2754 * Check if plane_count is correct
2755 * (multiplane buffers are not supported).
2756 */
2757 if (q->bufs[0]->num_planes != 1) {
2758 ret = -EBUSY;
2759 goto err_reqbufs;
2760 }
2761
2762 /*
2763 * Get kernel address of each buffer.
2764 */
2765 for (i = 0; i < q->num_buffers; i++) {
2766 fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2767 if (fileio->bufs[i].vaddr == NULL) {
2768 ret = -EINVAL;
2769 goto err_reqbufs;
2770 }
2771 fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2772 }
2773
2774 /*
2775 * Read mode requires pre queuing of all buffers.
2776 */
2777 if (read) {
2778 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2779
2780 /*
2781 * Queue all buffers.
2782 */
2783 for (i = 0; i < q->num_buffers; i++) {
2784 struct v4l2_buffer *b = &fileio->b;
2785
2786 memset(b, 0, sizeof(*b));
2787 b->type = q->type;
2788 if (is_multiplanar) {
2789 memset(&fileio->p, 0, sizeof(fileio->p));
2790 b->m.planes = &fileio->p;
2791 b->length = 1;
2792 }
2793 b->memory = q->memory;
2794 b->index = i;
2795 ret = vb2_internal_qbuf(q, b);
2796 if (ret)
2797 goto err_reqbufs;
2798 fileio->bufs[i].queued = 1;
2799 }
2800 /*
2801 * All buffers have been queued, so mark that by setting
2802 * initial_index to q->num_buffers
2803 */
2804 fileio->initial_index = q->num_buffers;
2805 fileio->cur_index = q->num_buffers;
2806 }
2807
2808 /*
2809 * Start streaming.
2810 */
2811 ret = vb2_internal_streamon(q, q->type);
2812 if (ret)
2813 goto err_reqbufs;
2814
2815 return ret;
2816
2817 err_reqbufs:
2818 fileio->req.count = 0;
2819 __reqbufs(q, &fileio->req);
2820
2821 err_kfree:
2822 q->fileio = NULL;
2823 kfree(fileio);
2824 return ret;
2825 }
2826
2827 /**
2828 * __vb2_cleanup_fileio() - free resourced used by file io emulator
2829 * @q: videobuf2 queue
2830 */
2831 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2832 {
2833 struct vb2_fileio_data *fileio = q->fileio;
2834
2835 if (fileio) {
2836 vb2_internal_streamoff(q, q->type);
2837 q->fileio = NULL;
2838 fileio->req.count = 0;
2839 vb2_reqbufs(q, &fileio->req);
2840 kfree(fileio);
2841 dprintk(3, "file io emulator closed\n");
2842 }
2843 return 0;
2844 }
2845
2846 /**
2847 * __vb2_perform_fileio() - perform a single file io (read or write) operation
2848 * @q: videobuf2 queue
2849 * @data: pointed to target userspace buffer
2850 * @count: number of bytes to read or write
2851 * @ppos: file handle position tracking pointer
2852 * @nonblock: mode selector (1 means blocking calls, 0 means nonblocking)
2853 * @read: access mode selector (1 means read, 0 means write)
2854 */
2855 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2856 loff_t *ppos, int nonblock, int read)
2857 {
2858 struct vb2_fileio_data *fileio;
2859 struct vb2_fileio_buf *buf;
2860 bool is_multiplanar = V4L2_TYPE_IS_MULTIPLANAR(q->type);
2861 /*
2862 * When using write() to write data to an output video node the vb2 core
2863 * should set timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2864 * else is able to provide this information with the write() operation.
2865 */
2866 bool set_timestamp = !read &&
2867 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
2868 V4L2_BUF_FLAG_TIMESTAMP_COPY;
2869 int ret, index;
2870
2871 dprintk(3, "mode %s, offset %ld, count %zd, %sblocking\n",
2872 read ? "read" : "write", (long)*ppos, count,
2873 nonblock ? "non" : "");
2874
2875 if (!data)
2876 return -EINVAL;
2877
2878 /*
2879 * Initialize emulator on first call.
2880 */
2881 if (!vb2_fileio_is_active(q)) {
2882 ret = __vb2_init_fileio(q, read);
2883 dprintk(3, "vb2_init_fileio result: %d\n", ret);
2884 if (ret)
2885 return ret;
2886 }
2887 fileio = q->fileio;
2888
2889 /*
2890 * Check if we need to dequeue the buffer.
2891 */
2892 index = fileio->cur_index;
2893 if (index >= q->num_buffers) {
2894 /*
2895 * Call vb2_dqbuf to get buffer back.
2896 */
2897 memset(&fileio->b, 0, sizeof(fileio->b));
2898 fileio->b.type = q->type;
2899 fileio->b.memory = q->memory;
2900 if (is_multiplanar) {
2901 memset(&fileio->p, 0, sizeof(fileio->p));
2902 fileio->b.m.planes = &fileio->p;
2903 fileio->b.length = 1;
2904 }
2905 ret = vb2_internal_dqbuf(q, &fileio->b, nonblock);
2906 dprintk(5, "vb2_dqbuf result: %d\n", ret);
2907 if (ret)
2908 return ret;
2909 fileio->dq_count += 1;
2910
2911 fileio->cur_index = index = fileio->b.index;
2912 buf = &fileio->bufs[index];
2913
2914 /*
2915 * Get number of bytes filled by the driver
2916 */
2917 buf->pos = 0;
2918 buf->queued = 0;
2919 buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2920 : vb2_plane_size(q->bufs[index], 0);
2921 } else {
2922 buf = &fileio->bufs[index];
2923 }
2924
2925 /*
2926 * Limit count on last few bytes of the buffer.
2927 */
2928 if (buf->pos + count > buf->size) {
2929 count = buf->size - buf->pos;
2930 dprintk(5, "reducing read count: %zd\n", count);
2931 }
2932
2933 /*
2934 * Transfer data to userspace.
2935 */
2936 dprintk(3, "copying %zd bytes - buffer %d, offset %u\n",
2937 count, index, buf->pos);
2938 if (read)
2939 ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2940 else
2941 ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2942 if (ret) {
2943 dprintk(3, "error copying data\n");
2944 return -EFAULT;
2945 }
2946
2947 /*
2948 * Update counters.
2949 */
2950 buf->pos += count;
2951 *ppos += count;
2952
2953 /*
2954 * Queue next buffer if required.
2955 */
2956 if (buf->pos == buf->size ||
2957 (!read && (fileio->flags & VB2_FILEIO_WRITE_IMMEDIATELY))) {
2958 /*
2959 * Check if this is the last buffer to read.
2960 */
2961 if (read && (fileio->flags & VB2_FILEIO_READ_ONCE) &&
2962 fileio->dq_count == 1) {
2963 dprintk(3, "read limit reached\n");
2964 return __vb2_cleanup_fileio(q);
2965 }
2966
2967 /*
2968 * Call vb2_qbuf and give buffer to the driver.
2969 */
2970 memset(&fileio->b, 0, sizeof(fileio->b));
2971 fileio->b.type = q->type;
2972 fileio->b.memory = q->memory;
2973 fileio->b.index = index;
2974 fileio->b.bytesused = buf->pos;
2975 if (is_multiplanar) {
2976 memset(&fileio->p, 0, sizeof(fileio->p));
2977 fileio->p.bytesused = buf->pos;
2978 fileio->b.m.planes = &fileio->p;
2979 fileio->b.length = 1;
2980 }
2981 if (set_timestamp)
2982 v4l2_get_timestamp(&fileio->b.timestamp);
2983 ret = vb2_internal_qbuf(q, &fileio->b);
2984 dprintk(5, "vb2_dbuf result: %d\n", ret);
2985 if (ret)
2986 return ret;
2987
2988 /*
2989 * Buffer has been queued, update the status
2990 */
2991 buf->pos = 0;
2992 buf->queued = 1;
2993 buf->size = vb2_plane_size(q->bufs[index], 0);
2994 fileio->q_count += 1;
2995 /*
2996 * If we are queuing up buffers for the first time, then
2997 * increase initial_index by one.
2998 */
2999 if (fileio->initial_index < q->num_buffers)
3000 fileio->initial_index++;
3001 /*
3002 * The next buffer to use is either a buffer that's going to be
3003 * queued for the first time (initial_index < q->num_buffers)
3004 * or it is equal to q->num_buffers, meaning that the next
3005 * time we need to dequeue a buffer since we've now queued up
3006 * all the 'first time' buffers.
3007 */
3008 fileio->cur_index = fileio->initial_index;
3009 }
3010
3011 /*
3012 * Return proper number of bytes processed.
3013 */
3014 if (ret == 0)
3015 ret = count;
3016 return ret;
3017 }
3018
3019 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
3020 loff_t *ppos, int nonblocking)
3021 {
3022 return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
3023 }
3024 EXPORT_SYMBOL_GPL(vb2_read);
3025
3026 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
3027 loff_t *ppos, int nonblocking)
3028 {
3029 return __vb2_perform_fileio(q, (char __user *) data, count,
3030 ppos, nonblocking, 0);
3031 }
3032 EXPORT_SYMBOL_GPL(vb2_write);
3033
3034 struct vb2_threadio_data {
3035 struct task_struct *thread;
3036 vb2_thread_fnc fnc;
3037 void *priv;
3038 bool stop;
3039 };
3040
3041 static int vb2_thread(void *data)
3042 {
3043 struct vb2_queue *q = data;
3044 struct vb2_threadio_data *threadio = q->threadio;
3045 struct vb2_fileio_data *fileio = q->fileio;
3046 bool set_timestamp = false;
3047 int prequeue = 0;
3048 int index = 0;
3049 int ret = 0;
3050
3051 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
3052 prequeue = q->num_buffers;
3053 set_timestamp =
3054 (q->timestamp_flags & V4L2_BUF_FLAG_TIMESTAMP_MASK) ==
3055 V4L2_BUF_FLAG_TIMESTAMP_COPY;
3056 }
3057
3058 set_freezable();
3059
3060 for (;;) {
3061 struct vb2_buffer *vb;
3062
3063 /*
3064 * Call vb2_dqbuf to get buffer back.
3065 */
3066 memset(&fileio->b, 0, sizeof(fileio->b));
3067 fileio->b.type = q->type;
3068 fileio->b.memory = q->memory;
3069 if (prequeue) {
3070 fileio->b.index = index++;
3071 prequeue--;
3072 } else {
3073 call_void_qop(q, wait_finish, q);
3074 ret = vb2_internal_dqbuf(q, &fileio->b, 0);
3075 call_void_qop(q, wait_prepare, q);
3076 dprintk(5, "file io: vb2_dqbuf result: %d\n", ret);
3077 }
3078 if (threadio->stop)
3079 break;
3080 if (ret)
3081 break;
3082 try_to_freeze();
3083
3084 vb = q->bufs[fileio->b.index];
3085 if (!(fileio->b.flags & V4L2_BUF_FLAG_ERROR))
3086 ret = threadio->fnc(vb, threadio->priv);
3087 if (ret)
3088 break;
3089 call_void_qop(q, wait_finish, q);
3090 if (set_timestamp)
3091 v4l2_get_timestamp(&fileio->b.timestamp);
3092 ret = vb2_internal_qbuf(q, &fileio->b);
3093 call_void_qop(q, wait_prepare, q);
3094 if (ret)
3095 break;
3096 }
3097
3098 /* Hmm, linux becomes *very* unhappy without this ... */
3099 while (!kthread_should_stop()) {
3100 set_current_state(TASK_INTERRUPTIBLE);
3101 schedule();
3102 }
3103 return 0;
3104 }
3105
3106 /*
3107 * This function should not be used for anything else but the videobuf2-dvb
3108 * support. If you think you have another good use-case for this, then please
3109 * contact the linux-media mailinglist first.
3110 */
3111 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
3112 const char *thread_name)
3113 {
3114 struct vb2_threadio_data *threadio;
3115 int ret = 0;
3116
3117 if (q->threadio)
3118 return -EBUSY;
3119 if (vb2_is_busy(q))
3120 return -EBUSY;
3121 if (WARN_ON(q->fileio))
3122 return -EBUSY;
3123
3124 threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
3125 if (threadio == NULL)
3126 return -ENOMEM;
3127 threadio->fnc = fnc;
3128 threadio->priv = priv;
3129
3130 ret = __vb2_init_fileio(q, !V4L2_TYPE_IS_OUTPUT(q->type));
3131 dprintk(3, "file io: vb2_init_fileio result: %d\n", ret);
3132 if (ret)
3133 goto nomem;
3134 q->threadio = threadio;
3135 threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
3136 if (IS_ERR(threadio->thread)) {
3137 ret = PTR_ERR(threadio->thread);
3138 threadio->thread = NULL;
3139 goto nothread;
3140 }
3141 return 0;
3142
3143 nothread:
3144 __vb2_cleanup_fileio(q);
3145 nomem:
3146 kfree(threadio);
3147 return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(vb2_thread_start);
3150
3151 int vb2_thread_stop(struct vb2_queue *q)
3152 {
3153 struct vb2_threadio_data *threadio = q->threadio;
3154 struct vb2_fileio_data *fileio = q->fileio;
3155 int err;
3156
3157 if (threadio == NULL)
3158 return 0;
3159 call_void_qop(q, wait_finish, q);
3160 threadio->stop = true;
3161 vb2_internal_streamoff(q, q->type);
3162 call_void_qop(q, wait_prepare, q);
3163 q->fileio = NULL;
3164 fileio->req.count = 0;
3165 vb2_reqbufs(q, &fileio->req);
3166 kfree(fileio);
3167 err = kthread_stop(threadio->thread);
3168 threadio->thread = NULL;
3169 kfree(threadio);
3170 q->fileio = NULL;
3171 q->threadio = NULL;
3172 return err;
3173 }
3174 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3175
3176 /*
3177 * The following functions are not part of the vb2 core API, but are helper
3178 * functions that plug into struct v4l2_ioctl_ops, struct v4l2_file_operations
3179 * and struct vb2_ops.
3180 * They contain boilerplate code that most if not all drivers have to do
3181 * and so they simplify the driver code.
3182 */
3183
3184 /* The queue is busy if there is a owner and you are not that owner. */
3185 static inline bool vb2_queue_is_busy(struct video_device *vdev, struct file *file)
3186 {
3187 return vdev->queue->owner && vdev->queue->owner != file->private_data;
3188 }
3189
3190 /* vb2 ioctl helpers */
3191
3192 int vb2_ioctl_reqbufs(struct file *file, void *priv,
3193 struct v4l2_requestbuffers *p)
3194 {
3195 struct video_device *vdev = video_devdata(file);
3196 int res = __verify_memory_type(vdev->queue, p->memory, p->type);
3197
3198 if (res)
3199 return res;
3200 if (vb2_queue_is_busy(vdev, file))
3201 return -EBUSY;
3202 res = __reqbufs(vdev->queue, p);
3203 /* If count == 0, then the owner has released all buffers and he
3204 is no longer owner of the queue. Otherwise we have a new owner. */
3205 if (res == 0)
3206 vdev->queue->owner = p->count ? file->private_data : NULL;
3207 return res;
3208 }
3209 EXPORT_SYMBOL_GPL(vb2_ioctl_reqbufs);
3210
3211 int vb2_ioctl_create_bufs(struct file *file, void *priv,
3212 struct v4l2_create_buffers *p)
3213 {
3214 struct video_device *vdev = video_devdata(file);
3215 int res = __verify_memory_type(vdev->queue, p->memory, p->format.type);
3216
3217 p->index = vdev->queue->num_buffers;
3218 /* If count == 0, then just check if memory and type are valid.
3219 Any -EBUSY result from __verify_memory_type can be mapped to 0. */
3220 if (p->count == 0)
3221 return res != -EBUSY ? res : 0;
3222 if (res)
3223 return res;
3224 if (vb2_queue_is_busy(vdev, file))
3225 return -EBUSY;
3226 res = __create_bufs(vdev->queue, p);
3227 if (res == 0)
3228 vdev->queue->owner = file->private_data;
3229 return res;
3230 }
3231 EXPORT_SYMBOL_GPL(vb2_ioctl_create_bufs);
3232
3233 int vb2_ioctl_prepare_buf(struct file *file, void *priv,
3234 struct v4l2_buffer *p)
3235 {
3236 struct video_device *vdev = video_devdata(file);
3237
3238 if (vb2_queue_is_busy(vdev, file))
3239 return -EBUSY;
3240 return vb2_prepare_buf(vdev->queue, p);
3241 }
3242 EXPORT_SYMBOL_GPL(vb2_ioctl_prepare_buf);
3243
3244 int vb2_ioctl_querybuf(struct file *file, void *priv, struct v4l2_buffer *p)
3245 {
3246 struct video_device *vdev = video_devdata(file);
3247
3248 /* No need to call vb2_queue_is_busy(), anyone can query buffers. */
3249 return vb2_querybuf(vdev->queue, p);
3250 }
3251 EXPORT_SYMBOL_GPL(vb2_ioctl_querybuf);
3252
3253 int vb2_ioctl_qbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3254 {
3255 struct video_device *vdev = video_devdata(file);
3256
3257 if (vb2_queue_is_busy(vdev, file))
3258 return -EBUSY;
3259 return vb2_qbuf(vdev->queue, p);
3260 }
3261 EXPORT_SYMBOL_GPL(vb2_ioctl_qbuf);
3262
3263 int vb2_ioctl_dqbuf(struct file *file, void *priv, struct v4l2_buffer *p)
3264 {
3265 struct video_device *vdev = video_devdata(file);
3266
3267 if (vb2_queue_is_busy(vdev, file))
3268 return -EBUSY;
3269 return vb2_dqbuf(vdev->queue, p, file->f_flags & O_NONBLOCK);
3270 }
3271 EXPORT_SYMBOL_GPL(vb2_ioctl_dqbuf);
3272
3273 int vb2_ioctl_streamon(struct file *file, void *priv, enum v4l2_buf_type i)
3274 {
3275 struct video_device *vdev = video_devdata(file);
3276
3277 if (vb2_queue_is_busy(vdev, file))
3278 return -EBUSY;
3279 return vb2_streamon(vdev->queue, i);
3280 }
3281 EXPORT_SYMBOL_GPL(vb2_ioctl_streamon);
3282
3283 int vb2_ioctl_streamoff(struct file *file, void *priv, enum v4l2_buf_type i)
3284 {
3285 struct video_device *vdev = video_devdata(file);
3286
3287 if (vb2_queue_is_busy(vdev, file))
3288 return -EBUSY;
3289 return vb2_streamoff(vdev->queue, i);
3290 }
3291 EXPORT_SYMBOL_GPL(vb2_ioctl_streamoff);
3292
3293 int vb2_ioctl_expbuf(struct file *file, void *priv, struct v4l2_exportbuffer *p)
3294 {
3295 struct video_device *vdev = video_devdata(file);
3296
3297 if (vb2_queue_is_busy(vdev, file))
3298 return -EBUSY;
3299 return vb2_expbuf(vdev->queue, p);
3300 }
3301 EXPORT_SYMBOL_GPL(vb2_ioctl_expbuf);
3302
3303 /* v4l2_file_operations helpers */
3304
3305 int vb2_fop_mmap(struct file *file, struct vm_area_struct *vma)
3306 {
3307 struct video_device *vdev = video_devdata(file);
3308 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3309 int err;
3310
3311 if (lock && mutex_lock_interruptible(lock))
3312 return -ERESTARTSYS;
3313 err = vb2_mmap(vdev->queue, vma);
3314 if (lock)
3315 mutex_unlock(lock);
3316 return err;
3317 }
3318 EXPORT_SYMBOL_GPL(vb2_fop_mmap);
3319
3320 int _vb2_fop_release(struct file *file, struct mutex *lock)
3321 {
3322 struct video_device *vdev = video_devdata(file);
3323
3324 if (file->private_data == vdev->queue->owner) {
3325 if (lock)
3326 mutex_lock(lock);
3327 vb2_queue_release(vdev->queue);
3328 vdev->queue->owner = NULL;
3329 if (lock)
3330 mutex_unlock(lock);
3331 }
3332 return v4l2_fh_release(file);
3333 }
3334 EXPORT_SYMBOL_GPL(_vb2_fop_release);
3335
3336 int vb2_fop_release(struct file *file)
3337 {
3338 struct video_device *vdev = video_devdata(file);
3339 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3340
3341 return _vb2_fop_release(file, lock);
3342 }
3343 EXPORT_SYMBOL_GPL(vb2_fop_release);
3344
3345 ssize_t vb2_fop_write(struct file *file, const char __user *buf,
3346 size_t count, loff_t *ppos)
3347 {
3348 struct video_device *vdev = video_devdata(file);
3349 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3350 int err = -EBUSY;
3351
3352 if (lock && mutex_lock_interruptible(lock))
3353 return -ERESTARTSYS;
3354 if (vb2_queue_is_busy(vdev, file))
3355 goto exit;
3356 err = vb2_write(vdev->queue, buf, count, ppos,
3357 file->f_flags & O_NONBLOCK);
3358 if (vdev->queue->fileio)
3359 vdev->queue->owner = file->private_data;
3360 exit:
3361 if (lock)
3362 mutex_unlock(lock);
3363 return err;
3364 }
3365 EXPORT_SYMBOL_GPL(vb2_fop_write);
3366
3367 ssize_t vb2_fop_read(struct file *file, char __user *buf,
3368 size_t count, loff_t *ppos)
3369 {
3370 struct video_device *vdev = video_devdata(file);
3371 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3372 int err = -EBUSY;
3373
3374 if (lock && mutex_lock_interruptible(lock))
3375 return -ERESTARTSYS;
3376 if (vb2_queue_is_busy(vdev, file))
3377 goto exit;
3378 err = vb2_read(vdev->queue, buf, count, ppos,
3379 file->f_flags & O_NONBLOCK);
3380 if (vdev->queue->fileio)
3381 vdev->queue->owner = file->private_data;
3382 exit:
3383 if (lock)
3384 mutex_unlock(lock);
3385 return err;
3386 }
3387 EXPORT_SYMBOL_GPL(vb2_fop_read);
3388
3389 unsigned int vb2_fop_poll(struct file *file, poll_table *wait)
3390 {
3391 struct video_device *vdev = video_devdata(file);
3392 struct vb2_queue *q = vdev->queue;
3393 struct mutex *lock = q->lock ? q->lock : vdev->lock;
3394 unsigned long req_events = poll_requested_events(wait);
3395 unsigned res;
3396 void *fileio;
3397 bool must_lock = false;
3398
3399 /* Try to be smart: only lock if polling might start fileio,
3400 otherwise locking will only introduce unwanted delays. */
3401 if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
3402 if (!V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_READ) &&
3403 (req_events & (POLLIN | POLLRDNORM)))
3404 must_lock = true;
3405 else if (V4L2_TYPE_IS_OUTPUT(q->type) && (q->io_modes & VB2_WRITE) &&
3406 (req_events & (POLLOUT | POLLWRNORM)))
3407 must_lock = true;
3408 }
3409
3410 /* If locking is needed, but this helper doesn't know how, then you
3411 shouldn't be using this helper but you should write your own. */
3412 WARN_ON(must_lock && !lock);
3413
3414 if (must_lock && lock && mutex_lock_interruptible(lock))
3415 return POLLERR;
3416
3417 fileio = q->fileio;
3418
3419 res = vb2_poll(vdev->queue, file, wait);
3420
3421 /* If fileio was started, then we have a new queue owner. */
3422 if (must_lock && !fileio && q->fileio)
3423 q->owner = file->private_data;
3424 if (must_lock && lock)
3425 mutex_unlock(lock);
3426 return res;
3427 }
3428 EXPORT_SYMBOL_GPL(vb2_fop_poll);
3429
3430 #ifndef CONFIG_MMU
3431 unsigned long vb2_fop_get_unmapped_area(struct file *file, unsigned long addr,
3432 unsigned long len, unsigned long pgoff, unsigned long flags)
3433 {
3434 struct video_device *vdev = video_devdata(file);
3435 struct mutex *lock = vdev->queue->lock ? vdev->queue->lock : vdev->lock;
3436 int ret;
3437
3438 if (lock && mutex_lock_interruptible(lock))
3439 return -ERESTARTSYS;
3440 ret = vb2_get_unmapped_area(vdev->queue, addr, len, pgoff, flags);
3441 if (lock)
3442 mutex_unlock(lock);
3443 return ret;
3444 }
3445 EXPORT_SYMBOL_GPL(vb2_fop_get_unmapped_area);
3446 #endif
3447
3448 /* vb2_ops helpers. Only use if vq->lock is non-NULL. */
3449
3450 void vb2_ops_wait_prepare(struct vb2_queue *vq)
3451 {
3452 mutex_unlock(vq->lock);
3453 }
3454 EXPORT_SYMBOL_GPL(vb2_ops_wait_prepare);
3455
3456 void vb2_ops_wait_finish(struct vb2_queue *vq)
3457 {
3458 mutex_lock(vq->lock);
3459 }
3460 EXPORT_SYMBOL_GPL(vb2_ops_wait_finish);
3461
3462 MODULE_DESCRIPTION("Driver helper framework for Video for Linux 2");
3463 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3464 MODULE_LICENSE("GPL");