]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/media/video/cafe_ccic.c
loop: mutex already unlocked in loop_clr_fd()
[mirror_ubuntu-kernels.git] / drivers / media / video / cafe_ccic.c
1 /*
2 * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe"
3 * multifunction chip. Currently works with the Omnivision OV7670
4 * sensor.
5 *
6 * The data sheet for this device can be found at:
7 * http://www.marvell.com/products/pcconn/88ALP01.jsp
8 *
9 * Copyright 2006 One Laptop Per Child Association, Inc.
10 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
11 *
12 * Written by Jonathan Corbet, corbet@lwn.net.
13 *
14 * v4l2_device/v4l2_subdev conversion by:
15 * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl>
16 *
17 * Note: this conversion is untested! Please contact the linux-media
18 * mailinglist if you can test this, together with the test results.
19 *
20 * This file may be distributed under the terms of the GNU General
21 * Public License, version 2.
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/fs.h>
28 #include <linux/mm.h>
29 #include <linux/pci.h>
30 #include <linux/i2c.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/videodev2.h>
34 #include <media/v4l2-device.h>
35 #include <media/v4l2-ioctl.h>
36 #include <media/v4l2-chip-ident.h>
37 #include <linux/device.h>
38 #include <linux/wait.h>
39 #include <linux/list.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/delay.h>
42 #include <linux/jiffies.h>
43 #include <linux/vmalloc.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47
48 #include "cafe_ccic-regs.h"
49
50 #define CAFE_VERSION 0x000002
51
52
53 /*
54 * Parameters.
55 */
56 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
57 MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver");
58 MODULE_LICENSE("GPL");
59 MODULE_SUPPORTED_DEVICE("Video");
60
61 /*
62 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
63 * we must have physically contiguous buffers to bring frames into.
64 * These parameters control how many buffers we use, whether we
65 * allocate them at load time (better chance of success, but nails down
66 * memory) or when somebody tries to use the camera (riskier), and,
67 * for load-time allocation, how big they should be.
68 *
69 * The controller can cycle through three buffers. We could use
70 * more by flipping pointers around, but it probably makes little
71 * sense.
72 */
73
74 #define MAX_DMA_BUFS 3
75 static int alloc_bufs_at_read;
76 module_param(alloc_bufs_at_read, bool, 0444);
77 MODULE_PARM_DESC(alloc_bufs_at_read,
78 "Non-zero value causes DMA buffers to be allocated when the "
79 "video capture device is read, rather than at module load "
80 "time. This saves memory, but decreases the chances of "
81 "successfully getting those buffers.");
82
83 static int n_dma_bufs = 3;
84 module_param(n_dma_bufs, uint, 0644);
85 MODULE_PARM_DESC(n_dma_bufs,
86 "The number of DMA buffers to allocate. Can be either two "
87 "(saves memory, makes timing tighter) or three.");
88
89 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
90 module_param(dma_buf_size, uint, 0444);
91 MODULE_PARM_DESC(dma_buf_size,
92 "The size of the allocated DMA buffers. If actual operating "
93 "parameters require larger buffers, an attempt to reallocate "
94 "will be made.");
95
96 static int min_buffers = 1;
97 module_param(min_buffers, uint, 0644);
98 MODULE_PARM_DESC(min_buffers,
99 "The minimum number of streaming I/O buffers we are willing "
100 "to work with.");
101
102 static int max_buffers = 10;
103 module_param(max_buffers, uint, 0644);
104 MODULE_PARM_DESC(max_buffers,
105 "The maximum number of streaming I/O buffers an application "
106 "will be allowed to allocate. These buffers are big and live "
107 "in vmalloc space.");
108
109 static int flip;
110 module_param(flip, bool, 0444);
111 MODULE_PARM_DESC(flip,
112 "If set, the sensor will be instructed to flip the image "
113 "vertically.");
114
115
116 enum cafe_state {
117 S_NOTREADY, /* Not yet initialized */
118 S_IDLE, /* Just hanging around */
119 S_FLAKED, /* Some sort of problem */
120 S_SINGLEREAD, /* In read() */
121 S_SPECREAD, /* Speculative read (for future read()) */
122 S_STREAMING /* Streaming data */
123 };
124
125 /*
126 * Tracking of streaming I/O buffers.
127 */
128 struct cafe_sio_buffer {
129 struct list_head list;
130 struct v4l2_buffer v4lbuf;
131 char *buffer; /* Where it lives in kernel space */
132 int mapcount;
133 struct cafe_camera *cam;
134 };
135
136 /*
137 * A description of one of our devices.
138 * Locking: controlled by s_mutex. Certain fields, however, require
139 * the dev_lock spinlock; they are marked as such by comments.
140 * dev_lock is also required for access to device registers.
141 */
142 struct cafe_camera
143 {
144 struct v4l2_device v4l2_dev;
145 enum cafe_state state;
146 unsigned long flags; /* Buffer status, mainly (dev_lock) */
147 int users; /* How many open FDs */
148 struct file *owner; /* Who has data access (v4l2) */
149
150 /*
151 * Subsystem structures.
152 */
153 struct pci_dev *pdev;
154 struct video_device vdev;
155 struct i2c_adapter i2c_adapter;
156 struct v4l2_subdev *sensor;
157 unsigned short sensor_addr;
158
159 unsigned char __iomem *regs;
160 struct list_head dev_list; /* link to other devices */
161
162 /* DMA buffers */
163 unsigned int nbufs; /* How many are alloc'd */
164 int next_buf; /* Next to consume (dev_lock) */
165 unsigned int dma_buf_size; /* allocated size */
166 void *dma_bufs[MAX_DMA_BUFS]; /* Internal buffer addresses */
167 dma_addr_t dma_handles[MAX_DMA_BUFS]; /* Buffer bus addresses */
168 unsigned int specframes; /* Unconsumed spec frames (dev_lock) */
169 unsigned int sequence; /* Frame sequence number */
170 unsigned int buf_seq[MAX_DMA_BUFS]; /* Sequence for individual buffers */
171
172 /* Streaming buffers */
173 unsigned int n_sbufs; /* How many we have */
174 struct cafe_sio_buffer *sb_bufs; /* The array of housekeeping structs */
175 struct list_head sb_avail; /* Available for data (we own) (dev_lock) */
176 struct list_head sb_full; /* With data (user space owns) (dev_lock) */
177 struct tasklet_struct s_tasklet;
178
179 /* Current operating parameters */
180 u32 sensor_type; /* Currently ov7670 only */
181 struct v4l2_pix_format pix_format;
182
183 /* Locks */
184 struct mutex s_mutex; /* Access to this structure */
185 spinlock_t dev_lock; /* Access to device */
186
187 /* Misc */
188 wait_queue_head_t smbus_wait; /* Waiting on i2c events */
189 wait_queue_head_t iowait; /* Waiting on frame data */
190 };
191
192 /*
193 * Status flags. Always manipulated with bit operations.
194 */
195 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
196 #define CF_BUF1_VALID 1
197 #define CF_BUF2_VALID 2
198 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
199 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
200
201 #define sensor_call(cam, o, f, args...) \
202 v4l2_subdev_call(cam->sensor, o, f, ##args)
203
204 static inline struct cafe_camera *to_cam(struct v4l2_device *dev)
205 {
206 return container_of(dev, struct cafe_camera, v4l2_dev);
207 }
208
209
210 /*
211 * Start over with DMA buffers - dev_lock needed.
212 */
213 static void cafe_reset_buffers(struct cafe_camera *cam)
214 {
215 int i;
216
217 cam->next_buf = -1;
218 for (i = 0; i < cam->nbufs; i++)
219 clear_bit(i, &cam->flags);
220 cam->specframes = 0;
221 }
222
223 static inline int cafe_needs_config(struct cafe_camera *cam)
224 {
225 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
226 }
227
228 static void cafe_set_config_needed(struct cafe_camera *cam, int needed)
229 {
230 if (needed)
231 set_bit(CF_CONFIG_NEEDED, &cam->flags);
232 else
233 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
234 }
235
236
237
238
239 /*
240 * Debugging and related.
241 */
242 #define cam_err(cam, fmt, arg...) \
243 dev_err(&(cam)->pdev->dev, fmt, ##arg);
244 #define cam_warn(cam, fmt, arg...) \
245 dev_warn(&(cam)->pdev->dev, fmt, ##arg);
246 #define cam_dbg(cam, fmt, arg...) \
247 dev_dbg(&(cam)->pdev->dev, fmt, ##arg);
248
249
250 /* ---------------------------------------------------------------------*/
251
252 /*
253 * Device register I/O
254 */
255 static inline void cafe_reg_write(struct cafe_camera *cam, unsigned int reg,
256 unsigned int val)
257 {
258 iowrite32(val, cam->regs + reg);
259 }
260
261 static inline unsigned int cafe_reg_read(struct cafe_camera *cam,
262 unsigned int reg)
263 {
264 return ioread32(cam->regs + reg);
265 }
266
267
268 static inline void cafe_reg_write_mask(struct cafe_camera *cam, unsigned int reg,
269 unsigned int val, unsigned int mask)
270 {
271 unsigned int v = cafe_reg_read(cam, reg);
272
273 v = (v & ~mask) | (val & mask);
274 cafe_reg_write(cam, reg, v);
275 }
276
277 static inline void cafe_reg_clear_bit(struct cafe_camera *cam,
278 unsigned int reg, unsigned int val)
279 {
280 cafe_reg_write_mask(cam, reg, 0, val);
281 }
282
283 static inline void cafe_reg_set_bit(struct cafe_camera *cam,
284 unsigned int reg, unsigned int val)
285 {
286 cafe_reg_write_mask(cam, reg, val, val);
287 }
288
289
290
291 /* -------------------------------------------------------------------- */
292 /*
293 * The I2C/SMBUS interface to the camera itself starts here. The
294 * controller handles SMBUS itself, presenting a relatively simple register
295 * interface; all we have to do is to tell it where to route the data.
296 */
297 #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */
298
299 static int cafe_smbus_write_done(struct cafe_camera *cam)
300 {
301 unsigned long flags;
302 int c1;
303
304 /*
305 * We must delay after the interrupt, or the controller gets confused
306 * and never does give us good status. Fortunately, we don't do this
307 * often.
308 */
309 udelay(20);
310 spin_lock_irqsave(&cam->dev_lock, flags);
311 c1 = cafe_reg_read(cam, REG_TWSIC1);
312 spin_unlock_irqrestore(&cam->dev_lock, flags);
313 return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT;
314 }
315
316 static int cafe_smbus_write_data(struct cafe_camera *cam,
317 u16 addr, u8 command, u8 value)
318 {
319 unsigned int rval;
320 unsigned long flags;
321 DEFINE_WAIT(the_wait);
322
323 spin_lock_irqsave(&cam->dev_lock, flags);
324 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
325 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
326 /*
327 * Marvell sez set clkdiv to all 1's for now.
328 */
329 rval |= TWSIC0_CLKDIV;
330 cafe_reg_write(cam, REG_TWSIC0, rval);
331 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
332 rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
333 cafe_reg_write(cam, REG_TWSIC1, rval);
334 spin_unlock_irqrestore(&cam->dev_lock, flags);
335
336 /*
337 * Time to wait for the write to complete. THIS IS A RACY
338 * WAY TO DO IT, but the sad fact is that reading the TWSIC1
339 * register too quickly after starting the operation sends
340 * the device into a place that may be kinder and better, but
341 * which is absolutely useless for controlling the sensor. In
342 * practice we have plenty of time to get into our sleep state
343 * before the interrupt hits, and the worst case is that we
344 * time out and then see that things completed, so this seems
345 * the best way for now.
346 */
347 do {
348 prepare_to_wait(&cam->smbus_wait, &the_wait,
349 TASK_UNINTERRUPTIBLE);
350 schedule_timeout(1); /* even 1 jiffy is too long */
351 finish_wait(&cam->smbus_wait, &the_wait);
352 } while (!cafe_smbus_write_done(cam));
353
354 #ifdef IF_THE_CAFE_HARDWARE_WORKED_RIGHT
355 wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(cam),
356 CAFE_SMBUS_TIMEOUT);
357 #endif
358 spin_lock_irqsave(&cam->dev_lock, flags);
359 rval = cafe_reg_read(cam, REG_TWSIC1);
360 spin_unlock_irqrestore(&cam->dev_lock, flags);
361
362 if (rval & TWSIC1_WSTAT) {
363 cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr,
364 command, value);
365 return -EIO;
366 }
367 if (rval & TWSIC1_ERROR) {
368 cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr,
369 command, value);
370 return -EIO;
371 }
372 return 0;
373 }
374
375
376
377 static int cafe_smbus_read_done(struct cafe_camera *cam)
378 {
379 unsigned long flags;
380 int c1;
381
382 /*
383 * We must delay after the interrupt, or the controller gets confused
384 * and never does give us good status. Fortunately, we don't do this
385 * often.
386 */
387 udelay(20);
388 spin_lock_irqsave(&cam->dev_lock, flags);
389 c1 = cafe_reg_read(cam, REG_TWSIC1);
390 spin_unlock_irqrestore(&cam->dev_lock, flags);
391 return c1 & (TWSIC1_RVALID|TWSIC1_ERROR);
392 }
393
394
395
396 static int cafe_smbus_read_data(struct cafe_camera *cam,
397 u16 addr, u8 command, u8 *value)
398 {
399 unsigned int rval;
400 unsigned long flags;
401
402 spin_lock_irqsave(&cam->dev_lock, flags);
403 rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID);
404 rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */
405 /*
406 * Marvel sez set clkdiv to all 1's for now.
407 */
408 rval |= TWSIC0_CLKDIV;
409 cafe_reg_write(cam, REG_TWSIC0, rval);
410 (void) cafe_reg_read(cam, REG_TWSIC1); /* force write */
411 rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR);
412 cafe_reg_write(cam, REG_TWSIC1, rval);
413 spin_unlock_irqrestore(&cam->dev_lock, flags);
414
415 wait_event_timeout(cam->smbus_wait,
416 cafe_smbus_read_done(cam), CAFE_SMBUS_TIMEOUT);
417 spin_lock_irqsave(&cam->dev_lock, flags);
418 rval = cafe_reg_read(cam, REG_TWSIC1);
419 spin_unlock_irqrestore(&cam->dev_lock, flags);
420
421 if (rval & TWSIC1_ERROR) {
422 cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command);
423 return -EIO;
424 }
425 if (! (rval & TWSIC1_RVALID)) {
426 cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr,
427 command);
428 return -EIO;
429 }
430 *value = rval & 0xff;
431 return 0;
432 }
433
434 /*
435 * Perform a transfer over SMBUS. This thing is called under
436 * the i2c bus lock, so we shouldn't race with ourselves...
437 */
438 static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr,
439 unsigned short flags, char rw, u8 command,
440 int size, union i2c_smbus_data *data)
441 {
442 struct v4l2_device *v4l2_dev = i2c_get_adapdata(adapter);
443 struct cafe_camera *cam = to_cam(v4l2_dev);
444 int ret = -EINVAL;
445
446 /*
447 * This interface would appear to only do byte data ops. OK
448 * it can do word too, but the cam chip has no use for that.
449 */
450 if (size != I2C_SMBUS_BYTE_DATA) {
451 cam_err(cam, "funky xfer size %d\n", size);
452 return -EINVAL;
453 }
454
455 if (rw == I2C_SMBUS_WRITE)
456 ret = cafe_smbus_write_data(cam, addr, command, data->byte);
457 else if (rw == I2C_SMBUS_READ)
458 ret = cafe_smbus_read_data(cam, addr, command, &data->byte);
459 return ret;
460 }
461
462
463 static void cafe_smbus_enable_irq(struct cafe_camera *cam)
464 {
465 unsigned long flags;
466
467 spin_lock_irqsave(&cam->dev_lock, flags);
468 cafe_reg_set_bit(cam, REG_IRQMASK, TWSIIRQS);
469 spin_unlock_irqrestore(&cam->dev_lock, flags);
470 }
471
472 static u32 cafe_smbus_func(struct i2c_adapter *adapter)
473 {
474 return I2C_FUNC_SMBUS_READ_BYTE_DATA |
475 I2C_FUNC_SMBUS_WRITE_BYTE_DATA;
476 }
477
478 static struct i2c_algorithm cafe_smbus_algo = {
479 .smbus_xfer = cafe_smbus_xfer,
480 .functionality = cafe_smbus_func
481 };
482
483 /* Somebody is on the bus */
484 static void cafe_ctlr_stop_dma(struct cafe_camera *cam);
485 static void cafe_ctlr_power_down(struct cafe_camera *cam);
486
487 static int cafe_smbus_setup(struct cafe_camera *cam)
488 {
489 struct i2c_adapter *adap = &cam->i2c_adapter;
490 int ret;
491
492 cafe_smbus_enable_irq(cam);
493 adap->id = I2C_HW_SMBUS_CAFE;
494 adap->owner = THIS_MODULE;
495 adap->algo = &cafe_smbus_algo;
496 strcpy(adap->name, "cafe_ccic");
497 adap->dev.parent = &cam->pdev->dev;
498 i2c_set_adapdata(adap, &cam->v4l2_dev);
499 ret = i2c_add_adapter(adap);
500 if (ret)
501 printk(KERN_ERR "Unable to register cafe i2c adapter\n");
502 return ret;
503 }
504
505 static void cafe_smbus_shutdown(struct cafe_camera *cam)
506 {
507 i2c_del_adapter(&cam->i2c_adapter);
508 }
509
510
511 /* ------------------------------------------------------------------- */
512 /*
513 * Deal with the controller.
514 */
515
516 /*
517 * Do everything we think we need to have the interface operating
518 * according to the desired format.
519 */
520 static void cafe_ctlr_dma(struct cafe_camera *cam)
521 {
522 /*
523 * Store the first two Y buffers (we aren't supporting
524 * planar formats for now, so no UV bufs). Then either
525 * set the third if it exists, or tell the controller
526 * to just use two.
527 */
528 cafe_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
529 cafe_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
530 if (cam->nbufs > 2) {
531 cafe_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
532 cafe_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
533 }
534 else
535 cafe_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
536 cafe_reg_write(cam, REG_UBAR, 0); /* 32 bits only for now */
537 }
538
539 static void cafe_ctlr_image(struct cafe_camera *cam)
540 {
541 int imgsz;
542 struct v4l2_pix_format *fmt = &cam->pix_format;
543
544 imgsz = ((fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK) |
545 (fmt->bytesperline & IMGSZ_H_MASK);
546 cafe_reg_write(cam, REG_IMGSIZE, imgsz);
547 cafe_reg_write(cam, REG_IMGOFFSET, 0);
548 /* YPITCH just drops the last two bits */
549 cafe_reg_write_mask(cam, REG_IMGPITCH, fmt->bytesperline,
550 IMGP_YP_MASK);
551 /*
552 * Tell the controller about the image format we are using.
553 */
554 switch (cam->pix_format.pixelformat) {
555 case V4L2_PIX_FMT_YUYV:
556 cafe_reg_write_mask(cam, REG_CTRL0,
557 C0_DF_YUV|C0_YUV_PACKED|C0_YUVE_YUYV,
558 C0_DF_MASK);
559 break;
560
561 case V4L2_PIX_FMT_RGB444:
562 cafe_reg_write_mask(cam, REG_CTRL0,
563 C0_DF_RGB|C0_RGBF_444|C0_RGB4_XRGB,
564 C0_DF_MASK);
565 /* Alpha value? */
566 break;
567
568 case V4L2_PIX_FMT_RGB565:
569 cafe_reg_write_mask(cam, REG_CTRL0,
570 C0_DF_RGB|C0_RGBF_565|C0_RGB5_BGGR,
571 C0_DF_MASK);
572 break;
573
574 default:
575 cam_err(cam, "Unknown format %x\n", cam->pix_format.pixelformat);
576 break;
577 }
578 /*
579 * Make sure it knows we want to use hsync/vsync.
580 */
581 cafe_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC,
582 C0_SIFM_MASK);
583 }
584
585
586 /*
587 * Configure the controller for operation; caller holds the
588 * device mutex.
589 */
590 static int cafe_ctlr_configure(struct cafe_camera *cam)
591 {
592 unsigned long flags;
593
594 spin_lock_irqsave(&cam->dev_lock, flags);
595 cafe_ctlr_dma(cam);
596 cafe_ctlr_image(cam);
597 cafe_set_config_needed(cam, 0);
598 spin_unlock_irqrestore(&cam->dev_lock, flags);
599 return 0;
600 }
601
602 static void cafe_ctlr_irq_enable(struct cafe_camera *cam)
603 {
604 /*
605 * Clear any pending interrupts, since we do not
606 * expect to have I/O active prior to enabling.
607 */
608 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
609 cafe_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
610 }
611
612 static void cafe_ctlr_irq_disable(struct cafe_camera *cam)
613 {
614 cafe_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
615 }
616
617 /*
618 * Make the controller start grabbing images. Everything must
619 * be set up before doing this.
620 */
621 static void cafe_ctlr_start(struct cafe_camera *cam)
622 {
623 /* set_bit performs a read, so no other barrier should be
624 needed here */
625 cafe_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
626 }
627
628 static void cafe_ctlr_stop(struct cafe_camera *cam)
629 {
630 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
631 }
632
633 static void cafe_ctlr_init(struct cafe_camera *cam)
634 {
635 unsigned long flags;
636
637 spin_lock_irqsave(&cam->dev_lock, flags);
638 /*
639 * Added magic to bring up the hardware on the B-Test board
640 */
641 cafe_reg_write(cam, 0x3038, 0x8);
642 cafe_reg_write(cam, 0x315c, 0x80008);
643 /*
644 * Go through the dance needed to wake the device up.
645 * Note that these registers are global and shared
646 * with the NAND and SD devices. Interaction between the
647 * three still needs to be examined.
648 */
649 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */
650 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRC);
651 cafe_reg_write(cam, REG_GL_CSR, GCSR_SRC|GCSR_MRS);
652 /*
653 * Here we must wait a bit for the controller to come around.
654 */
655 spin_unlock_irqrestore(&cam->dev_lock, flags);
656 msleep(5);
657 spin_lock_irqsave(&cam->dev_lock, flags);
658
659 cafe_reg_write(cam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC);
660 cafe_reg_set_bit(cam, REG_GL_IMASK, GIMSK_CCIC_EN);
661 /*
662 * Make sure it's not powered down.
663 */
664 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
665 /*
666 * Turn off the enable bit. It sure should be off anyway,
667 * but it's good to be sure.
668 */
669 cafe_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
670 /*
671 * Mask all interrupts.
672 */
673 cafe_reg_write(cam, REG_IRQMASK, 0);
674 /*
675 * Clock the sensor appropriately. Controller clock should
676 * be 48MHz, sensor "typical" value is half that.
677 */
678 cafe_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
679 spin_unlock_irqrestore(&cam->dev_lock, flags);
680 }
681
682
683 /*
684 * Stop the controller, and don't return until we're really sure that no
685 * further DMA is going on.
686 */
687 static void cafe_ctlr_stop_dma(struct cafe_camera *cam)
688 {
689 unsigned long flags;
690
691 /*
692 * Theory: stop the camera controller (whether it is operating
693 * or not). Delay briefly just in case we race with the SOF
694 * interrupt, then wait until no DMA is active.
695 */
696 spin_lock_irqsave(&cam->dev_lock, flags);
697 cafe_ctlr_stop(cam);
698 spin_unlock_irqrestore(&cam->dev_lock, flags);
699 mdelay(1);
700 wait_event_timeout(cam->iowait,
701 !test_bit(CF_DMA_ACTIVE, &cam->flags), HZ);
702 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
703 cam_err(cam, "Timeout waiting for DMA to end\n");
704 /* This would be bad news - what now? */
705 spin_lock_irqsave(&cam->dev_lock, flags);
706 cam->state = S_IDLE;
707 cafe_ctlr_irq_disable(cam);
708 spin_unlock_irqrestore(&cam->dev_lock, flags);
709 }
710
711 /*
712 * Power up and down.
713 */
714 static void cafe_ctlr_power_up(struct cafe_camera *cam)
715 {
716 unsigned long flags;
717
718 spin_lock_irqsave(&cam->dev_lock, flags);
719 cafe_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
720 /*
721 * Part one of the sensor dance: turn the global
722 * GPIO signal on.
723 */
724 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
725 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL);
726 /*
727 * Put the sensor into operational mode (assumes OLPC-style
728 * wiring). Control 0 is reset - set to 1 to operate.
729 * Control 1 is power down, set to 0 to operate.
730 */
731 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */
732 /* mdelay(1); */ /* Marvell says 1ms will do it */
733 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0);
734 /* mdelay(1); */ /* Enough? */
735 spin_unlock_irqrestore(&cam->dev_lock, flags);
736 msleep(5); /* Just to be sure */
737 }
738
739 static void cafe_ctlr_power_down(struct cafe_camera *cam)
740 {
741 unsigned long flags;
742
743 spin_lock_irqsave(&cam->dev_lock, flags);
744 cafe_reg_write(cam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1);
745 cafe_reg_write(cam, REG_GL_FCR, GFCR_GPIO_ON);
746 cafe_reg_write(cam, REG_GL_GPIOR, GGPIO_OUT);
747 cafe_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
748 spin_unlock_irqrestore(&cam->dev_lock, flags);
749 }
750
751 /* -------------------------------------------------------------------- */
752 /*
753 * Communications with the sensor.
754 */
755
756 static int __cafe_cam_reset(struct cafe_camera *cam)
757 {
758 return sensor_call(cam, core, reset, 0);
759 }
760
761 /*
762 * We have found the sensor on the i2c. Let's try to have a
763 * conversation.
764 */
765 static int cafe_cam_init(struct cafe_camera *cam)
766 {
767 struct v4l2_dbg_chip_ident chip;
768 int ret;
769
770 mutex_lock(&cam->s_mutex);
771 if (cam->state != S_NOTREADY)
772 cam_warn(cam, "Cam init with device in funky state %d",
773 cam->state);
774 ret = __cafe_cam_reset(cam);
775 if (ret)
776 goto out;
777 chip.match.type = V4L2_CHIP_MATCH_I2C_ADDR;
778 chip.match.addr = cam->sensor_addr;
779 ret = sensor_call(cam, core, g_chip_ident, &chip);
780 if (ret)
781 goto out;
782 cam->sensor_type = chip.ident;
783 if (cam->sensor_type != V4L2_IDENT_OV7670) {
784 cam_err(cam, "Unsupported sensor type 0x%x", cam->sensor_type);
785 ret = -EINVAL;
786 goto out;
787 }
788 /* Get/set parameters? */
789 ret = 0;
790 cam->state = S_IDLE;
791 out:
792 cafe_ctlr_power_down(cam);
793 mutex_unlock(&cam->s_mutex);
794 return ret;
795 }
796
797 /*
798 * Configure the sensor to match the parameters we have. Caller should
799 * hold s_mutex
800 */
801 static int cafe_cam_set_flip(struct cafe_camera *cam)
802 {
803 struct v4l2_control ctrl;
804
805 memset(&ctrl, 0, sizeof(ctrl));
806 ctrl.id = V4L2_CID_VFLIP;
807 ctrl.value = flip;
808 return sensor_call(cam, core, s_ctrl, &ctrl);
809 }
810
811
812 static int cafe_cam_configure(struct cafe_camera *cam)
813 {
814 struct v4l2_format fmt;
815 int ret;
816
817 if (cam->state != S_IDLE)
818 return -EINVAL;
819 fmt.fmt.pix = cam->pix_format;
820 ret = sensor_call(cam, core, init, 0);
821 if (ret == 0)
822 ret = sensor_call(cam, video, s_fmt, &fmt);
823 /*
824 * OV7670 does weird things if flip is set *before* format...
825 */
826 ret += cafe_cam_set_flip(cam);
827 return ret;
828 }
829
830 /* -------------------------------------------------------------------- */
831 /*
832 * DMA buffer management. These functions need s_mutex held.
833 */
834
835 /* FIXME: this is inefficient as hell, since dma_alloc_coherent just
836 * does a get_free_pages() call, and we waste a good chunk of an orderN
837 * allocation. Should try to allocate the whole set in one chunk.
838 */
839 static int cafe_alloc_dma_bufs(struct cafe_camera *cam, int loadtime)
840 {
841 int i;
842
843 cafe_set_config_needed(cam, 1);
844 if (loadtime)
845 cam->dma_buf_size = dma_buf_size;
846 else
847 cam->dma_buf_size = cam->pix_format.sizeimage;
848 if (n_dma_bufs > 3)
849 n_dma_bufs = 3;
850
851 cam->nbufs = 0;
852 for (i = 0; i < n_dma_bufs; i++) {
853 cam->dma_bufs[i] = dma_alloc_coherent(&cam->pdev->dev,
854 cam->dma_buf_size, cam->dma_handles + i,
855 GFP_KERNEL);
856 if (cam->dma_bufs[i] == NULL) {
857 cam_warn(cam, "Failed to allocate DMA buffer\n");
858 break;
859 }
860 /* For debug, remove eventually */
861 memset(cam->dma_bufs[i], 0xcc, cam->dma_buf_size);
862 (cam->nbufs)++;
863 }
864
865 switch (cam->nbufs) {
866 case 1:
867 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
868 cam->dma_bufs[0], cam->dma_handles[0]);
869 cam->nbufs = 0;
870 case 0:
871 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
872 return -ENOMEM;
873
874 case 2:
875 if (n_dma_bufs > 2)
876 cam_warn(cam, "Will limp along with only 2 buffers\n");
877 break;
878 }
879 return 0;
880 }
881
882 static void cafe_free_dma_bufs(struct cafe_camera *cam)
883 {
884 int i;
885
886 for (i = 0; i < cam->nbufs; i++) {
887 dma_free_coherent(&cam->pdev->dev, cam->dma_buf_size,
888 cam->dma_bufs[i], cam->dma_handles[i]);
889 cam->dma_bufs[i] = NULL;
890 }
891 cam->nbufs = 0;
892 }
893
894
895
896
897
898 /* ----------------------------------------------------------------------- */
899 /*
900 * Here starts the V4L2 interface code.
901 */
902
903 /*
904 * Read an image from the device.
905 */
906 static ssize_t cafe_deliver_buffer(struct cafe_camera *cam,
907 char __user *buffer, size_t len, loff_t *pos)
908 {
909 int bufno;
910 unsigned long flags;
911
912 spin_lock_irqsave(&cam->dev_lock, flags);
913 if (cam->next_buf < 0) {
914 cam_err(cam, "deliver_buffer: No next buffer\n");
915 spin_unlock_irqrestore(&cam->dev_lock, flags);
916 return -EIO;
917 }
918 bufno = cam->next_buf;
919 clear_bit(bufno, &cam->flags);
920 if (++(cam->next_buf) >= cam->nbufs)
921 cam->next_buf = 0;
922 if (! test_bit(cam->next_buf, &cam->flags))
923 cam->next_buf = -1;
924 cam->specframes = 0;
925 spin_unlock_irqrestore(&cam->dev_lock, flags);
926
927 if (len > cam->pix_format.sizeimage)
928 len = cam->pix_format.sizeimage;
929 if (copy_to_user(buffer, cam->dma_bufs[bufno], len))
930 return -EFAULT;
931 (*pos) += len;
932 return len;
933 }
934
935 /*
936 * Get everything ready, and start grabbing frames.
937 */
938 static int cafe_read_setup(struct cafe_camera *cam, enum cafe_state state)
939 {
940 int ret;
941 unsigned long flags;
942
943 /*
944 * Configuration. If we still don't have DMA buffers,
945 * make one last, desperate attempt.
946 */
947 if (cam->nbufs == 0)
948 if (cafe_alloc_dma_bufs(cam, 0))
949 return -ENOMEM;
950
951 if (cafe_needs_config(cam)) {
952 cafe_cam_configure(cam);
953 ret = cafe_ctlr_configure(cam);
954 if (ret)
955 return ret;
956 }
957
958 /*
959 * Turn it loose.
960 */
961 spin_lock_irqsave(&cam->dev_lock, flags);
962 cafe_reset_buffers(cam);
963 cafe_ctlr_irq_enable(cam);
964 cam->state = state;
965 cafe_ctlr_start(cam);
966 spin_unlock_irqrestore(&cam->dev_lock, flags);
967 return 0;
968 }
969
970
971 static ssize_t cafe_v4l_read(struct file *filp,
972 char __user *buffer, size_t len, loff_t *pos)
973 {
974 struct cafe_camera *cam = filp->private_data;
975 int ret = 0;
976
977 /*
978 * Perhaps we're in speculative read mode and already
979 * have data?
980 */
981 mutex_lock(&cam->s_mutex);
982 if (cam->state == S_SPECREAD) {
983 if (cam->next_buf >= 0) {
984 ret = cafe_deliver_buffer(cam, buffer, len, pos);
985 if (ret != 0)
986 goto out_unlock;
987 }
988 } else if (cam->state == S_FLAKED || cam->state == S_NOTREADY) {
989 ret = -EIO;
990 goto out_unlock;
991 } else if (cam->state != S_IDLE) {
992 ret = -EBUSY;
993 goto out_unlock;
994 }
995
996 /*
997 * v4l2: multiple processes can open the device, but only
998 * one gets to grab data from it.
999 */
1000 if (cam->owner && cam->owner != filp) {
1001 ret = -EBUSY;
1002 goto out_unlock;
1003 }
1004 cam->owner = filp;
1005
1006 /*
1007 * Do setup if need be.
1008 */
1009 if (cam->state != S_SPECREAD) {
1010 ret = cafe_read_setup(cam, S_SINGLEREAD);
1011 if (ret)
1012 goto out_unlock;
1013 }
1014 /*
1015 * Wait for something to happen. This should probably
1016 * be interruptible (FIXME).
1017 */
1018 wait_event_timeout(cam->iowait, cam->next_buf >= 0, HZ);
1019 if (cam->next_buf < 0) {
1020 cam_err(cam, "read() operation timed out\n");
1021 cafe_ctlr_stop_dma(cam);
1022 ret = -EIO;
1023 goto out_unlock;
1024 }
1025 /*
1026 * Give them their data and we should be done.
1027 */
1028 ret = cafe_deliver_buffer(cam, buffer, len, pos);
1029
1030 out_unlock:
1031 mutex_unlock(&cam->s_mutex);
1032 return ret;
1033 }
1034
1035
1036
1037
1038
1039
1040
1041
1042 /*
1043 * Streaming I/O support.
1044 */
1045
1046
1047
1048 static int cafe_vidioc_streamon(struct file *filp, void *priv,
1049 enum v4l2_buf_type type)
1050 {
1051 struct cafe_camera *cam = filp->private_data;
1052 int ret = -EINVAL;
1053
1054 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1055 goto out;
1056 mutex_lock(&cam->s_mutex);
1057 if (cam->state != S_IDLE || cam->n_sbufs == 0)
1058 goto out_unlock;
1059
1060 cam->sequence = 0;
1061 ret = cafe_read_setup(cam, S_STREAMING);
1062
1063 out_unlock:
1064 mutex_unlock(&cam->s_mutex);
1065 out:
1066 return ret;
1067 }
1068
1069
1070 static int cafe_vidioc_streamoff(struct file *filp, void *priv,
1071 enum v4l2_buf_type type)
1072 {
1073 struct cafe_camera *cam = filp->private_data;
1074 int ret = -EINVAL;
1075
1076 if (type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1077 goto out;
1078 mutex_lock(&cam->s_mutex);
1079 if (cam->state != S_STREAMING)
1080 goto out_unlock;
1081
1082 cafe_ctlr_stop_dma(cam);
1083 ret = 0;
1084
1085 out_unlock:
1086 mutex_unlock(&cam->s_mutex);
1087 out:
1088 return ret;
1089 }
1090
1091
1092
1093 static int cafe_setup_siobuf(struct cafe_camera *cam, int index)
1094 {
1095 struct cafe_sio_buffer *buf = cam->sb_bufs + index;
1096
1097 INIT_LIST_HEAD(&buf->list);
1098 buf->v4lbuf.length = PAGE_ALIGN(cam->pix_format.sizeimage);
1099 buf->buffer = vmalloc_user(buf->v4lbuf.length);
1100 if (buf->buffer == NULL)
1101 return -ENOMEM;
1102 buf->mapcount = 0;
1103 buf->cam = cam;
1104
1105 buf->v4lbuf.index = index;
1106 buf->v4lbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1107 buf->v4lbuf.field = V4L2_FIELD_NONE;
1108 buf->v4lbuf.memory = V4L2_MEMORY_MMAP;
1109 /*
1110 * Offset: must be 32-bit even on a 64-bit system. videobuf-dma-sg
1111 * just uses the length times the index, but the spec warns
1112 * against doing just that - vma merging problems. So we
1113 * leave a gap between each pair of buffers.
1114 */
1115 buf->v4lbuf.m.offset = 2*index*buf->v4lbuf.length;
1116 return 0;
1117 }
1118
1119 static int cafe_free_sio_buffers(struct cafe_camera *cam)
1120 {
1121 int i;
1122
1123 /*
1124 * If any buffers are mapped, we cannot free them at all.
1125 */
1126 for (i = 0; i < cam->n_sbufs; i++)
1127 if (cam->sb_bufs[i].mapcount > 0)
1128 return -EBUSY;
1129 /*
1130 * OK, let's do it.
1131 */
1132 for (i = 0; i < cam->n_sbufs; i++)
1133 vfree(cam->sb_bufs[i].buffer);
1134 cam->n_sbufs = 0;
1135 kfree(cam->sb_bufs);
1136 cam->sb_bufs = NULL;
1137 INIT_LIST_HEAD(&cam->sb_avail);
1138 INIT_LIST_HEAD(&cam->sb_full);
1139 return 0;
1140 }
1141
1142
1143
1144 static int cafe_vidioc_reqbufs(struct file *filp, void *priv,
1145 struct v4l2_requestbuffers *req)
1146 {
1147 struct cafe_camera *cam = filp->private_data;
1148 int ret = 0; /* Silence warning */
1149
1150 /*
1151 * Make sure it's something we can do. User pointers could be
1152 * implemented without great pain, but that's not been done yet.
1153 */
1154 if (req->memory != V4L2_MEMORY_MMAP)
1155 return -EINVAL;
1156 /*
1157 * If they ask for zero buffers, they really want us to stop streaming
1158 * (if it's happening) and free everything. Should we check owner?
1159 */
1160 mutex_lock(&cam->s_mutex);
1161 if (req->count == 0) {
1162 if (cam->state == S_STREAMING)
1163 cafe_ctlr_stop_dma(cam);
1164 ret = cafe_free_sio_buffers (cam);
1165 goto out;
1166 }
1167 /*
1168 * Device needs to be idle and working. We *could* try to do the
1169 * right thing in S_SPECREAD by shutting things down, but it
1170 * probably doesn't matter.
1171 */
1172 if (cam->state != S_IDLE || (cam->owner && cam->owner != filp)) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176 cam->owner = filp;
1177
1178 if (req->count < min_buffers)
1179 req->count = min_buffers;
1180 else if (req->count > max_buffers)
1181 req->count = max_buffers;
1182 if (cam->n_sbufs > 0) {
1183 ret = cafe_free_sio_buffers(cam);
1184 if (ret)
1185 goto out;
1186 }
1187
1188 cam->sb_bufs = kzalloc(req->count*sizeof(struct cafe_sio_buffer),
1189 GFP_KERNEL);
1190 if (cam->sb_bufs == NULL) {
1191 ret = -ENOMEM;
1192 goto out;
1193 }
1194 for (cam->n_sbufs = 0; cam->n_sbufs < req->count; (cam->n_sbufs++)) {
1195 ret = cafe_setup_siobuf(cam, cam->n_sbufs);
1196 if (ret)
1197 break;
1198 }
1199
1200 if (cam->n_sbufs == 0) /* no luck at all - ret already set */
1201 kfree(cam->sb_bufs);
1202 req->count = cam->n_sbufs; /* In case of partial success */
1203
1204 out:
1205 mutex_unlock(&cam->s_mutex);
1206 return ret;
1207 }
1208
1209
1210 static int cafe_vidioc_querybuf(struct file *filp, void *priv,
1211 struct v4l2_buffer *buf)
1212 {
1213 struct cafe_camera *cam = filp->private_data;
1214 int ret = -EINVAL;
1215
1216 mutex_lock(&cam->s_mutex);
1217 if (buf->index >= cam->n_sbufs)
1218 goto out;
1219 *buf = cam->sb_bufs[buf->index].v4lbuf;
1220 ret = 0;
1221 out:
1222 mutex_unlock(&cam->s_mutex);
1223 return ret;
1224 }
1225
1226 static int cafe_vidioc_qbuf(struct file *filp, void *priv,
1227 struct v4l2_buffer *buf)
1228 {
1229 struct cafe_camera *cam = filp->private_data;
1230 struct cafe_sio_buffer *sbuf;
1231 int ret = -EINVAL;
1232 unsigned long flags;
1233
1234 mutex_lock(&cam->s_mutex);
1235 if (buf->index >= cam->n_sbufs)
1236 goto out;
1237 sbuf = cam->sb_bufs + buf->index;
1238 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_QUEUED) {
1239 ret = 0; /* Already queued?? */
1240 goto out;
1241 }
1242 if (sbuf->v4lbuf.flags & V4L2_BUF_FLAG_DONE) {
1243 /* Spec doesn't say anything, seems appropriate tho */
1244 ret = -EBUSY;
1245 goto out;
1246 }
1247 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_QUEUED;
1248 spin_lock_irqsave(&cam->dev_lock, flags);
1249 list_add(&sbuf->list, &cam->sb_avail);
1250 spin_unlock_irqrestore(&cam->dev_lock, flags);
1251 ret = 0;
1252 out:
1253 mutex_unlock(&cam->s_mutex);
1254 return ret;
1255 }
1256
1257 static int cafe_vidioc_dqbuf(struct file *filp, void *priv,
1258 struct v4l2_buffer *buf)
1259 {
1260 struct cafe_camera *cam = filp->private_data;
1261 struct cafe_sio_buffer *sbuf;
1262 int ret = -EINVAL;
1263 unsigned long flags;
1264
1265 mutex_lock(&cam->s_mutex);
1266 if (cam->state != S_STREAMING)
1267 goto out_unlock;
1268 if (list_empty(&cam->sb_full) && filp->f_flags & O_NONBLOCK) {
1269 ret = -EAGAIN;
1270 goto out_unlock;
1271 }
1272
1273 while (list_empty(&cam->sb_full) && cam->state == S_STREAMING) {
1274 mutex_unlock(&cam->s_mutex);
1275 if (wait_event_interruptible(cam->iowait,
1276 !list_empty(&cam->sb_full))) {
1277 ret = -ERESTARTSYS;
1278 goto out;
1279 }
1280 mutex_lock(&cam->s_mutex);
1281 }
1282
1283 if (cam->state != S_STREAMING)
1284 ret = -EINTR;
1285 else {
1286 spin_lock_irqsave(&cam->dev_lock, flags);
1287 /* Should probably recheck !list_empty() here */
1288 sbuf = list_entry(cam->sb_full.next,
1289 struct cafe_sio_buffer, list);
1290 list_del_init(&sbuf->list);
1291 spin_unlock_irqrestore(&cam->dev_lock, flags);
1292 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_DONE;
1293 *buf = sbuf->v4lbuf;
1294 ret = 0;
1295 }
1296
1297 out_unlock:
1298 mutex_unlock(&cam->s_mutex);
1299 out:
1300 return ret;
1301 }
1302
1303
1304
1305 static void cafe_v4l_vm_open(struct vm_area_struct *vma)
1306 {
1307 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1308 /*
1309 * Locking: done under mmap_sem, so we don't need to
1310 * go back to the camera lock here.
1311 */
1312 sbuf->mapcount++;
1313 }
1314
1315
1316 static void cafe_v4l_vm_close(struct vm_area_struct *vma)
1317 {
1318 struct cafe_sio_buffer *sbuf = vma->vm_private_data;
1319
1320 mutex_lock(&sbuf->cam->s_mutex);
1321 sbuf->mapcount--;
1322 /* Docs say we should stop I/O too... */
1323 if (sbuf->mapcount == 0)
1324 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_MAPPED;
1325 mutex_unlock(&sbuf->cam->s_mutex);
1326 }
1327
1328 static struct vm_operations_struct cafe_v4l_vm_ops = {
1329 .open = cafe_v4l_vm_open,
1330 .close = cafe_v4l_vm_close
1331 };
1332
1333
1334 static int cafe_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1335 {
1336 struct cafe_camera *cam = filp->private_data;
1337 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1338 int ret = -EINVAL;
1339 int i;
1340 struct cafe_sio_buffer *sbuf = NULL;
1341
1342 if (! (vma->vm_flags & VM_WRITE) || ! (vma->vm_flags & VM_SHARED))
1343 return -EINVAL;
1344 /*
1345 * Find the buffer they are looking for.
1346 */
1347 mutex_lock(&cam->s_mutex);
1348 for (i = 0; i < cam->n_sbufs; i++)
1349 if (cam->sb_bufs[i].v4lbuf.m.offset == offset) {
1350 sbuf = cam->sb_bufs + i;
1351 break;
1352 }
1353 if (sbuf == NULL)
1354 goto out;
1355
1356 ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
1357 if (ret)
1358 goto out;
1359 vma->vm_flags |= VM_DONTEXPAND;
1360 vma->vm_private_data = sbuf;
1361 vma->vm_ops = &cafe_v4l_vm_ops;
1362 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_MAPPED;
1363 cafe_v4l_vm_open(vma);
1364 ret = 0;
1365 out:
1366 mutex_unlock(&cam->s_mutex);
1367 return ret;
1368 }
1369
1370
1371
1372 static int cafe_v4l_open(struct file *filp)
1373 {
1374 struct cafe_camera *cam = video_drvdata(filp);
1375
1376 filp->private_data = cam;
1377
1378 mutex_lock(&cam->s_mutex);
1379 if (cam->users == 0) {
1380 cafe_ctlr_power_up(cam);
1381 __cafe_cam_reset(cam);
1382 cafe_set_config_needed(cam, 1);
1383 /* FIXME make sure this is complete */
1384 }
1385 (cam->users)++;
1386 mutex_unlock(&cam->s_mutex);
1387 return 0;
1388 }
1389
1390
1391 static int cafe_v4l_release(struct file *filp)
1392 {
1393 struct cafe_camera *cam = filp->private_data;
1394
1395 mutex_lock(&cam->s_mutex);
1396 (cam->users)--;
1397 if (filp == cam->owner) {
1398 cafe_ctlr_stop_dma(cam);
1399 cafe_free_sio_buffers(cam);
1400 cam->owner = NULL;
1401 }
1402 if (cam->users == 0) {
1403 cafe_ctlr_power_down(cam);
1404 if (alloc_bufs_at_read)
1405 cafe_free_dma_bufs(cam);
1406 }
1407 mutex_unlock(&cam->s_mutex);
1408 return 0;
1409 }
1410
1411
1412
1413 static unsigned int cafe_v4l_poll(struct file *filp,
1414 struct poll_table_struct *pt)
1415 {
1416 struct cafe_camera *cam = filp->private_data;
1417
1418 poll_wait(filp, &cam->iowait, pt);
1419 if (cam->next_buf >= 0)
1420 return POLLIN | POLLRDNORM;
1421 return 0;
1422 }
1423
1424
1425
1426 static int cafe_vidioc_queryctrl(struct file *filp, void *priv,
1427 struct v4l2_queryctrl *qc)
1428 {
1429 struct cafe_camera *cam = priv;
1430 int ret;
1431
1432 mutex_lock(&cam->s_mutex);
1433 ret = sensor_call(cam, core, queryctrl, qc);
1434 mutex_unlock(&cam->s_mutex);
1435 return ret;
1436 }
1437
1438
1439 static int cafe_vidioc_g_ctrl(struct file *filp, void *priv,
1440 struct v4l2_control *ctrl)
1441 {
1442 struct cafe_camera *cam = priv;
1443 int ret;
1444
1445 mutex_lock(&cam->s_mutex);
1446 ret = sensor_call(cam, core, g_ctrl, ctrl);
1447 mutex_unlock(&cam->s_mutex);
1448 return ret;
1449 }
1450
1451
1452 static int cafe_vidioc_s_ctrl(struct file *filp, void *priv,
1453 struct v4l2_control *ctrl)
1454 {
1455 struct cafe_camera *cam = priv;
1456 int ret;
1457
1458 mutex_lock(&cam->s_mutex);
1459 ret = sensor_call(cam, core, s_ctrl, ctrl);
1460 mutex_unlock(&cam->s_mutex);
1461 return ret;
1462 }
1463
1464
1465
1466
1467
1468 static int cafe_vidioc_querycap(struct file *file, void *priv,
1469 struct v4l2_capability *cap)
1470 {
1471 strcpy(cap->driver, "cafe_ccic");
1472 strcpy(cap->card, "cafe_ccic");
1473 cap->version = CAFE_VERSION;
1474 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1475 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1476 return 0;
1477 }
1478
1479
1480 /*
1481 * The default format we use until somebody says otherwise.
1482 */
1483 static struct v4l2_pix_format cafe_def_pix_format = {
1484 .width = VGA_WIDTH,
1485 .height = VGA_HEIGHT,
1486 .pixelformat = V4L2_PIX_FMT_YUYV,
1487 .field = V4L2_FIELD_NONE,
1488 .bytesperline = VGA_WIDTH*2,
1489 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
1490 };
1491
1492 static int cafe_vidioc_enum_fmt_vid_cap(struct file *filp,
1493 void *priv, struct v4l2_fmtdesc *fmt)
1494 {
1495 struct cafe_camera *cam = priv;
1496 int ret;
1497
1498 mutex_lock(&cam->s_mutex);
1499 ret = sensor_call(cam, video, enum_fmt, fmt);
1500 mutex_unlock(&cam->s_mutex);
1501 return ret;
1502 }
1503
1504
1505 static int cafe_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1506 struct v4l2_format *fmt)
1507 {
1508 struct cafe_camera *cam = priv;
1509 int ret;
1510
1511 mutex_lock(&cam->s_mutex);
1512 ret = sensor_call(cam, video, try_fmt, fmt);
1513 mutex_unlock(&cam->s_mutex);
1514 return ret;
1515 }
1516
1517 static int cafe_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1518 struct v4l2_format *fmt)
1519 {
1520 struct cafe_camera *cam = priv;
1521 int ret;
1522
1523 /*
1524 * Can't do anything if the device is not idle
1525 * Also can't if there are streaming buffers in place.
1526 */
1527 if (cam->state != S_IDLE || cam->n_sbufs > 0)
1528 return -EBUSY;
1529 /*
1530 * See if the formatting works in principle.
1531 */
1532 ret = cafe_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1533 if (ret)
1534 return ret;
1535 /*
1536 * Now we start to change things for real, so let's do it
1537 * under lock.
1538 */
1539 mutex_lock(&cam->s_mutex);
1540 cam->pix_format = fmt->fmt.pix;
1541 /*
1542 * Make sure we have appropriate DMA buffers.
1543 */
1544 ret = -ENOMEM;
1545 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
1546 cafe_free_dma_bufs(cam);
1547 if (cam->nbufs == 0) {
1548 if (cafe_alloc_dma_bufs(cam, 0))
1549 goto out;
1550 }
1551 /*
1552 * It looks like this might work, so let's program the sensor.
1553 */
1554 ret = cafe_cam_configure(cam);
1555 if (! ret)
1556 ret = cafe_ctlr_configure(cam);
1557 out:
1558 mutex_unlock(&cam->s_mutex);
1559 return ret;
1560 }
1561
1562 /*
1563 * Return our stored notion of how the camera is/should be configured.
1564 * The V4l2 spec wants us to be smarter, and actually get this from
1565 * the camera (and not mess with it at open time). Someday.
1566 */
1567 static int cafe_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1568 struct v4l2_format *f)
1569 {
1570 struct cafe_camera *cam = priv;
1571
1572 f->fmt.pix = cam->pix_format;
1573 return 0;
1574 }
1575
1576 /*
1577 * We only have one input - the sensor - so minimize the nonsense here.
1578 */
1579 static int cafe_vidioc_enum_input(struct file *filp, void *priv,
1580 struct v4l2_input *input)
1581 {
1582 if (input->index != 0)
1583 return -EINVAL;
1584
1585 input->type = V4L2_INPUT_TYPE_CAMERA;
1586 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1587 strcpy(input->name, "Camera");
1588 return 0;
1589 }
1590
1591 static int cafe_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1592 {
1593 *i = 0;
1594 return 0;
1595 }
1596
1597 static int cafe_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1598 {
1599 if (i != 0)
1600 return -EINVAL;
1601 return 0;
1602 }
1603
1604 /* from vivi.c */
1605 static int cafe_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id *a)
1606 {
1607 return 0;
1608 }
1609
1610 /*
1611 * G/S_PARM. Most of this is done by the sensor, but we are
1612 * the level which controls the number of read buffers.
1613 */
1614 static int cafe_vidioc_g_parm(struct file *filp, void *priv,
1615 struct v4l2_streamparm *parms)
1616 {
1617 struct cafe_camera *cam = priv;
1618 int ret;
1619
1620 mutex_lock(&cam->s_mutex);
1621 ret = sensor_call(cam, video, g_parm, parms);
1622 mutex_unlock(&cam->s_mutex);
1623 parms->parm.capture.readbuffers = n_dma_bufs;
1624 return ret;
1625 }
1626
1627 static int cafe_vidioc_s_parm(struct file *filp, void *priv,
1628 struct v4l2_streamparm *parms)
1629 {
1630 struct cafe_camera *cam = priv;
1631 int ret;
1632
1633 mutex_lock(&cam->s_mutex);
1634 ret = sensor_call(cam, video, s_parm, parms);
1635 mutex_unlock(&cam->s_mutex);
1636 parms->parm.capture.readbuffers = n_dma_bufs;
1637 return ret;
1638 }
1639
1640 static int cafe_vidioc_g_chip_ident(struct file *file, void *priv,
1641 struct v4l2_dbg_chip_ident *chip)
1642 {
1643 struct cafe_camera *cam = priv;
1644
1645 chip->ident = V4L2_IDENT_NONE;
1646 chip->revision = 0;
1647 if (v4l2_chip_match_host(&chip->match)) {
1648 chip->ident = V4L2_IDENT_CAFE;
1649 return 0;
1650 }
1651 return sensor_call(cam, core, g_chip_ident, chip);
1652 }
1653
1654 #ifdef CONFIG_VIDEO_ADV_DEBUG
1655 static int cafe_vidioc_g_register(struct file *file, void *priv,
1656 struct v4l2_dbg_register *reg)
1657 {
1658 struct cafe_camera *cam = priv;
1659
1660 if (v4l2_chip_match_host(&reg->match)) {
1661 reg->val = cafe_reg_read(cam, reg->reg);
1662 reg->size = 4;
1663 return 0;
1664 }
1665 return sensor_call(cam, core, g_register, reg);
1666 }
1667
1668 static int cafe_vidioc_s_register(struct file *file, void *priv,
1669 struct v4l2_dbg_register *reg)
1670 {
1671 struct cafe_camera *cam = priv;
1672
1673 if (v4l2_chip_match_host(&reg->match)) {
1674 cafe_reg_write(cam, reg->reg, reg->val);
1675 return 0;
1676 }
1677 return sensor_call(cam, core, s_register, reg);
1678 }
1679 #endif
1680
1681 /*
1682 * This template device holds all of those v4l2 methods; we
1683 * clone it for specific real devices.
1684 */
1685
1686 static const struct v4l2_file_operations cafe_v4l_fops = {
1687 .owner = THIS_MODULE,
1688 .open = cafe_v4l_open,
1689 .release = cafe_v4l_release,
1690 .read = cafe_v4l_read,
1691 .poll = cafe_v4l_poll,
1692 .mmap = cafe_v4l_mmap,
1693 .ioctl = video_ioctl2,
1694 };
1695
1696 static const struct v4l2_ioctl_ops cafe_v4l_ioctl_ops = {
1697 .vidioc_querycap = cafe_vidioc_querycap,
1698 .vidioc_enum_fmt_vid_cap = cafe_vidioc_enum_fmt_vid_cap,
1699 .vidioc_try_fmt_vid_cap = cafe_vidioc_try_fmt_vid_cap,
1700 .vidioc_s_fmt_vid_cap = cafe_vidioc_s_fmt_vid_cap,
1701 .vidioc_g_fmt_vid_cap = cafe_vidioc_g_fmt_vid_cap,
1702 .vidioc_enum_input = cafe_vidioc_enum_input,
1703 .vidioc_g_input = cafe_vidioc_g_input,
1704 .vidioc_s_input = cafe_vidioc_s_input,
1705 .vidioc_s_std = cafe_vidioc_s_std,
1706 .vidioc_reqbufs = cafe_vidioc_reqbufs,
1707 .vidioc_querybuf = cafe_vidioc_querybuf,
1708 .vidioc_qbuf = cafe_vidioc_qbuf,
1709 .vidioc_dqbuf = cafe_vidioc_dqbuf,
1710 .vidioc_streamon = cafe_vidioc_streamon,
1711 .vidioc_streamoff = cafe_vidioc_streamoff,
1712 .vidioc_queryctrl = cafe_vidioc_queryctrl,
1713 .vidioc_g_ctrl = cafe_vidioc_g_ctrl,
1714 .vidioc_s_ctrl = cafe_vidioc_s_ctrl,
1715 .vidioc_g_parm = cafe_vidioc_g_parm,
1716 .vidioc_s_parm = cafe_vidioc_s_parm,
1717 .vidioc_g_chip_ident = cafe_vidioc_g_chip_ident,
1718 #ifdef CONFIG_VIDEO_ADV_DEBUG
1719 .vidioc_g_register = cafe_vidioc_g_register,
1720 .vidioc_s_register = cafe_vidioc_s_register,
1721 #endif
1722 };
1723
1724 static struct video_device cafe_v4l_template = {
1725 .name = "cafe",
1726 .minor = -1, /* Get one dynamically */
1727 .tvnorms = V4L2_STD_NTSC_M,
1728 .current_norm = V4L2_STD_NTSC_M, /* make mplayer happy */
1729
1730 .fops = &cafe_v4l_fops,
1731 .ioctl_ops = &cafe_v4l_ioctl_ops,
1732 .release = video_device_release_empty,
1733 };
1734
1735
1736 /* ---------------------------------------------------------------------- */
1737 /*
1738 * Interrupt handler stuff
1739 */
1740
1741
1742
1743 static void cafe_frame_tasklet(unsigned long data)
1744 {
1745 struct cafe_camera *cam = (struct cafe_camera *) data;
1746 int i;
1747 unsigned long flags;
1748 struct cafe_sio_buffer *sbuf;
1749
1750 spin_lock_irqsave(&cam->dev_lock, flags);
1751 for (i = 0; i < cam->nbufs; i++) {
1752 int bufno = cam->next_buf;
1753 if (bufno < 0) { /* "will never happen" */
1754 cam_err(cam, "No valid bufs in tasklet!\n");
1755 break;
1756 }
1757 if (++(cam->next_buf) >= cam->nbufs)
1758 cam->next_buf = 0;
1759 if (! test_bit(bufno, &cam->flags))
1760 continue;
1761 if (list_empty(&cam->sb_avail))
1762 break; /* Leave it valid, hope for better later */
1763 clear_bit(bufno, &cam->flags);
1764 sbuf = list_entry(cam->sb_avail.next,
1765 struct cafe_sio_buffer, list);
1766 /*
1767 * Drop the lock during the big copy. This *should* be safe...
1768 */
1769 spin_unlock_irqrestore(&cam->dev_lock, flags);
1770 memcpy(sbuf->buffer, cam->dma_bufs[bufno],
1771 cam->pix_format.sizeimage);
1772 sbuf->v4lbuf.bytesused = cam->pix_format.sizeimage;
1773 sbuf->v4lbuf.sequence = cam->buf_seq[bufno];
1774 sbuf->v4lbuf.flags &= ~V4L2_BUF_FLAG_QUEUED;
1775 sbuf->v4lbuf.flags |= V4L2_BUF_FLAG_DONE;
1776 spin_lock_irqsave(&cam->dev_lock, flags);
1777 list_move_tail(&sbuf->list, &cam->sb_full);
1778 }
1779 if (! list_empty(&cam->sb_full))
1780 wake_up(&cam->iowait);
1781 spin_unlock_irqrestore(&cam->dev_lock, flags);
1782 }
1783
1784
1785
1786 static void cafe_frame_complete(struct cafe_camera *cam, int frame)
1787 {
1788 /*
1789 * Basic frame housekeeping.
1790 */
1791 if (test_bit(frame, &cam->flags) && printk_ratelimit())
1792 cam_err(cam, "Frame overrun on %d, frames lost\n", frame);
1793 set_bit(frame, &cam->flags);
1794 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1795 if (cam->next_buf < 0)
1796 cam->next_buf = frame;
1797 cam->buf_seq[frame] = ++(cam->sequence);
1798
1799 switch (cam->state) {
1800 /*
1801 * If in single read mode, try going speculative.
1802 */
1803 case S_SINGLEREAD:
1804 cam->state = S_SPECREAD;
1805 cam->specframes = 0;
1806 wake_up(&cam->iowait);
1807 break;
1808
1809 /*
1810 * If we are already doing speculative reads, and nobody is
1811 * reading them, just stop.
1812 */
1813 case S_SPECREAD:
1814 if (++(cam->specframes) >= cam->nbufs) {
1815 cafe_ctlr_stop(cam);
1816 cafe_ctlr_irq_disable(cam);
1817 cam->state = S_IDLE;
1818 }
1819 wake_up(&cam->iowait);
1820 break;
1821 /*
1822 * For the streaming case, we defer the real work to the
1823 * camera tasklet.
1824 *
1825 * FIXME: if the application is not consuming the buffers,
1826 * we should eventually put things on hold and restart in
1827 * vidioc_dqbuf().
1828 */
1829 case S_STREAMING:
1830 tasklet_schedule(&cam->s_tasklet);
1831 break;
1832
1833 default:
1834 cam_err(cam, "Frame interrupt in non-operational state\n");
1835 break;
1836 }
1837 }
1838
1839
1840
1841
1842 static void cafe_frame_irq(struct cafe_camera *cam, unsigned int irqs)
1843 {
1844 unsigned int frame;
1845
1846 cafe_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1847 /*
1848 * Handle any frame completions. There really should
1849 * not be more than one of these, or we have fallen
1850 * far behind.
1851 */
1852 for (frame = 0; frame < cam->nbufs; frame++)
1853 if (irqs & (IRQ_EOF0 << frame))
1854 cafe_frame_complete(cam, frame);
1855 /*
1856 * If a frame starts, note that we have DMA active. This
1857 * code assumes that we won't get multiple frame interrupts
1858 * at once; may want to rethink that.
1859 */
1860 if (irqs & (IRQ_SOF0 | IRQ_SOF1 | IRQ_SOF2))
1861 set_bit(CF_DMA_ACTIVE, &cam->flags);
1862 }
1863
1864
1865
1866 static irqreturn_t cafe_irq(int irq, void *data)
1867 {
1868 struct cafe_camera *cam = data;
1869 unsigned int irqs;
1870
1871 spin_lock(&cam->dev_lock);
1872 irqs = cafe_reg_read(cam, REG_IRQSTAT);
1873 if ((irqs & ALLIRQS) == 0) {
1874 spin_unlock(&cam->dev_lock);
1875 return IRQ_NONE;
1876 }
1877 if (irqs & FRAMEIRQS)
1878 cafe_frame_irq(cam, irqs);
1879 if (irqs & TWSIIRQS) {
1880 cafe_reg_write(cam, REG_IRQSTAT, TWSIIRQS);
1881 wake_up(&cam->smbus_wait);
1882 }
1883 spin_unlock(&cam->dev_lock);
1884 return IRQ_HANDLED;
1885 }
1886
1887
1888 /* -------------------------------------------------------------------------- */
1889 /*
1890 * PCI interface stuff.
1891 */
1892
1893 static int cafe_pci_probe(struct pci_dev *pdev,
1894 const struct pci_device_id *id)
1895 {
1896 int ret;
1897 struct cafe_camera *cam;
1898
1899 /*
1900 * Start putting together one of our big camera structures.
1901 */
1902 ret = -ENOMEM;
1903 cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL);
1904 if (cam == NULL)
1905 goto out;
1906 ret = v4l2_device_register(&pdev->dev, &cam->v4l2_dev);
1907 if (ret)
1908 goto out_free;
1909
1910 mutex_init(&cam->s_mutex);
1911 mutex_lock(&cam->s_mutex);
1912 spin_lock_init(&cam->dev_lock);
1913 cam->state = S_NOTREADY;
1914 cafe_set_config_needed(cam, 1);
1915 init_waitqueue_head(&cam->smbus_wait);
1916 init_waitqueue_head(&cam->iowait);
1917 cam->pdev = pdev;
1918 cam->pix_format = cafe_def_pix_format;
1919 INIT_LIST_HEAD(&cam->dev_list);
1920 INIT_LIST_HEAD(&cam->sb_avail);
1921 INIT_LIST_HEAD(&cam->sb_full);
1922 tasklet_init(&cam->s_tasklet, cafe_frame_tasklet, (unsigned long) cam);
1923 /*
1924 * Get set up on the PCI bus.
1925 */
1926 ret = pci_enable_device(pdev);
1927 if (ret)
1928 goto out_unreg;
1929 pci_set_master(pdev);
1930
1931 ret = -EIO;
1932 cam->regs = pci_iomap(pdev, 0, 0);
1933 if (! cam->regs) {
1934 printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n");
1935 goto out_unreg;
1936 }
1937 ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam);
1938 if (ret)
1939 goto out_iounmap;
1940 /*
1941 * Initialize the controller and leave it powered up. It will
1942 * stay that way until the sensor driver shows up.
1943 */
1944 cafe_ctlr_init(cam);
1945 cafe_ctlr_power_up(cam);
1946 /*
1947 * Set up I2C/SMBUS communications. We have to drop the mutex here
1948 * because the sensor could attach in this call chain, leading to
1949 * unsightly deadlocks.
1950 */
1951 mutex_unlock(&cam->s_mutex); /* attach can deadlock */
1952 ret = cafe_smbus_setup(cam);
1953 if (ret)
1954 goto out_freeirq;
1955
1956 cam->sensor_addr = 0x42;
1957 cam->sensor = v4l2_i2c_new_subdev(&cam->i2c_adapter,
1958 "ov7670", "ov7670", cam->sensor_addr);
1959 if (cam->sensor == NULL) {
1960 ret = -ENODEV;
1961 goto out_smbus;
1962 }
1963 ret = cafe_cam_init(cam);
1964 if (ret)
1965 goto out_smbus;
1966
1967 /*
1968 * Get the v4l2 setup done.
1969 */
1970 mutex_lock(&cam->s_mutex);
1971 cam->vdev = cafe_v4l_template;
1972 cam->vdev.debug = 0;
1973 /* cam->vdev.debug = V4L2_DEBUG_IOCTL_ARG;*/
1974 cam->vdev.v4l2_dev = &cam->v4l2_dev;
1975 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
1976 if (ret)
1977 goto out_smbus;
1978 video_set_drvdata(&cam->vdev, cam);
1979
1980 /*
1981 * If so requested, try to get our DMA buffers now.
1982 */
1983 if (!alloc_bufs_at_read) {
1984 if (cafe_alloc_dma_bufs(cam, 1))
1985 cam_warn(cam, "Unable to alloc DMA buffers at load"
1986 " will try again later.");
1987 }
1988
1989 mutex_unlock(&cam->s_mutex);
1990 return 0;
1991
1992 out_smbus:
1993 cafe_smbus_shutdown(cam);
1994 out_freeirq:
1995 cafe_ctlr_power_down(cam);
1996 free_irq(pdev->irq, cam);
1997 out_iounmap:
1998 pci_iounmap(pdev, cam->regs);
1999 out_free:
2000 v4l2_device_unregister(&cam->v4l2_dev);
2001 out_unreg:
2002 kfree(cam);
2003 out:
2004 return ret;
2005 }
2006
2007
2008 /*
2009 * Shut down an initialized device
2010 */
2011 static void cafe_shutdown(struct cafe_camera *cam)
2012 {
2013 /* FIXME: Make sure we take care of everything here */
2014 if (cam->n_sbufs > 0)
2015 /* What if they are still mapped? Shouldn't be, but... */
2016 cafe_free_sio_buffers(cam);
2017 cafe_ctlr_stop_dma(cam);
2018 cafe_ctlr_power_down(cam);
2019 cafe_smbus_shutdown(cam);
2020 cafe_free_dma_bufs(cam);
2021 free_irq(cam->pdev->irq, cam);
2022 pci_iounmap(cam->pdev, cam->regs);
2023 video_unregister_device(&cam->vdev);
2024 }
2025
2026
2027 static void cafe_pci_remove(struct pci_dev *pdev)
2028 {
2029 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2030 struct cafe_camera *cam = to_cam(v4l2_dev);
2031
2032 if (cam == NULL) {
2033 printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev);
2034 return;
2035 }
2036 mutex_lock(&cam->s_mutex);
2037 if (cam->users > 0)
2038 cam_warn(cam, "Removing a device with users!\n");
2039 cafe_shutdown(cam);
2040 v4l2_device_unregister(&cam->v4l2_dev);
2041 kfree(cam);
2042 /* No unlock - it no longer exists */
2043 }
2044
2045
2046 #ifdef CONFIG_PM
2047 /*
2048 * Basic power management.
2049 */
2050 static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2051 {
2052 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2053 struct cafe_camera *cam = to_cam(v4l2_dev);
2054 int ret;
2055 enum cafe_state cstate;
2056
2057 ret = pci_save_state(pdev);
2058 if (ret)
2059 return ret;
2060 cstate = cam->state; /* HACK - stop_dma sets to idle */
2061 cafe_ctlr_stop_dma(cam);
2062 cafe_ctlr_power_down(cam);
2063 pci_disable_device(pdev);
2064 cam->state = cstate;
2065 return 0;
2066 }
2067
2068
2069 static int cafe_pci_resume(struct pci_dev *pdev)
2070 {
2071 struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev);
2072 struct cafe_camera *cam = to_cam(v4l2_dev);
2073 int ret = 0;
2074
2075 ret = pci_restore_state(pdev);
2076 if (ret)
2077 return ret;
2078 ret = pci_enable_device(pdev);
2079
2080 if (ret) {
2081 cam_warn(cam, "Unable to re-enable device on resume!\n");
2082 return ret;
2083 }
2084 cafe_ctlr_init(cam);
2085 cafe_ctlr_power_down(cam);
2086
2087 mutex_lock(&cam->s_mutex);
2088 if (cam->users > 0) {
2089 cafe_ctlr_power_up(cam);
2090 __cafe_cam_reset(cam);
2091 }
2092 mutex_unlock(&cam->s_mutex);
2093
2094 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2095 if (cam->state == S_SPECREAD)
2096 cam->state = S_IDLE; /* Don't bother restarting */
2097 else if (cam->state == S_SINGLEREAD || cam->state == S_STREAMING)
2098 ret = cafe_read_setup(cam, cam->state);
2099 return ret;
2100 }
2101
2102 #endif /* CONFIG_PM */
2103
2104
2105 static struct pci_device_id cafe_ids[] = {
2106 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL,
2107 PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) },
2108 { 0, }
2109 };
2110
2111 MODULE_DEVICE_TABLE(pci, cafe_ids);
2112
2113 static struct pci_driver cafe_pci_driver = {
2114 .name = "cafe1000-ccic",
2115 .id_table = cafe_ids,
2116 .probe = cafe_pci_probe,
2117 .remove = cafe_pci_remove,
2118 #ifdef CONFIG_PM
2119 .suspend = cafe_pci_suspend,
2120 .resume = cafe_pci_resume,
2121 #endif
2122 };
2123
2124
2125
2126
2127 static int __init cafe_init(void)
2128 {
2129 int ret;
2130
2131 printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n",
2132 CAFE_VERSION);
2133 ret = pci_register_driver(&cafe_pci_driver);
2134 if (ret) {
2135 printk(KERN_ERR "Unable to register cafe_ccic driver\n");
2136 goto out;
2137 }
2138 ret = 0;
2139
2140 out:
2141 return ret;
2142 }
2143
2144
2145 static void __exit cafe_exit(void)
2146 {
2147 pci_unregister_driver(&cafe_pci_driver);
2148 }
2149
2150 module_init(cafe_init);
2151 module_exit(cafe_exit);