]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/media/video/gspca/ov534.c
[media] b2c2: fix driver's build due to the lack of pci DMA code
[mirror_ubuntu-artful-kernel.git] / drivers / media / video / gspca / ov534.c
1 /*
2 * ov534-ov7xxx gspca driver
3 *
4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7 *
8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11 *
12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14 * added by Max Thrun <bear24rw@gmail.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #define MODULE_NAME "ov534"
34
35 #include "gspca.h"
36
37 #include <linux/fixp-arith.h>
38 #include <media/v4l2-ctrls.h>
39
40 #define OV534_REG_ADDRESS 0xf1 /* sensor address */
41 #define OV534_REG_SUBADDR 0xf2
42 #define OV534_REG_WRITE 0xf3
43 #define OV534_REG_READ 0xf4
44 #define OV534_REG_OPERATION 0xf5
45 #define OV534_REG_STATUS 0xf6
46
47 #define OV534_OP_WRITE_3 0x37
48 #define OV534_OP_WRITE_2 0x33
49 #define OV534_OP_READ_2 0xf9
50
51 #define CTRL_TIMEOUT 500
52
53 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
54 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
55 MODULE_LICENSE("GPL");
56
57 /* specific webcam descriptor */
58 struct sd {
59 struct gspca_dev gspca_dev; /* !! must be the first item */
60
61 struct v4l2_ctrl_handler ctrl_handler;
62 struct v4l2_ctrl *hue;
63 struct v4l2_ctrl *saturation;
64 struct v4l2_ctrl *brightness;
65 struct v4l2_ctrl *contrast;
66 struct { /* gain control cluster */
67 struct v4l2_ctrl *autogain;
68 struct v4l2_ctrl *gain;
69 };
70 struct v4l2_ctrl *autowhitebalance;
71 struct { /* exposure control cluster */
72 struct v4l2_ctrl *autoexposure;
73 struct v4l2_ctrl *exposure;
74 };
75 struct v4l2_ctrl *sharpness;
76 struct v4l2_ctrl *hflip;
77 struct v4l2_ctrl *vflip;
78 struct v4l2_ctrl *plfreq;
79
80 __u32 last_pts;
81 u16 last_fid;
82 u8 frame_rate;
83
84 u8 sensor;
85 };
86 enum sensors {
87 SENSOR_OV767x,
88 SENSOR_OV772x,
89 NSENSORS
90 };
91
92 static int sd_start(struct gspca_dev *gspca_dev);
93 static void sd_stopN(struct gspca_dev *gspca_dev);
94
95
96 static const struct v4l2_pix_format ov772x_mode[] = {
97 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
98 .bytesperline = 320 * 2,
99 .sizeimage = 320 * 240 * 2,
100 .colorspace = V4L2_COLORSPACE_SRGB,
101 .priv = 1},
102 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
103 .bytesperline = 640 * 2,
104 .sizeimage = 640 * 480 * 2,
105 .colorspace = V4L2_COLORSPACE_SRGB,
106 .priv = 0},
107 };
108 static const struct v4l2_pix_format ov767x_mode[] = {
109 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110 .bytesperline = 320,
111 .sizeimage = 320 * 240 * 3 / 8 + 590,
112 .colorspace = V4L2_COLORSPACE_JPEG},
113 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114 .bytesperline = 640,
115 .sizeimage = 640 * 480 * 3 / 8 + 590,
116 .colorspace = V4L2_COLORSPACE_JPEG},
117 };
118
119 static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30};
120 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121
122 static const struct framerates ov772x_framerates[] = {
123 { /* 320x240 */
124 .rates = qvga_rates,
125 .nrates = ARRAY_SIZE(qvga_rates),
126 },
127 { /* 640x480 */
128 .rates = vga_rates,
129 .nrates = ARRAY_SIZE(vga_rates),
130 },
131 };
132
133 struct reg_array {
134 const u8 (*val)[2];
135 int len;
136 };
137
138 static const u8 bridge_init_767x[][2] = {
139 /* comments from the ms-win file apollo7670.set */
140 /* str1 */
141 {0xf1, 0x42},
142 {0x88, 0xf8},
143 {0x89, 0xff},
144 {0x76, 0x03},
145 {0x92, 0x03},
146 {0x95, 0x10},
147 {0xe2, 0x00},
148 {0xe7, 0x3e},
149 {0x8d, 0x1c},
150 {0x8e, 0x00},
151 {0x8f, 0x00},
152 {0x1f, 0x00},
153 {0xc3, 0xf9},
154 {0x89, 0xff},
155 {0x88, 0xf8},
156 {0x76, 0x03},
157 {0x92, 0x01},
158 {0x93, 0x18},
159 {0x1c, 0x00},
160 {0x1d, 0x48},
161 {0x1d, 0x00},
162 {0x1d, 0xff},
163 {0x1d, 0x02},
164 {0x1d, 0x58},
165 {0x1d, 0x00},
166 {0x1c, 0x0a},
167 {0x1d, 0x0a},
168 {0x1d, 0x0e},
169 {0xc0, 0x50}, /* HSize 640 */
170 {0xc1, 0x3c}, /* VSize 480 */
171 {0x34, 0x05}, /* enable Audio Suspend mode */
172 {0xc2, 0x0c}, /* Input YUV */
173 {0xc3, 0xf9}, /* enable PRE */
174 {0x34, 0x05}, /* enable Audio Suspend mode */
175 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
176 {0x31, 0xf9}, /* enable 1.8V Suspend */
177 {0x35, 0x02}, /* turn on JPEG */
178 {0xd9, 0x10},
179 {0x25, 0x42}, /* GPIO[8]:Input */
180 {0x94, 0x11}, /* If the default setting is loaded when
181 * system boots up, this flag is closed here */
182 };
183 static const u8 sensor_init_767x[][2] = {
184 {0x12, 0x80},
185 {0x11, 0x03},
186 {0x3a, 0x04},
187 {0x12, 0x00},
188 {0x17, 0x13},
189 {0x18, 0x01},
190 {0x32, 0xb6},
191 {0x19, 0x02},
192 {0x1a, 0x7a},
193 {0x03, 0x0a},
194 {0x0c, 0x00},
195 {0x3e, 0x00},
196 {0x70, 0x3a},
197 {0x71, 0x35},
198 {0x72, 0x11},
199 {0x73, 0xf0},
200 {0xa2, 0x02},
201 {0x7a, 0x2a}, /* set Gamma=1.6 below */
202 {0x7b, 0x12},
203 {0x7c, 0x1d},
204 {0x7d, 0x2d},
205 {0x7e, 0x45},
206 {0x7f, 0x50},
207 {0x80, 0x59},
208 {0x81, 0x62},
209 {0x82, 0x6b},
210 {0x83, 0x73},
211 {0x84, 0x7b},
212 {0x85, 0x8a},
213 {0x86, 0x98},
214 {0x87, 0xb2},
215 {0x88, 0xca},
216 {0x89, 0xe0},
217 {0x13, 0xe0},
218 {0x00, 0x00},
219 {0x10, 0x00},
220 {0x0d, 0x40},
221 {0x14, 0x38}, /* gain max 16x */
222 {0xa5, 0x05},
223 {0xab, 0x07},
224 {0x24, 0x95},
225 {0x25, 0x33},
226 {0x26, 0xe3},
227 {0x9f, 0x78},
228 {0xa0, 0x68},
229 {0xa1, 0x03},
230 {0xa6, 0xd8},
231 {0xa7, 0xd8},
232 {0xa8, 0xf0},
233 {0xa9, 0x90},
234 {0xaa, 0x94},
235 {0x13, 0xe5},
236 {0x0e, 0x61},
237 {0x0f, 0x4b},
238 {0x16, 0x02},
239 {0x21, 0x02},
240 {0x22, 0x91},
241 {0x29, 0x07},
242 {0x33, 0x0b},
243 {0x35, 0x0b},
244 {0x37, 0x1d},
245 {0x38, 0x71},
246 {0x39, 0x2a},
247 {0x3c, 0x78},
248 {0x4d, 0x40},
249 {0x4e, 0x20},
250 {0x69, 0x00},
251 {0x6b, 0x4a},
252 {0x74, 0x10},
253 {0x8d, 0x4f},
254 {0x8e, 0x00},
255 {0x8f, 0x00},
256 {0x90, 0x00},
257 {0x91, 0x00},
258 {0x96, 0x00},
259 {0x9a, 0x80},
260 {0xb0, 0x84},
261 {0xb1, 0x0c},
262 {0xb2, 0x0e},
263 {0xb3, 0x82},
264 {0xb8, 0x0a},
265 {0x43, 0x0a},
266 {0x44, 0xf0},
267 {0x45, 0x34},
268 {0x46, 0x58},
269 {0x47, 0x28},
270 {0x48, 0x3a},
271 {0x59, 0x88},
272 {0x5a, 0x88},
273 {0x5b, 0x44},
274 {0x5c, 0x67},
275 {0x5d, 0x49},
276 {0x5e, 0x0e},
277 {0x6c, 0x0a},
278 {0x6d, 0x55},
279 {0x6e, 0x11},
280 {0x6f, 0x9f},
281 {0x6a, 0x40},
282 {0x01, 0x40},
283 {0x02, 0x40},
284 {0x13, 0xe7},
285 {0x4f, 0x80},
286 {0x50, 0x80},
287 {0x51, 0x00},
288 {0x52, 0x22},
289 {0x53, 0x5e},
290 {0x54, 0x80},
291 {0x58, 0x9e},
292 {0x41, 0x08},
293 {0x3f, 0x00},
294 {0x75, 0x04},
295 {0x76, 0xe1},
296 {0x4c, 0x00},
297 {0x77, 0x01},
298 {0x3d, 0xc2},
299 {0x4b, 0x09},
300 {0xc9, 0x60},
301 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
302 {0x56, 0x40},
303 {0x34, 0x11},
304 {0x3b, 0xc2},
305 {0xa4, 0x8a}, /* Night mode trigger point */
306 {0x96, 0x00},
307 {0x97, 0x30},
308 {0x98, 0x20},
309 {0x99, 0x20},
310 {0x9a, 0x84},
311 {0x9b, 0x29},
312 {0x9c, 0x03},
313 {0x9d, 0x4c},
314 {0x9e, 0x3f},
315 {0x78, 0x04},
316 {0x79, 0x01},
317 {0xc8, 0xf0},
318 {0x79, 0x0f},
319 {0xc8, 0x00},
320 {0x79, 0x10},
321 {0xc8, 0x7e},
322 {0x79, 0x0a},
323 {0xc8, 0x80},
324 {0x79, 0x0b},
325 {0xc8, 0x01},
326 {0x79, 0x0c},
327 {0xc8, 0x0f},
328 {0x79, 0x0d},
329 {0xc8, 0x20},
330 {0x79, 0x09},
331 {0xc8, 0x80},
332 {0x79, 0x02},
333 {0xc8, 0xc0},
334 {0x79, 0x03},
335 {0xc8, 0x20},
336 {0x79, 0x26},
337 };
338 static const u8 bridge_start_vga_767x[][2] = {
339 /* str59 JPG */
340 {0x94, 0xaa},
341 {0xf1, 0x42},
342 {0xe5, 0x04},
343 {0xc0, 0x50},
344 {0xc1, 0x3c},
345 {0xc2, 0x0c},
346 {0x35, 0x02}, /* turn on JPEG */
347 {0xd9, 0x10},
348 {0xda, 0x00}, /* for higher clock rate(30fps) */
349 {0x34, 0x05}, /* enable Audio Suspend mode */
350 {0xc3, 0xf9}, /* enable PRE */
351 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
352 {0x8d, 0x1c}, /* output YUV */
353 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */
354 {0x50, 0x00}, /* H/V divider=0 */
355 {0x51, 0xa0}, /* input H=640/4 */
356 {0x52, 0x3c}, /* input V=480/4 */
357 {0x53, 0x00}, /* offset X=0 */
358 {0x54, 0x00}, /* offset Y=0 */
359 {0x55, 0x00}, /* H/V size[8]=0 */
360 {0x57, 0x00}, /* H-size[9]=0 */
361 {0x5c, 0x00}, /* output size[9:8]=0 */
362 {0x5a, 0xa0}, /* output H=640/4 */
363 {0x5b, 0x78}, /* output V=480/4 */
364 {0x1c, 0x0a},
365 {0x1d, 0x0a},
366 {0x94, 0x11},
367 };
368 static const u8 sensor_start_vga_767x[][2] = {
369 {0x11, 0x01},
370 {0x1e, 0x04},
371 {0x19, 0x02},
372 {0x1a, 0x7a},
373 };
374 static const u8 bridge_start_qvga_767x[][2] = {
375 /* str86 JPG */
376 {0x94, 0xaa},
377 {0xf1, 0x42},
378 {0xe5, 0x04},
379 {0xc0, 0x80},
380 {0xc1, 0x60},
381 {0xc2, 0x0c},
382 {0x35, 0x02}, /* turn on JPEG */
383 {0xd9, 0x10},
384 {0xc0, 0x50}, /* CIF HSize 640 */
385 {0xc1, 0x3c}, /* CIF VSize 480 */
386 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */
387 {0x8d, 0x1c}, /* output YUV */
388 {0x34, 0x05}, /* enable Audio Suspend mode */
389 {0xc2, 0x4c}, /* output YUV and Enable DCW */
390 {0xc3, 0xf9}, /* enable PRE */
391 {0x1c, 0x00}, /* indirect addressing */
392 {0x1d, 0x48}, /* output YUV422 */
393 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
394 {0x51, 0xa0}, /* DCW input H=640/4 */
395 {0x52, 0x78}, /* DCW input V=480/4 */
396 {0x53, 0x00}, /* offset X=0 */
397 {0x54, 0x00}, /* offset Y=0 */
398 {0x55, 0x00}, /* H/V size[8]=0 */
399 {0x57, 0x00}, /* H-size[9]=0 */
400 {0x5c, 0x00}, /* DCW output size[9:8]=0 */
401 {0x5a, 0x50}, /* DCW output H=320/4 */
402 {0x5b, 0x3c}, /* DCW output V=240/4 */
403 {0x1c, 0x0a},
404 {0x1d, 0x0a},
405 {0x94, 0x11},
406 };
407 static const u8 sensor_start_qvga_767x[][2] = {
408 {0x11, 0x01},
409 {0x1e, 0x04},
410 {0x19, 0x02},
411 {0x1a, 0x7a},
412 };
413
414 static const u8 bridge_init_772x[][2] = {
415 { 0xc2, 0x0c },
416 { 0x88, 0xf8 },
417 { 0xc3, 0x69 },
418 { 0x89, 0xff },
419 { 0x76, 0x03 },
420 { 0x92, 0x01 },
421 { 0x93, 0x18 },
422 { 0x94, 0x10 },
423 { 0x95, 0x10 },
424 { 0xe2, 0x00 },
425 { 0xe7, 0x3e },
426
427 { 0x96, 0x00 },
428
429 { 0x97, 0x20 },
430 { 0x97, 0x20 },
431 { 0x97, 0x20 },
432 { 0x97, 0x0a },
433 { 0x97, 0x3f },
434 { 0x97, 0x4a },
435 { 0x97, 0x20 },
436 { 0x97, 0x15 },
437 { 0x97, 0x0b },
438
439 { 0x8e, 0x40 },
440 { 0x1f, 0x81 },
441 { 0x34, 0x05 },
442 { 0xe3, 0x04 },
443 { 0x88, 0x00 },
444 { 0x89, 0x00 },
445 { 0x76, 0x00 },
446 { 0xe7, 0x2e },
447 { 0x31, 0xf9 },
448 { 0x25, 0x42 },
449 { 0x21, 0xf0 },
450
451 { 0x1c, 0x00 },
452 { 0x1d, 0x40 },
453 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
454 { 0x1d, 0x00 }, /* payload size */
455
456 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
457 { 0x1d, 0x58 }, /* frame size */
458 { 0x1d, 0x00 }, /* frame size */
459
460 { 0x1c, 0x0a },
461 { 0x1d, 0x08 }, /* turn on UVC header */
462 { 0x1d, 0x0e }, /* .. */
463
464 { 0x8d, 0x1c },
465 { 0x8e, 0x80 },
466 { 0xe5, 0x04 },
467
468 { 0xc0, 0x50 },
469 { 0xc1, 0x3c },
470 { 0xc2, 0x0c },
471 };
472 static const u8 sensor_init_772x[][2] = {
473 { 0x12, 0x80 },
474 { 0x11, 0x01 },
475 /*fixme: better have a delay?*/
476 { 0x11, 0x01 },
477 { 0x11, 0x01 },
478 { 0x11, 0x01 },
479 { 0x11, 0x01 },
480 { 0x11, 0x01 },
481 { 0x11, 0x01 },
482 { 0x11, 0x01 },
483 { 0x11, 0x01 },
484 { 0x11, 0x01 },
485 { 0x11, 0x01 },
486
487 { 0x3d, 0x03 },
488 { 0x17, 0x26 },
489 { 0x18, 0xa0 },
490 { 0x19, 0x07 },
491 { 0x1a, 0xf0 },
492 { 0x32, 0x00 },
493 { 0x29, 0xa0 },
494 { 0x2c, 0xf0 },
495 { 0x65, 0x20 },
496 { 0x11, 0x01 },
497 { 0x42, 0x7f },
498 { 0x63, 0xaa }, /* AWB - was e0 */
499 { 0x64, 0xff },
500 { 0x66, 0x00 },
501 { 0x13, 0xf0 }, /* com8 */
502 { 0x0d, 0x41 },
503 { 0x0f, 0xc5 },
504 { 0x14, 0x11 },
505
506 { 0x22, 0x7f },
507 { 0x23, 0x03 },
508 { 0x24, 0x40 },
509 { 0x25, 0x30 },
510 { 0x26, 0xa1 },
511 { 0x2a, 0x00 },
512 { 0x2b, 0x00 },
513 { 0x6b, 0xaa },
514 { 0x13, 0xff }, /* AWB */
515
516 { 0x90, 0x05 },
517 { 0x91, 0x01 },
518 { 0x92, 0x03 },
519 { 0x93, 0x00 },
520 { 0x94, 0x60 },
521 { 0x95, 0x3c },
522 { 0x96, 0x24 },
523 { 0x97, 0x1e },
524 { 0x98, 0x62 },
525 { 0x99, 0x80 },
526 { 0x9a, 0x1e },
527 { 0x9b, 0x08 },
528 { 0x9c, 0x20 },
529 { 0x9e, 0x81 },
530
531 { 0xa6, 0x07 },
532 { 0x7e, 0x0c },
533 { 0x7f, 0x16 },
534 { 0x80, 0x2a },
535 { 0x81, 0x4e },
536 { 0x82, 0x61 },
537 { 0x83, 0x6f },
538 { 0x84, 0x7b },
539 { 0x85, 0x86 },
540 { 0x86, 0x8e },
541 { 0x87, 0x97 },
542 { 0x88, 0xa4 },
543 { 0x89, 0xaf },
544 { 0x8a, 0xc5 },
545 { 0x8b, 0xd7 },
546 { 0x8c, 0xe8 },
547 { 0x8d, 0x20 },
548
549 { 0x0c, 0x90 },
550
551 { 0x2b, 0x00 },
552 { 0x22, 0x7f },
553 { 0x23, 0x03 },
554 { 0x11, 0x01 },
555 { 0x0c, 0xd0 },
556 { 0x64, 0xff },
557 { 0x0d, 0x41 },
558
559 { 0x14, 0x41 },
560 { 0x0e, 0xcd },
561 { 0xac, 0xbf },
562 { 0x8e, 0x00 }, /* De-noise threshold */
563 { 0x0c, 0xd0 }
564 };
565 static const u8 bridge_start_vga_772x[][2] = {
566 {0x1c, 0x00},
567 {0x1d, 0x40},
568 {0x1d, 0x02},
569 {0x1d, 0x00},
570 {0x1d, 0x02},
571 {0x1d, 0x58},
572 {0x1d, 0x00},
573 {0xc0, 0x50},
574 {0xc1, 0x3c},
575 };
576 static const u8 sensor_start_vga_772x[][2] = {
577 {0x12, 0x00},
578 {0x17, 0x26},
579 {0x18, 0xa0},
580 {0x19, 0x07},
581 {0x1a, 0xf0},
582 {0x29, 0xa0},
583 {0x2c, 0xf0},
584 {0x65, 0x20},
585 };
586 static const u8 bridge_start_qvga_772x[][2] = {
587 {0x1c, 0x00},
588 {0x1d, 0x40},
589 {0x1d, 0x02},
590 {0x1d, 0x00},
591 {0x1d, 0x01},
592 {0x1d, 0x4b},
593 {0x1d, 0x00},
594 {0xc0, 0x28},
595 {0xc1, 0x1e},
596 };
597 static const u8 sensor_start_qvga_772x[][2] = {
598 {0x12, 0x40},
599 {0x17, 0x3f},
600 {0x18, 0x50},
601 {0x19, 0x03},
602 {0x1a, 0x78},
603 {0x29, 0x50},
604 {0x2c, 0x78},
605 {0x65, 0x2f},
606 };
607
608 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
609 {
610 struct usb_device *udev = gspca_dev->dev;
611 int ret;
612
613 if (gspca_dev->usb_err < 0)
614 return;
615
616 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
617 gspca_dev->usb_buf[0] = val;
618 ret = usb_control_msg(udev,
619 usb_sndctrlpipe(udev, 0),
620 0x01,
621 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
622 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
623 if (ret < 0) {
624 pr_err("write failed %d\n", ret);
625 gspca_dev->usb_err = ret;
626 }
627 }
628
629 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
630 {
631 struct usb_device *udev = gspca_dev->dev;
632 int ret;
633
634 if (gspca_dev->usb_err < 0)
635 return 0;
636 ret = usb_control_msg(udev,
637 usb_rcvctrlpipe(udev, 0),
638 0x01,
639 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
640 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
641 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
642 if (ret < 0) {
643 pr_err("read failed %d\n", ret);
644 gspca_dev->usb_err = ret;
645 }
646 return gspca_dev->usb_buf[0];
647 }
648
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650 * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
652 {
653 u8 data;
654
655 PDEBUG(D_CONF, "led status: %d", status);
656
657 data = ov534_reg_read(gspca_dev, 0x21);
658 data |= 0x80;
659 ov534_reg_write(gspca_dev, 0x21, data);
660
661 data = ov534_reg_read(gspca_dev, 0x23);
662 if (status)
663 data |= 0x80;
664 else
665 data &= ~0x80;
666
667 ov534_reg_write(gspca_dev, 0x23, data);
668
669 if (!status) {
670 data = ov534_reg_read(gspca_dev, 0x21);
671 data &= ~0x80;
672 ov534_reg_write(gspca_dev, 0x21, data);
673 }
674 }
675
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
677 {
678 u8 data;
679 int i;
680
681 for (i = 0; i < 5; i++) {
682 msleep(10);
683 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
684
685 switch (data) {
686 case 0x00:
687 return 1;
688 case 0x04:
689 return 0;
690 case 0x03:
691 break;
692 default:
693 PDEBUG(D_ERR, "sccb status 0x%02x, attempt %d/5",
694 data, i + 1);
695 }
696 }
697 return 0;
698 }
699
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
701 {
702 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
703 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
706
707 if (!sccb_check_status(gspca_dev)) {
708 pr_err("sccb_reg_write failed\n");
709 gspca_dev->usb_err = -EIO;
710 }
711 }
712
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
714 {
715 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717 if (!sccb_check_status(gspca_dev))
718 pr_err("sccb_reg_read failed 1\n");
719
720 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721 if (!sccb_check_status(gspca_dev))
722 pr_err("sccb_reg_read failed 2\n");
723
724 return ov534_reg_read(gspca_dev, OV534_REG_READ);
725 }
726
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729 const u8 (*data)[2], int len)
730 {
731 while (--len >= 0) {
732 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733 data++;
734 }
735 }
736
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739 const u8 (*data)[2], int len)
740 {
741 while (--len >= 0) {
742 if ((*data)[0] != 0xff) {
743 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744 } else {
745 sccb_reg_read(gspca_dev, (*data)[1]);
746 sccb_reg_write(gspca_dev, 0xff, 0x00);
747 }
748 data++;
749 }
750 }
751
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
754 {
755 struct sd *sd = (struct sd *) gspca_dev;
756 int i;
757 struct rate_s {
758 u8 fps;
759 u8 r11;
760 u8 r0d;
761 u8 re5;
762 };
763 const struct rate_s *r;
764 static const struct rate_s rate_0[] = { /* 640x480 */
765 {60, 0x01, 0xc1, 0x04},
766 {50, 0x01, 0x41, 0x02},
767 {40, 0x02, 0xc1, 0x04},
768 {30, 0x04, 0x81, 0x02},
769 {15, 0x03, 0x41, 0x04},
770 };
771 static const struct rate_s rate_1[] = { /* 320x240 */
772 {125, 0x02, 0x81, 0x02},
773 {100, 0x02, 0xc1, 0x04},
774 {75, 0x03, 0xc1, 0x04},
775 {60, 0x04, 0xc1, 0x04},
776 {50, 0x02, 0x41, 0x04},
777 {40, 0x03, 0x41, 0x04},
778 {30, 0x04, 0x41, 0x04},
779 };
780
781 if (sd->sensor != SENSOR_OV772x)
782 return;
783 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
784 r = rate_0;
785 i = ARRAY_SIZE(rate_0);
786 } else {
787 r = rate_1;
788 i = ARRAY_SIZE(rate_1);
789 }
790 while (--i > 0) {
791 if (sd->frame_rate >= r->fps)
792 break;
793 r++;
794 }
795
796 sccb_reg_write(gspca_dev, 0x11, r->r11);
797 sccb_reg_write(gspca_dev, 0x0d, r->r0d);
798 ov534_reg_write(gspca_dev, 0xe5, r->re5);
799
800 PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
801 }
802
803 static void sethue(struct gspca_dev *gspca_dev, s32 val)
804 {
805 struct sd *sd = (struct sd *) gspca_dev;
806
807 if (sd->sensor == SENSOR_OV767x) {
808 /* TBD */
809 } else {
810 s16 huesin;
811 s16 huecos;
812
813 /* fixp_sin and fixp_cos accept only positive values, while
814 * our val is between -90 and 90
815 */
816 val += 360;
817
818 /* According to the datasheet the registers expect HUESIN and
819 * HUECOS to be the result of the trigonometric functions,
820 * scaled by 0x80.
821 *
822 * The 0x100 here represents the maximun absolute value
823 * returned byt fixp_sin and fixp_cos, so the scaling will
824 * consider the result like in the interval [-1.0, 1.0].
825 */
826 huesin = fixp_sin(val) * 0x80 / 0x100;
827 huecos = fixp_cos(val) * 0x80 / 0x100;
828
829 if (huesin < 0) {
830 sccb_reg_write(gspca_dev, 0xab,
831 sccb_reg_read(gspca_dev, 0xab) | 0x2);
832 huesin = -huesin;
833 } else {
834 sccb_reg_write(gspca_dev, 0xab,
835 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
836
837 }
838 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
839 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
840 }
841 }
842
843 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
844 {
845 struct sd *sd = (struct sd *) gspca_dev;
846
847 if (sd->sensor == SENSOR_OV767x) {
848 int i;
849 static u8 color_tb[][6] = {
850 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
851 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
852 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
853 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
854 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
855 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
856 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
857 };
858
859 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
860 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
861 } else {
862 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
863 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
864 }
865 }
866
867 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
868 {
869 struct sd *sd = (struct sd *) gspca_dev;
870
871 if (sd->sensor == SENSOR_OV767x) {
872 if (val < 0)
873 val = 0x80 - val;
874 sccb_reg_write(gspca_dev, 0x55, val); /* bright */
875 } else {
876 sccb_reg_write(gspca_dev, 0x9b, val);
877 }
878 }
879
880 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
881 {
882 struct sd *sd = (struct sd *) gspca_dev;
883
884 if (sd->sensor == SENSOR_OV767x)
885 sccb_reg_write(gspca_dev, 0x56, val); /* contras */
886 else
887 sccb_reg_write(gspca_dev, 0x9c, val);
888 }
889
890 static void setgain(struct gspca_dev *gspca_dev, s32 val)
891 {
892 switch (val & 0x30) {
893 case 0x00:
894 val &= 0x0f;
895 break;
896 case 0x10:
897 val &= 0x0f;
898 val |= 0x30;
899 break;
900 case 0x20:
901 val &= 0x0f;
902 val |= 0x70;
903 break;
904 default:
905 /* case 0x30: */
906 val &= 0x0f;
907 val |= 0xf0;
908 break;
909 }
910 sccb_reg_write(gspca_dev, 0x00, val);
911 }
912
913 static s32 getgain(struct gspca_dev *gspca_dev)
914 {
915 return sccb_reg_read(gspca_dev, 0x00);
916 }
917
918 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
919 {
920 struct sd *sd = (struct sd *) gspca_dev;
921
922 if (sd->sensor == SENSOR_OV767x) {
923
924 /* set only aec[9:2] */
925 sccb_reg_write(gspca_dev, 0x10, val); /* aech */
926 } else {
927
928 /* 'val' is one byte and represents half of the exposure value
929 * we are going to set into registers, a two bytes value:
930 *
931 * MSB: ((u16) val << 1) >> 8 == val >> 7
932 * LSB: ((u16) val << 1) & 0xff == val << 1
933 */
934 sccb_reg_write(gspca_dev, 0x08, val >> 7);
935 sccb_reg_write(gspca_dev, 0x10, val << 1);
936 }
937 }
938
939 static s32 getexposure(struct gspca_dev *gspca_dev)
940 {
941 struct sd *sd = (struct sd *) gspca_dev;
942
943 if (sd->sensor == SENSOR_OV767x) {
944 /* get only aec[9:2] */
945 return sccb_reg_read(gspca_dev, 0x10); /* aech */
946 } else {
947 u8 hi = sccb_reg_read(gspca_dev, 0x08);
948 u8 lo = sccb_reg_read(gspca_dev, 0x10);
949 return (hi << 8 | lo) >> 1;
950 }
951 }
952
953 static void setagc(struct gspca_dev *gspca_dev, s32 val)
954 {
955 if (val) {
956 sccb_reg_write(gspca_dev, 0x13,
957 sccb_reg_read(gspca_dev, 0x13) | 0x04);
958 sccb_reg_write(gspca_dev, 0x64,
959 sccb_reg_read(gspca_dev, 0x64) | 0x03);
960 } else {
961 sccb_reg_write(gspca_dev, 0x13,
962 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
963 sccb_reg_write(gspca_dev, 0x64,
964 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
965 }
966 }
967
968 static void setawb(struct gspca_dev *gspca_dev, s32 val)
969 {
970 struct sd *sd = (struct sd *) gspca_dev;
971
972 if (val) {
973 sccb_reg_write(gspca_dev, 0x13,
974 sccb_reg_read(gspca_dev, 0x13) | 0x02);
975 if (sd->sensor == SENSOR_OV772x)
976 sccb_reg_write(gspca_dev, 0x63,
977 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
978 } else {
979 sccb_reg_write(gspca_dev, 0x13,
980 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
981 if (sd->sensor == SENSOR_OV772x)
982 sccb_reg_write(gspca_dev, 0x63,
983 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
984 }
985 }
986
987 static void setaec(struct gspca_dev *gspca_dev, s32 val)
988 {
989 struct sd *sd = (struct sd *) gspca_dev;
990 u8 data;
991
992 data = sd->sensor == SENSOR_OV767x ?
993 0x05 : /* agc + aec */
994 0x01; /* agc */
995 switch (val) {
996 case V4L2_EXPOSURE_AUTO:
997 sccb_reg_write(gspca_dev, 0x13,
998 sccb_reg_read(gspca_dev, 0x13) | data);
999 break;
1000 case V4L2_EXPOSURE_MANUAL:
1001 sccb_reg_write(gspca_dev, 0x13,
1002 sccb_reg_read(gspca_dev, 0x13) & ~data);
1003 break;
1004 }
1005 }
1006
1007 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1008 {
1009 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
1010 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
1011 }
1012
1013 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1014 {
1015 struct sd *sd = (struct sd *) gspca_dev;
1016 u8 val;
1017
1018 if (sd->sensor == SENSOR_OV767x) {
1019 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
1020 val &= ~0x30;
1021 if (hflip)
1022 val |= 0x20;
1023 if (vflip)
1024 val |= 0x10;
1025 sccb_reg_write(gspca_dev, 0x1e, val);
1026 } else {
1027 val = sccb_reg_read(gspca_dev, 0x0c);
1028 val &= ~0xc0;
1029 if (hflip == 0)
1030 val |= 0x40;
1031 if (vflip == 0)
1032 val |= 0x80;
1033 sccb_reg_write(gspca_dev, 0x0c, val);
1034 }
1035 }
1036
1037 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1038 {
1039 struct sd *sd = (struct sd *) gspca_dev;
1040
1041 val = val ? 0x9e : 0x00;
1042 if (sd->sensor == SENSOR_OV767x) {
1043 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1044 if (val)
1045 val = 0x9d; /* insert dummy to 25fps for 50Hz */
1046 }
1047 sccb_reg_write(gspca_dev, 0x2b, val);
1048 }
1049
1050
1051 /* this function is called at probe time */
1052 static int sd_config(struct gspca_dev *gspca_dev,
1053 const struct usb_device_id *id)
1054 {
1055 struct sd *sd = (struct sd *) gspca_dev;
1056 struct cam *cam;
1057
1058 cam = &gspca_dev->cam;
1059
1060 cam->cam_mode = ov772x_mode;
1061 cam->nmodes = ARRAY_SIZE(ov772x_mode);
1062
1063 sd->frame_rate = 30;
1064
1065 return 0;
1066 }
1067
1068 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1069 {
1070 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1071 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1072
1073 switch (ctrl->id) {
1074 case V4L2_CID_AUTOGAIN:
1075 gspca_dev->usb_err = 0;
1076 if (ctrl->val && sd->gain && gspca_dev->streaming)
1077 sd->gain->val = getgain(gspca_dev);
1078 return gspca_dev->usb_err;
1079
1080 case V4L2_CID_EXPOSURE_AUTO:
1081 gspca_dev->usb_err = 0;
1082 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1083 gspca_dev->streaming)
1084 sd->exposure->val = getexposure(gspca_dev);
1085 return gspca_dev->usb_err;
1086 }
1087 return -EINVAL;
1088 }
1089
1090 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1091 {
1092 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1093 struct gspca_dev *gspca_dev = &sd->gspca_dev;
1094
1095 gspca_dev->usb_err = 0;
1096 if (!gspca_dev->streaming)
1097 return 0;
1098
1099 switch (ctrl->id) {
1100 case V4L2_CID_HUE:
1101 sethue(gspca_dev, ctrl->val);
1102 break;
1103 case V4L2_CID_SATURATION:
1104 setsaturation(gspca_dev, ctrl->val);
1105 break;
1106 case V4L2_CID_BRIGHTNESS:
1107 setbrightness(gspca_dev, ctrl->val);
1108 break;
1109 case V4L2_CID_CONTRAST:
1110 setcontrast(gspca_dev, ctrl->val);
1111 break;
1112 case V4L2_CID_AUTOGAIN:
1113 /* case V4L2_CID_GAIN: */
1114 setagc(gspca_dev, ctrl->val);
1115 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1116 setgain(gspca_dev, sd->gain->val);
1117 break;
1118 case V4L2_CID_AUTO_WHITE_BALANCE:
1119 setawb(gspca_dev, ctrl->val);
1120 break;
1121 case V4L2_CID_EXPOSURE_AUTO:
1122 /* case V4L2_CID_EXPOSURE: */
1123 setaec(gspca_dev, ctrl->val);
1124 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1125 sd->exposure)
1126 setexposure(gspca_dev, sd->exposure->val);
1127 break;
1128 case V4L2_CID_SHARPNESS:
1129 setsharpness(gspca_dev, ctrl->val);
1130 break;
1131 case V4L2_CID_HFLIP:
1132 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1133 break;
1134 case V4L2_CID_VFLIP:
1135 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1136 break;
1137 case V4L2_CID_POWER_LINE_FREQUENCY:
1138 setlightfreq(gspca_dev, ctrl->val);
1139 break;
1140 }
1141 return gspca_dev->usb_err;
1142 }
1143
1144 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1145 .g_volatile_ctrl = ov534_g_volatile_ctrl,
1146 .s_ctrl = ov534_s_ctrl,
1147 };
1148
1149 static int sd_init_controls(struct gspca_dev *gspca_dev)
1150 {
1151 struct sd *sd = (struct sd *) gspca_dev;
1152 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1153 /* parameters with different values between the supported sensors */
1154 int saturation_min;
1155 int saturation_max;
1156 int saturation_def;
1157 int brightness_min;
1158 int brightness_max;
1159 int brightness_def;
1160 int contrast_max;
1161 int contrast_def;
1162 int exposure_min;
1163 int exposure_max;
1164 int exposure_def;
1165 int hflip_def;
1166
1167 if (sd->sensor == SENSOR_OV767x) {
1168 saturation_min = 0,
1169 saturation_max = 6,
1170 saturation_def = 3,
1171 brightness_min = -127;
1172 brightness_max = 127;
1173 brightness_def = 0;
1174 contrast_max = 0x80;
1175 contrast_def = 0x40;
1176 exposure_min = 0x08;
1177 exposure_max = 0x60;
1178 exposure_def = 0x13;
1179 hflip_def = 1;
1180 } else {
1181 saturation_min = 0,
1182 saturation_max = 255,
1183 saturation_def = 64,
1184 brightness_min = 0;
1185 brightness_max = 255;
1186 brightness_def = 0;
1187 contrast_max = 255;
1188 contrast_def = 32;
1189 exposure_min = 0;
1190 exposure_max = 255;
1191 exposure_def = 120;
1192 hflip_def = 0;
1193 }
1194
1195 gspca_dev->vdev.ctrl_handler = hdl;
1196
1197 v4l2_ctrl_handler_init(hdl, 13);
1198
1199 if (sd->sensor == SENSOR_OV772x)
1200 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1201 V4L2_CID_HUE, -90, 90, 1, 0);
1202
1203 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1204 V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1205 saturation_def);
1206 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1207 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1208 brightness_def);
1209 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1210 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1211
1212 if (sd->sensor == SENSOR_OV772x) {
1213 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1214 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1215 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216 V4L2_CID_GAIN, 0, 63, 1, 20);
1217 }
1218
1219 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1220 V4L2_CID_EXPOSURE_AUTO,
1221 V4L2_EXPOSURE_MANUAL, 0,
1222 V4L2_EXPOSURE_AUTO);
1223 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1224 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1225 exposure_def);
1226
1227 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1228 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1229
1230 if (sd->sensor == SENSOR_OV772x)
1231 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1232 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1233
1234 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235 V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1236 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237 V4L2_CID_VFLIP, 0, 1, 1, 0);
1238 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1239 V4L2_CID_POWER_LINE_FREQUENCY,
1240 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1241 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1242
1243 if (hdl->error) {
1244 pr_err("Could not initialize controls\n");
1245 return hdl->error;
1246 }
1247
1248 if (sd->sensor == SENSOR_OV772x)
1249 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1250
1251 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1252 true);
1253
1254 return 0;
1255 }
1256
1257 /* this function is called at probe and resume time */
1258 static int sd_init(struct gspca_dev *gspca_dev)
1259 {
1260 struct sd *sd = (struct sd *) gspca_dev;
1261 u16 sensor_id;
1262 static const struct reg_array bridge_init[NSENSORS] = {
1263 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1264 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1265 };
1266 static const struct reg_array sensor_init[NSENSORS] = {
1267 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1268 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1269 };
1270
1271 /* reset bridge */
1272 ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1273 ov534_reg_write(gspca_dev, 0xe0, 0x08);
1274 msleep(100);
1275
1276 /* initialize the sensor address */
1277 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1278
1279 /* reset sensor */
1280 sccb_reg_write(gspca_dev, 0x12, 0x80);
1281 msleep(10);
1282
1283 /* probe the sensor */
1284 sccb_reg_read(gspca_dev, 0x0a);
1285 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1286 sccb_reg_read(gspca_dev, 0x0b);
1287 sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1288 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1289
1290 if ((sensor_id & 0xfff0) == 0x7670) {
1291 sd->sensor = SENSOR_OV767x;
1292 gspca_dev->cam.cam_mode = ov767x_mode;
1293 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1294 } else {
1295 sd->sensor = SENSOR_OV772x;
1296 gspca_dev->cam.bulk = 1;
1297 gspca_dev->cam.bulk_size = 16384;
1298 gspca_dev->cam.bulk_nurbs = 2;
1299 gspca_dev->cam.mode_framerates = ov772x_framerates;
1300 }
1301
1302 /* initialize */
1303 reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1304 bridge_init[sd->sensor].len);
1305 ov534_set_led(gspca_dev, 1);
1306 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1307 sensor_init[sd->sensor].len);
1308 if (sd->sensor == SENSOR_OV767x)
1309 sd_start(gspca_dev);
1310 sd_stopN(gspca_dev);
1311 /* set_frame_rate(gspca_dev); */
1312
1313 return gspca_dev->usb_err;
1314 }
1315
1316 static int sd_start(struct gspca_dev *gspca_dev)
1317 {
1318 struct sd *sd = (struct sd *) gspca_dev;
1319 int mode;
1320 static const struct reg_array bridge_start[NSENSORS][2] = {
1321 [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1322 ARRAY_SIZE(bridge_start_qvga_767x)},
1323 {bridge_start_vga_767x,
1324 ARRAY_SIZE(bridge_start_vga_767x)}},
1325 [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1326 ARRAY_SIZE(bridge_start_qvga_772x)},
1327 {bridge_start_vga_772x,
1328 ARRAY_SIZE(bridge_start_vga_772x)}},
1329 };
1330 static const struct reg_array sensor_start[NSENSORS][2] = {
1331 [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1332 ARRAY_SIZE(sensor_start_qvga_767x)},
1333 {sensor_start_vga_767x,
1334 ARRAY_SIZE(sensor_start_vga_767x)}},
1335 [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1336 ARRAY_SIZE(sensor_start_qvga_772x)},
1337 {sensor_start_vga_772x,
1338 ARRAY_SIZE(sensor_start_vga_772x)}},
1339 };
1340
1341 /* (from ms-win trace) */
1342 if (sd->sensor == SENSOR_OV767x)
1343 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1344 /* black sun enable ? */
1345
1346 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
1347 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1348 bridge_start[sd->sensor][mode].len);
1349 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1350 sensor_start[sd->sensor][mode].len);
1351
1352 set_frame_rate(gspca_dev);
1353
1354 if (sd->hue)
1355 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1356 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1357 if (sd->autogain)
1358 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1359 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1360 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1361 if (sd->gain)
1362 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1363 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1364 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1365 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1366 if (sd->sharpness)
1367 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1368 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1369 v4l2_ctrl_g_ctrl(sd->vflip));
1370 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1371
1372 ov534_set_led(gspca_dev, 1);
1373 ov534_reg_write(gspca_dev, 0xe0, 0x00);
1374 return gspca_dev->usb_err;
1375 }
1376
1377 static void sd_stopN(struct gspca_dev *gspca_dev)
1378 {
1379 ov534_reg_write(gspca_dev, 0xe0, 0x09);
1380 ov534_set_led(gspca_dev, 0);
1381 }
1382
1383 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1384 #define UVC_STREAM_EOH (1 << 7)
1385 #define UVC_STREAM_ERR (1 << 6)
1386 #define UVC_STREAM_STI (1 << 5)
1387 #define UVC_STREAM_RES (1 << 4)
1388 #define UVC_STREAM_SCR (1 << 3)
1389 #define UVC_STREAM_PTS (1 << 2)
1390 #define UVC_STREAM_EOF (1 << 1)
1391 #define UVC_STREAM_FID (1 << 0)
1392
1393 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1394 u8 *data, int len)
1395 {
1396 struct sd *sd = (struct sd *) gspca_dev;
1397 __u32 this_pts;
1398 u16 this_fid;
1399 int remaining_len = len;
1400 int payload_len;
1401
1402 payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1403 do {
1404 len = min(remaining_len, payload_len);
1405
1406 /* Payloads are prefixed with a UVC-style header. We
1407 consider a frame to start when the FID toggles, or the PTS
1408 changes. A frame ends when EOF is set, and we've received
1409 the correct number of bytes. */
1410
1411 /* Verify UVC header. Header length is always 12 */
1412 if (data[0] != 12 || len < 12) {
1413 PDEBUG(D_PACK, "bad header");
1414 goto discard;
1415 }
1416
1417 /* Check errors */
1418 if (data[1] & UVC_STREAM_ERR) {
1419 PDEBUG(D_PACK, "payload error");
1420 goto discard;
1421 }
1422
1423 /* Extract PTS and FID */
1424 if (!(data[1] & UVC_STREAM_PTS)) {
1425 PDEBUG(D_PACK, "PTS not present");
1426 goto discard;
1427 }
1428 this_pts = (data[5] << 24) | (data[4] << 16)
1429 | (data[3] << 8) | data[2];
1430 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1431
1432 /* If PTS or FID has changed, start a new frame. */
1433 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1434 if (gspca_dev->last_packet_type == INTER_PACKET)
1435 gspca_frame_add(gspca_dev, LAST_PACKET,
1436 NULL, 0);
1437 sd->last_pts = this_pts;
1438 sd->last_fid = this_fid;
1439 gspca_frame_add(gspca_dev, FIRST_PACKET,
1440 data + 12, len - 12);
1441 /* If this packet is marked as EOF, end the frame */
1442 } else if (data[1] & UVC_STREAM_EOF) {
1443 sd->last_pts = 0;
1444 if (gspca_dev->pixfmt == V4L2_PIX_FMT_YUYV
1445 && gspca_dev->image_len + len - 12 !=
1446 gspca_dev->width * gspca_dev->height * 2) {
1447 PDEBUG(D_PACK, "wrong sized frame");
1448 goto discard;
1449 }
1450 gspca_frame_add(gspca_dev, LAST_PACKET,
1451 data + 12, len - 12);
1452 } else {
1453
1454 /* Add the data from this payload */
1455 gspca_frame_add(gspca_dev, INTER_PACKET,
1456 data + 12, len - 12);
1457 }
1458
1459 /* Done this payload */
1460 goto scan_next;
1461
1462 discard:
1463 /* Discard data until a new frame starts. */
1464 gspca_dev->last_packet_type = DISCARD_PACKET;
1465
1466 scan_next:
1467 remaining_len -= len;
1468 data += len;
1469 } while (remaining_len > 0);
1470 }
1471
1472 /* get stream parameters (framerate) */
1473 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1474 struct v4l2_streamparm *parm)
1475 {
1476 struct v4l2_captureparm *cp = &parm->parm.capture;
1477 struct v4l2_fract *tpf = &cp->timeperframe;
1478 struct sd *sd = (struct sd *) gspca_dev;
1479
1480 cp->capability |= V4L2_CAP_TIMEPERFRAME;
1481 tpf->numerator = 1;
1482 tpf->denominator = sd->frame_rate;
1483 }
1484
1485 /* set stream parameters (framerate) */
1486 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1487 struct v4l2_streamparm *parm)
1488 {
1489 struct v4l2_captureparm *cp = &parm->parm.capture;
1490 struct v4l2_fract *tpf = &cp->timeperframe;
1491 struct sd *sd = (struct sd *) gspca_dev;
1492
1493 /* Set requested framerate */
1494 sd->frame_rate = tpf->denominator / tpf->numerator;
1495 if (gspca_dev->streaming)
1496 set_frame_rate(gspca_dev);
1497
1498 /* Return the actual framerate */
1499 tpf->numerator = 1;
1500 tpf->denominator = sd->frame_rate;
1501 }
1502
1503 /* sub-driver description */
1504 static const struct sd_desc sd_desc = {
1505 .name = MODULE_NAME,
1506 .config = sd_config,
1507 .init = sd_init,
1508 .init_controls = sd_init_controls,
1509 .start = sd_start,
1510 .stopN = sd_stopN,
1511 .pkt_scan = sd_pkt_scan,
1512 .get_streamparm = sd_get_streamparm,
1513 .set_streamparm = sd_set_streamparm,
1514 };
1515
1516 /* -- module initialisation -- */
1517 static const struct usb_device_id device_table[] = {
1518 {USB_DEVICE(0x1415, 0x2000)},
1519 {USB_DEVICE(0x06f8, 0x3002)},
1520 {}
1521 };
1522
1523 MODULE_DEVICE_TABLE(usb, device_table);
1524
1525 /* -- device connect -- */
1526 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1527 {
1528 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1529 THIS_MODULE);
1530 }
1531
1532 static struct usb_driver sd_driver = {
1533 .name = MODULE_NAME,
1534 .id_table = device_table,
1535 .probe = sd_probe,
1536 .disconnect = gspca_disconnect,
1537 #ifdef CONFIG_PM
1538 .suspend = gspca_suspend,
1539 .resume = gspca_resume,
1540 .reset_resume = gspca_resume,
1541 #endif
1542 };
1543
1544 module_usb_driver(sd_driver);