]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/media/video/gspca/ov519.c
fd1b6082c96daec8b4312ac67106bac4ad7b13ac
[mirror_ubuntu-hirsute-kernel.git] / drivers / media / video / gspca / ov519.c
1 /**
2 * OV519 driver
3 *
4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6 *
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
9 *
10 * Original copyright for the ov511 driver is:
11 *
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
18 *
19 * ov51x-jpeg original copyright is:
20 *
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
28 *
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
33 *
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37 *
38 */
39 #define MODULE_NAME "ov519"
40
41 #include <linux/input.h>
42 #include "gspca.h"
43
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
46 #define CONEX_CAM
47 #include "jpeg.h"
48
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
52
53 /* global parameters */
54 static int frame_rate;
55
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
59
60 /* controls */
61 enum e_ctrl {
62 BRIGHTNESS,
63 CONTRAST,
64 EXPOSURE,
65 COLORS,
66 HFLIP,
67 VFLIP,
68 AUTOBRIGHT,
69 AUTOGAIN,
70 FREQ,
71 NCTRL /* number of controls */
72 };
73
74 /* ov519 device descriptor */
75 struct sd {
76 struct gspca_dev gspca_dev; /* !! must be the first item */
77
78 struct gspca_ctrl ctrls[NCTRL];
79
80 u8 packet_nr;
81
82 char bridge;
83 #define BRIDGE_OV511 0
84 #define BRIDGE_OV511PLUS 1
85 #define BRIDGE_OV518 2
86 #define BRIDGE_OV518PLUS 3
87 #define BRIDGE_OV519 4 /* = ov530 */
88 #define BRIDGE_OVFX2 5
89 #define BRIDGE_W9968CF 6
90 #define BRIDGE_MASK 7
91
92 char invert_led;
93 #define BRIDGE_INVERT_LED 8
94
95 char snapshot_pressed;
96 char snapshot_needs_reset;
97
98 /* Determined by sensor type */
99 u8 sif;
100
101 u8 quality;
102 #define QUALITY_MIN 50
103 #define QUALITY_MAX 70
104 #define QUALITY_DEF 50
105
106 u8 stopped; /* Streaming is temporarily paused */
107 u8 first_frame;
108
109 u8 frame_rate; /* current Framerate */
110 u8 clockdiv; /* clockdiv override */
111
112 s8 sensor; /* Type of image sensor chip (SEN_*) */
113
114 u8 sensor_addr;
115 u16 sensor_width;
116 u16 sensor_height;
117 s16 sensor_reg_cache[256];
118
119 u8 jpeg_hdr[JPEG_HDR_SZ];
120 };
121 enum sensors {
122 SEN_OV2610,
123 SEN_OV2610AE,
124 SEN_OV3610,
125 SEN_OV6620,
126 SEN_OV6630,
127 SEN_OV66308AF,
128 SEN_OV7610,
129 SEN_OV7620,
130 SEN_OV7620AE,
131 SEN_OV7640,
132 SEN_OV7648,
133 SEN_OV7660,
134 SEN_OV7670,
135 SEN_OV76BE,
136 SEN_OV8610,
137 };
138
139 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
140 the ov sensors which is already present here. When we have the time we
141 really should move the sensor drivers to v4l2 sub drivers. */
142 #include "w996Xcf.c"
143
144 /* V4L2 controls supported by the driver */
145 static void setbrightness(struct gspca_dev *gspca_dev);
146 static void setcontrast(struct gspca_dev *gspca_dev);
147 static void setexposure(struct gspca_dev *gspca_dev);
148 static void setcolors(struct gspca_dev *gspca_dev);
149 static void sethvflip(struct gspca_dev *gspca_dev);
150 static void setautobright(struct gspca_dev *gspca_dev);
151 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
152 static void setfreq(struct gspca_dev *gspca_dev);
153 static void setfreq_i(struct sd *sd);
154
155 static const struct ctrl sd_ctrls[] = {
156 [BRIGHTNESS] = {
157 {
158 .id = V4L2_CID_BRIGHTNESS,
159 .type = V4L2_CTRL_TYPE_INTEGER,
160 .name = "Brightness",
161 .minimum = 0,
162 .maximum = 255,
163 .step = 1,
164 .default_value = 127,
165 },
166 .set_control = setbrightness,
167 },
168 [CONTRAST] = {
169 {
170 .id = V4L2_CID_CONTRAST,
171 .type = V4L2_CTRL_TYPE_INTEGER,
172 .name = "Contrast",
173 .minimum = 0,
174 .maximum = 255,
175 .step = 1,
176 .default_value = 127,
177 },
178 .set_control = setcontrast,
179 },
180 [EXPOSURE] = {
181 {
182 .id = V4L2_CID_EXPOSURE,
183 .type = V4L2_CTRL_TYPE_INTEGER,
184 .name = "Exposure",
185 .minimum = 0,
186 .maximum = 255,
187 .step = 1,
188 .default_value = 127,
189 },
190 .set_control = setexposure,
191 },
192 [COLORS] = {
193 {
194 .id = V4L2_CID_SATURATION,
195 .type = V4L2_CTRL_TYPE_INTEGER,
196 .name = "Color",
197 .minimum = 0,
198 .maximum = 255,
199 .step = 1,
200 .default_value = 127,
201 },
202 .set_control = setcolors,
203 },
204 /* The flip controls work for sensors ov7660 and ov7670 only */
205 [HFLIP] = {
206 {
207 .id = V4L2_CID_HFLIP,
208 .type = V4L2_CTRL_TYPE_BOOLEAN,
209 .name = "Mirror",
210 .minimum = 0,
211 .maximum = 1,
212 .step = 1,
213 .default_value = 0,
214 },
215 .set_control = sethvflip,
216 },
217 [VFLIP] = {
218 {
219 .id = V4L2_CID_VFLIP,
220 .type = V4L2_CTRL_TYPE_BOOLEAN,
221 .name = "Vflip",
222 .minimum = 0,
223 .maximum = 1,
224 .step = 1,
225 .default_value = 0,
226 },
227 .set_control = sethvflip,
228 },
229 [AUTOBRIGHT] = {
230 {
231 .id = V4L2_CID_AUTOBRIGHTNESS,
232 .type = V4L2_CTRL_TYPE_BOOLEAN,
233 .name = "Auto Brightness",
234 .minimum = 0,
235 .maximum = 1,
236 .step = 1,
237 .default_value = 1,
238 },
239 .set_control = setautobright,
240 },
241 [AUTOGAIN] = {
242 {
243 .id = V4L2_CID_AUTOGAIN,
244 .type = V4L2_CTRL_TYPE_BOOLEAN,
245 .name = "Auto Gain",
246 .minimum = 0,
247 .maximum = 1,
248 .step = 1,
249 .default_value = 1,
250 .flags = V4L2_CTRL_FLAG_UPDATE
251 },
252 .set = sd_setautogain,
253 },
254 [FREQ] = {
255 {
256 .id = V4L2_CID_POWER_LINE_FREQUENCY,
257 .type = V4L2_CTRL_TYPE_MENU,
258 .name = "Light frequency filter",
259 .minimum = 0,
260 .maximum = 2, /* 0: no flicker, 1: 50Hz, 2:60Hz, 3: auto */
261 .step = 1,
262 .default_value = 0,
263 },
264 .set_control = setfreq,
265 },
266 };
267
268 /* table of the disabled controls */
269 static const unsigned ctrl_dis[] = {
270 [SEN_OV2610] = ((1 << NCTRL) - 1) /* no control */
271 ^ ((1 << EXPOSURE) /* but exposure */
272 | (1 << AUTOGAIN)), /* and autogain */
273
274 [SEN_OV2610AE] = ((1 << NCTRL) - 1) /* no control */
275 ^ ((1 << EXPOSURE) /* but exposure */
276 | (1 << AUTOGAIN)), /* and autogain */
277
278 [SEN_OV3610] = (1 << NCTRL) - 1, /* no control */
279
280 [SEN_OV6620] = (1 << HFLIP) |
281 (1 << VFLIP) |
282 (1 << EXPOSURE) |
283 (1 << AUTOGAIN),
284
285 [SEN_OV6630] = (1 << HFLIP) |
286 (1 << VFLIP) |
287 (1 << EXPOSURE) |
288 (1 << AUTOGAIN),
289
290 [SEN_OV66308AF] = (1 << HFLIP) |
291 (1 << VFLIP) |
292 (1 << EXPOSURE) |
293 (1 << AUTOGAIN),
294
295 [SEN_OV7610] = (1 << HFLIP) |
296 (1 << VFLIP) |
297 (1 << EXPOSURE) |
298 (1 << AUTOGAIN),
299
300 [SEN_OV7620] = (1 << HFLIP) |
301 (1 << VFLIP) |
302 (1 << EXPOSURE) |
303 (1 << AUTOGAIN),
304
305 [SEN_OV7620AE] = (1 << HFLIP) |
306 (1 << VFLIP) |
307 (1 << EXPOSURE) |
308 (1 << AUTOGAIN),
309
310 [SEN_OV7640] = (1 << HFLIP) |
311 (1 << VFLIP) |
312 (1 << AUTOBRIGHT) |
313 (1 << CONTRAST) |
314 (1 << EXPOSURE) |
315 (1 << AUTOGAIN),
316
317 [SEN_OV7648] = (1 << HFLIP) |
318 (1 << VFLIP) |
319 (1 << AUTOBRIGHT) |
320 (1 << CONTRAST) |
321 (1 << EXPOSURE) |
322 (1 << AUTOGAIN),
323
324 [SEN_OV7660] = (1 << AUTOBRIGHT) |
325 (1 << EXPOSURE) |
326 (1 << AUTOGAIN),
327
328 [SEN_OV7670] = (1 << COLORS) |
329 (1 << AUTOBRIGHT) |
330 (1 << EXPOSURE) |
331 (1 << AUTOGAIN),
332
333 [SEN_OV76BE] = (1 << HFLIP) |
334 (1 << VFLIP) |
335 (1 << EXPOSURE) |
336 (1 << AUTOGAIN),
337
338 [SEN_OV8610] = (1 << HFLIP) |
339 (1 << VFLIP) |
340 (1 << EXPOSURE) |
341 (1 << AUTOGAIN) |
342 (1 << FREQ),
343 };
344
345 static const struct v4l2_pix_format ov519_vga_mode[] = {
346 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
347 .bytesperline = 320,
348 .sizeimage = 320 * 240 * 3 / 8 + 590,
349 .colorspace = V4L2_COLORSPACE_JPEG,
350 .priv = 1},
351 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
352 .bytesperline = 640,
353 .sizeimage = 640 * 480 * 3 / 8 + 590,
354 .colorspace = V4L2_COLORSPACE_JPEG,
355 .priv = 0},
356 };
357 static const struct v4l2_pix_format ov519_sif_mode[] = {
358 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
359 .bytesperline = 160,
360 .sizeimage = 160 * 120 * 3 / 8 + 590,
361 .colorspace = V4L2_COLORSPACE_JPEG,
362 .priv = 3},
363 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
364 .bytesperline = 176,
365 .sizeimage = 176 * 144 * 3 / 8 + 590,
366 .colorspace = V4L2_COLORSPACE_JPEG,
367 .priv = 1},
368 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
369 .bytesperline = 320,
370 .sizeimage = 320 * 240 * 3 / 8 + 590,
371 .colorspace = V4L2_COLORSPACE_JPEG,
372 .priv = 2},
373 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
374 .bytesperline = 352,
375 .sizeimage = 352 * 288 * 3 / 8 + 590,
376 .colorspace = V4L2_COLORSPACE_JPEG,
377 .priv = 0},
378 };
379
380 /* Note some of the sizeimage values for the ov511 / ov518 may seem
381 larger then necessary, however they need to be this big as the ov511 /
382 ov518 always fills the entire isoc frame, using 0 padding bytes when
383 it doesn't have any data. So with low framerates the amount of data
384 transfered can become quite large (libv4l will remove all the 0 padding
385 in userspace). */
386 static const struct v4l2_pix_format ov518_vga_mode[] = {
387 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
388 .bytesperline = 320,
389 .sizeimage = 320 * 240 * 3,
390 .colorspace = V4L2_COLORSPACE_JPEG,
391 .priv = 1},
392 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
393 .bytesperline = 640,
394 .sizeimage = 640 * 480 * 2,
395 .colorspace = V4L2_COLORSPACE_JPEG,
396 .priv = 0},
397 };
398 static const struct v4l2_pix_format ov518_sif_mode[] = {
399 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
400 .bytesperline = 160,
401 .sizeimage = 70000,
402 .colorspace = V4L2_COLORSPACE_JPEG,
403 .priv = 3},
404 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
405 .bytesperline = 176,
406 .sizeimage = 70000,
407 .colorspace = V4L2_COLORSPACE_JPEG,
408 .priv = 1},
409 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
410 .bytesperline = 320,
411 .sizeimage = 320 * 240 * 3,
412 .colorspace = V4L2_COLORSPACE_JPEG,
413 .priv = 2},
414 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
415 .bytesperline = 352,
416 .sizeimage = 352 * 288 * 3,
417 .colorspace = V4L2_COLORSPACE_JPEG,
418 .priv = 0},
419 };
420
421 static const struct v4l2_pix_format ov511_vga_mode[] = {
422 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
423 .bytesperline = 320,
424 .sizeimage = 320 * 240 * 3,
425 .colorspace = V4L2_COLORSPACE_JPEG,
426 .priv = 1},
427 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
428 .bytesperline = 640,
429 .sizeimage = 640 * 480 * 2,
430 .colorspace = V4L2_COLORSPACE_JPEG,
431 .priv = 0},
432 };
433 static const struct v4l2_pix_format ov511_sif_mode[] = {
434 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
435 .bytesperline = 160,
436 .sizeimage = 70000,
437 .colorspace = V4L2_COLORSPACE_JPEG,
438 .priv = 3},
439 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
440 .bytesperline = 176,
441 .sizeimage = 70000,
442 .colorspace = V4L2_COLORSPACE_JPEG,
443 .priv = 1},
444 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
445 .bytesperline = 320,
446 .sizeimage = 320 * 240 * 3,
447 .colorspace = V4L2_COLORSPACE_JPEG,
448 .priv = 2},
449 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
450 .bytesperline = 352,
451 .sizeimage = 352 * 288 * 3,
452 .colorspace = V4L2_COLORSPACE_JPEG,
453 .priv = 0},
454 };
455
456 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
457 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
458 .bytesperline = 320,
459 .sizeimage = 320 * 240,
460 .colorspace = V4L2_COLORSPACE_SRGB,
461 .priv = 1},
462 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
463 .bytesperline = 640,
464 .sizeimage = 640 * 480,
465 .colorspace = V4L2_COLORSPACE_SRGB,
466 .priv = 0},
467 };
468 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
469 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
470 .bytesperline = 160,
471 .sizeimage = 160 * 120,
472 .colorspace = V4L2_COLORSPACE_SRGB,
473 .priv = 3},
474 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
475 .bytesperline = 176,
476 .sizeimage = 176 * 144,
477 .colorspace = V4L2_COLORSPACE_SRGB,
478 .priv = 1},
479 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
480 .bytesperline = 320,
481 .sizeimage = 320 * 240,
482 .colorspace = V4L2_COLORSPACE_SRGB,
483 .priv = 2},
484 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
485 .bytesperline = 352,
486 .sizeimage = 352 * 288,
487 .colorspace = V4L2_COLORSPACE_SRGB,
488 .priv = 0},
489 };
490 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
491 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
492 .bytesperline = 800,
493 .sizeimage = 800 * 600,
494 .colorspace = V4L2_COLORSPACE_SRGB,
495 .priv = 1},
496 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
497 .bytesperline = 1600,
498 .sizeimage = 1600 * 1200,
499 .colorspace = V4L2_COLORSPACE_SRGB},
500 };
501 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
502 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
503 .bytesperline = 640,
504 .sizeimage = 640 * 480,
505 .colorspace = V4L2_COLORSPACE_SRGB,
506 .priv = 1},
507 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
508 .bytesperline = 800,
509 .sizeimage = 800 * 600,
510 .colorspace = V4L2_COLORSPACE_SRGB,
511 .priv = 1},
512 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
513 .bytesperline = 1024,
514 .sizeimage = 1024 * 768,
515 .colorspace = V4L2_COLORSPACE_SRGB,
516 .priv = 1},
517 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
518 .bytesperline = 1600,
519 .sizeimage = 1600 * 1200,
520 .colorspace = V4L2_COLORSPACE_SRGB,
521 .priv = 0},
522 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
523 .bytesperline = 2048,
524 .sizeimage = 2048 * 1536,
525 .colorspace = V4L2_COLORSPACE_SRGB,
526 .priv = 0},
527 };
528
529 /* Registers common to OV511 / OV518 */
530 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
531 #define R51x_SYS_RESET 0x50
532 /* Reset type flags */
533 #define OV511_RESET_OMNICE 0x08
534 #define R51x_SYS_INIT 0x53
535 #define R51x_SYS_SNAP 0x52
536 #define R51x_SYS_CUST_ID 0x5f
537 #define R51x_COMP_LUT_BEGIN 0x80
538
539 /* OV511 Camera interface register numbers */
540 #define R511_CAM_DELAY 0x10
541 #define R511_CAM_EDGE 0x11
542 #define R511_CAM_PXCNT 0x12
543 #define R511_CAM_LNCNT 0x13
544 #define R511_CAM_PXDIV 0x14
545 #define R511_CAM_LNDIV 0x15
546 #define R511_CAM_UV_EN 0x16
547 #define R511_CAM_LINE_MODE 0x17
548 #define R511_CAM_OPTS 0x18
549
550 #define R511_SNAP_FRAME 0x19
551 #define R511_SNAP_PXCNT 0x1a
552 #define R511_SNAP_LNCNT 0x1b
553 #define R511_SNAP_PXDIV 0x1c
554 #define R511_SNAP_LNDIV 0x1d
555 #define R511_SNAP_UV_EN 0x1e
556 #define R511_SNAP_OPTS 0x1f
557
558 #define R511_DRAM_FLOW_CTL 0x20
559 #define R511_FIFO_OPTS 0x31
560 #define R511_I2C_CTL 0x40
561 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
562 #define R511_COMP_EN 0x78
563 #define R511_COMP_LUT_EN 0x79
564
565 /* OV518 Camera interface register numbers */
566 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
567 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
568
569 /* OV519 Camera interface register numbers */
570 #define OV519_R10_H_SIZE 0x10
571 #define OV519_R11_V_SIZE 0x11
572 #define OV519_R12_X_OFFSETL 0x12
573 #define OV519_R13_X_OFFSETH 0x13
574 #define OV519_R14_Y_OFFSETL 0x14
575 #define OV519_R15_Y_OFFSETH 0x15
576 #define OV519_R16_DIVIDER 0x16
577 #define OV519_R20_DFR 0x20
578 #define OV519_R25_FORMAT 0x25
579
580 /* OV519 System Controller register numbers */
581 #define OV519_R51_RESET1 0x51
582 #define OV519_R54_EN_CLK1 0x54
583 #define OV519_R57_SNAPSHOT 0x57
584
585 #define OV519_GPIO_DATA_OUT0 0x71
586 #define OV519_GPIO_IO_CTRL0 0x72
587
588 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */
589
590 /*
591 * The FX2 chip does not give us a zero length read at end of frame.
592 * It does, however, give a short read at the end of a frame, if
593 * necessary, rather than run two frames together.
594 *
595 * By choosing the right bulk transfer size, we are guaranteed to always
596 * get a short read for the last read of each frame. Frame sizes are
597 * always a composite number (width * height, or a multiple) so if we
598 * choose a prime number, we are guaranteed that the last read of a
599 * frame will be short.
600 *
601 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
602 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
603 * to figure out why. [PMiller]
604 *
605 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
606 *
607 * It isn't enough to know the number of bytes per frame, in case we
608 * have data dropouts or buffer overruns (even though the FX2 double
609 * buffers, there are some pretty strict real time constraints for
610 * isochronous transfer for larger frame sizes).
611 */
612 /*jfm: this value works well for 1600x1200, but not 800x600 - see isoc_init */
613 #define OVFX2_BULK_SIZE (13 * 4096)
614
615 /* I2C registers */
616 #define R51x_I2C_W_SID 0x41
617 #define R51x_I2C_SADDR_3 0x42
618 #define R51x_I2C_SADDR_2 0x43
619 #define R51x_I2C_R_SID 0x44
620 #define R51x_I2C_DATA 0x45
621 #define R518_I2C_CTL 0x47 /* OV518(+) only */
622 #define OVFX2_I2C_ADDR 0x00
623
624 /* I2C ADDRESSES */
625 #define OV7xx0_SID 0x42
626 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
627 #define OV8xx0_SID 0xa0
628 #define OV6xx0_SID 0xc0
629
630 /* OV7610 registers */
631 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
632 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
633 #define OV7610_REG_RED 0x02 /* red channel balance */
634 #define OV7610_REG_SAT 0x03 /* saturation */
635 #define OV8610_REG_HUE 0x04 /* 04 reserved */
636 #define OV7610_REG_CNT 0x05 /* Y contrast */
637 #define OV7610_REG_BRT 0x06 /* Y brightness */
638 #define OV7610_REG_COM_C 0x14 /* misc common regs */
639 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
640 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
641 #define OV7610_REG_COM_I 0x29 /* misc settings */
642
643 /* OV7660 and OV7670 registers */
644 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
645 #define OV7670_R01_BLUE 0x01 /* blue gain */
646 #define OV7670_R02_RED 0x02 /* red gain */
647 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
648 #define OV7670_R04_COM1 0x04 /* Control 1 */
649 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */
650 #define OV7670_R0C_COM3 0x0c /* Control 3 */
651 #define OV7670_R0D_COM4 0x0d /* Control 4 */
652 #define OV7670_R0E_COM5 0x0e /* All "reserved" */
653 #define OV7670_R0F_COM6 0x0f /* Control 6 */
654 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */
655 #define OV7670_R11_CLKRC 0x11 /* Clock control */
656 #define OV7670_R12_COM7 0x12 /* Control 7 */
657 #define OV7670_COM7_FMT_VGA 0x00
658 /*#define OV7670_COM7_YUV 0x00 * YUV */
659 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
660 #define OV7670_COM7_FMT_MASK 0x38
661 #define OV7670_COM7_RESET 0x80 /* Register reset */
662 #define OV7670_R13_COM8 0x13 /* Control 8 */
663 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
664 #define OV7670_COM8_AWB 0x02 /* White balance enable */
665 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
666 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
667 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
668 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
669 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */
670 #define OV7670_R15_COM10 0x15 /* Control 10 */
671 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */
672 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */
673 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */
674 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */
675 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */
676 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
677 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
678 #define OV7670_R24_AEW 0x24 /* AGC upper limit */
679 #define OV7670_R25_AEB 0x25 /* AGC lower limit */
680 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */
681 #define OV7670_R32_HREF 0x32 /* HREF pieces */
682 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */
683 #define OV7670_R3B_COM11 0x3b /* Control 11 */
684 #define OV7670_COM11_EXP 0x02
685 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
686 #define OV7670_R3C_COM12 0x3c /* Control 12 */
687 #define OV7670_R3D_COM13 0x3d /* Control 13 */
688 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
689 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
690 #define OV7670_R3E_COM14 0x3e /* Control 14 */
691 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */
692 #define OV7670_R40_COM15 0x40 /* Control 15 */
693 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */
694 #define OV7670_R41_COM16 0x41 /* Control 16 */
695 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
696 /* end of ov7660 common registers */
697 #define OV7670_R55_BRIGHT 0x55 /* Brightness */
698 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */
699 #define OV7670_R69_GFIX 0x69 /* Fix gain control */
700 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */
701 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */
702 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
703 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */
704 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
705 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
706 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
707 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
708 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */
709 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */
710
711 struct ov_regvals {
712 u8 reg;
713 u8 val;
714 };
715 struct ov_i2c_regvals {
716 u8 reg;
717 u8 val;
718 };
719
720 /* Settings for OV2610 camera chip */
721 static const struct ov_i2c_regvals norm_2610[] = {
722 { 0x12, 0x80 }, /* reset */
723 };
724
725 static const struct ov_i2c_regvals norm_2610ae[] = {
726 {0x12, 0x80}, /* reset */
727 {0x13, 0xcd},
728 {0x09, 0x01},
729 {0x0d, 0x00},
730 {0x11, 0x80},
731 {0x12, 0x20}, /* 1600x1200 */
732 {0x33, 0x0c},
733 {0x35, 0x90},
734 {0x36, 0x37},
735 /* ms-win traces */
736 {0x11, 0x83}, /* clock / 3 ? */
737 {0x2d, 0x00}, /* 60 Hz filter */
738 {0x24, 0xb0}, /* normal colors */
739 {0x25, 0x90},
740 {0x10, 0x43},
741 };
742
743 static const struct ov_i2c_regvals norm_3620b[] = {
744 /*
745 * From the datasheet: "Note that after writing to register COMH
746 * (0x12) to change the sensor mode, registers related to the
747 * sensor’s cropping window will be reset back to their default
748 * values."
749 *
750 * "wait 4096 external clock ... to make sure the sensor is
751 * stable and ready to access registers" i.e. 160us at 24MHz
752 */
753 { 0x12, 0x80 }, /* COMH reset */
754 { 0x12, 0x00 }, /* QXGA, master */
755
756 /*
757 * 11 CLKRC "Clock Rate Control"
758 * [7] internal frequency doublers: on
759 * [6] video port mode: master
760 * [5:0] clock divider: 1
761 */
762 { 0x11, 0x80 },
763
764 /*
765 * 13 COMI "Common Control I"
766 * = 192 (0xC0) 11000000
767 * COMI[7] "AEC speed selection"
768 * = 1 (0x01) 1....... "Faster AEC correction"
769 * COMI[6] "AEC speed step selection"
770 * = 1 (0x01) .1...... "Big steps, fast"
771 * COMI[5] "Banding filter on off"
772 * = 0 (0x00) ..0..... "Off"
773 * COMI[4] "Banding filter option"
774 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
775 * the PLL is ON"
776 * COMI[3] "Reserved"
777 * = 0 (0x00) ....0...
778 * COMI[2] "AGC auto manual control selection"
779 * = 0 (0x00) .....0.. "Manual"
780 * COMI[1] "AWB auto manual control selection"
781 * = 0 (0x00) ......0. "Manual"
782 * COMI[0] "Exposure control"
783 * = 0 (0x00) .......0 "Manual"
784 */
785 { 0x13, 0xc0 },
786
787 /*
788 * 09 COMC "Common Control C"
789 * = 8 (0x08) 00001000
790 * COMC[7:5] "Reserved"
791 * = 0 (0x00) 000.....
792 * COMC[4] "Sleep Mode Enable"
793 * = 0 (0x00) ...0.... "Normal mode"
794 * COMC[3:2] "Sensor sampling reset timing selection"
795 * = 2 (0x02) ....10.. "Longer reset time"
796 * COMC[1:0] "Output drive current select"
797 * = 0 (0x00) ......00 "Weakest"
798 */
799 { 0x09, 0x08 },
800
801 /*
802 * 0C COMD "Common Control D"
803 * = 8 (0x08) 00001000
804 * COMD[7] "Reserved"
805 * = 0 (0x00) 0.......
806 * COMD[6] "Swap MSB and LSB at the output port"
807 * = 0 (0x00) .0...... "False"
808 * COMD[5:3] "Reserved"
809 * = 1 (0x01) ..001...
810 * COMD[2] "Output Average On Off"
811 * = 0 (0x00) .....0.. "Output Normal"
812 * COMD[1] "Sensor precharge voltage selection"
813 * = 0 (0x00) ......0. "Selects internal
814 * reference precharge
815 * voltage"
816 * COMD[0] "Snapshot option"
817 * = 0 (0x00) .......0 "Enable live video output
818 * after snapshot sequence"
819 */
820 { 0x0c, 0x08 },
821
822 /*
823 * 0D COME "Common Control E"
824 * = 161 (0xA1) 10100001
825 * COME[7] "Output average option"
826 * = 1 (0x01) 1....... "Output average of 4 pixels"
827 * COME[6] "Anti-blooming control"
828 * = 0 (0x00) .0...... "Off"
829 * COME[5:3] "Reserved"
830 * = 4 (0x04) ..100...
831 * COME[2] "Clock output power down pin status"
832 * = 0 (0x00) .....0.. "Tri-state data output pin
833 * on power down"
834 * COME[1] "Data output pin status selection at power down"
835 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
836 * HREF, and CHSYNC pins on
837 * power down"
838 * COME[0] "Auto zero circuit select"
839 * = 1 (0x01) .......1 "On"
840 */
841 { 0x0d, 0xa1 },
842
843 /*
844 * 0E COMF "Common Control F"
845 * = 112 (0x70) 01110000
846 * COMF[7] "System clock selection"
847 * = 0 (0x00) 0....... "Use 24 MHz system clock"
848 * COMF[6:4] "Reserved"
849 * = 7 (0x07) .111....
850 * COMF[3] "Manual auto negative offset canceling selection"
851 * = 0 (0x00) ....0... "Auto detect negative
852 * offset and cancel it"
853 * COMF[2:0] "Reserved"
854 * = 0 (0x00) .....000
855 */
856 { 0x0e, 0x70 },
857
858 /*
859 * 0F COMG "Common Control G"
860 * = 66 (0x42) 01000010
861 * COMG[7] "Optical black output selection"
862 * = 0 (0x00) 0....... "Disable"
863 * COMG[6] "Black level calibrate selection"
864 * = 1 (0x01) .1...... "Use optical black pixels
865 * to calibrate"
866 * COMG[5:4] "Reserved"
867 * = 0 (0x00) ..00....
868 * COMG[3] "Channel offset adjustment"
869 * = 0 (0x00) ....0... "Disable offset adjustment"
870 * COMG[2] "ADC black level calibration option"
871 * = 0 (0x00) .....0.. "Use B/G line and G/R
872 * line to calibrate each
873 * channel's black level"
874 * COMG[1] "Reserved"
875 * = 1 (0x01) ......1.
876 * COMG[0] "ADC black level calibration enable"
877 * = 0 (0x00) .......0 "Disable"
878 */
879 { 0x0f, 0x42 },
880
881 /*
882 * 14 COMJ "Common Control J"
883 * = 198 (0xC6) 11000110
884 * COMJ[7:6] "AGC gain ceiling"
885 * = 3 (0x03) 11...... "8x"
886 * COMJ[5:4] "Reserved"
887 * = 0 (0x00) ..00....
888 * COMJ[3] "Auto banding filter"
889 * = 0 (0x00) ....0... "Banding filter is always
890 * on off depending on
891 * COMI[5] setting"
892 * COMJ[2] "VSYNC drop option"
893 * = 1 (0x01) .....1.. "SYNC is dropped if frame
894 * data is dropped"
895 * COMJ[1] "Frame data drop"
896 * = 1 (0x01) ......1. "Drop frame data if
897 * exposure is not within
898 * tolerance. In AEC mode,
899 * data is normally dropped
900 * when data is out of
901 * range."
902 * COMJ[0] "Reserved"
903 * = 0 (0x00) .......0
904 */
905 { 0x14, 0xc6 },
906
907 /*
908 * 15 COMK "Common Control K"
909 * = 2 (0x02) 00000010
910 * COMK[7] "CHSYNC pin output swap"
911 * = 0 (0x00) 0....... "CHSYNC"
912 * COMK[6] "HREF pin output swap"
913 * = 0 (0x00) .0...... "HREF"
914 * COMK[5] "PCLK output selection"
915 * = 0 (0x00) ..0..... "PCLK always output"
916 * COMK[4] "PCLK edge selection"
917 * = 0 (0x00) ...0.... "Data valid on falling edge"
918 * COMK[3] "HREF output polarity"
919 * = 0 (0x00) ....0... "positive"
920 * COMK[2] "Reserved"
921 * = 0 (0x00) .....0..
922 * COMK[1] "VSYNC polarity"
923 * = 1 (0x01) ......1. "negative"
924 * COMK[0] "HSYNC polarity"
925 * = 0 (0x00) .......0 "positive"
926 */
927 { 0x15, 0x02 },
928
929 /*
930 * 33 CHLF "Current Control"
931 * = 9 (0x09) 00001001
932 * CHLF[7:6] "Sensor current control"
933 * = 0 (0x00) 00......
934 * CHLF[5] "Sensor current range control"
935 * = 0 (0x00) ..0..... "normal range"
936 * CHLF[4] "Sensor current"
937 * = 0 (0x00) ...0.... "normal current"
938 * CHLF[3] "Sensor buffer current control"
939 * = 1 (0x01) ....1... "half current"
940 * CHLF[2] "Column buffer current control"
941 * = 0 (0x00) .....0.. "normal current"
942 * CHLF[1] "Analog DSP current control"
943 * = 0 (0x00) ......0. "normal current"
944 * CHLF[1] "ADC current control"
945 * = 0 (0x00) ......0. "normal current"
946 */
947 { 0x33, 0x09 },
948
949 /*
950 * 34 VBLM "Blooming Control"
951 * = 80 (0x50) 01010000
952 * VBLM[7] "Hard soft reset switch"
953 * = 0 (0x00) 0....... "Hard reset"
954 * VBLM[6:4] "Blooming voltage selection"
955 * = 5 (0x05) .101....
956 * VBLM[3:0] "Sensor current control"
957 * = 0 (0x00) ....0000
958 */
959 { 0x34, 0x50 },
960
961 /*
962 * 36 VCHG "Sensor Precharge Voltage Control"
963 * = 0 (0x00) 00000000
964 * VCHG[7] "Reserved"
965 * = 0 (0x00) 0.......
966 * VCHG[6:4] "Sensor precharge voltage control"
967 * = 0 (0x00) .000....
968 * VCHG[3:0] "Sensor array common reference"
969 * = 0 (0x00) ....0000
970 */
971 { 0x36, 0x00 },
972
973 /*
974 * 37 ADC "ADC Reference Control"
975 * = 4 (0x04) 00000100
976 * ADC[7:4] "Reserved"
977 * = 0 (0x00) 0000....
978 * ADC[3] "ADC input signal range"
979 * = 0 (0x00) ....0... "Input signal 1.0x"
980 * ADC[2:0] "ADC range control"
981 * = 4 (0x04) .....100
982 */
983 { 0x37, 0x04 },
984
985 /*
986 * 38 ACOM "Analog Common Ground"
987 * = 82 (0x52) 01010010
988 * ACOM[7] "Analog gain control"
989 * = 0 (0x00) 0....... "Gain 1x"
990 * ACOM[6] "Analog black level calibration"
991 * = 1 (0x01) .1...... "On"
992 * ACOM[5:0] "Reserved"
993 * = 18 (0x12) ..010010
994 */
995 { 0x38, 0x52 },
996
997 /*
998 * 3A FREFA "Internal Reference Adjustment"
999 * = 0 (0x00) 00000000
1000 * FREFA[7:0] "Range"
1001 * = 0 (0x00) 00000000
1002 */
1003 { 0x3a, 0x00 },
1004
1005 /*
1006 * 3C FVOPT "Internal Reference Adjustment"
1007 * = 31 (0x1F) 00011111
1008 * FVOPT[7:0] "Range"
1009 * = 31 (0x1F) 00011111
1010 */
1011 { 0x3c, 0x1f },
1012
1013 /*
1014 * 44 Undocumented = 0 (0x00) 00000000
1015 * 44[7:0] "It's a secret"
1016 * = 0 (0x00) 00000000
1017 */
1018 { 0x44, 0x00 },
1019
1020 /*
1021 * 40 Undocumented = 0 (0x00) 00000000
1022 * 40[7:0] "It's a secret"
1023 * = 0 (0x00) 00000000
1024 */
1025 { 0x40, 0x00 },
1026
1027 /*
1028 * 41 Undocumented = 0 (0x00) 00000000
1029 * 41[7:0] "It's a secret"
1030 * = 0 (0x00) 00000000
1031 */
1032 { 0x41, 0x00 },
1033
1034 /*
1035 * 42 Undocumented = 0 (0x00) 00000000
1036 * 42[7:0] "It's a secret"
1037 * = 0 (0x00) 00000000
1038 */
1039 { 0x42, 0x00 },
1040
1041 /*
1042 * 43 Undocumented = 0 (0x00) 00000000
1043 * 43[7:0] "It's a secret"
1044 * = 0 (0x00) 00000000
1045 */
1046 { 0x43, 0x00 },
1047
1048 /*
1049 * 45 Undocumented = 128 (0x80) 10000000
1050 * 45[7:0] "It's a secret"
1051 * = 128 (0x80) 10000000
1052 */
1053 { 0x45, 0x80 },
1054
1055 /*
1056 * 48 Undocumented = 192 (0xC0) 11000000
1057 * 48[7:0] "It's a secret"
1058 * = 192 (0xC0) 11000000
1059 */
1060 { 0x48, 0xc0 },
1061
1062 /*
1063 * 49 Undocumented = 25 (0x19) 00011001
1064 * 49[7:0] "It's a secret"
1065 * = 25 (0x19) 00011001
1066 */
1067 { 0x49, 0x19 },
1068
1069 /*
1070 * 4B Undocumented = 128 (0x80) 10000000
1071 * 4B[7:0] "It's a secret"
1072 * = 128 (0x80) 10000000
1073 */
1074 { 0x4b, 0x80 },
1075
1076 /*
1077 * 4D Undocumented = 196 (0xC4) 11000100
1078 * 4D[7:0] "It's a secret"
1079 * = 196 (0xC4) 11000100
1080 */
1081 { 0x4d, 0xc4 },
1082
1083 /*
1084 * 35 VREF "Reference Voltage Control"
1085 * = 76 (0x4c) 01001100
1086 * VREF[7:5] "Column high reference control"
1087 * = 2 (0x02) 010..... "higher voltage"
1088 * VREF[4:2] "Column low reference control"
1089 * = 3 (0x03) ...011.. "Highest voltage"
1090 * VREF[1:0] "Reserved"
1091 * = 0 (0x00) ......00
1092 */
1093 { 0x35, 0x4c },
1094
1095 /*
1096 * 3D Undocumented = 0 (0x00) 00000000
1097 * 3D[7:0] "It's a secret"
1098 * = 0 (0x00) 00000000
1099 */
1100 { 0x3d, 0x00 },
1101
1102 /*
1103 * 3E Undocumented = 0 (0x00) 00000000
1104 * 3E[7:0] "It's a secret"
1105 * = 0 (0x00) 00000000
1106 */
1107 { 0x3e, 0x00 },
1108
1109 /*
1110 * 3B FREFB "Internal Reference Adjustment"
1111 * = 24 (0x18) 00011000
1112 * FREFB[7:0] "Range"
1113 * = 24 (0x18) 00011000
1114 */
1115 { 0x3b, 0x18 },
1116
1117 /*
1118 * 33 CHLF "Current Control"
1119 * = 25 (0x19) 00011001
1120 * CHLF[7:6] "Sensor current control"
1121 * = 0 (0x00) 00......
1122 * CHLF[5] "Sensor current range control"
1123 * = 0 (0x00) ..0..... "normal range"
1124 * CHLF[4] "Sensor current"
1125 * = 1 (0x01) ...1.... "double current"
1126 * CHLF[3] "Sensor buffer current control"
1127 * = 1 (0x01) ....1... "half current"
1128 * CHLF[2] "Column buffer current control"
1129 * = 0 (0x00) .....0.. "normal current"
1130 * CHLF[1] "Analog DSP current control"
1131 * = 0 (0x00) ......0. "normal current"
1132 * CHLF[1] "ADC current control"
1133 * = 0 (0x00) ......0. "normal current"
1134 */
1135 { 0x33, 0x19 },
1136
1137 /*
1138 * 34 VBLM "Blooming Control"
1139 * = 90 (0x5A) 01011010
1140 * VBLM[7] "Hard soft reset switch"
1141 * = 0 (0x00) 0....... "Hard reset"
1142 * VBLM[6:4] "Blooming voltage selection"
1143 * = 5 (0x05) .101....
1144 * VBLM[3:0] "Sensor current control"
1145 * = 10 (0x0A) ....1010
1146 */
1147 { 0x34, 0x5a },
1148
1149 /*
1150 * 3B FREFB "Internal Reference Adjustment"
1151 * = 0 (0x00) 00000000
1152 * FREFB[7:0] "Range"
1153 * = 0 (0x00) 00000000
1154 */
1155 { 0x3b, 0x00 },
1156
1157 /*
1158 * 33 CHLF "Current Control"
1159 * = 9 (0x09) 00001001
1160 * CHLF[7:6] "Sensor current control"
1161 * = 0 (0x00) 00......
1162 * CHLF[5] "Sensor current range control"
1163 * = 0 (0x00) ..0..... "normal range"
1164 * CHLF[4] "Sensor current"
1165 * = 0 (0x00) ...0.... "normal current"
1166 * CHLF[3] "Sensor buffer current control"
1167 * = 1 (0x01) ....1... "half current"
1168 * CHLF[2] "Column buffer current control"
1169 * = 0 (0x00) .....0.. "normal current"
1170 * CHLF[1] "Analog DSP current control"
1171 * = 0 (0x00) ......0. "normal current"
1172 * CHLF[1] "ADC current control"
1173 * = 0 (0x00) ......0. "normal current"
1174 */
1175 { 0x33, 0x09 },
1176
1177 /*
1178 * 34 VBLM "Blooming Control"
1179 * = 80 (0x50) 01010000
1180 * VBLM[7] "Hard soft reset switch"
1181 * = 0 (0x00) 0....... "Hard reset"
1182 * VBLM[6:4] "Blooming voltage selection"
1183 * = 5 (0x05) .101....
1184 * VBLM[3:0] "Sensor current control"
1185 * = 0 (0x00) ....0000
1186 */
1187 { 0x34, 0x50 },
1188
1189 /*
1190 * 12 COMH "Common Control H"
1191 * = 64 (0x40) 01000000
1192 * COMH[7] "SRST"
1193 * = 0 (0x00) 0....... "No-op"
1194 * COMH[6:4] "Resolution selection"
1195 * = 4 (0x04) .100.... "XGA"
1196 * COMH[3] "Master slave selection"
1197 * = 0 (0x00) ....0... "Master mode"
1198 * COMH[2] "Internal B/R channel option"
1199 * = 0 (0x00) .....0.. "B/R use same channel"
1200 * COMH[1] "Color bar test pattern"
1201 * = 0 (0x00) ......0. "Off"
1202 * COMH[0] "Reserved"
1203 * = 0 (0x00) .......0
1204 */
1205 { 0x12, 0x40 },
1206
1207 /*
1208 * 17 HREFST "Horizontal window start"
1209 * = 31 (0x1F) 00011111
1210 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1211 * = 31 (0x1F) 00011111
1212 */
1213 { 0x17, 0x1f },
1214
1215 /*
1216 * 18 HREFEND "Horizontal window end"
1217 * = 95 (0x5F) 01011111
1218 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1219 * = 95 (0x5F) 01011111
1220 */
1221 { 0x18, 0x5f },
1222
1223 /*
1224 * 19 VSTRT "Vertical window start"
1225 * = 0 (0x00) 00000000
1226 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1227 * = 0 (0x00) 00000000
1228 */
1229 { 0x19, 0x00 },
1230
1231 /*
1232 * 1A VEND "Vertical window end"
1233 * = 96 (0x60) 01100000
1234 * VEND[7:0] "Vertical Window End, 8 MSBs"
1235 * = 96 (0x60) 01100000
1236 */
1237 { 0x1a, 0x60 },
1238
1239 /*
1240 * 32 COMM "Common Control M"
1241 * = 18 (0x12) 00010010
1242 * COMM[7:6] "Pixel clock divide option"
1243 * = 0 (0x00) 00...... "/1"
1244 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1245 * = 2 (0x02) ..010...
1246 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1247 * = 2 (0x02) .....010
1248 */
1249 { 0x32, 0x12 },
1250
1251 /*
1252 * 03 COMA "Common Control A"
1253 * = 74 (0x4A) 01001010
1254 * COMA[7:4] "AWB Update Threshold"
1255 * = 4 (0x04) 0100....
1256 * COMA[3:2] "Vertical window end line control 2 LSBs"
1257 * = 2 (0x02) ....10..
1258 * COMA[1:0] "Vertical window start line control 2 LSBs"
1259 * = 2 (0x02) ......10
1260 */
1261 { 0x03, 0x4a },
1262
1263 /*
1264 * 11 CLKRC "Clock Rate Control"
1265 * = 128 (0x80) 10000000
1266 * CLKRC[7] "Internal frequency doublers on off seclection"
1267 * = 1 (0x01) 1....... "On"
1268 * CLKRC[6] "Digital video master slave selection"
1269 * = 0 (0x00) .0...... "Master mode, sensor
1270 * provides PCLK"
1271 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1272 * = 0 (0x00) ..000000
1273 */
1274 { 0x11, 0x80 },
1275
1276 /*
1277 * 12 COMH "Common Control H"
1278 * = 0 (0x00) 00000000
1279 * COMH[7] "SRST"
1280 * = 0 (0x00) 0....... "No-op"
1281 * COMH[6:4] "Resolution selection"
1282 * = 0 (0x00) .000.... "QXGA"
1283 * COMH[3] "Master slave selection"
1284 * = 0 (0x00) ....0... "Master mode"
1285 * COMH[2] "Internal B/R channel option"
1286 * = 0 (0x00) .....0.. "B/R use same channel"
1287 * COMH[1] "Color bar test pattern"
1288 * = 0 (0x00) ......0. "Off"
1289 * COMH[0] "Reserved"
1290 * = 0 (0x00) .......0
1291 */
1292 { 0x12, 0x00 },
1293
1294 /*
1295 * 12 COMH "Common Control H"
1296 * = 64 (0x40) 01000000
1297 * COMH[7] "SRST"
1298 * = 0 (0x00) 0....... "No-op"
1299 * COMH[6:4] "Resolution selection"
1300 * = 4 (0x04) .100.... "XGA"
1301 * COMH[3] "Master slave selection"
1302 * = 0 (0x00) ....0... "Master mode"
1303 * COMH[2] "Internal B/R channel option"
1304 * = 0 (0x00) .....0.. "B/R use same channel"
1305 * COMH[1] "Color bar test pattern"
1306 * = 0 (0x00) ......0. "Off"
1307 * COMH[0] "Reserved"
1308 * = 0 (0x00) .......0
1309 */
1310 { 0x12, 0x40 },
1311
1312 /*
1313 * 17 HREFST "Horizontal window start"
1314 * = 31 (0x1F) 00011111
1315 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1316 * = 31 (0x1F) 00011111
1317 */
1318 { 0x17, 0x1f },
1319
1320 /*
1321 * 18 HREFEND "Horizontal window end"
1322 * = 95 (0x5F) 01011111
1323 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1324 * = 95 (0x5F) 01011111
1325 */
1326 { 0x18, 0x5f },
1327
1328 /*
1329 * 19 VSTRT "Vertical window start"
1330 * = 0 (0x00) 00000000
1331 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1332 * = 0 (0x00) 00000000
1333 */
1334 { 0x19, 0x00 },
1335
1336 /*
1337 * 1A VEND "Vertical window end"
1338 * = 96 (0x60) 01100000
1339 * VEND[7:0] "Vertical Window End, 8 MSBs"
1340 * = 96 (0x60) 01100000
1341 */
1342 { 0x1a, 0x60 },
1343
1344 /*
1345 * 32 COMM "Common Control M"
1346 * = 18 (0x12) 00010010
1347 * COMM[7:6] "Pixel clock divide option"
1348 * = 0 (0x00) 00...... "/1"
1349 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1350 * = 2 (0x02) ..010...
1351 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1352 * = 2 (0x02) .....010
1353 */
1354 { 0x32, 0x12 },
1355
1356 /*
1357 * 03 COMA "Common Control A"
1358 * = 74 (0x4A) 01001010
1359 * COMA[7:4] "AWB Update Threshold"
1360 * = 4 (0x04) 0100....
1361 * COMA[3:2] "Vertical window end line control 2 LSBs"
1362 * = 2 (0x02) ....10..
1363 * COMA[1:0] "Vertical window start line control 2 LSBs"
1364 * = 2 (0x02) ......10
1365 */
1366 { 0x03, 0x4a },
1367
1368 /*
1369 * 02 RED "Red Gain Control"
1370 * = 175 (0xAF) 10101111
1371 * RED[7] "Action"
1372 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1373 * RED[6:0] "Value"
1374 * = 47 (0x2F) .0101111
1375 */
1376 { 0x02, 0xaf },
1377
1378 /*
1379 * 2D ADDVSL "VSYNC Pulse Width"
1380 * = 210 (0xD2) 11010010
1381 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1382 * = 210 (0xD2) 11010010
1383 */
1384 { 0x2d, 0xd2 },
1385
1386 /*
1387 * 00 GAIN = 24 (0x18) 00011000
1388 * GAIN[7:6] "Reserved"
1389 * = 0 (0x00) 00......
1390 * GAIN[5] "Double"
1391 * = 0 (0x00) ..0..... "False"
1392 * GAIN[4] "Double"
1393 * = 1 (0x01) ...1.... "True"
1394 * GAIN[3:0] "Range"
1395 * = 8 (0x08) ....1000
1396 */
1397 { 0x00, 0x18 },
1398
1399 /*
1400 * 01 BLUE "Blue Gain Control"
1401 * = 240 (0xF0) 11110000
1402 * BLUE[7] "Action"
1403 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1404 * BLUE[6:0] "Value"
1405 * = 112 (0x70) .1110000
1406 */
1407 { 0x01, 0xf0 },
1408
1409 /*
1410 * 10 AEC "Automatic Exposure Control"
1411 * = 10 (0x0A) 00001010
1412 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1413 * = 10 (0x0A) 00001010
1414 */
1415 { 0x10, 0x0a },
1416
1417 { 0xe1, 0x67 },
1418 { 0xe3, 0x03 },
1419 { 0xe4, 0x26 },
1420 { 0xe5, 0x3e },
1421 { 0xf8, 0x01 },
1422 { 0xff, 0x01 },
1423 };
1424
1425 static const struct ov_i2c_regvals norm_6x20[] = {
1426 { 0x12, 0x80 }, /* reset */
1427 { 0x11, 0x01 },
1428 { 0x03, 0x60 },
1429 { 0x05, 0x7f }, /* For when autoadjust is off */
1430 { 0x07, 0xa8 },
1431 /* The ratio of 0x0c and 0x0d controls the white point */
1432 { 0x0c, 0x24 },
1433 { 0x0d, 0x24 },
1434 { 0x0f, 0x15 }, /* COMS */
1435 { 0x10, 0x75 }, /* AEC Exposure time */
1436 { 0x12, 0x24 }, /* Enable AGC */
1437 { 0x14, 0x04 },
1438 /* 0x16: 0x06 helps frame stability with moving objects */
1439 { 0x16, 0x06 },
1440 /* { 0x20, 0x30 }, * Aperture correction enable */
1441 { 0x26, 0xb2 }, /* BLC enable */
1442 /* 0x28: 0x05 Selects RGB format if RGB on */
1443 { 0x28, 0x05 },
1444 { 0x2a, 0x04 }, /* Disable framerate adjust */
1445 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1446 { 0x2d, 0x85 },
1447 { 0x33, 0xa0 }, /* Color Processing Parameter */
1448 { 0x34, 0xd2 }, /* Max A/D range */
1449 { 0x38, 0x8b },
1450 { 0x39, 0x40 },
1451
1452 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1453 { 0x3c, 0x3c }, /* Change AEC mode */
1454 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1455
1456 { 0x3d, 0x80 },
1457 /* These next two registers (0x4a, 0x4b) are undocumented.
1458 * They control the color balance */
1459 { 0x4a, 0x80 },
1460 { 0x4b, 0x80 },
1461 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1462 { 0x4e, 0xc1 },
1463 { 0x4f, 0x04 },
1464 /* Do 50-53 have any effect? */
1465 /* Toggle 0x12[2] off and on here? */
1466 };
1467
1468 static const struct ov_i2c_regvals norm_6x30[] = {
1469 { 0x12, 0x80 }, /* Reset */
1470 { 0x00, 0x1f }, /* Gain */
1471 { 0x01, 0x99 }, /* Blue gain */
1472 { 0x02, 0x7c }, /* Red gain */
1473 { 0x03, 0xc0 }, /* Saturation */
1474 { 0x05, 0x0a }, /* Contrast */
1475 { 0x06, 0x95 }, /* Brightness */
1476 { 0x07, 0x2d }, /* Sharpness */
1477 { 0x0c, 0x20 },
1478 { 0x0d, 0x20 },
1479 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1480 { 0x0f, 0x05 },
1481 { 0x10, 0x9a },
1482 { 0x11, 0x00 }, /* Pixel clock = fastest */
1483 { 0x12, 0x24 }, /* Enable AGC and AWB */
1484 { 0x13, 0x21 },
1485 { 0x14, 0x80 },
1486 { 0x15, 0x01 },
1487 { 0x16, 0x03 },
1488 { 0x17, 0x38 },
1489 { 0x18, 0xea },
1490 { 0x19, 0x04 },
1491 { 0x1a, 0x93 },
1492 { 0x1b, 0x00 },
1493 { 0x1e, 0xc4 },
1494 { 0x1f, 0x04 },
1495 { 0x20, 0x20 },
1496 { 0x21, 0x10 },
1497 { 0x22, 0x88 },
1498 { 0x23, 0xc0 }, /* Crystal circuit power level */
1499 { 0x25, 0x9a }, /* Increase AEC black ratio */
1500 { 0x26, 0xb2 }, /* BLC enable */
1501 { 0x27, 0xa2 },
1502 { 0x28, 0x00 },
1503 { 0x29, 0x00 },
1504 { 0x2a, 0x84 }, /* 60 Hz power */
1505 { 0x2b, 0xa8 }, /* 60 Hz power */
1506 { 0x2c, 0xa0 },
1507 { 0x2d, 0x95 }, /* Enable auto-brightness */
1508 { 0x2e, 0x88 },
1509 { 0x33, 0x26 },
1510 { 0x34, 0x03 },
1511 { 0x36, 0x8f },
1512 { 0x37, 0x80 },
1513 { 0x38, 0x83 },
1514 { 0x39, 0x80 },
1515 { 0x3a, 0x0f },
1516 { 0x3b, 0x3c },
1517 { 0x3c, 0x1a },
1518 { 0x3d, 0x80 },
1519 { 0x3e, 0x80 },
1520 { 0x3f, 0x0e },
1521 { 0x40, 0x00 }, /* White bal */
1522 { 0x41, 0x00 }, /* White bal */
1523 { 0x42, 0x80 },
1524 { 0x43, 0x3f }, /* White bal */
1525 { 0x44, 0x80 },
1526 { 0x45, 0x20 },
1527 { 0x46, 0x20 },
1528 { 0x47, 0x80 },
1529 { 0x48, 0x7f },
1530 { 0x49, 0x00 },
1531 { 0x4a, 0x00 },
1532 { 0x4b, 0x80 },
1533 { 0x4c, 0xd0 },
1534 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1535 { 0x4e, 0x40 },
1536 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1537 { 0x50, 0xff },
1538 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1539 { 0x55, 0xff },
1540 { 0x56, 0x12 },
1541 { 0x57, 0x81 },
1542 { 0x58, 0x75 },
1543 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1544 { 0x5a, 0x2c },
1545 { 0x5b, 0x0f }, /* AWB chrominance levels */
1546 { 0x5c, 0x10 },
1547 { 0x3d, 0x80 },
1548 { 0x27, 0xa6 },
1549 { 0x12, 0x20 }, /* Toggle AWB */
1550 { 0x12, 0x24 },
1551 };
1552
1553 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1554 *
1555 * Register 0x0f in the 7610 has the following effects:
1556 *
1557 * 0x85 (AEC method 1): Best overall, good contrast range
1558 * 0x45 (AEC method 2): Very overexposed
1559 * 0xa5 (spec sheet default): Ok, but the black level is
1560 * shifted resulting in loss of contrast
1561 * 0x05 (old driver setting): very overexposed, too much
1562 * contrast
1563 */
1564 static const struct ov_i2c_regvals norm_7610[] = {
1565 { 0x10, 0xff },
1566 { 0x16, 0x06 },
1567 { 0x28, 0x24 },
1568 { 0x2b, 0xac },
1569 { 0x12, 0x00 },
1570 { 0x38, 0x81 },
1571 { 0x28, 0x24 }, /* 0c */
1572 { 0x0f, 0x85 }, /* lg's setting */
1573 { 0x15, 0x01 },
1574 { 0x20, 0x1c },
1575 { 0x23, 0x2a },
1576 { 0x24, 0x10 },
1577 { 0x25, 0x8a },
1578 { 0x26, 0xa2 },
1579 { 0x27, 0xc2 },
1580 { 0x2a, 0x04 },
1581 { 0x2c, 0xfe },
1582 { 0x2d, 0x93 },
1583 { 0x30, 0x71 },
1584 { 0x31, 0x60 },
1585 { 0x32, 0x26 },
1586 { 0x33, 0x20 },
1587 { 0x34, 0x48 },
1588 { 0x12, 0x24 },
1589 { 0x11, 0x01 },
1590 { 0x0c, 0x24 },
1591 { 0x0d, 0x24 },
1592 };
1593
1594 static const struct ov_i2c_regvals norm_7620[] = {
1595 { 0x12, 0x80 }, /* reset */
1596 { 0x00, 0x00 }, /* gain */
1597 { 0x01, 0x80 }, /* blue gain */
1598 { 0x02, 0x80 }, /* red gain */
1599 { 0x03, 0xc0 }, /* OV7670_R03_VREF */
1600 { 0x06, 0x60 },
1601 { 0x07, 0x00 },
1602 { 0x0c, 0x24 },
1603 { 0x0c, 0x24 },
1604 { 0x0d, 0x24 },
1605 { 0x11, 0x01 },
1606 { 0x12, 0x24 },
1607 { 0x13, 0x01 },
1608 { 0x14, 0x84 },
1609 { 0x15, 0x01 },
1610 { 0x16, 0x03 },
1611 { 0x17, 0x2f },
1612 { 0x18, 0xcf },
1613 { 0x19, 0x06 },
1614 { 0x1a, 0xf5 },
1615 { 0x1b, 0x00 },
1616 { 0x20, 0x18 },
1617 { 0x21, 0x80 },
1618 { 0x22, 0x80 },
1619 { 0x23, 0x00 },
1620 { 0x26, 0xa2 },
1621 { 0x27, 0xea },
1622 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1623 { 0x29, 0x00 },
1624 { 0x2a, 0x10 },
1625 { 0x2b, 0x00 },
1626 { 0x2c, 0x88 },
1627 { 0x2d, 0x91 },
1628 { 0x2e, 0x80 },
1629 { 0x2f, 0x44 },
1630 { 0x60, 0x27 },
1631 { 0x61, 0x02 },
1632 { 0x62, 0x5f },
1633 { 0x63, 0xd5 },
1634 { 0x64, 0x57 },
1635 { 0x65, 0x83 },
1636 { 0x66, 0x55 },
1637 { 0x67, 0x92 },
1638 { 0x68, 0xcf },
1639 { 0x69, 0x76 },
1640 { 0x6a, 0x22 },
1641 { 0x6b, 0x00 },
1642 { 0x6c, 0x02 },
1643 { 0x6d, 0x44 },
1644 { 0x6e, 0x80 },
1645 { 0x6f, 0x1d },
1646 { 0x70, 0x8b },
1647 { 0x71, 0x00 },
1648 { 0x72, 0x14 },
1649 { 0x73, 0x54 },
1650 { 0x74, 0x00 },
1651 { 0x75, 0x8e },
1652 { 0x76, 0x00 },
1653 { 0x77, 0xff },
1654 { 0x78, 0x80 },
1655 { 0x79, 0x80 },
1656 { 0x7a, 0x80 },
1657 { 0x7b, 0xe2 },
1658 { 0x7c, 0x00 },
1659 };
1660
1661 /* 7640 and 7648. The defaults should be OK for most registers. */
1662 static const struct ov_i2c_regvals norm_7640[] = {
1663 { 0x12, 0x80 },
1664 { 0x12, 0x14 },
1665 };
1666
1667 static const struct ov_regvals init_519_ov7660[] = {
1668 { 0x5d, 0x03 }, /* Turn off suspend mode */
1669 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */
1670 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
1671 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
1672 { 0xa3, 0x18 },
1673 { 0xa4, 0x04 },
1674 { 0xa5, 0x28 },
1675 { 0x37, 0x00 }, /* SetUsbInit */
1676 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
1677 /* Enable both fields, YUV Input, disable defect comp (why?) */
1678 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */
1679 { 0x21, 0x38 },
1680 { 0x22, 0x1d },
1681 { 0x17, 0x50 }, /* undocumented */
1682 { 0x37, 0x00 }, /* undocumented */
1683 { 0x40, 0xff }, /* I2C timeout counter */
1684 { 0x46, 0x00 }, /* I2C clock prescaler */
1685 };
1686 static const struct ov_i2c_regvals norm_7660[] = {
1687 {OV7670_R12_COM7, OV7670_COM7_RESET},
1688 {OV7670_R11_CLKRC, 0x81},
1689 {0x92, 0x00}, /* DM_LNL */
1690 {0x93, 0x00}, /* DM_LNH */
1691 {0x9d, 0x4c}, /* BD50ST */
1692 {0x9e, 0x3f}, /* BD60ST */
1693 {OV7670_R3B_COM11, 0x02},
1694 {OV7670_R13_COM8, 0xf5},
1695 {OV7670_R10_AECH, 0x00},
1696 {OV7670_R00_GAIN, 0x00},
1697 {OV7670_R01_BLUE, 0x7c},
1698 {OV7670_R02_RED, 0x9d},
1699 {OV7670_R12_COM7, 0x00},
1700 {OV7670_R04_COM1, 00},
1701 {OV7670_R18_HSTOP, 0x01},
1702 {OV7670_R17_HSTART, 0x13},
1703 {OV7670_R32_HREF, 0x92},
1704 {OV7670_R19_VSTART, 0x02},
1705 {OV7670_R1A_VSTOP, 0x7a},
1706 {OV7670_R03_VREF, 0x00},
1707 {OV7670_R0E_COM5, 0x04},
1708 {OV7670_R0F_COM6, 0x62},
1709 {OV7670_R15_COM10, 0x00},
1710 {0x16, 0x02}, /* RSVD */
1711 {0x1b, 0x00}, /* PSHFT */
1712 {OV7670_R1E_MVFP, 0x01},
1713 {0x29, 0x3c}, /* RSVD */
1714 {0x33, 0x00}, /* CHLF */
1715 {0x34, 0x07}, /* ARBLM */
1716 {0x35, 0x84}, /* RSVD */
1717 {0x36, 0x00}, /* RSVD */
1718 {0x37, 0x04}, /* ADC */
1719 {0x39, 0x43}, /* OFON */
1720 {OV7670_R3A_TSLB, 0x00},
1721 {OV7670_R3C_COM12, 0x6c},
1722 {OV7670_R3D_COM13, 0x98},
1723 {OV7670_R3F_EDGE, 0x23},
1724 {OV7670_R40_COM15, 0xc1},
1725 {OV7670_R41_COM16, 0x22},
1726 {0x6b, 0x0a}, /* DBLV */
1727 {0xa1, 0x08}, /* RSVD */
1728 {0x69, 0x80}, /* HV */
1729 {0x43, 0xf0}, /* RSVD.. */
1730 {0x44, 0x10},
1731 {0x45, 0x78},
1732 {0x46, 0xa8},
1733 {0x47, 0x60},
1734 {0x48, 0x80},
1735 {0x59, 0xba},
1736 {0x5a, 0x9a},
1737 {0x5b, 0x22},
1738 {0x5c, 0xb9},
1739 {0x5d, 0x9b},
1740 {0x5e, 0x10},
1741 {0x5f, 0xe0},
1742 {0x60, 0x85},
1743 {0x61, 0x60},
1744 {0x9f, 0x9d}, /* RSVD */
1745 {0xa0, 0xa0}, /* DSPC2 */
1746 {0x4f, 0x60}, /* matrix */
1747 {0x50, 0x64},
1748 {0x51, 0x04},
1749 {0x52, 0x18},
1750 {0x53, 0x3c},
1751 {0x54, 0x54},
1752 {0x55, 0x40},
1753 {0x56, 0x40},
1754 {0x57, 0x40},
1755 {0x58, 0x0d}, /* matrix sign */
1756 {0x8b, 0xcc}, /* RSVD */
1757 {0x8c, 0xcc},
1758 {0x8d, 0xcf},
1759 {0x6c, 0x40}, /* gamma curve */
1760 {0x6d, 0xe0},
1761 {0x6e, 0xa0},
1762 {0x6f, 0x80},
1763 {0x70, 0x70},
1764 {0x71, 0x80},
1765 {0x72, 0x60},
1766 {0x73, 0x60},
1767 {0x74, 0x50},
1768 {0x75, 0x40},
1769 {0x76, 0x38},
1770 {0x77, 0x3c},
1771 {0x78, 0x32},
1772 {0x79, 0x1a},
1773 {0x7a, 0x28},
1774 {0x7b, 0x24},
1775 {0x7c, 0x04}, /* gamma curve */
1776 {0x7d, 0x12},
1777 {0x7e, 0x26},
1778 {0x7f, 0x46},
1779 {0x80, 0x54},
1780 {0x81, 0x64},
1781 {0x82, 0x70},
1782 {0x83, 0x7c},
1783 {0x84, 0x86},
1784 {0x85, 0x8e},
1785 {0x86, 0x9c},
1786 {0x87, 0xab},
1787 {0x88, 0xc4},
1788 {0x89, 0xd1},
1789 {0x8a, 0xe5},
1790 {OV7670_R14_COM9, 0x1e},
1791 {OV7670_R24_AEW, 0x80},
1792 {OV7670_R25_AEB, 0x72},
1793 {OV7670_R26_VPT, 0xb3},
1794 {0x62, 0x80}, /* LCC1 */
1795 {0x63, 0x80}, /* LCC2 */
1796 {0x64, 0x06}, /* LCC3 */
1797 {0x65, 0x00}, /* LCC4 */
1798 {0x66, 0x01}, /* LCC5 */
1799 {0x94, 0x0e}, /* RSVD.. */
1800 {0x95, 0x14},
1801 {OV7670_R13_COM8, OV7670_COM8_FASTAEC
1802 | OV7670_COM8_AECSTEP
1803 | OV7670_COM8_BFILT
1804 | 0x10
1805 | OV7670_COM8_AGC
1806 | OV7670_COM8_AWB
1807 | OV7670_COM8_AEC},
1808 {0xa1, 0xc8}
1809 };
1810
1811 /* 7670. Defaults taken from OmniVision provided data,
1812 * as provided by Jonathan Corbet of OLPC */
1813 static const struct ov_i2c_regvals norm_7670[] = {
1814 { OV7670_R12_COM7, OV7670_COM7_RESET },
1815 { OV7670_R3A_TSLB, 0x04 }, /* OV */
1816 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1817 { OV7670_R11_CLKRC, 0x01 },
1818 /*
1819 * Set the hardware window. These values from OV don't entirely
1820 * make sense - hstop is less than hstart. But they work...
1821 */
1822 { OV7670_R17_HSTART, 0x13 },
1823 { OV7670_R18_HSTOP, 0x01 },
1824 { OV7670_R32_HREF, 0xb6 },
1825 { OV7670_R19_VSTART, 0x02 },
1826 { OV7670_R1A_VSTOP, 0x7a },
1827 { OV7670_R03_VREF, 0x0a },
1828
1829 { OV7670_R0C_COM3, 0x00 },
1830 { OV7670_R3E_COM14, 0x00 },
1831 /* Mystery scaling numbers */
1832 { 0x70, 0x3a },
1833 { 0x71, 0x35 },
1834 { 0x72, 0x11 },
1835 { 0x73, 0xf0 },
1836 { 0xa2, 0x02 },
1837 /* { OV7670_R15_COM10, 0x0 }, */
1838
1839 /* Gamma curve values */
1840 { 0x7a, 0x20 },
1841 { 0x7b, 0x10 },
1842 { 0x7c, 0x1e },
1843 { 0x7d, 0x35 },
1844 { 0x7e, 0x5a },
1845 { 0x7f, 0x69 },
1846 { 0x80, 0x76 },
1847 { 0x81, 0x80 },
1848 { 0x82, 0x88 },
1849 { 0x83, 0x8f },
1850 { 0x84, 0x96 },
1851 { 0x85, 0xa3 },
1852 { 0x86, 0xaf },
1853 { 0x87, 0xc4 },
1854 { 0x88, 0xd7 },
1855 { 0x89, 0xe8 },
1856
1857 /* AGC and AEC parameters. Note we start by disabling those features,
1858 then turn them only after tweaking the values. */
1859 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1860 | OV7670_COM8_AECSTEP
1861 | OV7670_COM8_BFILT },
1862 { OV7670_R00_GAIN, 0x00 },
1863 { OV7670_R10_AECH, 0x00 },
1864 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1865 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1866 { OV7670_RA5_BD50MAX, 0x05 },
1867 { OV7670_RAB_BD60MAX, 0x07 },
1868 { OV7670_R24_AEW, 0x95 },
1869 { OV7670_R25_AEB, 0x33 },
1870 { OV7670_R26_VPT, 0xe3 },
1871 { OV7670_R9F_HAECC1, 0x78 },
1872 { OV7670_RA0_HAECC2, 0x68 },
1873 { 0xa1, 0x03 }, /* magic */
1874 { OV7670_RA6_HAECC3, 0xd8 },
1875 { OV7670_RA7_HAECC4, 0xd8 },
1876 { OV7670_RA8_HAECC5, 0xf0 },
1877 { OV7670_RA9_HAECC6, 0x90 },
1878 { OV7670_RAA_HAECC7, 0x94 },
1879 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1880 | OV7670_COM8_AECSTEP
1881 | OV7670_COM8_BFILT
1882 | OV7670_COM8_AGC
1883 | OV7670_COM8_AEC },
1884
1885 /* Almost all of these are magic "reserved" values. */
1886 { OV7670_R0E_COM5, 0x61 },
1887 { OV7670_R0F_COM6, 0x4b },
1888 { 0x16, 0x02 },
1889 { OV7670_R1E_MVFP, 0x07 },
1890 { 0x21, 0x02 },
1891 { 0x22, 0x91 },
1892 { 0x29, 0x07 },
1893 { 0x33, 0x0b },
1894 { 0x35, 0x0b },
1895 { 0x37, 0x1d },
1896 { 0x38, 0x71 },
1897 { 0x39, 0x2a },
1898 { OV7670_R3C_COM12, 0x78 },
1899 { 0x4d, 0x40 },
1900 { 0x4e, 0x20 },
1901 { OV7670_R69_GFIX, 0x00 },
1902 { 0x6b, 0x4a },
1903 { 0x74, 0x10 },
1904 { 0x8d, 0x4f },
1905 { 0x8e, 0x00 },
1906 { 0x8f, 0x00 },
1907 { 0x90, 0x00 },
1908 { 0x91, 0x00 },
1909 { 0x96, 0x00 },
1910 { 0x9a, 0x00 },
1911 { 0xb0, 0x84 },
1912 { 0xb1, 0x0c },
1913 { 0xb2, 0x0e },
1914 { 0xb3, 0x82 },
1915 { 0xb8, 0x0a },
1916
1917 /* More reserved magic, some of which tweaks white balance */
1918 { 0x43, 0x0a },
1919 { 0x44, 0xf0 },
1920 { 0x45, 0x34 },
1921 { 0x46, 0x58 },
1922 { 0x47, 0x28 },
1923 { 0x48, 0x3a },
1924 { 0x59, 0x88 },
1925 { 0x5a, 0x88 },
1926 { 0x5b, 0x44 },
1927 { 0x5c, 0x67 },
1928 { 0x5d, 0x49 },
1929 { 0x5e, 0x0e },
1930 { 0x6c, 0x0a },
1931 { 0x6d, 0x55 },
1932 { 0x6e, 0x11 },
1933 { 0x6f, 0x9f }, /* "9e for advance AWB" */
1934 { 0x6a, 0x40 },
1935 { OV7670_R01_BLUE, 0x40 },
1936 { OV7670_R02_RED, 0x60 },
1937 { OV7670_R13_COM8, OV7670_COM8_FASTAEC
1938 | OV7670_COM8_AECSTEP
1939 | OV7670_COM8_BFILT
1940 | OV7670_COM8_AGC
1941 | OV7670_COM8_AEC
1942 | OV7670_COM8_AWB },
1943
1944 /* Matrix coefficients */
1945 { 0x4f, 0x80 },
1946 { 0x50, 0x80 },
1947 { 0x51, 0x00 },
1948 { 0x52, 0x22 },
1949 { 0x53, 0x5e },
1950 { 0x54, 0x80 },
1951 { 0x58, 0x9e },
1952
1953 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1954 { OV7670_R3F_EDGE, 0x00 },
1955 { 0x75, 0x05 },
1956 { 0x76, 0xe1 },
1957 { 0x4c, 0x00 },
1958 { 0x77, 0x01 },
1959 { OV7670_R3D_COM13, OV7670_COM13_GAMMA
1960 | OV7670_COM13_UVSAT
1961 | 2}, /* was 3 */
1962 { 0x4b, 0x09 },
1963 { 0xc9, 0x60 },
1964 { OV7670_R41_COM16, 0x38 },
1965 { 0x56, 0x40 },
1966
1967 { 0x34, 0x11 },
1968 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1969 { 0xa4, 0x88 },
1970 { 0x96, 0x00 },
1971 { 0x97, 0x30 },
1972 { 0x98, 0x20 },
1973 { 0x99, 0x30 },
1974 { 0x9a, 0x84 },
1975 { 0x9b, 0x29 },
1976 { 0x9c, 0x03 },
1977 { 0x9d, 0x4c },
1978 { 0x9e, 0x3f },
1979 { 0x78, 0x04 },
1980
1981 /* Extra-weird stuff. Some sort of multiplexor register */
1982 { 0x79, 0x01 },
1983 { 0xc8, 0xf0 },
1984 { 0x79, 0x0f },
1985 { 0xc8, 0x00 },
1986 { 0x79, 0x10 },
1987 { 0xc8, 0x7e },
1988 { 0x79, 0x0a },
1989 { 0xc8, 0x80 },
1990 { 0x79, 0x0b },
1991 { 0xc8, 0x01 },
1992 { 0x79, 0x0c },
1993 { 0xc8, 0x0f },
1994 { 0x79, 0x0d },
1995 { 0xc8, 0x20 },
1996 { 0x79, 0x09 },
1997 { 0xc8, 0x80 },
1998 { 0x79, 0x02 },
1999 { 0xc8, 0xc0 },
2000 { 0x79, 0x03 },
2001 { 0xc8, 0x40 },
2002 { 0x79, 0x05 },
2003 { 0xc8, 0x30 },
2004 { 0x79, 0x26 },
2005 };
2006
2007 static const struct ov_i2c_regvals norm_8610[] = {
2008 { 0x12, 0x80 },
2009 { 0x00, 0x00 },
2010 { 0x01, 0x80 },
2011 { 0x02, 0x80 },
2012 { 0x03, 0xc0 },
2013 { 0x04, 0x30 },
2014 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
2015 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
2016 { 0x0a, 0x86 },
2017 { 0x0b, 0xb0 },
2018 { 0x0c, 0x20 },
2019 { 0x0d, 0x20 },
2020 { 0x11, 0x01 },
2021 { 0x12, 0x25 },
2022 { 0x13, 0x01 },
2023 { 0x14, 0x04 },
2024 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
2025 { 0x16, 0x03 },
2026 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
2027 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
2028 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
2029 { 0x1a, 0xf5 },
2030 { 0x1b, 0x00 },
2031 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
2032 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
2033 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
2034 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
2035 { 0x26, 0xa2 },
2036 { 0x27, 0xea },
2037 { 0x28, 0x00 },
2038 { 0x29, 0x00 },
2039 { 0x2a, 0x80 },
2040 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
2041 { 0x2c, 0xac },
2042 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
2043 { 0x2e, 0x80 },
2044 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
2045 { 0x4c, 0x00 },
2046 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
2047 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
2048 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
2049 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
2050 { 0x63, 0xff },
2051 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
2052 * maybe thats wrong */
2053 { 0x65, 0x00 },
2054 { 0x66, 0x55 },
2055 { 0x67, 0xb0 },
2056 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
2057 { 0x69, 0x02 },
2058 { 0x6a, 0x22 },
2059 { 0x6b, 0x00 },
2060 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
2061 * deleting bit7 colors the first images red */
2062 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
2063 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
2064 { 0x6f, 0x01 },
2065 { 0x70, 0x8b },
2066 { 0x71, 0x00 },
2067 { 0x72, 0x14 },
2068 { 0x73, 0x54 },
2069 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2070 { 0x75, 0x0e },
2071 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2072 { 0x77, 0xff },
2073 { 0x78, 0x80 },
2074 { 0x79, 0x80 },
2075 { 0x7a, 0x80 },
2076 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2077 { 0x7c, 0x00 },
2078 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2079 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2080 { 0x7f, 0xfb },
2081 { 0x80, 0x28 },
2082 { 0x81, 0x00 },
2083 { 0x82, 0x23 },
2084 { 0x83, 0x0b },
2085 { 0x84, 0x00 },
2086 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2087 { 0x86, 0xc9 },
2088 { 0x87, 0x00 },
2089 { 0x88, 0x00 },
2090 { 0x89, 0x01 },
2091 { 0x12, 0x20 },
2092 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2093 };
2094
2095 static unsigned char ov7670_abs_to_sm(unsigned char v)
2096 {
2097 if (v > 127)
2098 return v & 0x7f;
2099 return (128 - v) | 0x80;
2100 }
2101
2102 /* Write a OV519 register */
2103 static void reg_w(struct sd *sd, u16 index, u16 value)
2104 {
2105 int ret, req = 0;
2106
2107 if (sd->gspca_dev.usb_err < 0)
2108 return;
2109
2110 switch (sd->bridge) {
2111 case BRIDGE_OV511:
2112 case BRIDGE_OV511PLUS:
2113 req = 2;
2114 break;
2115 case BRIDGE_OVFX2:
2116 req = 0x0a;
2117 /* fall through */
2118 case BRIDGE_W9968CF:
2119 PDEBUG(D_USBO, "SET %02x %04x %04x",
2120 req, value, index);
2121 ret = usb_control_msg(sd->gspca_dev.dev,
2122 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2123 req,
2124 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2125 value, index, NULL, 0, 500);
2126 goto leave;
2127 default:
2128 req = 1;
2129 }
2130
2131 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2132 req, index, value);
2133 sd->gspca_dev.usb_buf[0] = value;
2134 ret = usb_control_msg(sd->gspca_dev.dev,
2135 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2136 req,
2137 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2138 0, index,
2139 sd->gspca_dev.usb_buf, 1, 500);
2140 leave:
2141 if (ret < 0) {
2142 err("reg_w %02x failed %d", index, ret);
2143 sd->gspca_dev.usb_err = ret;
2144 return;
2145 }
2146 }
2147
2148 /* Read from a OV519 register, note not valid for the w9968cf!! */
2149 /* returns: negative is error, pos or zero is data */
2150 static int reg_r(struct sd *sd, u16 index)
2151 {
2152 int ret;
2153 int req;
2154
2155 if (sd->gspca_dev.usb_err < 0)
2156 return -1;
2157
2158 switch (sd->bridge) {
2159 case BRIDGE_OV511:
2160 case BRIDGE_OV511PLUS:
2161 req = 3;
2162 break;
2163 case BRIDGE_OVFX2:
2164 req = 0x0b;
2165 break;
2166 default:
2167 req = 1;
2168 }
2169
2170 ret = usb_control_msg(sd->gspca_dev.dev,
2171 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2172 req,
2173 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2174 0, index, sd->gspca_dev.usb_buf, 1, 500);
2175
2176 if (ret >= 0) {
2177 ret = sd->gspca_dev.usb_buf[0];
2178 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2179 req, index, ret);
2180 } else {
2181 err("reg_r %02x failed %d", index, ret);
2182 sd->gspca_dev.usb_err = ret;
2183 }
2184
2185 return ret;
2186 }
2187
2188 /* Read 8 values from a OV519 register */
2189 static int reg_r8(struct sd *sd,
2190 u16 index)
2191 {
2192 int ret;
2193
2194 if (sd->gspca_dev.usb_err < 0)
2195 return -1;
2196
2197 ret = usb_control_msg(sd->gspca_dev.dev,
2198 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2199 1, /* REQ_IO */
2200 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2201 0, index, sd->gspca_dev.usb_buf, 8, 500);
2202
2203 if (ret >= 0) {
2204 ret = sd->gspca_dev.usb_buf[0];
2205 } else {
2206 err("reg_r8 %02x failed %d", index, ret);
2207 sd->gspca_dev.usb_err = ret;
2208 }
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2215 * the same position as 1's in "mask" are cleared and set to "value". Bits
2216 * that are in the same position as 0's in "mask" are preserved, regardless
2217 * of their respective state in "value".
2218 */
2219 static void reg_w_mask(struct sd *sd,
2220 u16 index,
2221 u8 value,
2222 u8 mask)
2223 {
2224 int ret;
2225 u8 oldval;
2226
2227 if (mask != 0xff) {
2228 value &= mask; /* Enforce mask on value */
2229 ret = reg_r(sd, index);
2230 if (ret < 0)
2231 return;
2232
2233 oldval = ret & ~mask; /* Clear the masked bits */
2234 value |= oldval; /* Set the desired bits */
2235 }
2236 reg_w(sd, index, value);
2237 }
2238
2239 /*
2240 * Writes multiple (n) byte value to a single register. Only valid with certain
2241 * registers (0x30 and 0xc4 - 0xce).
2242 */
2243 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2244 {
2245 int ret;
2246
2247 if (sd->gspca_dev.usb_err < 0)
2248 return;
2249
2250 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2251
2252 ret = usb_control_msg(sd->gspca_dev.dev,
2253 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2254 1 /* REG_IO */,
2255 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2256 0, index,
2257 sd->gspca_dev.usb_buf, n, 500);
2258 if (ret < 0) {
2259 err("reg_w32 %02x failed %d", index, ret);
2260 sd->gspca_dev.usb_err = ret;
2261 }
2262 }
2263
2264 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2265 {
2266 int rc, retries;
2267
2268 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2269
2270 /* Three byte write cycle */
2271 for (retries = 6; ; ) {
2272 /* Select camera register */
2273 reg_w(sd, R51x_I2C_SADDR_3, reg);
2274
2275 /* Write "value" to I2C data port of OV511 */
2276 reg_w(sd, R51x_I2C_DATA, value);
2277
2278 /* Initiate 3-byte write cycle */
2279 reg_w(sd, R511_I2C_CTL, 0x01);
2280
2281 do {
2282 rc = reg_r(sd, R511_I2C_CTL);
2283 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2284
2285 if (rc < 0)
2286 return;
2287
2288 if ((rc & 2) == 0) /* Ack? */
2289 break;
2290 if (--retries < 0) {
2291 PDEBUG(D_USBO, "i2c write retries exhausted");
2292 return;
2293 }
2294 }
2295 }
2296
2297 static int ov511_i2c_r(struct sd *sd, u8 reg)
2298 {
2299 int rc, value, retries;
2300
2301 /* Two byte write cycle */
2302 for (retries = 6; ; ) {
2303 /* Select camera register */
2304 reg_w(sd, R51x_I2C_SADDR_2, reg);
2305
2306 /* Initiate 2-byte write cycle */
2307 reg_w(sd, R511_I2C_CTL, 0x03);
2308
2309 do {
2310 rc = reg_r(sd, R511_I2C_CTL);
2311 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2312
2313 if (rc < 0)
2314 return rc;
2315
2316 if ((rc & 2) == 0) /* Ack? */
2317 break;
2318
2319 /* I2C abort */
2320 reg_w(sd, R511_I2C_CTL, 0x10);
2321
2322 if (--retries < 0) {
2323 PDEBUG(D_USBI, "i2c write retries exhausted");
2324 return -1;
2325 }
2326 }
2327
2328 /* Two byte read cycle */
2329 for (retries = 6; ; ) {
2330 /* Initiate 2-byte read cycle */
2331 reg_w(sd, R511_I2C_CTL, 0x05);
2332
2333 do {
2334 rc = reg_r(sd, R511_I2C_CTL);
2335 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2336
2337 if (rc < 0)
2338 return rc;
2339
2340 if ((rc & 2) == 0) /* Ack? */
2341 break;
2342
2343 /* I2C abort */
2344 reg_w(sd, R511_I2C_CTL, 0x10);
2345
2346 if (--retries < 0) {
2347 PDEBUG(D_USBI, "i2c read retries exhausted");
2348 return -1;
2349 }
2350 }
2351
2352 value = reg_r(sd, R51x_I2C_DATA);
2353
2354 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2355
2356 /* This is needed to make i2c_w() work */
2357 reg_w(sd, R511_I2C_CTL, 0x05);
2358
2359 return value;
2360 }
2361
2362 /*
2363 * The OV518 I2C I/O procedure is different, hence, this function.
2364 * This is normally only called from i2c_w(). Note that this function
2365 * always succeeds regardless of whether the sensor is present and working.
2366 */
2367 static void ov518_i2c_w(struct sd *sd,
2368 u8 reg,
2369 u8 value)
2370 {
2371 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2372
2373 /* Select camera register */
2374 reg_w(sd, R51x_I2C_SADDR_3, reg);
2375
2376 /* Write "value" to I2C data port of OV511 */
2377 reg_w(sd, R51x_I2C_DATA, value);
2378
2379 /* Initiate 3-byte write cycle */
2380 reg_w(sd, R518_I2C_CTL, 0x01);
2381
2382 /* wait for write complete */
2383 msleep(4);
2384 reg_r8(sd, R518_I2C_CTL);
2385 }
2386
2387 /*
2388 * returns: negative is error, pos or zero is data
2389 *
2390 * The OV518 I2C I/O procedure is different, hence, this function.
2391 * This is normally only called from i2c_r(). Note that this function
2392 * always succeeds regardless of whether the sensor is present and working.
2393 */
2394 static int ov518_i2c_r(struct sd *sd, u8 reg)
2395 {
2396 int value;
2397
2398 /* Select camera register */
2399 reg_w(sd, R51x_I2C_SADDR_2, reg);
2400
2401 /* Initiate 2-byte write cycle */
2402 reg_w(sd, R518_I2C_CTL, 0x03);
2403
2404 /* Initiate 2-byte read cycle */
2405 reg_w(sd, R518_I2C_CTL, 0x05);
2406 value = reg_r(sd, R51x_I2C_DATA);
2407 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2408 return value;
2409 }
2410
2411 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2412 {
2413 int ret;
2414
2415 if (sd->gspca_dev.usb_err < 0)
2416 return;
2417
2418 ret = usb_control_msg(sd->gspca_dev.dev,
2419 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2420 0x02,
2421 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2422 (u16) value, (u16) reg, NULL, 0, 500);
2423
2424 if (ret < 0) {
2425 err("ovfx2_i2c_w %02x failed %d", reg, ret);
2426 sd->gspca_dev.usb_err = ret;
2427 }
2428
2429 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2430 }
2431
2432 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2433 {
2434 int ret;
2435
2436 if (sd->gspca_dev.usb_err < 0)
2437 return -1;
2438
2439 ret = usb_control_msg(sd->gspca_dev.dev,
2440 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2441 0x03,
2442 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2443 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2444
2445 if (ret >= 0) {
2446 ret = sd->gspca_dev.usb_buf[0];
2447 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2448 } else {
2449 err("ovfx2_i2c_r %02x failed %d", reg, ret);
2450 sd->gspca_dev.usb_err = ret;
2451 }
2452
2453 return ret;
2454 }
2455
2456 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2457 {
2458 if (sd->sensor_reg_cache[reg] == value)
2459 return;
2460
2461 switch (sd->bridge) {
2462 case BRIDGE_OV511:
2463 case BRIDGE_OV511PLUS:
2464 ov511_i2c_w(sd, reg, value);
2465 break;
2466 case BRIDGE_OV518:
2467 case BRIDGE_OV518PLUS:
2468 case BRIDGE_OV519:
2469 ov518_i2c_w(sd, reg, value);
2470 break;
2471 case BRIDGE_OVFX2:
2472 ovfx2_i2c_w(sd, reg, value);
2473 break;
2474 case BRIDGE_W9968CF:
2475 w9968cf_i2c_w(sd, reg, value);
2476 break;
2477 }
2478
2479 if (sd->gspca_dev.usb_err >= 0) {
2480 /* Up on sensor reset empty the register cache */
2481 if (reg == 0x12 && (value & 0x80))
2482 memset(sd->sensor_reg_cache, -1,
2483 sizeof(sd->sensor_reg_cache));
2484 else
2485 sd->sensor_reg_cache[reg] = value;
2486 }
2487 }
2488
2489 static int i2c_r(struct sd *sd, u8 reg)
2490 {
2491 int ret = -1;
2492
2493 if (sd->sensor_reg_cache[reg] != -1)
2494 return sd->sensor_reg_cache[reg];
2495
2496 switch (sd->bridge) {
2497 case BRIDGE_OV511:
2498 case BRIDGE_OV511PLUS:
2499 ret = ov511_i2c_r(sd, reg);
2500 break;
2501 case BRIDGE_OV518:
2502 case BRIDGE_OV518PLUS:
2503 case BRIDGE_OV519:
2504 ret = ov518_i2c_r(sd, reg);
2505 break;
2506 case BRIDGE_OVFX2:
2507 ret = ovfx2_i2c_r(sd, reg);
2508 break;
2509 case BRIDGE_W9968CF:
2510 ret = w9968cf_i2c_r(sd, reg);
2511 break;
2512 }
2513
2514 if (ret >= 0)
2515 sd->sensor_reg_cache[reg] = ret;
2516
2517 return ret;
2518 }
2519
2520 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2521 * the same position as 1's in "mask" are cleared and set to "value". Bits
2522 * that are in the same position as 0's in "mask" are preserved, regardless
2523 * of their respective state in "value".
2524 */
2525 static void i2c_w_mask(struct sd *sd,
2526 u8 reg,
2527 u8 value,
2528 u8 mask)
2529 {
2530 int rc;
2531 u8 oldval;
2532
2533 value &= mask; /* Enforce mask on value */
2534 rc = i2c_r(sd, reg);
2535 if (rc < 0)
2536 return;
2537 oldval = rc & ~mask; /* Clear the masked bits */
2538 value |= oldval; /* Set the desired bits */
2539 i2c_w(sd, reg, value);
2540 }
2541
2542 /* Temporarily stops OV511 from functioning. Must do this before changing
2543 * registers while the camera is streaming */
2544 static inline void ov51x_stop(struct sd *sd)
2545 {
2546 PDEBUG(D_STREAM, "stopping");
2547 sd->stopped = 1;
2548 switch (sd->bridge) {
2549 case BRIDGE_OV511:
2550 case BRIDGE_OV511PLUS:
2551 reg_w(sd, R51x_SYS_RESET, 0x3d);
2552 break;
2553 case BRIDGE_OV518:
2554 case BRIDGE_OV518PLUS:
2555 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2556 break;
2557 case BRIDGE_OV519:
2558 reg_w(sd, OV519_R51_RESET1, 0x0f);
2559 reg_w(sd, OV519_R51_RESET1, 0x00);
2560 reg_w(sd, 0x22, 0x00); /* FRAR */
2561 break;
2562 case BRIDGE_OVFX2:
2563 reg_w_mask(sd, 0x0f, 0x00, 0x02);
2564 break;
2565 case BRIDGE_W9968CF:
2566 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2567 break;
2568 }
2569 }
2570
2571 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2572 * actually stopped (for performance). */
2573 static inline void ov51x_restart(struct sd *sd)
2574 {
2575 PDEBUG(D_STREAM, "restarting");
2576 if (!sd->stopped)
2577 return;
2578 sd->stopped = 0;
2579
2580 /* Reinitialize the stream */
2581 switch (sd->bridge) {
2582 case BRIDGE_OV511:
2583 case BRIDGE_OV511PLUS:
2584 reg_w(sd, R51x_SYS_RESET, 0x00);
2585 break;
2586 case BRIDGE_OV518:
2587 case BRIDGE_OV518PLUS:
2588 reg_w(sd, 0x2f, 0x80);
2589 reg_w(sd, R51x_SYS_RESET, 0x00);
2590 break;
2591 case BRIDGE_OV519:
2592 reg_w(sd, OV519_R51_RESET1, 0x0f);
2593 reg_w(sd, OV519_R51_RESET1, 0x00);
2594 reg_w(sd, 0x22, 0x1d); /* FRAR */
2595 break;
2596 case BRIDGE_OVFX2:
2597 reg_w_mask(sd, 0x0f, 0x02, 0x02);
2598 break;
2599 case BRIDGE_W9968CF:
2600 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2601 break;
2602 }
2603 }
2604
2605 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2606
2607 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2608 * is synchronized. Returns <0 on failure.
2609 */
2610 static int init_ov_sensor(struct sd *sd, u8 slave)
2611 {
2612 int i;
2613
2614 ov51x_set_slave_ids(sd, slave);
2615
2616 /* Reset the sensor */
2617 i2c_w(sd, 0x12, 0x80);
2618
2619 /* Wait for it to initialize */
2620 msleep(150);
2621
2622 for (i = 0; i < i2c_detect_tries; i++) {
2623 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2624 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2625 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2626 return 0;
2627 }
2628
2629 /* Reset the sensor */
2630 i2c_w(sd, 0x12, 0x80);
2631
2632 /* Wait for it to initialize */
2633 msleep(150);
2634
2635 /* Dummy read to sync I2C */
2636 if (i2c_r(sd, 0x00) < 0)
2637 return -1;
2638 }
2639 return -1;
2640 }
2641
2642 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2643 * and the read slave will be set to (slave + 1).
2644 * This should not be called from outside the i2c I/O functions.
2645 * Sets I2C read and write slave IDs. Returns <0 for error
2646 */
2647 static void ov51x_set_slave_ids(struct sd *sd,
2648 u8 slave)
2649 {
2650 switch (sd->bridge) {
2651 case BRIDGE_OVFX2:
2652 reg_w(sd, OVFX2_I2C_ADDR, slave);
2653 return;
2654 case BRIDGE_W9968CF:
2655 sd->sensor_addr = slave;
2656 return;
2657 }
2658
2659 reg_w(sd, R51x_I2C_W_SID, slave);
2660 reg_w(sd, R51x_I2C_R_SID, slave + 1);
2661 }
2662
2663 static void write_regvals(struct sd *sd,
2664 const struct ov_regvals *regvals,
2665 int n)
2666 {
2667 while (--n >= 0) {
2668 reg_w(sd, regvals->reg, regvals->val);
2669 regvals++;
2670 }
2671 }
2672
2673 static void write_i2c_regvals(struct sd *sd,
2674 const struct ov_i2c_regvals *regvals,
2675 int n)
2676 {
2677 while (--n >= 0) {
2678 i2c_w(sd, regvals->reg, regvals->val);
2679 regvals++;
2680 }
2681 }
2682
2683 /****************************************************************************
2684 *
2685 * OV511 and sensor configuration
2686 *
2687 ***************************************************************************/
2688
2689 /* This initializes the OV2x10 / OV3610 / OV3620 */
2690 static void ov_hires_configure(struct sd *sd)
2691 {
2692 int high, low;
2693
2694 if (sd->bridge != BRIDGE_OVFX2) {
2695 err("error hires sensors only supported with ovfx2");
2696 return;
2697 }
2698
2699 PDEBUG(D_PROBE, "starting ov hires configuration");
2700
2701 /* Detect sensor (sub)type */
2702 high = i2c_r(sd, 0x0a);
2703 low = i2c_r(sd, 0x0b);
2704 /* info("%x, %x", high, low); */
2705 if (high == 0x96 && low == 0x40) {
2706 PDEBUG(D_PROBE, "Sensor is an OV2610");
2707 sd->sensor = SEN_OV2610;
2708 } else if (high == 0x96 && low == 0x41) {
2709 PDEBUG(D_PROBE, "Sensor is an OV2610AE");
2710 sd->sensor = SEN_OV2610AE;
2711 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2712 PDEBUG(D_PROBE, "Sensor is an OV3610");
2713 sd->sensor = SEN_OV3610;
2714 } else {
2715 err("Error unknown sensor type: %02x%02x",
2716 high, low);
2717 }
2718 }
2719
2720 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2721 * the same register settings as the OV8610, since they are very similar.
2722 */
2723 static void ov8xx0_configure(struct sd *sd)
2724 {
2725 int rc;
2726
2727 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2728
2729 /* Detect sensor (sub)type */
2730 rc = i2c_r(sd, OV7610_REG_COM_I);
2731 if (rc < 0) {
2732 PDEBUG(D_ERR, "Error detecting sensor type");
2733 return;
2734 }
2735 if ((rc & 3) == 1)
2736 sd->sensor = SEN_OV8610;
2737 else
2738 err("Unknown image sensor version: %d", rc & 3);
2739 }
2740
2741 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2742 * the same register settings as the OV7610, since they are very similar.
2743 */
2744 static void ov7xx0_configure(struct sd *sd)
2745 {
2746 int rc, high, low;
2747
2748 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2749
2750 /* Detect sensor (sub)type */
2751 rc = i2c_r(sd, OV7610_REG_COM_I);
2752
2753 /* add OV7670 here
2754 * it appears to be wrongly detected as a 7610 by default */
2755 if (rc < 0) {
2756 PDEBUG(D_ERR, "Error detecting sensor type");
2757 return;
2758 }
2759 if ((rc & 3) == 3) {
2760 /* quick hack to make OV7670s work */
2761 high = i2c_r(sd, 0x0a);
2762 low = i2c_r(sd, 0x0b);
2763 /* info("%x, %x", high, low); */
2764 if (high == 0x76 && (low & 0xf0) == 0x70) {
2765 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2766 sd->sensor = SEN_OV7670;
2767 } else {
2768 PDEBUG(D_PROBE, "Sensor is an OV7610");
2769 sd->sensor = SEN_OV7610;
2770 }
2771 } else if ((rc & 3) == 1) {
2772 /* I don't know what's different about the 76BE yet. */
2773 if (i2c_r(sd, 0x15) & 1) {
2774 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2775 sd->sensor = SEN_OV7620AE;
2776 } else {
2777 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2778 sd->sensor = SEN_OV76BE;
2779 }
2780 } else if ((rc & 3) == 0) {
2781 /* try to read product id registers */
2782 high = i2c_r(sd, 0x0a);
2783 if (high < 0) {
2784 PDEBUG(D_ERR, "Error detecting camera chip PID");
2785 return;
2786 }
2787 low = i2c_r(sd, 0x0b);
2788 if (low < 0) {
2789 PDEBUG(D_ERR, "Error detecting camera chip VER");
2790 return;
2791 }
2792 if (high == 0x76) {
2793 switch (low) {
2794 case 0x30:
2795 err("Sensor is an OV7630/OV7635");
2796 err("7630 is not supported by this driver");
2797 return;
2798 case 0x40:
2799 PDEBUG(D_PROBE, "Sensor is an OV7645");
2800 sd->sensor = SEN_OV7640; /* FIXME */
2801 break;
2802 case 0x45:
2803 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2804 sd->sensor = SEN_OV7640; /* FIXME */
2805 break;
2806 case 0x48:
2807 PDEBUG(D_PROBE, "Sensor is an OV7648");
2808 sd->sensor = SEN_OV7648;
2809 break;
2810 case 0x60:
2811 PDEBUG(D_PROBE, "Sensor is a OV7660");
2812 sd->sensor = SEN_OV7660;
2813 sd->invert_led = 0;
2814 break;
2815 default:
2816 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2817 return;
2818 }
2819 } else {
2820 PDEBUG(D_PROBE, "Sensor is an OV7620");
2821 sd->sensor = SEN_OV7620;
2822 }
2823 } else {
2824 err("Unknown image sensor version: %d", rc & 3);
2825 }
2826 }
2827
2828 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2829 static void ov6xx0_configure(struct sd *sd)
2830 {
2831 int rc;
2832 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2833
2834 /* Detect sensor (sub)type */
2835 rc = i2c_r(sd, OV7610_REG_COM_I);
2836 if (rc < 0) {
2837 PDEBUG(D_ERR, "Error detecting sensor type");
2838 return;
2839 }
2840
2841 /* Ugh. The first two bits are the version bits, but
2842 * the entire register value must be used. I guess OVT
2843 * underestimated how many variants they would make. */
2844 switch (rc) {
2845 case 0x00:
2846 sd->sensor = SEN_OV6630;
2847 warn("WARNING: Sensor is an OV66308. Your camera may have");
2848 warn("been misdetected in previous driver versions.");
2849 break;
2850 case 0x01:
2851 sd->sensor = SEN_OV6620;
2852 PDEBUG(D_PROBE, "Sensor is an OV6620");
2853 break;
2854 case 0x02:
2855 sd->sensor = SEN_OV6630;
2856 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2857 break;
2858 case 0x03:
2859 sd->sensor = SEN_OV66308AF;
2860 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2861 break;
2862 case 0x90:
2863 sd->sensor = SEN_OV6630;
2864 warn("WARNING: Sensor is an OV66307. Your camera may have");
2865 warn("been misdetected in previous driver versions.");
2866 break;
2867 default:
2868 err("FATAL: Unknown sensor version: 0x%02x", rc);
2869 return;
2870 }
2871
2872 /* Set sensor-specific vars */
2873 sd->sif = 1;
2874 }
2875
2876 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2877 static void ov51x_led_control(struct sd *sd, int on)
2878 {
2879 if (sd->invert_led)
2880 on = !on;
2881
2882 switch (sd->bridge) {
2883 /* OV511 has no LED control */
2884 case BRIDGE_OV511PLUS:
2885 reg_w(sd, R511_SYS_LED_CTL, on);
2886 break;
2887 case BRIDGE_OV518:
2888 case BRIDGE_OV518PLUS:
2889 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2890 break;
2891 case BRIDGE_OV519:
2892 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2893 break;
2894 }
2895 }
2896
2897 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2898 {
2899 struct sd *sd = (struct sd *) gspca_dev;
2900
2901 if (!sd->snapshot_needs_reset)
2902 return;
2903
2904 /* Note it is important that we clear sd->snapshot_needs_reset,
2905 before actually clearing the snapshot state in the bridge
2906 otherwise we might race with the pkt_scan interrupt handler */
2907 sd->snapshot_needs_reset = 0;
2908
2909 switch (sd->bridge) {
2910 case BRIDGE_OV511:
2911 case BRIDGE_OV511PLUS:
2912 reg_w(sd, R51x_SYS_SNAP, 0x02);
2913 reg_w(sd, R51x_SYS_SNAP, 0x00);
2914 break;
2915 case BRIDGE_OV518:
2916 case BRIDGE_OV518PLUS:
2917 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2918 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2919 break;
2920 case BRIDGE_OV519:
2921 reg_w(sd, R51x_SYS_RESET, 0x40);
2922 reg_w(sd, R51x_SYS_RESET, 0x00);
2923 break;
2924 }
2925 }
2926
2927 static void ov51x_upload_quan_tables(struct sd *sd)
2928 {
2929 const unsigned char yQuanTable511[] = {
2930 0, 1, 1, 2, 2, 3, 3, 4,
2931 1, 1, 1, 2, 2, 3, 4, 4,
2932 1, 1, 2, 2, 3, 4, 4, 4,
2933 2, 2, 2, 3, 4, 4, 4, 4,
2934 2, 2, 3, 4, 4, 5, 5, 5,
2935 3, 3, 4, 4, 5, 5, 5, 5,
2936 3, 4, 4, 4, 5, 5, 5, 5,
2937 4, 4, 4, 4, 5, 5, 5, 5
2938 };
2939
2940 const unsigned char uvQuanTable511[] = {
2941 0, 2, 2, 3, 4, 4, 4, 4,
2942 2, 2, 2, 4, 4, 4, 4, 4,
2943 2, 2, 3, 4, 4, 4, 4, 4,
2944 3, 4, 4, 4, 4, 4, 4, 4,
2945 4, 4, 4, 4, 4, 4, 4, 4,
2946 4, 4, 4, 4, 4, 4, 4, 4,
2947 4, 4, 4, 4, 4, 4, 4, 4,
2948 4, 4, 4, 4, 4, 4, 4, 4
2949 };
2950
2951 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2952 const unsigned char yQuanTable518[] = {
2953 5, 4, 5, 6, 6, 7, 7, 7,
2954 5, 5, 5, 5, 6, 7, 7, 7,
2955 6, 6, 6, 6, 7, 7, 7, 8,
2956 7, 7, 6, 7, 7, 7, 8, 8
2957 };
2958 const unsigned char uvQuanTable518[] = {
2959 6, 6, 6, 7, 7, 7, 7, 7,
2960 6, 6, 6, 7, 7, 7, 7, 7,
2961 6, 6, 6, 7, 7, 7, 7, 8,
2962 7, 7, 7, 7, 7, 7, 8, 8
2963 };
2964
2965 const unsigned char *pYTable, *pUVTable;
2966 unsigned char val0, val1;
2967 int i, size, reg = R51x_COMP_LUT_BEGIN;
2968
2969 PDEBUG(D_PROBE, "Uploading quantization tables");
2970
2971 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2972 pYTable = yQuanTable511;
2973 pUVTable = uvQuanTable511;
2974 size = 32;
2975 } else {
2976 pYTable = yQuanTable518;
2977 pUVTable = uvQuanTable518;
2978 size = 16;
2979 }
2980
2981 for (i = 0; i < size; i++) {
2982 val0 = *pYTable++;
2983 val1 = *pYTable++;
2984 val0 &= 0x0f;
2985 val1 &= 0x0f;
2986 val0 |= val1 << 4;
2987 reg_w(sd, reg, val0);
2988
2989 val0 = *pUVTable++;
2990 val1 = *pUVTable++;
2991 val0 &= 0x0f;
2992 val1 &= 0x0f;
2993 val0 |= val1 << 4;
2994 reg_w(sd, reg + size, val0);
2995
2996 reg++;
2997 }
2998 }
2999
3000 /* This initializes the OV511/OV511+ and the sensor */
3001 static void ov511_configure(struct gspca_dev *gspca_dev)
3002 {
3003 struct sd *sd = (struct sd *) gspca_dev;
3004
3005 /* For 511 and 511+ */
3006 const struct ov_regvals init_511[] = {
3007 { R51x_SYS_RESET, 0x7f },
3008 { R51x_SYS_INIT, 0x01 },
3009 { R51x_SYS_RESET, 0x7f },
3010 { R51x_SYS_INIT, 0x01 },
3011 { R51x_SYS_RESET, 0x3f },
3012 { R51x_SYS_INIT, 0x01 },
3013 { R51x_SYS_RESET, 0x3d },
3014 };
3015
3016 const struct ov_regvals norm_511[] = {
3017 { R511_DRAM_FLOW_CTL, 0x01 },
3018 { R51x_SYS_SNAP, 0x00 },
3019 { R51x_SYS_SNAP, 0x02 },
3020 { R51x_SYS_SNAP, 0x00 },
3021 { R511_FIFO_OPTS, 0x1f },
3022 { R511_COMP_EN, 0x00 },
3023 { R511_COMP_LUT_EN, 0x03 },
3024 };
3025
3026 const struct ov_regvals norm_511_p[] = {
3027 { R511_DRAM_FLOW_CTL, 0xff },
3028 { R51x_SYS_SNAP, 0x00 },
3029 { R51x_SYS_SNAP, 0x02 },
3030 { R51x_SYS_SNAP, 0x00 },
3031 { R511_FIFO_OPTS, 0xff },
3032 { R511_COMP_EN, 0x00 },
3033 { R511_COMP_LUT_EN, 0x03 },
3034 };
3035
3036 const struct ov_regvals compress_511[] = {
3037 { 0x70, 0x1f },
3038 { 0x71, 0x05 },
3039 { 0x72, 0x06 },
3040 { 0x73, 0x06 },
3041 { 0x74, 0x14 },
3042 { 0x75, 0x03 },
3043 { 0x76, 0x04 },
3044 { 0x77, 0x04 },
3045 };
3046
3047 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3048
3049 write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3050
3051 switch (sd->bridge) {
3052 case BRIDGE_OV511:
3053 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3054 break;
3055 case BRIDGE_OV511PLUS:
3056 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3057 break;
3058 }
3059
3060 /* Init compression */
3061 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3062
3063 ov51x_upload_quan_tables(sd);
3064 }
3065
3066 /* This initializes the OV518/OV518+ and the sensor */
3067 static void ov518_configure(struct gspca_dev *gspca_dev)
3068 {
3069 struct sd *sd = (struct sd *) gspca_dev;
3070
3071 /* For 518 and 518+ */
3072 const struct ov_regvals init_518[] = {
3073 { R51x_SYS_RESET, 0x40 },
3074 { R51x_SYS_INIT, 0xe1 },
3075 { R51x_SYS_RESET, 0x3e },
3076 { R51x_SYS_INIT, 0xe1 },
3077 { R51x_SYS_RESET, 0x00 },
3078 { R51x_SYS_INIT, 0xe1 },
3079 { 0x46, 0x00 },
3080 { 0x5d, 0x03 },
3081 };
3082
3083 const struct ov_regvals norm_518[] = {
3084 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3085 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3086 { 0x31, 0x0f },
3087 { 0x5d, 0x03 },
3088 { 0x24, 0x9f },
3089 { 0x25, 0x90 },
3090 { 0x20, 0x00 },
3091 { 0x51, 0x04 },
3092 { 0x71, 0x19 },
3093 { 0x2f, 0x80 },
3094 };
3095
3096 const struct ov_regvals norm_518_p[] = {
3097 { R51x_SYS_SNAP, 0x02 }, /* Reset */
3098 { R51x_SYS_SNAP, 0x01 }, /* Enable */
3099 { 0x31, 0x0f },
3100 { 0x5d, 0x03 },
3101 { 0x24, 0x9f },
3102 { 0x25, 0x90 },
3103 { 0x20, 0x60 },
3104 { 0x51, 0x02 },
3105 { 0x71, 0x19 },
3106 { 0x40, 0xff },
3107 { 0x41, 0x42 },
3108 { 0x46, 0x00 },
3109 { 0x33, 0x04 },
3110 { 0x21, 0x19 },
3111 { 0x3f, 0x10 },
3112 { 0x2f, 0x80 },
3113 };
3114
3115 /* First 5 bits of custom ID reg are a revision ID on OV518 */
3116 PDEBUG(D_PROBE, "Device revision %d",
3117 0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3118
3119 write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3120
3121 /* Set LED GPIO pin to output mode */
3122 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3123
3124 switch (sd->bridge) {
3125 case BRIDGE_OV518:
3126 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3127 break;
3128 case BRIDGE_OV518PLUS:
3129 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3130 break;
3131 }
3132
3133 ov51x_upload_quan_tables(sd);
3134
3135 reg_w(sd, 0x2f, 0x80);
3136 }
3137
3138 static void ov519_configure(struct sd *sd)
3139 {
3140 static const struct ov_regvals init_519[] = {
3141 { 0x5a, 0x6d }, /* EnableSystem */
3142 { 0x53, 0x9b }, /* don't enable the microcontroller */
3143 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3144 { 0x5d, 0x03 },
3145 { 0x49, 0x01 },
3146 { 0x48, 0x00 },
3147 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
3148 * detection will fail. This deserves further investigation. */
3149 { OV519_GPIO_IO_CTRL0, 0xee },
3150 { OV519_R51_RESET1, 0x0f },
3151 { OV519_R51_RESET1, 0x00 },
3152 { 0x22, 0x00 },
3153 /* windows reads 0x55 at this point*/
3154 };
3155
3156 write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3157 }
3158
3159 static void ovfx2_configure(struct sd *sd)
3160 {
3161 static const struct ov_regvals init_fx2[] = {
3162 { 0x00, 0x60 },
3163 { 0x02, 0x01 },
3164 { 0x0f, 0x1d },
3165 { 0xe9, 0x82 },
3166 { 0xea, 0xc7 },
3167 { 0xeb, 0x10 },
3168 { 0xec, 0xf6 },
3169 };
3170
3171 sd->stopped = 1;
3172
3173 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3174 }
3175
3176 /* set the mode */
3177 /* This function works for ov7660 only */
3178 static void ov519_set_mode(struct sd *sd)
3179 {
3180 static const struct ov_regvals bridge_ov7660[2][10] = {
3181 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3182 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3183 {0x25, 0x01}, {0x26, 0x00}},
3184 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3185 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3186 {0x25, 0x03}, {0x26, 0x00}}
3187 };
3188 static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3189 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3190 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3191 };
3192 static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3193 {OV7670_R17_HSTART, 0x13},
3194 {OV7670_R18_HSTOP, 0x01},
3195 {OV7670_R32_HREF, 0x92},
3196 {OV7670_R19_VSTART, 0x02},
3197 {OV7670_R1A_VSTOP, 0x7a},
3198 {OV7670_R03_VREF, 0x00},
3199 /* {0x33, 0x00}, */
3200 /* {0x34, 0x07}, */
3201 /* {0x36, 0x00}, */
3202 /* {0x6b, 0x0a}, */
3203 };
3204
3205 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3206 ARRAY_SIZE(bridge_ov7660[0]));
3207 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3208 ARRAY_SIZE(sensor_ov7660[0]));
3209 write_i2c_regvals(sd, sensor_ov7660_2,
3210 ARRAY_SIZE(sensor_ov7660_2));
3211 }
3212
3213 /* set the frame rate */
3214 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3215 static void ov519_set_fr(struct sd *sd)
3216 {
3217 int fr;
3218 u8 clock;
3219 /* frame rate table with indices:
3220 * - mode = 0: 320x240, 1: 640x480
3221 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3222 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3223 */
3224 static const u8 fr_tb[2][6][3] = {
3225 {{0x04, 0xff, 0x00},
3226 {0x04, 0x1f, 0x00},
3227 {0x04, 0x1b, 0x00},
3228 {0x04, 0x15, 0x00},
3229 {0x04, 0x09, 0x00},
3230 {0x04, 0x01, 0x00}},
3231 {{0x0c, 0xff, 0x00},
3232 {0x0c, 0x1f, 0x00},
3233 {0x0c, 0x1b, 0x00},
3234 {0x04, 0xff, 0x01},
3235 {0x04, 0x1f, 0x01},
3236 {0x04, 0x1b, 0x01}},
3237 };
3238
3239 if (frame_rate > 0)
3240 sd->frame_rate = frame_rate;
3241 if (sd->frame_rate >= 30)
3242 fr = 0;
3243 else if (sd->frame_rate >= 25)
3244 fr = 1;
3245 else if (sd->frame_rate >= 20)
3246 fr = 2;
3247 else if (sd->frame_rate >= 15)
3248 fr = 3;
3249 else if (sd->frame_rate >= 10)
3250 fr = 4;
3251 else
3252 fr = 5;
3253 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3254 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3255 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3256 if (sd->sensor == SEN_OV7660)
3257 clock |= 0x80; /* enable double clock */
3258 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3259 }
3260
3261 static void setautogain(struct gspca_dev *gspca_dev)
3262 {
3263 struct sd *sd = (struct sd *) gspca_dev;
3264
3265 i2c_w_mask(sd, 0x13, sd->ctrls[AUTOGAIN].val ? 0x05 : 0x00, 0x05);
3266 }
3267
3268 /* this function is called at probe time */
3269 static int sd_config(struct gspca_dev *gspca_dev,
3270 const struct usb_device_id *id)
3271 {
3272 struct sd *sd = (struct sd *) gspca_dev;
3273 struct cam *cam = &gspca_dev->cam;
3274
3275 sd->bridge = id->driver_info & BRIDGE_MASK;
3276 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3277
3278 switch (sd->bridge) {
3279 case BRIDGE_OV511:
3280 case BRIDGE_OV511PLUS:
3281 cam->cam_mode = ov511_vga_mode;
3282 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3283 break;
3284 case BRIDGE_OV518:
3285 case BRIDGE_OV518PLUS:
3286 cam->cam_mode = ov518_vga_mode;
3287 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3288 break;
3289 case BRIDGE_OV519:
3290 cam->cam_mode = ov519_vga_mode;
3291 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3292 sd->invert_led = !sd->invert_led;
3293 break;
3294 case BRIDGE_OVFX2:
3295 cam->cam_mode = ov519_vga_mode;
3296 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3297 cam->bulk_size = OVFX2_BULK_SIZE;
3298 cam->bulk_nurbs = MAX_NURBS;
3299 cam->bulk = 1;
3300 break;
3301 case BRIDGE_W9968CF:
3302 cam->cam_mode = w9968cf_vga_mode;
3303 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3304 cam->reverse_alts = 1;
3305 break;
3306 }
3307
3308 gspca_dev->cam.ctrls = sd->ctrls;
3309 sd->quality = QUALITY_DEF;
3310
3311 return 0;
3312 }
3313
3314 /* this function is called at probe and resume time */
3315 static int sd_init(struct gspca_dev *gspca_dev)
3316 {
3317 struct sd *sd = (struct sd *) gspca_dev;
3318 struct cam *cam = &gspca_dev->cam;
3319
3320 switch (sd->bridge) {
3321 case BRIDGE_OV511:
3322 case BRIDGE_OV511PLUS:
3323 ov511_configure(gspca_dev);
3324 break;
3325 case BRIDGE_OV518:
3326 case BRIDGE_OV518PLUS:
3327 ov518_configure(gspca_dev);
3328 break;
3329 case BRIDGE_OV519:
3330 ov519_configure(sd);
3331 break;
3332 case BRIDGE_OVFX2:
3333 ovfx2_configure(sd);
3334 break;
3335 case BRIDGE_W9968CF:
3336 w9968cf_configure(sd);
3337 break;
3338 }
3339
3340 /* The OV519 must be more aggressive about sensor detection since
3341 * I2C write will never fail if the sensor is not present. We have
3342 * to try to initialize the sensor to detect its presence */
3343 sd->sensor = -1;
3344
3345 /* Test for 76xx */
3346 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3347 ov7xx0_configure(sd);
3348
3349 /* Test for 6xx0 */
3350 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3351 ov6xx0_configure(sd);
3352
3353 /* Test for 8xx0 */
3354 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3355 ov8xx0_configure(sd);
3356
3357 /* Test for 3xxx / 2xxx */
3358 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3359 ov_hires_configure(sd);
3360 } else {
3361 err("Can't determine sensor slave IDs");
3362 goto error;
3363 }
3364
3365 if (sd->sensor < 0)
3366 goto error;
3367
3368 ov51x_led_control(sd, 0); /* turn LED off */
3369
3370 switch (sd->bridge) {
3371 case BRIDGE_OV511:
3372 case BRIDGE_OV511PLUS:
3373 if (sd->sif) {
3374 cam->cam_mode = ov511_sif_mode;
3375 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3376 }
3377 break;
3378 case BRIDGE_OV518:
3379 case BRIDGE_OV518PLUS:
3380 if (sd->sif) {
3381 cam->cam_mode = ov518_sif_mode;
3382 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3383 }
3384 break;
3385 case BRIDGE_OV519:
3386 if (sd->sif) {
3387 cam->cam_mode = ov519_sif_mode;
3388 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3389 }
3390 break;
3391 case BRIDGE_OVFX2:
3392 switch (sd->sensor) {
3393 case SEN_OV2610:
3394 case SEN_OV2610AE:
3395 cam->cam_mode = ovfx2_ov2610_mode;
3396 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3397 break;
3398 case SEN_OV3610:
3399 cam->cam_mode = ovfx2_ov3610_mode;
3400 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3401 break;
3402 default:
3403 if (sd->sif) {
3404 cam->cam_mode = ov519_sif_mode;
3405 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3406 }
3407 break;
3408 }
3409 break;
3410 case BRIDGE_W9968CF:
3411 if (sd->sif)
3412 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3413
3414 /* w9968cf needs initialisation once the sensor is known */
3415 w9968cf_init(sd);
3416 break;
3417 }
3418
3419 gspca_dev->ctrl_dis = ctrl_dis[sd->sensor];
3420
3421 /* initialize the sensor */
3422 switch (sd->sensor) {
3423 case SEN_OV2610:
3424 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3425
3426 /* Enable autogain, autoexpo, awb, bandfilter */
3427 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3428 break;
3429 case SEN_OV2610AE:
3430 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3431
3432 /* enable autoexpo */
3433 i2c_w_mask(sd, 0x13, 0x05, 0x05);
3434 break;
3435 case SEN_OV3610:
3436 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3437
3438 /* Enable autogain, autoexpo, awb, bandfilter */
3439 i2c_w_mask(sd, 0x13, 0x27, 0x27);
3440 break;
3441 case SEN_OV6620:
3442 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3443 break;
3444 case SEN_OV6630:
3445 case SEN_OV66308AF:
3446 sd->ctrls[CONTRAST].def = 200;
3447 /* The default is too low for the ov6630 */
3448 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3449 break;
3450 default:
3451 /* case SEN_OV7610: */
3452 /* case SEN_OV76BE: */
3453 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3454 i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3455 break;
3456 case SEN_OV7620:
3457 case SEN_OV7620AE:
3458 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3459 break;
3460 case SEN_OV7640:
3461 case SEN_OV7648:
3462 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3463 break;
3464 case SEN_OV7660:
3465 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3466 msleep(14);
3467 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3468 write_regvals(sd, init_519_ov7660,
3469 ARRAY_SIZE(init_519_ov7660));
3470 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3471 sd->gspca_dev.curr_mode = 1; /* 640x480 */
3472 sd->frame_rate = 15;
3473 ov519_set_mode(sd);
3474 ov519_set_fr(sd);
3475 sd->ctrls[COLORS].max = 4; /* 0..4 */
3476 sd->ctrls[COLORS].val =
3477 sd->ctrls[COLORS].def = 2;
3478 setcolors(gspca_dev);
3479 sd->ctrls[CONTRAST].max = 6; /* 0..6 */
3480 sd->ctrls[CONTRAST].val =
3481 sd->ctrls[CONTRAST].def = 3;
3482 setcontrast(gspca_dev);
3483 sd->ctrls[BRIGHTNESS].max = 6; /* 0..6 */
3484 sd->ctrls[BRIGHTNESS].val =
3485 sd->ctrls[BRIGHTNESS].def = 3;
3486 setbrightness(gspca_dev);
3487 sd_reset_snapshot(gspca_dev);
3488 ov51x_restart(sd);
3489 ov51x_stop(sd); /* not in win traces */
3490 ov51x_led_control(sd, 0);
3491 break;
3492 case SEN_OV7670:
3493 sd->ctrls[FREQ].max = 3; /* auto */
3494 sd->ctrls[FREQ].def = 3;
3495 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3496 break;
3497 case SEN_OV8610:
3498 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3499 break;
3500 }
3501 return gspca_dev->usb_err;
3502 error:
3503 PDEBUG(D_ERR, "OV519 Config failed");
3504 return -EINVAL;
3505 }
3506
3507 /* function called at start time before URB creation */
3508 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3509 {
3510 struct sd *sd = (struct sd *) gspca_dev;
3511
3512 switch (sd->bridge) {
3513 case BRIDGE_OVFX2:
3514 if (gspca_dev->width == 1600)
3515 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3516 else
3517 gspca_dev->cam.bulk_size = 7 * 4096;
3518 break;
3519 }
3520 return 0;
3521 }
3522
3523 /* Set up the OV511/OV511+ with the given image parameters.
3524 *
3525 * Do not put any sensor-specific code in here (including I2C I/O functions)
3526 */
3527 static void ov511_mode_init_regs(struct sd *sd)
3528 {
3529 int hsegs, vsegs, packet_size, fps, needed;
3530 int interlaced = 0;
3531 struct usb_host_interface *alt;
3532 struct usb_interface *intf;
3533
3534 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3535 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3536 if (!alt) {
3537 err("Couldn't get altsetting");
3538 sd->gspca_dev.usb_err = -EIO;
3539 return;
3540 }
3541
3542 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3543 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3544
3545 reg_w(sd, R511_CAM_UV_EN, 0x01);
3546 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3547 reg_w(sd, R511_SNAP_OPTS, 0x03);
3548
3549 /* Here I'm assuming that snapshot size == image size.
3550 * I hope that's always true. --claudio
3551 */
3552 hsegs = (sd->gspca_dev.width >> 3) - 1;
3553 vsegs = (sd->gspca_dev.height >> 3) - 1;
3554
3555 reg_w(sd, R511_CAM_PXCNT, hsegs);
3556 reg_w(sd, R511_CAM_LNCNT, vsegs);
3557 reg_w(sd, R511_CAM_PXDIV, 0x00);
3558 reg_w(sd, R511_CAM_LNDIV, 0x00);
3559
3560 /* YUV420, low pass filter on */
3561 reg_w(sd, R511_CAM_OPTS, 0x03);
3562
3563 /* Snapshot additions */
3564 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3565 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3566 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3567 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3568
3569 /******** Set the framerate ********/
3570 if (frame_rate > 0)
3571 sd->frame_rate = frame_rate;
3572
3573 switch (sd->sensor) {
3574 case SEN_OV6620:
3575 /* No framerate control, doesn't like higher rates yet */
3576 sd->clockdiv = 3;
3577 break;
3578
3579 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3580 for more sensors we need to do this for them too */
3581 case SEN_OV7620:
3582 case SEN_OV7620AE:
3583 case SEN_OV7640:
3584 case SEN_OV7648:
3585 case SEN_OV76BE:
3586 if (sd->gspca_dev.width == 320)
3587 interlaced = 1;
3588 /* Fall through */
3589 case SEN_OV6630:
3590 case SEN_OV7610:
3591 case SEN_OV7670:
3592 switch (sd->frame_rate) {
3593 case 30:
3594 case 25:
3595 /* Not enough bandwidth to do 640x480 @ 30 fps */
3596 if (sd->gspca_dev.width != 640) {
3597 sd->clockdiv = 0;
3598 break;
3599 }
3600 /* Fall through for 640x480 case */
3601 default:
3602 /* case 20: */
3603 /* case 15: */
3604 sd->clockdiv = 1;
3605 break;
3606 case 10:
3607 sd->clockdiv = 2;
3608 break;
3609 case 5:
3610 sd->clockdiv = 5;
3611 break;
3612 }
3613 if (interlaced) {
3614 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3615 /* Higher then 10 does not work */
3616 if (sd->clockdiv > 10)
3617 sd->clockdiv = 10;
3618 }
3619 break;
3620
3621 case SEN_OV8610:
3622 /* No framerate control ?? */
3623 sd->clockdiv = 0;
3624 break;
3625 }
3626
3627 /* Check if we have enough bandwidth to disable compression */
3628 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3629 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3630 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3631 if (needed > 1400 * packet_size) {
3632 /* Enable Y and UV quantization and compression */
3633 reg_w(sd, R511_COMP_EN, 0x07);
3634 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3635 } else {
3636 reg_w(sd, R511_COMP_EN, 0x06);
3637 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3638 }
3639
3640 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3641 reg_w(sd, R51x_SYS_RESET, 0);
3642 }
3643
3644 /* Sets up the OV518/OV518+ with the given image parameters
3645 *
3646 * OV518 needs a completely different approach, until we can figure out what
3647 * the individual registers do. Also, only 15 FPS is supported now.
3648 *
3649 * Do not put any sensor-specific code in here (including I2C I/O functions)
3650 */
3651 static void ov518_mode_init_regs(struct sd *sd)
3652 {
3653 int hsegs, vsegs, packet_size;
3654 struct usb_host_interface *alt;
3655 struct usb_interface *intf;
3656
3657 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3658 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3659 if (!alt) {
3660 err("Couldn't get altsetting");
3661 sd->gspca_dev.usb_err = -EIO;
3662 return;
3663 }
3664
3665 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3666 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3667
3668 /******** Set the mode ********/
3669 reg_w(sd, 0x2b, 0);
3670 reg_w(sd, 0x2c, 0);
3671 reg_w(sd, 0x2d, 0);
3672 reg_w(sd, 0x2e, 0);
3673 reg_w(sd, 0x3b, 0);
3674 reg_w(sd, 0x3c, 0);
3675 reg_w(sd, 0x3d, 0);
3676 reg_w(sd, 0x3e, 0);
3677
3678 if (sd->bridge == BRIDGE_OV518) {
3679 /* Set 8-bit (YVYU) input format */
3680 reg_w_mask(sd, 0x20, 0x08, 0x08);
3681
3682 /* Set 12-bit (4:2:0) output format */
3683 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3684 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3685 } else {
3686 reg_w(sd, 0x28, 0x80);
3687 reg_w(sd, 0x38, 0x80);
3688 }
3689
3690 hsegs = sd->gspca_dev.width / 16;
3691 vsegs = sd->gspca_dev.height / 4;
3692
3693 reg_w(sd, 0x29, hsegs);
3694 reg_w(sd, 0x2a, vsegs);
3695
3696 reg_w(sd, 0x39, hsegs);
3697 reg_w(sd, 0x3a, vsegs);
3698
3699 /* Windows driver does this here; who knows why */
3700 reg_w(sd, 0x2f, 0x80);
3701
3702 /******** Set the framerate ********/
3703 sd->clockdiv = 1;
3704
3705 /* Mode independent, but framerate dependent, regs */
3706 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3707 reg_w(sd, 0x51, 0x04);
3708 reg_w(sd, 0x22, 0x18);
3709 reg_w(sd, 0x23, 0xff);
3710
3711 if (sd->bridge == BRIDGE_OV518PLUS) {
3712 switch (sd->sensor) {
3713 case SEN_OV7620AE:
3714 if (sd->gspca_dev.width == 320) {
3715 reg_w(sd, 0x20, 0x00);
3716 reg_w(sd, 0x21, 0x19);
3717 } else {
3718 reg_w(sd, 0x20, 0x60);
3719 reg_w(sd, 0x21, 0x1f);
3720 }
3721 break;
3722 case SEN_OV7620:
3723 reg_w(sd, 0x20, 0x00);
3724 reg_w(sd, 0x21, 0x19);
3725 break;
3726 default:
3727 reg_w(sd, 0x21, 0x19);
3728 }
3729 } else
3730 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3731
3732 /* FIXME: Sensor-specific */
3733 /* Bit 5 is what matters here. Of course, it is "reserved" */
3734 i2c_w(sd, 0x54, 0x23);
3735
3736 reg_w(sd, 0x2f, 0x80);
3737
3738 if (sd->bridge == BRIDGE_OV518PLUS) {
3739 reg_w(sd, 0x24, 0x94);
3740 reg_w(sd, 0x25, 0x90);
3741 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3742 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3743 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3744 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3745 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3746 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3747 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3748 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3749 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3750 } else {
3751 reg_w(sd, 0x24, 0x9f);
3752 reg_w(sd, 0x25, 0x90);
3753 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3754 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3755 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3756 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3757 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3758 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3759 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3760 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3761 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3762 }
3763
3764 reg_w(sd, 0x2f, 0x80);
3765 }
3766
3767 /* Sets up the OV519 with the given image parameters
3768 *
3769 * OV519 needs a completely different approach, until we can figure out what
3770 * the individual registers do.
3771 *
3772 * Do not put any sensor-specific code in here (including I2C I/O functions)
3773 */
3774 static void ov519_mode_init_regs(struct sd *sd)
3775 {
3776 static const struct ov_regvals mode_init_519_ov7670[] = {
3777 { 0x5d, 0x03 }, /* Turn off suspend mode */
3778 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3779 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3780 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3781 { 0xa3, 0x18 },
3782 { 0xa4, 0x04 },
3783 { 0xa5, 0x28 },
3784 { 0x37, 0x00 }, /* SetUsbInit */
3785 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3786 /* Enable both fields, YUV Input, disable defect comp (why?) */
3787 { 0x20, 0x0c },
3788 { 0x21, 0x38 },
3789 { 0x22, 0x1d },
3790 { 0x17, 0x50 }, /* undocumented */
3791 { 0x37, 0x00 }, /* undocumented */
3792 { 0x40, 0xff }, /* I2C timeout counter */
3793 { 0x46, 0x00 }, /* I2C clock prescaler */
3794 { 0x59, 0x04 }, /* new from windrv 090403 */
3795 { 0xff, 0x00 }, /* undocumented */
3796 /* windows reads 0x55 at this point, why? */
3797 };
3798
3799 static const struct ov_regvals mode_init_519[] = {
3800 { 0x5d, 0x03 }, /* Turn off suspend mode */
3801 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3802 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3803 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3804 { 0xa3, 0x18 },
3805 { 0xa4, 0x04 },
3806 { 0xa5, 0x28 },
3807 { 0x37, 0x00 }, /* SetUsbInit */
3808 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3809 /* Enable both fields, YUV Input, disable defect comp (why?) */
3810 { 0x22, 0x1d },
3811 { 0x17, 0x50 }, /* undocumented */
3812 { 0x37, 0x00 }, /* undocumented */
3813 { 0x40, 0xff }, /* I2C timeout counter */
3814 { 0x46, 0x00 }, /* I2C clock prescaler */
3815 { 0x59, 0x04 }, /* new from windrv 090403 */
3816 { 0xff, 0x00 }, /* undocumented */
3817 /* windows reads 0x55 at this point, why? */
3818 };
3819
3820 /******** Set the mode ********/
3821 switch (sd->sensor) {
3822 default:
3823 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3824 if (sd->sensor == SEN_OV7640 ||
3825 sd->sensor == SEN_OV7648) {
3826 /* Select 8-bit input mode */
3827 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3828 }
3829 break;
3830 case SEN_OV7660:
3831 return; /* done by ov519_set_mode/fr() */
3832 case SEN_OV7670:
3833 write_regvals(sd, mode_init_519_ov7670,
3834 ARRAY_SIZE(mode_init_519_ov7670));
3835 break;
3836 }
3837
3838 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3839 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3840 if (sd->sensor == SEN_OV7670 &&
3841 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3842 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3843 else if (sd->sensor == SEN_OV7648 &&
3844 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3845 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3846 else
3847 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3848 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3849 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3850 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3851 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3852 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3853 reg_w(sd, 0x26, 0x00); /* Undocumented */
3854
3855 /******** Set the framerate ********/
3856 if (frame_rate > 0)
3857 sd->frame_rate = frame_rate;
3858
3859 /* FIXME: These are only valid at the max resolution. */
3860 sd->clockdiv = 0;
3861 switch (sd->sensor) {
3862 case SEN_OV7640:
3863 case SEN_OV7648:
3864 switch (sd->frame_rate) {
3865 default:
3866 /* case 30: */
3867 reg_w(sd, 0xa4, 0x0c);
3868 reg_w(sd, 0x23, 0xff);
3869 break;
3870 case 25:
3871 reg_w(sd, 0xa4, 0x0c);
3872 reg_w(sd, 0x23, 0x1f);
3873 break;
3874 case 20:
3875 reg_w(sd, 0xa4, 0x0c);
3876 reg_w(sd, 0x23, 0x1b);
3877 break;
3878 case 15:
3879 reg_w(sd, 0xa4, 0x04);
3880 reg_w(sd, 0x23, 0xff);
3881 sd->clockdiv = 1;
3882 break;
3883 case 10:
3884 reg_w(sd, 0xa4, 0x04);
3885 reg_w(sd, 0x23, 0x1f);
3886 sd->clockdiv = 1;
3887 break;
3888 case 5:
3889 reg_w(sd, 0xa4, 0x04);
3890 reg_w(sd, 0x23, 0x1b);
3891 sd->clockdiv = 1;
3892 break;
3893 }
3894 break;
3895 case SEN_OV8610:
3896 switch (sd->frame_rate) {
3897 default: /* 15 fps */
3898 /* case 15: */
3899 reg_w(sd, 0xa4, 0x06);
3900 reg_w(sd, 0x23, 0xff);
3901 break;
3902 case 10:
3903 reg_w(sd, 0xa4, 0x06);
3904 reg_w(sd, 0x23, 0x1f);
3905 break;
3906 case 5:
3907 reg_w(sd, 0xa4, 0x06);
3908 reg_w(sd, 0x23, 0x1b);
3909 break;
3910 }
3911 break;
3912 case SEN_OV7670: /* guesses, based on 7640 */
3913 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3914 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3915 reg_w(sd, 0xa4, 0x10);
3916 switch (sd->frame_rate) {
3917 case 30:
3918 reg_w(sd, 0x23, 0xff);
3919 break;
3920 case 20:
3921 reg_w(sd, 0x23, 0x1b);
3922 break;
3923 default:
3924 /* case 15: */
3925 reg_w(sd, 0x23, 0xff);
3926 sd->clockdiv = 1;
3927 break;
3928 }
3929 break;
3930 }
3931 }
3932
3933 static void mode_init_ov_sensor_regs(struct sd *sd)
3934 {
3935 struct gspca_dev *gspca_dev;
3936 int qvga, xstart, xend, ystart, yend;
3937 u8 v;
3938
3939 gspca_dev = &sd->gspca_dev;
3940 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3941
3942 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3943 switch (sd->sensor) {
3944 case SEN_OV2610:
3945 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3946 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3947 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3948 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3949 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3950 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3951 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3952 return;
3953 case SEN_OV2610AE: {
3954 u8 v;
3955
3956 /* frame rates:
3957 * 10fps / 5 fps for 1600x1200
3958 * 40fps / 20fps for 800x600
3959 */
3960 v = 80;
3961 if (qvga) {
3962 if (sd->frame_rate < 25)
3963 v = 0x81;
3964 } else {
3965 if (sd->frame_rate < 10)
3966 v = 0x81;
3967 }
3968 i2c_w(sd, 0x11, v);
3969 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3970 return;
3971 }
3972 case SEN_OV3610:
3973 if (qvga) {
3974 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3975 ystart = (776 - gspca_dev->height) / 2;
3976 } else {
3977 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3978 ystart = (1544 - gspca_dev->height) / 2;
3979 }
3980 xend = xstart + gspca_dev->width;
3981 yend = ystart + gspca_dev->height;
3982 /* Writing to the COMH register resets the other windowing regs
3983 to their default values, so we must do this first. */
3984 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3985 i2c_w_mask(sd, 0x32,
3986 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3987 0x3f);
3988 i2c_w_mask(sd, 0x03,
3989 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3990 0x0f);
3991 i2c_w(sd, 0x17, xstart >> 4);
3992 i2c_w(sd, 0x18, xend >> 4);
3993 i2c_w(sd, 0x19, ystart >> 3);
3994 i2c_w(sd, 0x1a, yend >> 3);
3995 return;
3996 case SEN_OV8610:
3997 /* For OV8610 qvga means qsvga */
3998 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3999 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4000 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4001 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
4002 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
4003 break;
4004 case SEN_OV7610:
4005 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4006 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4007 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4008 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4009 break;
4010 case SEN_OV7620:
4011 case SEN_OV7620AE:
4012 case SEN_OV76BE:
4013 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4014 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4015 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
4016 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
4017 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4018 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
4019 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4020 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4021 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4022 if (sd->sensor == SEN_OV76BE)
4023 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4024 break;
4025 case SEN_OV7640:
4026 case SEN_OV7648:
4027 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4028 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4029 /* Setting this undocumented bit in qvga mode removes a very
4030 annoying vertical shaking of the image */
4031 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4032 /* Unknown */
4033 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4034 /* Allow higher automatic gain (to allow higher framerates) */
4035 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4036 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4037 break;
4038 case SEN_OV7670:
4039 /* set COM7_FMT_VGA or COM7_FMT_QVGA
4040 * do we need to set anything else?
4041 * HSTART etc are set in set_ov_sensor_window itself */
4042 i2c_w_mask(sd, OV7670_R12_COM7,
4043 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4044 OV7670_COM7_FMT_MASK);
4045 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4046 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4047 OV7670_COM8_AWB);
4048 if (qvga) { /* QVGA from ov7670.c by
4049 * Jonathan Corbet */
4050 xstart = 164;
4051 xend = 28;
4052 ystart = 14;
4053 yend = 494;
4054 } else { /* VGA */
4055 xstart = 158;
4056 xend = 14;
4057 ystart = 10;
4058 yend = 490;
4059 }
4060 /* OV7670 hardware window registers are split across
4061 * multiple locations */
4062 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4063 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4064 v = i2c_r(sd, OV7670_R32_HREF);
4065 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4066 msleep(10); /* need to sleep between read and write to
4067 * same reg! */
4068 i2c_w(sd, OV7670_R32_HREF, v);
4069
4070 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4071 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4072 v = i2c_r(sd, OV7670_R03_VREF);
4073 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4074 msleep(10); /* need to sleep between read and write to
4075 * same reg! */
4076 i2c_w(sd, OV7670_R03_VREF, v);
4077 break;
4078 case SEN_OV6620:
4079 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4080 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4081 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4082 break;
4083 case SEN_OV6630:
4084 case SEN_OV66308AF:
4085 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4086 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4087 break;
4088 default:
4089 return;
4090 }
4091
4092 /******** Clock programming ********/
4093 i2c_w(sd, 0x11, sd->clockdiv);
4094 }
4095
4096 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4097 static void sethvflip(struct gspca_dev *gspca_dev)
4098 {
4099 struct sd *sd = (struct sd *) gspca_dev;
4100
4101 if (sd->gspca_dev.streaming)
4102 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */
4103 i2c_w_mask(sd, OV7670_R1E_MVFP,
4104 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
4105 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
4106 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4107 if (sd->gspca_dev.streaming)
4108 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */
4109 }
4110
4111 static void set_ov_sensor_window(struct sd *sd)
4112 {
4113 struct gspca_dev *gspca_dev;
4114 int qvga, crop;
4115 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4116
4117 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4118 switch (sd->sensor) {
4119 case SEN_OV2610:
4120 case SEN_OV2610AE:
4121 case SEN_OV3610:
4122 case SEN_OV7670:
4123 mode_init_ov_sensor_regs(sd);
4124 return;
4125 case SEN_OV7660:
4126 ov519_set_mode(sd);
4127 ov519_set_fr(sd);
4128 return;
4129 }
4130
4131 gspca_dev = &sd->gspca_dev;
4132 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4133 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4134
4135 /* The different sensor ICs handle setting up of window differently.
4136 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4137 switch (sd->sensor) {
4138 case SEN_OV8610:
4139 hwsbase = 0x1e;
4140 hwebase = 0x1e;
4141 vwsbase = 0x02;
4142 vwebase = 0x02;
4143 break;
4144 case SEN_OV7610:
4145 case SEN_OV76BE:
4146 hwsbase = 0x38;
4147 hwebase = 0x3a;
4148 vwsbase = vwebase = 0x05;
4149 break;
4150 case SEN_OV6620:
4151 case SEN_OV6630:
4152 case SEN_OV66308AF:
4153 hwsbase = 0x38;
4154 hwebase = 0x3a;
4155 vwsbase = 0x05;
4156 vwebase = 0x06;
4157 if (sd->sensor == SEN_OV66308AF && qvga)
4158 /* HDG: this fixes U and V getting swapped */
4159 hwsbase++;
4160 if (crop) {
4161 hwsbase += 8;
4162 hwebase += 8;
4163 vwsbase += 11;
4164 vwebase += 11;
4165 }
4166 break;
4167 case SEN_OV7620:
4168 case SEN_OV7620AE:
4169 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
4170 hwebase = 0x2f;
4171 vwsbase = vwebase = 0x05;
4172 break;
4173 case SEN_OV7640:
4174 case SEN_OV7648:
4175 hwsbase = 0x1a;
4176 hwebase = 0x1a;
4177 vwsbase = vwebase = 0x03;
4178 break;
4179 default:
4180 return;
4181 }
4182
4183 switch (sd->sensor) {
4184 case SEN_OV6620:
4185 case SEN_OV6630:
4186 case SEN_OV66308AF:
4187 if (qvga) { /* QCIF */
4188 hwscale = 0;
4189 vwscale = 0;
4190 } else { /* CIF */
4191 hwscale = 1;
4192 vwscale = 1; /* The datasheet says 0;
4193 * it's wrong */
4194 }
4195 break;
4196 case SEN_OV8610:
4197 if (qvga) { /* QSVGA */
4198 hwscale = 1;
4199 vwscale = 1;
4200 } else { /* SVGA */
4201 hwscale = 2;
4202 vwscale = 2;
4203 }
4204 break;
4205 default: /* SEN_OV7xx0 */
4206 if (qvga) { /* QVGA */
4207 hwscale = 1;
4208 vwscale = 0;
4209 } else { /* VGA */
4210 hwscale = 2;
4211 vwscale = 1;
4212 }
4213 }
4214
4215 mode_init_ov_sensor_regs(sd);
4216
4217 i2c_w(sd, 0x17, hwsbase);
4218 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4219 i2c_w(sd, 0x19, vwsbase);
4220 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4221 }
4222
4223 /* -- start the camera -- */
4224 static int sd_start(struct gspca_dev *gspca_dev)
4225 {
4226 struct sd *sd = (struct sd *) gspca_dev;
4227
4228 /* Default for most bridges, allow bridge_mode_init_regs to override */
4229 sd->sensor_width = sd->gspca_dev.width;
4230 sd->sensor_height = sd->gspca_dev.height;
4231
4232 switch (sd->bridge) {
4233 case BRIDGE_OV511:
4234 case BRIDGE_OV511PLUS:
4235 ov511_mode_init_regs(sd);
4236 break;
4237 case BRIDGE_OV518:
4238 case BRIDGE_OV518PLUS:
4239 ov518_mode_init_regs(sd);
4240 break;
4241 case BRIDGE_OV519:
4242 ov519_mode_init_regs(sd);
4243 break;
4244 /* case BRIDGE_OVFX2: nothing to do */
4245 case BRIDGE_W9968CF:
4246 w9968cf_mode_init_regs(sd);
4247 break;
4248 }
4249
4250 set_ov_sensor_window(sd);
4251
4252 if (!(sd->gspca_dev.ctrl_dis & (1 << CONTRAST)))
4253 setcontrast(gspca_dev);
4254 if (!(sd->gspca_dev.ctrl_dis & (1 << BRIGHTNESS)))
4255 setbrightness(gspca_dev);
4256 if (!(sd->gspca_dev.ctrl_dis & (1 << EXPOSURE)))
4257 setexposure(gspca_dev);
4258 if (!(sd->gspca_dev.ctrl_dis & (1 << COLORS)))
4259 setcolors(gspca_dev);
4260 if (!(sd->gspca_dev.ctrl_dis & ((1 << HFLIP) | (1 << VFLIP))))
4261 sethvflip(gspca_dev);
4262 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOBRIGHT)))
4263 setautobright(gspca_dev);
4264 if (!(sd->gspca_dev.ctrl_dis & (1 << AUTOGAIN)))
4265 setautogain(gspca_dev);
4266 if (!(sd->gspca_dev.ctrl_dis & (1 << FREQ)))
4267 setfreq_i(sd);
4268
4269 /* Force clear snapshot state in case the snapshot button was
4270 pressed while we weren't streaming */
4271 sd->snapshot_needs_reset = 1;
4272 sd_reset_snapshot(gspca_dev);
4273
4274 sd->first_frame = 3;
4275
4276 ov51x_restart(sd);
4277 ov51x_led_control(sd, 1);
4278 return gspca_dev->usb_err;
4279 }
4280
4281 static void sd_stopN(struct gspca_dev *gspca_dev)
4282 {
4283 struct sd *sd = (struct sd *) gspca_dev;
4284
4285 ov51x_stop(sd);
4286 ov51x_led_control(sd, 0);
4287 }
4288
4289 static void sd_stop0(struct gspca_dev *gspca_dev)
4290 {
4291 struct sd *sd = (struct sd *) gspca_dev;
4292
4293 if (!sd->gspca_dev.present)
4294 return;
4295 if (sd->bridge == BRIDGE_W9968CF)
4296 w9968cf_stop0(sd);
4297
4298 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4299 /* If the last button state is pressed, release it now! */
4300 if (sd->snapshot_pressed) {
4301 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4302 input_sync(gspca_dev->input_dev);
4303 sd->snapshot_pressed = 0;
4304 }
4305 #endif
4306 if (sd->bridge == BRIDGE_OV519)
4307 reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4308 }
4309
4310 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4311 {
4312 struct sd *sd = (struct sd *) gspca_dev;
4313
4314 if (sd->snapshot_pressed != state) {
4315 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4316 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4317 input_sync(gspca_dev->input_dev);
4318 #endif
4319 if (state)
4320 sd->snapshot_needs_reset = 1;
4321
4322 sd->snapshot_pressed = state;
4323 } else {
4324 /* On the ov511 / ov519 we need to reset the button state
4325 multiple times, as resetting does not work as long as the
4326 button stays pressed */
4327 switch (sd->bridge) {
4328 case BRIDGE_OV511:
4329 case BRIDGE_OV511PLUS:
4330 case BRIDGE_OV519:
4331 if (state)
4332 sd->snapshot_needs_reset = 1;
4333 break;
4334 }
4335 }
4336 }
4337
4338 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4339 u8 *in, /* isoc packet */
4340 int len) /* iso packet length */
4341 {
4342 struct sd *sd = (struct sd *) gspca_dev;
4343
4344 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4345 * byte non-zero. The EOF packet has image width/height in the
4346 * 10th and 11th bytes. The 9th byte is given as follows:
4347 *
4348 * bit 7: EOF
4349 * 6: compression enabled
4350 * 5: 422/420/400 modes
4351 * 4: 422/420/400 modes
4352 * 3: 1
4353 * 2: snapshot button on
4354 * 1: snapshot frame
4355 * 0: even/odd field
4356 */
4357 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4358 (in[8] & 0x08)) {
4359 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4360 if (in[8] & 0x80) {
4361 /* Frame end */
4362 if ((in[9] + 1) * 8 != gspca_dev->width ||
4363 (in[10] + 1) * 8 != gspca_dev->height) {
4364 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4365 " requested: %dx%d\n",
4366 (in[9] + 1) * 8, (in[10] + 1) * 8,
4367 gspca_dev->width, gspca_dev->height);
4368 gspca_dev->last_packet_type = DISCARD_PACKET;
4369 return;
4370 }
4371 /* Add 11 byte footer to frame, might be usefull */
4372 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4373 return;
4374 } else {
4375 /* Frame start */
4376 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4377 sd->packet_nr = 0;
4378 }
4379 }
4380
4381 /* Ignore the packet number */
4382 len--;
4383
4384 /* intermediate packet */
4385 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4386 }
4387
4388 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4389 u8 *data, /* isoc packet */
4390 int len) /* iso packet length */
4391 {
4392 struct sd *sd = (struct sd *) gspca_dev;
4393
4394 /* A false positive here is likely, until OVT gives me
4395 * the definitive SOF/EOF format */
4396 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4397 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4398 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4399 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4400 sd->packet_nr = 0;
4401 }
4402
4403 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4404 return;
4405
4406 /* Does this device use packet numbers ? */
4407 if (len & 7) {
4408 len--;
4409 if (sd->packet_nr == data[len])
4410 sd->packet_nr++;
4411 /* The last few packets of the frame (which are all 0's
4412 except that they may contain part of the footer), are
4413 numbered 0 */
4414 else if (sd->packet_nr == 0 || data[len]) {
4415 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4416 (int)data[len], (int)sd->packet_nr);
4417 gspca_dev->last_packet_type = DISCARD_PACKET;
4418 return;
4419 }
4420 }
4421
4422 /* intermediate packet */
4423 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4424 }
4425
4426 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4427 u8 *data, /* isoc packet */
4428 int len) /* iso packet length */
4429 {
4430 /* Header of ov519 is 16 bytes:
4431 * Byte Value Description
4432 * 0 0xff magic
4433 * 1 0xff magic
4434 * 2 0xff magic
4435 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4436 * 9 0xXX 0x01 initial frame without data,
4437 * 0x00 standard frame with image
4438 * 14 Lo in EOF: length of image data / 8
4439 * 15 Hi
4440 */
4441
4442 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4443 switch (data[3]) {
4444 case 0x50: /* start of frame */
4445 /* Don't check the button state here, as the state
4446 usually (always ?) changes at EOF and checking it
4447 here leads to unnecessary snapshot state resets. */
4448 #define HDRSZ 16
4449 data += HDRSZ;
4450 len -= HDRSZ;
4451 #undef HDRSZ
4452 if (data[0] == 0xff || data[1] == 0xd8)
4453 gspca_frame_add(gspca_dev, FIRST_PACKET,
4454 data, len);
4455 else
4456 gspca_dev->last_packet_type = DISCARD_PACKET;
4457 return;
4458 case 0x51: /* end of frame */
4459 ov51x_handle_button(gspca_dev, data[11] & 1);
4460 if (data[9] != 0)
4461 gspca_dev->last_packet_type = DISCARD_PACKET;
4462 gspca_frame_add(gspca_dev, LAST_PACKET,
4463 NULL, 0);
4464 return;
4465 }
4466 }
4467
4468 /* intermediate packet */
4469 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4470 }
4471
4472 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4473 u8 *data, /* isoc packet */
4474 int len) /* iso packet length */
4475 {
4476 struct sd *sd = (struct sd *) gspca_dev;
4477
4478 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4479
4480 /* A short read signals EOF */
4481 if (len < OVFX2_BULK_SIZE) {
4482 /* If the frame is short, and it is one of the first ones
4483 the sensor and bridge are still syncing, so drop it. */
4484 if (sd->first_frame) {
4485 sd->first_frame--;
4486 if (gspca_dev->image_len <
4487 sd->gspca_dev.width * sd->gspca_dev.height)
4488 gspca_dev->last_packet_type = DISCARD_PACKET;
4489 }
4490 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4491 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4492 }
4493 }
4494
4495 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4496 u8 *data, /* isoc packet */
4497 int len) /* iso packet length */
4498 {
4499 struct sd *sd = (struct sd *) gspca_dev;
4500
4501 switch (sd->bridge) {
4502 case BRIDGE_OV511:
4503 case BRIDGE_OV511PLUS:
4504 ov511_pkt_scan(gspca_dev, data, len);
4505 break;
4506 case BRIDGE_OV518:
4507 case BRIDGE_OV518PLUS:
4508 ov518_pkt_scan(gspca_dev, data, len);
4509 break;
4510 case BRIDGE_OV519:
4511 ov519_pkt_scan(gspca_dev, data, len);
4512 break;
4513 case BRIDGE_OVFX2:
4514 ovfx2_pkt_scan(gspca_dev, data, len);
4515 break;
4516 case BRIDGE_W9968CF:
4517 w9968cf_pkt_scan(gspca_dev, data, len);
4518 break;
4519 }
4520 }
4521
4522 /* -- management routines -- */
4523
4524 static void setbrightness(struct gspca_dev *gspca_dev)
4525 {
4526 struct sd *sd = (struct sd *) gspca_dev;
4527 int val;
4528 static const struct ov_i2c_regvals brit_7660[][7] = {
4529 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4530 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4531 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4532 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4533 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4534 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4535 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4536 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4537 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4538 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4539 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4540 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4541 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4542 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4543 };
4544
4545 val = sd->ctrls[BRIGHTNESS].val;
4546 switch (sd->sensor) {
4547 case SEN_OV8610:
4548 case SEN_OV7610:
4549 case SEN_OV76BE:
4550 case SEN_OV6620:
4551 case SEN_OV6630:
4552 case SEN_OV66308AF:
4553 case SEN_OV7640:
4554 case SEN_OV7648:
4555 i2c_w(sd, OV7610_REG_BRT, val);
4556 break;
4557 case SEN_OV7620:
4558 case SEN_OV7620AE:
4559 /* 7620 doesn't like manual changes when in auto mode */
4560 if (!sd->ctrls[AUTOBRIGHT].val)
4561 i2c_w(sd, OV7610_REG_BRT, val);
4562 break;
4563 case SEN_OV7660:
4564 write_i2c_regvals(sd, brit_7660[val],
4565 ARRAY_SIZE(brit_7660[0]));
4566 break;
4567 case SEN_OV7670:
4568 /*win trace
4569 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4570 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4571 break;
4572 }
4573 }
4574
4575 static void setcontrast(struct gspca_dev *gspca_dev)
4576 {
4577 struct sd *sd = (struct sd *) gspca_dev;
4578 int val;
4579 static const struct ov_i2c_regvals contrast_7660[][31] = {
4580 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4581 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4582 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4583 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4584 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4585 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4586 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4587 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4588 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4589 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4590 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4591 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4592 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4593 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4594 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4595 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4596 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4597 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4598 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4599 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4600 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4601 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4602 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4603 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4604 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4605 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4606 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4607 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4608 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4609 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4610 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4611 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4612 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4613 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4614 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4615 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4616 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4617 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4618 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4619 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4620 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4621 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4622 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4623 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4624 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4625 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4626 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4627 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4628 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4629 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4630 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4631 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4632 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4633 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4634 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4635 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4636 };
4637
4638 val = sd->ctrls[CONTRAST].val;
4639 switch (sd->sensor) {
4640 case SEN_OV7610:
4641 case SEN_OV6620:
4642 i2c_w(sd, OV7610_REG_CNT, val);
4643 break;
4644 case SEN_OV6630:
4645 case SEN_OV66308AF:
4646 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4647 break;
4648 case SEN_OV8610: {
4649 static const u8 ctab[] = {
4650 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4651 };
4652
4653 /* Use Y gamma control instead. Bit 0 enables it. */
4654 i2c_w(sd, 0x64, ctab[val >> 5]);
4655 break;
4656 }
4657 case SEN_OV7620:
4658 case SEN_OV7620AE: {
4659 static const u8 ctab[] = {
4660 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4661 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4662 };
4663
4664 /* Use Y gamma control instead. Bit 0 enables it. */
4665 i2c_w(sd, 0x64, ctab[val >> 4]);
4666 break;
4667 }
4668 case SEN_OV7660:
4669 write_i2c_regvals(sd, contrast_7660[val],
4670 ARRAY_SIZE(contrast_7660[0]));
4671 break;
4672 case SEN_OV7670:
4673 /* check that this isn't just the same as ov7610 */
4674 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4675 break;
4676 }
4677 }
4678
4679 static void setexposure(struct gspca_dev *gspca_dev)
4680 {
4681 struct sd *sd = (struct sd *) gspca_dev;
4682
4683 if (!sd->ctrls[AUTOGAIN].val)
4684 i2c_w(sd, 0x10, sd->ctrls[EXPOSURE].val);
4685 }
4686
4687 static void setcolors(struct gspca_dev *gspca_dev)
4688 {
4689 struct sd *sd = (struct sd *) gspca_dev;
4690 int val;
4691 static const struct ov_i2c_regvals colors_7660[][6] = {
4692 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4693 {0x53, 0x19}, {0x54, 0x23}},
4694 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4695 {0x53, 0x2c}, {0x54, 0x3e}},
4696 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4697 {0x53, 0x40}, {0x54, 0x59}},
4698 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4699 {0x53, 0x53}, {0x54, 0x73}},
4700 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4701 {0x53, 0x66}, {0x54, 0x8e}},
4702 };
4703
4704 val = sd->ctrls[COLORS].val;
4705 switch (sd->sensor) {
4706 case SEN_OV8610:
4707 case SEN_OV7610:
4708 case SEN_OV76BE:
4709 case SEN_OV6620:
4710 case SEN_OV6630:
4711 case SEN_OV66308AF:
4712 i2c_w(sd, OV7610_REG_SAT, val);
4713 break;
4714 case SEN_OV7620:
4715 case SEN_OV7620AE:
4716 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4717 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4718 if (rc < 0)
4719 goto out; */
4720 i2c_w(sd, OV7610_REG_SAT, val);
4721 break;
4722 case SEN_OV7640:
4723 case SEN_OV7648:
4724 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4725 break;
4726 case SEN_OV7660:
4727 write_i2c_regvals(sd, colors_7660[val],
4728 ARRAY_SIZE(colors_7660[0]));
4729 break;
4730 case SEN_OV7670:
4731 /* supported later once I work out how to do it
4732 * transparently fail now! */
4733 /* set REG_COM13 values for UV sat auto mode */
4734 break;
4735 }
4736 }
4737
4738 static void setautobright(struct gspca_dev *gspca_dev)
4739 {
4740 struct sd *sd = (struct sd *) gspca_dev;
4741
4742 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4743 }
4744
4745 static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
4746 {
4747 struct sd *sd = (struct sd *) gspca_dev;
4748
4749 sd->ctrls[AUTOGAIN].val = val;
4750 if (val) {
4751 gspca_dev->ctrl_inac |= (1 << EXPOSURE);
4752 } else {
4753 gspca_dev->ctrl_inac &= ~(1 << EXPOSURE);
4754 sd->ctrls[EXPOSURE].val = i2c_r(sd, 0x10);
4755 }
4756 if (gspca_dev->streaming)
4757 setautogain(gspca_dev);
4758 return gspca_dev->usb_err;
4759 }
4760
4761 static void setfreq_i(struct sd *sd)
4762 {
4763 if (sd->sensor == SEN_OV7660
4764 || sd->sensor == SEN_OV7670) {
4765 switch (sd->ctrls[FREQ].val) {
4766 case 0: /* Banding filter disabled */
4767 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4768 break;
4769 case 1: /* 50 hz */
4770 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4771 OV7670_COM8_BFILT);
4772 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4773 break;
4774 case 2: /* 60 hz */
4775 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4776 OV7670_COM8_BFILT);
4777 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4778 break;
4779 case 3: /* Auto hz - ov7670 only */
4780 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4781 OV7670_COM8_BFILT);
4782 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4783 0x18);
4784 break;
4785 }
4786 } else {
4787 switch (sd->ctrls[FREQ].val) {
4788 case 0: /* Banding filter disabled */
4789 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4790 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4791 break;
4792 case 1: /* 50 hz (filter on and framerate adj) */
4793 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4794 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4795 /* 20 fps -> 16.667 fps */
4796 if (sd->sensor == SEN_OV6620 ||
4797 sd->sensor == SEN_OV6630 ||
4798 sd->sensor == SEN_OV66308AF)
4799 i2c_w(sd, 0x2b, 0x5e);
4800 else
4801 i2c_w(sd, 0x2b, 0xac);
4802 break;
4803 case 2: /* 60 hz (filter on, ...) */
4804 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4805 if (sd->sensor == SEN_OV6620 ||
4806 sd->sensor == SEN_OV6630 ||
4807 sd->sensor == SEN_OV66308AF) {
4808 /* 20 fps -> 15 fps */
4809 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4810 i2c_w(sd, 0x2b, 0xa8);
4811 } else {
4812 /* no framerate adj. */
4813 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4814 }
4815 break;
4816 }
4817 }
4818 }
4819 static void setfreq(struct gspca_dev *gspca_dev)
4820 {
4821 struct sd *sd = (struct sd *) gspca_dev;
4822
4823 setfreq_i(sd);
4824
4825 /* Ugly but necessary */
4826 if (sd->bridge == BRIDGE_W9968CF)
4827 w9968cf_set_crop_window(sd);
4828 }
4829
4830 static int sd_querymenu(struct gspca_dev *gspca_dev,
4831 struct v4l2_querymenu *menu)
4832 {
4833 struct sd *sd = (struct sd *) gspca_dev;
4834
4835 switch (menu->id) {
4836 case V4L2_CID_POWER_LINE_FREQUENCY:
4837 switch (menu->index) {
4838 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4839 strcpy((char *) menu->name, "NoFliker");
4840 return 0;
4841 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4842 strcpy((char *) menu->name, "50 Hz");
4843 return 0;
4844 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4845 strcpy((char *) menu->name, "60 Hz");
4846 return 0;
4847 case 3:
4848 if (sd->sensor != SEN_OV7670)
4849 return -EINVAL;
4850
4851 strcpy((char *) menu->name, "Automatic");
4852 return 0;
4853 }
4854 break;
4855 }
4856 return -EINVAL;
4857 }
4858
4859 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4860 struct v4l2_jpegcompression *jcomp)
4861 {
4862 struct sd *sd = (struct sd *) gspca_dev;
4863
4864 if (sd->bridge != BRIDGE_W9968CF)
4865 return -EINVAL;
4866
4867 memset(jcomp, 0, sizeof *jcomp);
4868 jcomp->quality = sd->quality;
4869 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4870 V4L2_JPEG_MARKER_DRI;
4871 return 0;
4872 }
4873
4874 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4875 struct v4l2_jpegcompression *jcomp)
4876 {
4877 struct sd *sd = (struct sd *) gspca_dev;
4878
4879 if (sd->bridge != BRIDGE_W9968CF)
4880 return -EINVAL;
4881
4882 if (gspca_dev->streaming)
4883 return -EBUSY;
4884
4885 if (jcomp->quality < QUALITY_MIN)
4886 sd->quality = QUALITY_MIN;
4887 else if (jcomp->quality > QUALITY_MAX)
4888 sd->quality = QUALITY_MAX;
4889 else
4890 sd->quality = jcomp->quality;
4891
4892 /* Return resulting jcomp params to app */
4893 sd_get_jcomp(gspca_dev, jcomp);
4894
4895 return 0;
4896 }
4897
4898 /* sub-driver description */
4899 static const struct sd_desc sd_desc = {
4900 .name = MODULE_NAME,
4901 .ctrls = sd_ctrls,
4902 .nctrls = ARRAY_SIZE(sd_ctrls),
4903 .config = sd_config,
4904 .init = sd_init,
4905 .isoc_init = sd_isoc_init,
4906 .start = sd_start,
4907 .stopN = sd_stopN,
4908 .stop0 = sd_stop0,
4909 .pkt_scan = sd_pkt_scan,
4910 .dq_callback = sd_reset_snapshot,
4911 .querymenu = sd_querymenu,
4912 .get_jcomp = sd_get_jcomp,
4913 .set_jcomp = sd_set_jcomp,
4914 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4915 .other_input = 1,
4916 #endif
4917 };
4918
4919 /* -- module initialisation -- */
4920 static const struct usb_device_id device_table[] = {
4921 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4922 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4923 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4924 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4925 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4926 {USB_DEVICE(0x041e, 0x4064),
4927 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4928 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4929 {USB_DEVICE(0x041e, 0x4068),
4930 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4931 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4932 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4933 {USB_DEVICE(0x054c, 0x0155),
4934 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4935 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4936 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4937 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4938 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4939 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4940 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4941 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4942 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4943 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4944 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4945 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4946 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4947 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4948 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4949 {}
4950 };
4951
4952 MODULE_DEVICE_TABLE(usb, device_table);
4953
4954 /* -- device connect -- */
4955 static int sd_probe(struct usb_interface *intf,
4956 const struct usb_device_id *id)
4957 {
4958 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4959 THIS_MODULE);
4960 }
4961
4962 static struct usb_driver sd_driver = {
4963 .name = MODULE_NAME,
4964 .id_table = device_table,
4965 .probe = sd_probe,
4966 .disconnect = gspca_disconnect,
4967 #ifdef CONFIG_PM
4968 .suspend = gspca_suspend,
4969 .resume = gspca_resume,
4970 #endif
4971 };
4972
4973 /* -- module insert / remove -- */
4974 static int __init sd_mod_init(void)
4975 {
4976 return usb_register(&sd_driver);
4977 }
4978 static void __exit sd_mod_exit(void)
4979 {
4980 usb_deregister(&sd_driver);
4981 }
4982
4983 module_init(sd_mod_init);
4984 module_exit(sd_mod_exit);
4985
4986 module_param(frame_rate, int, 0644);
4987 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");