]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/memory/emif.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / drivers / memory / emif.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26 #include <memory/jedec_ddr.h>
27 #include "emif.h"
28 #include "of_memory.h"
29
30 /**
31 * struct emif_data - Per device static data for driver's use
32 * @duplicate: Whether the DDR devices attached to this EMIF
33 * instance are exactly same as that on EMIF1. In
34 * this case we can save some memory and processing
35 * @temperature_level: Maximum temperature of LPDDR2 devices attached
36 * to this EMIF - read from MR4 register. If there
37 * are two devices attached to this EMIF, this
38 * value is the maximum of the two temperature
39 * levels.
40 * @node: node in the device list
41 * @base: base address of memory-mapped IO registers.
42 * @dev: device pointer.
43 * @addressing table with addressing information from the spec
44 * @regs_cache: An array of 'struct emif_regs' that stores
45 * calculated register values for different
46 * frequencies, to avoid re-calculating them on
47 * each DVFS transition.
48 * @curr_regs: The set of register values used in the last
49 * frequency change (i.e. corresponding to the
50 * frequency in effect at the moment)
51 * @plat_data: Pointer to saved platform data.
52 * @debugfs_root: dentry to the root folder for EMIF in debugfs
53 * @np_ddr: Pointer to ddr device tree node
54 */
55 struct emif_data {
56 u8 duplicate;
57 u8 temperature_level;
58 u8 lpmode;
59 struct list_head node;
60 unsigned long irq_state;
61 void __iomem *base;
62 struct device *dev;
63 const struct lpddr2_addressing *addressing;
64 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
65 struct emif_regs *curr_regs;
66 struct emif_platform_data *plat_data;
67 struct dentry *debugfs_root;
68 struct device_node *np_ddr;
69 };
70
71 static struct emif_data *emif1;
72 static spinlock_t emif_lock;
73 static unsigned long irq_state;
74 static u32 t_ck; /* DDR clock period in ps */
75 static LIST_HEAD(device_list);
76
77 #ifdef CONFIG_DEBUG_FS
78 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
79 struct emif_regs *regs)
80 {
81 u32 type = emif->plat_data->device_info->type;
82 u32 ip_rev = emif->plat_data->ip_rev;
83
84 seq_printf(s, "EMIF register cache dump for %dMHz\n",
85 regs->freq/1000000);
86
87 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
88 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
89 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
90 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
91
92 if (ip_rev == EMIF_4D) {
93 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
94 regs->read_idle_ctrl_shdw_normal);
95 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
96 regs->read_idle_ctrl_shdw_volt_ramp);
97 } else if (ip_rev == EMIF_4D5) {
98 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
99 regs->dll_calib_ctrl_shdw_normal);
100 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
101 regs->dll_calib_ctrl_shdw_volt_ramp);
102 }
103
104 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
105 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
106 regs->ref_ctrl_shdw_derated);
107 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
108 regs->sdram_tim1_shdw_derated);
109 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
110 regs->sdram_tim3_shdw_derated);
111 }
112 }
113
114 static int emif_regdump_show(struct seq_file *s, void *unused)
115 {
116 struct emif_data *emif = s->private;
117 struct emif_regs **regs_cache;
118 int i;
119
120 if (emif->duplicate)
121 regs_cache = emif1->regs_cache;
122 else
123 regs_cache = emif->regs_cache;
124
125 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
126 do_emif_regdump_show(s, emif, regs_cache[i]);
127 seq_putc(s, '\n');
128 }
129
130 return 0;
131 }
132
133 static int emif_regdump_open(struct inode *inode, struct file *file)
134 {
135 return single_open(file, emif_regdump_show, inode->i_private);
136 }
137
138 static const struct file_operations emif_regdump_fops = {
139 .open = emif_regdump_open,
140 .read = seq_read,
141 .release = single_release,
142 };
143
144 static int emif_mr4_show(struct seq_file *s, void *unused)
145 {
146 struct emif_data *emif = s->private;
147
148 seq_printf(s, "MR4=%d\n", emif->temperature_level);
149 return 0;
150 }
151
152 static int emif_mr4_open(struct inode *inode, struct file *file)
153 {
154 return single_open(file, emif_mr4_show, inode->i_private);
155 }
156
157 static const struct file_operations emif_mr4_fops = {
158 .open = emif_mr4_open,
159 .read = seq_read,
160 .release = single_release,
161 };
162
163 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
164 {
165 struct dentry *dentry;
166 int ret;
167
168 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
169 if (!dentry) {
170 ret = -ENOMEM;
171 goto err0;
172 }
173 emif->debugfs_root = dentry;
174
175 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
176 emif->debugfs_root, emif, &emif_regdump_fops);
177 if (!dentry) {
178 ret = -ENOMEM;
179 goto err1;
180 }
181
182 dentry = debugfs_create_file("mr4", S_IRUGO,
183 emif->debugfs_root, emif, &emif_mr4_fops);
184 if (!dentry) {
185 ret = -ENOMEM;
186 goto err1;
187 }
188
189 return 0;
190 err1:
191 debugfs_remove_recursive(emif->debugfs_root);
192 err0:
193 return ret;
194 }
195
196 static void __exit emif_debugfs_exit(struct emif_data *emif)
197 {
198 debugfs_remove_recursive(emif->debugfs_root);
199 emif->debugfs_root = NULL;
200 }
201 #else
202 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
203 {
204 return 0;
205 }
206
207 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
208 {
209 }
210 #endif
211
212 /*
213 * Calculate the period of DDR clock from frequency value
214 */
215 static void set_ddr_clk_period(u32 freq)
216 {
217 /* Divide 10^12 by frequency to get period in ps */
218 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
219 }
220
221 /*
222 * Get bus width used by EMIF. Note that this may be different from the
223 * bus width of the DDR devices used. For instance two 16-bit DDR devices
224 * may be connected to a given CS of EMIF. In this case bus width as far
225 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
226 */
227 static u32 get_emif_bus_width(struct emif_data *emif)
228 {
229 u32 width;
230 void __iomem *base = emif->base;
231
232 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
233 >> NARROW_MODE_SHIFT;
234 width = width == 0 ? 32 : 16;
235
236 return width;
237 }
238
239 /*
240 * Get the CL from SDRAM_CONFIG register
241 */
242 static u32 get_cl(struct emif_data *emif)
243 {
244 u32 cl;
245 void __iomem *base = emif->base;
246
247 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
248
249 return cl;
250 }
251
252 static void set_lpmode(struct emif_data *emif, u8 lpmode)
253 {
254 u32 temp;
255 void __iomem *base = emif->base;
256
257 /*
258 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
259 * Efficient
260 *
261 * i743 DESCRIPTION:
262 * The EMIF supports power-down state for low power. The EMIF
263 * automatically puts the SDRAM into power-down after the memory is
264 * not accessed for a defined number of cycles and the
265 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
266 * As the EMIF supports automatic output impedance calibration, a ZQ
267 * calibration long command is issued every time it exits active
268 * power-down and precharge power-down modes. The EMIF waits and
269 * blocks any other command during this calibration.
270 * The EMIF does not allow selective disabling of ZQ calibration upon
271 * exit of power-down mode. Due to very short periods of power-down
272 * cycles, ZQ calibration overhead creates bandwidth issues and
273 * increases overall system power consumption. On the other hand,
274 * issuing ZQ calibration long commands when exiting self-refresh is
275 * still required.
276 *
277 * WORKAROUND
278 * Because there is no power consumption benefit of the power-down due
279 * to the calibration and there is a performance risk, the guideline
280 * is to not allow power-down state and, therefore, to not have set
281 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
282 */
283 if ((emif->plat_data->ip_rev == EMIF_4D) &&
284 (EMIF_LP_MODE_PWR_DN == lpmode)) {
285 WARN_ONCE(1,
286 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
287 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
288 /* rollback LP_MODE to Self-refresh mode */
289 lpmode = EMIF_LP_MODE_SELF_REFRESH;
290 }
291
292 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
293 temp &= ~LP_MODE_MASK;
294 temp |= (lpmode << LP_MODE_SHIFT);
295 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
296 }
297
298 static void do_freq_update(void)
299 {
300 struct emif_data *emif;
301
302 /*
303 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
304 *
305 * i728 DESCRIPTION:
306 * The EMIF automatically puts the SDRAM into self-refresh mode
307 * after the EMIF has not performed accesses during
308 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
309 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
310 * to 0x2. If during a small window the following three events
311 * occur:
312 * - The SR_TIMING counter expires
313 * - And frequency change is requested
314 * - And OCP access is requested
315 * Then it causes instable clock on the DDR interface.
316 *
317 * WORKAROUND
318 * To avoid the occurrence of the three events, the workaround
319 * is to disable the self-refresh when requesting a frequency
320 * change. Before requesting a frequency change the software must
321 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
322 * frequency change has been done, the software can reprogram
323 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
324 */
325 list_for_each_entry(emif, &device_list, node) {
326 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
327 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
328 }
329
330 /*
331 * TODO: Do FREQ_UPDATE here when an API
332 * is available for this as part of the new
333 * clock framework
334 */
335
336 list_for_each_entry(emif, &device_list, node) {
337 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
338 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
339 }
340 }
341
342 /* Find addressing table entry based on the device's type and density */
343 static const struct lpddr2_addressing *get_addressing_table(
344 const struct ddr_device_info *device_info)
345 {
346 u32 index, type, density;
347
348 type = device_info->type;
349 density = device_info->density;
350
351 switch (type) {
352 case DDR_TYPE_LPDDR2_S4:
353 index = density - 1;
354 break;
355 case DDR_TYPE_LPDDR2_S2:
356 switch (density) {
357 case DDR_DENSITY_1Gb:
358 case DDR_DENSITY_2Gb:
359 index = density + 3;
360 break;
361 default:
362 index = density - 1;
363 }
364 break;
365 default:
366 return NULL;
367 }
368
369 return &lpddr2_jedec_addressing_table[index];
370 }
371
372 /*
373 * Find the the right timing table from the array of timing
374 * tables of the device using DDR clock frequency
375 */
376 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
377 u32 freq)
378 {
379 u32 i, min, max, freq_nearest;
380 const struct lpddr2_timings *timings = NULL;
381 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
382 struct device *dev = emif->dev;
383
384 /* Start with a very high frequency - 1GHz */
385 freq_nearest = 1000000000;
386
387 /*
388 * Find the timings table such that:
389 * 1. the frequency range covers the required frequency(safe) AND
390 * 2. the max_freq is closest to the required frequency(optimal)
391 */
392 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
393 max = timings_arr[i].max_freq;
394 min = timings_arr[i].min_freq;
395 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
396 freq_nearest = max;
397 timings = &timings_arr[i];
398 }
399 }
400
401 if (!timings)
402 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
403 __func__, freq);
404
405 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
406 __func__, freq, freq_nearest);
407
408 return timings;
409 }
410
411 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
412 const struct lpddr2_addressing *addressing)
413 {
414 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
415
416 /* Scale down frequency and t_refi to avoid overflow */
417 freq_khz = freq / 1000;
418 t_refi = addressing->tREFI_ns / 100;
419
420 /*
421 * refresh rate to be set is 'tREFI(in us) * freq in MHz
422 * division by 10000 to account for change in units
423 */
424 val = t_refi * freq_khz / 10000;
425 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
426
427 return ref_ctrl_shdw;
428 }
429
430 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
431 const struct lpddr2_min_tck *min_tck,
432 const struct lpddr2_addressing *addressing)
433 {
434 u32 tim1 = 0, val = 0;
435
436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437 tim1 |= val << T_WTR_SHIFT;
438
439 if (addressing->num_banks == B8)
440 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
441 else
442 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
443 tim1 |= (val - 1) << T_RRD_SHIFT;
444
445 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
446 tim1 |= val << T_RC_SHIFT;
447
448 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
449 tim1 |= (val - 1) << T_RAS_SHIFT;
450
451 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
452 tim1 |= val << T_WR_SHIFT;
453
454 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
455 tim1 |= val << T_RCD_SHIFT;
456
457 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
458 tim1 |= val << T_RP_SHIFT;
459
460 return tim1;
461 }
462
463 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
464 const struct lpddr2_min_tck *min_tck,
465 const struct lpddr2_addressing *addressing)
466 {
467 u32 tim1 = 0, val = 0;
468
469 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
470 tim1 = val << T_WTR_SHIFT;
471
472 /*
473 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
474 * to tFAW for de-rating
475 */
476 if (addressing->num_banks == B8) {
477 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
478 } else {
479 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
480 val = max(min_tck->tRRD, val) - 1;
481 }
482 tim1 |= val << T_RRD_SHIFT;
483
484 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
485 tim1 |= (val - 1) << T_RC_SHIFT;
486
487 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
488 val = max(min_tck->tRASmin, val) - 1;
489 tim1 |= val << T_RAS_SHIFT;
490
491 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
492 tim1 |= val << T_WR_SHIFT;
493
494 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
495 tim1 |= (val - 1) << T_RCD_SHIFT;
496
497 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
498 tim1 |= (val - 1) << T_RP_SHIFT;
499
500 return tim1;
501 }
502
503 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
504 const struct lpddr2_min_tck *min_tck,
505 const struct lpddr2_addressing *addressing,
506 u32 type)
507 {
508 u32 tim2 = 0, val = 0;
509
510 val = min_tck->tCKE - 1;
511 tim2 |= val << T_CKE_SHIFT;
512
513 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
514 tim2 |= val << T_RTP_SHIFT;
515
516 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
517 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
518 tim2 |= val << T_XSNR_SHIFT;
519
520 /* XSRD same as XSNR for LPDDR2 */
521 tim2 |= val << T_XSRD_SHIFT;
522
523 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
524 tim2 |= val << T_XP_SHIFT;
525
526 return tim2;
527 }
528
529 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
530 const struct lpddr2_min_tck *min_tck,
531 const struct lpddr2_addressing *addressing,
532 u32 type, u32 ip_rev, u32 derated)
533 {
534 u32 tim3 = 0, val = 0, t_dqsck;
535
536 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
537 val = val > 0xF ? 0xF : val;
538 tim3 |= val << T_RAS_MAX_SHIFT;
539
540 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
541 tim3 |= val << T_RFC_SHIFT;
542
543 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
544 timings->tDQSCK_max_derated : timings->tDQSCK_max;
545 if (ip_rev == EMIF_4D5)
546 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
547 else
548 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
549
550 tim3 |= val << T_TDQSCKMAX_SHIFT;
551
552 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
553 tim3 |= val << ZQ_ZQCS_SHIFT;
554
555 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
556 val = max(min_tck->tCKESR, val) - 1;
557 tim3 |= val << T_CKESR_SHIFT;
558
559 if (ip_rev == EMIF_4D5) {
560 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
561
562 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
563 tim3 |= val << T_PDLL_UL_SHIFT;
564 }
565
566 return tim3;
567 }
568
569 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
570 bool cs1_used, bool cal_resistors_per_cs)
571 {
572 u32 zq = 0, val = 0;
573
574 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
575 zq |= val << ZQ_REFINTERVAL_SHIFT;
576
577 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
578 zq |= val << ZQ_ZQCL_MULT_SHIFT;
579
580 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
581 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
582
583 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
584
585 if (cal_resistors_per_cs)
586 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
587 else
588 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
589
590 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
591
592 val = cs1_used ? 1 : 0;
593 zq |= val << ZQ_CS1EN_SHIFT;
594
595 return zq;
596 }
597
598 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
599 const struct emif_custom_configs *custom_configs, bool cs1_used,
600 u32 sdram_io_width, u32 emif_bus_width)
601 {
602 u32 alert = 0, interval, devcnt;
603
604 if (custom_configs && (custom_configs->mask &
605 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
606 interval = custom_configs->temp_alert_poll_interval_ms;
607 else
608 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
609
610 interval *= 1000000; /* Convert to ns */
611 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
612 alert |= (interval << TA_REFINTERVAL_SHIFT);
613
614 /*
615 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
616 * also to this form and subtract to get TA_DEVCNT, which is
617 * in log2(x) form.
618 */
619 emif_bus_width = __fls(emif_bus_width) - 1;
620 devcnt = emif_bus_width - sdram_io_width;
621 alert |= devcnt << TA_DEVCNT_SHIFT;
622
623 /* DEVWDT is in 'log2(x) - 3' form */
624 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
625
626 alert |= 1 << TA_SFEXITEN_SHIFT;
627 alert |= 1 << TA_CS0EN_SHIFT;
628 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
629
630 return alert;
631 }
632
633 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
634 {
635 u32 idle = 0, val = 0;
636
637 /*
638 * Maximum value in normal conditions and increased frequency
639 * when voltage is ramping
640 */
641 if (volt_ramp)
642 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
643 else
644 val = 0x1FF;
645
646 /*
647 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
648 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
649 */
650 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
651 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
652
653 return idle;
654 }
655
656 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
657 {
658 u32 calib = 0, val = 0;
659
660 if (volt_ramp == DDR_VOLTAGE_RAMPING)
661 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
662 else
663 val = 0; /* Disabled when voltage is stable */
664
665 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
666 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
667
668 return calib;
669 }
670
671 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
672 u32 freq, u8 RL)
673 {
674 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
675
676 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
677 phy |= val << READ_LATENCY_SHIFT_4D;
678
679 if (freq <= 100000000)
680 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
681 else if (freq <= 200000000)
682 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
683 else
684 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
685
686 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
687
688 return phy;
689 }
690
691 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
692 {
693 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
694
695 /*
696 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
697 * half-delay is not needed else set half-delay
698 */
699 if (freq >= 265000000 && freq < 267000000)
700 half_delay = 0;
701 else
702 half_delay = 1;
703
704 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
705 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
706 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
707
708 return phy;
709 }
710
711 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
712 {
713 u32 fifo_we_slave_ratio;
714
715 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
716 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
717
718 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
719 fifo_we_slave_ratio << 22;
720 }
721
722 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
723 {
724 u32 fifo_we_slave_ratio;
725
726 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
727 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
728
729 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
730 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
731 }
732
733 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
734 {
735 u32 fifo_we_slave_ratio;
736
737 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
738 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
739
740 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
741 fifo_we_slave_ratio << 13;
742 }
743
744 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
745 {
746 u32 pwr_mgmt_ctrl = 0, timeout;
747 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
748 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
749 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
750 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
751 u32 mask;
752 u8 shift;
753
754 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
755
756 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
757 lpmode = cust_cfgs->lpmode;
758 timeout_perf = cust_cfgs->lpmode_timeout_performance;
759 timeout_pwr = cust_cfgs->lpmode_timeout_power;
760 freq_threshold = cust_cfgs->lpmode_freq_threshold;
761 }
762
763 /* Timeout based on DDR frequency */
764 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
765
766 /*
767 * The value to be set in register is "log2(timeout) - 3"
768 * if timeout < 16 load 0 in register
769 * if timeout is not a power of 2, round to next highest power of 2
770 */
771 if (timeout < 16) {
772 timeout = 0;
773 } else {
774 if (timeout & (timeout - 1))
775 timeout <<= 1;
776 timeout = __fls(timeout) - 3;
777 }
778
779 switch (lpmode) {
780 case EMIF_LP_MODE_CLOCK_STOP:
781 shift = CS_TIM_SHIFT;
782 mask = CS_TIM_MASK;
783 break;
784 case EMIF_LP_MODE_SELF_REFRESH:
785 /* Workaround for errata i735 */
786 if (timeout < 6)
787 timeout = 6;
788
789 shift = SR_TIM_SHIFT;
790 mask = SR_TIM_MASK;
791 break;
792 case EMIF_LP_MODE_PWR_DN:
793 shift = PD_TIM_SHIFT;
794 mask = PD_TIM_MASK;
795 break;
796 case EMIF_LP_MODE_DISABLE:
797 default:
798 mask = 0;
799 shift = 0;
800 break;
801 }
802 /* Round to maximum in case of overflow, BUT warn! */
803 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
804 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
805 lpmode,
806 timeout_perf,
807 timeout_pwr,
808 freq_threshold);
809 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
810 timeout, mask >> shift);
811 timeout = mask >> shift;
812 }
813
814 /* Setup required timing */
815 pwr_mgmt_ctrl = (timeout << shift) & mask;
816 /* setup a default mask for rest of the modes */
817 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
818 ~mask;
819
820 /* No CS_TIM in EMIF_4D5 */
821 if (ip_rev == EMIF_4D5)
822 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
823
824 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
825
826 return pwr_mgmt_ctrl;
827 }
828
829 /*
830 * Get the temperature level of the EMIF instance:
831 * Reads the MR4 register of attached SDRAM parts to find out the temperature
832 * level. If there are two parts attached(one on each CS), then the temperature
833 * level for the EMIF instance is the higher of the two temperatures.
834 */
835 static void get_temperature_level(struct emif_data *emif)
836 {
837 u32 temp, temperature_level;
838 void __iomem *base;
839
840 base = emif->base;
841
842 /* Read mode register 4 */
843 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
844 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
845 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
846 MR4_SDRAM_REF_RATE_SHIFT;
847
848 if (emif->plat_data->device_info->cs1_used) {
849 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
850 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
851 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
852 >> MR4_SDRAM_REF_RATE_SHIFT;
853 temperature_level = max(temp, temperature_level);
854 }
855
856 /* treat everything less than nominal(3) in MR4 as nominal */
857 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
858 temperature_level = SDRAM_TEMP_NOMINAL;
859
860 /* if we get reserved value in MR4 persist with the existing value */
861 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
862 emif->temperature_level = temperature_level;
863 }
864
865 /*
866 * Program EMIF shadow registers that are not dependent on temperature
867 * or voltage
868 */
869 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
870 {
871 void __iomem *base = emif->base;
872
873 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
874 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
875 writel(regs->pwr_mgmt_ctrl_shdw,
876 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
877
878 /* Settings specific for EMIF4D5 */
879 if (emif->plat_data->ip_rev != EMIF_4D5)
880 return;
881 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
882 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
883 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
884 }
885
886 /*
887 * When voltage ramps dll calibration and forced read idle should
888 * happen more often
889 */
890 static void setup_volt_sensitive_regs(struct emif_data *emif,
891 struct emif_regs *regs, u32 volt_state)
892 {
893 u32 calib_ctrl;
894 void __iomem *base = emif->base;
895
896 /*
897 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
898 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
899 * is an alias of the respective read_idle_ctrl_shdw_* (members of
900 * a union). So, the below code takes care of both cases
901 */
902 if (volt_state == DDR_VOLTAGE_RAMPING)
903 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
904 else
905 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
906
907 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
908 }
909
910 /*
911 * setup_temperature_sensitive_regs() - set the timings for temperature
912 * sensitive registers. This happens once at initialisation time based
913 * on the temperature at boot time and subsequently based on the temperature
914 * alert interrupt. Temperature alert can happen when the temperature
915 * increases or drops. So this function can have the effect of either
916 * derating the timings or going back to nominal values.
917 */
918 static void setup_temperature_sensitive_regs(struct emif_data *emif,
919 struct emif_regs *regs)
920 {
921 u32 tim1, tim3, ref_ctrl, type;
922 void __iomem *base = emif->base;
923 u32 temperature;
924
925 type = emif->plat_data->device_info->type;
926
927 tim1 = regs->sdram_tim1_shdw;
928 tim3 = regs->sdram_tim3_shdw;
929 ref_ctrl = regs->ref_ctrl_shdw;
930
931 /* No de-rating for non-lpddr2 devices */
932 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
933 goto out;
934
935 temperature = emif->temperature_level;
936 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
937 ref_ctrl = regs->ref_ctrl_shdw_derated;
938 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
939 tim1 = regs->sdram_tim1_shdw_derated;
940 tim3 = regs->sdram_tim3_shdw_derated;
941 ref_ctrl = regs->ref_ctrl_shdw_derated;
942 }
943
944 out:
945 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
946 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
947 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
948 }
949
950 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
951 {
952 u32 old_temp_level;
953 irqreturn_t ret = IRQ_HANDLED;
954 struct emif_custom_configs *custom_configs;
955
956 spin_lock_irqsave(&emif_lock, irq_state);
957 old_temp_level = emif->temperature_level;
958 get_temperature_level(emif);
959
960 if (unlikely(emif->temperature_level == old_temp_level)) {
961 goto out;
962 } else if (!emif->curr_regs) {
963 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
964 goto out;
965 }
966
967 custom_configs = emif->plat_data->custom_configs;
968
969 /*
970 * IF we detect higher than "nominal rating" from DDR sensor
971 * on an unsupported DDR part, shutdown system
972 */
973 if (custom_configs && !(custom_configs->mask &
974 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
975 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
976 dev_err(emif->dev,
977 "%s:NOT Extended temperature capable memory."
978 "Converting MR4=0x%02x as shutdown event\n",
979 __func__, emif->temperature_level);
980 /*
981 * Temperature far too high - do kernel_power_off()
982 * from thread context
983 */
984 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
985 ret = IRQ_WAKE_THREAD;
986 goto out;
987 }
988 }
989
990 if (emif->temperature_level < old_temp_level ||
991 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
992 /*
993 * Temperature coming down - defer handling to thread OR
994 * Temperature far too high - do kernel_power_off() from
995 * thread context
996 */
997 ret = IRQ_WAKE_THREAD;
998 } else {
999 /* Temperature is going up - handle immediately */
1000 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1001 do_freq_update();
1002 }
1003
1004 out:
1005 spin_unlock_irqrestore(&emif_lock, irq_state);
1006 return ret;
1007 }
1008
1009 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1010 {
1011 u32 interrupts;
1012 struct emif_data *emif = dev_id;
1013 void __iomem *base = emif->base;
1014 struct device *dev = emif->dev;
1015 irqreturn_t ret = IRQ_HANDLED;
1016
1017 /* Save the status and clear it */
1018 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1020
1021 /*
1022 * Handle temperature alert
1023 * Temperature alert should be same for all ports
1024 * So, it's enough to process it only for one of the ports
1025 */
1026 if (interrupts & TA_SYS_MASK)
1027 ret = handle_temp_alert(base, emif);
1028
1029 if (interrupts & ERR_SYS_MASK)
1030 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1031
1032 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1033 /* Save the status and clear it */
1034 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1036
1037 if (interrupts & ERR_LL_MASK)
1038 dev_err(dev, "Access error from LL port - %x\n",
1039 interrupts);
1040 }
1041
1042 return ret;
1043 }
1044
1045 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1046 {
1047 struct emif_data *emif = dev_id;
1048
1049 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1050 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1051
1052 /* If we have Power OFF ability, use it, else try restarting */
1053 if (pm_power_off) {
1054 kernel_power_off();
1055 } else {
1056 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1057 kernel_restart("SDRAM Over-temp Emergency restart");
1058 }
1059 return IRQ_HANDLED;
1060 }
1061
1062 spin_lock_irqsave(&emif_lock, irq_state);
1063
1064 if (emif->curr_regs) {
1065 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1066 do_freq_update();
1067 } else {
1068 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1069 }
1070
1071 spin_unlock_irqrestore(&emif_lock, irq_state);
1072
1073 return IRQ_HANDLED;
1074 }
1075
1076 static void clear_all_interrupts(struct emif_data *emif)
1077 {
1078 void __iomem *base = emif->base;
1079
1080 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1081 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1082 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1083 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1084 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1085 }
1086
1087 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1088 {
1089 void __iomem *base = emif->base;
1090
1091 /* Disable all interrupts */
1092 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1093 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1094 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1095 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1096 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1097
1098 /* Clear all interrupts */
1099 clear_all_interrupts(emif);
1100 }
1101
1102 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1103 {
1104 u32 interrupts, type;
1105 void __iomem *base = emif->base;
1106
1107 type = emif->plat_data->device_info->type;
1108
1109 clear_all_interrupts(emif);
1110
1111 /* Enable interrupts for SYS interface */
1112 interrupts = EN_ERR_SYS_MASK;
1113 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1114 interrupts |= EN_TA_SYS_MASK;
1115 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1116
1117 /* Enable interrupts for LL interface */
1118 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1119 /* TA need not be enabled for LL */
1120 interrupts = EN_ERR_LL_MASK;
1121 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1122 }
1123
1124 /* setup IRQ handlers */
1125 return devm_request_threaded_irq(emif->dev, irq,
1126 emif_interrupt_handler,
1127 emif_threaded_isr,
1128 0, dev_name(emif->dev),
1129 emif);
1130
1131 }
1132
1133 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1134 {
1135 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1136 void __iomem *base = emif->base;
1137 const struct lpddr2_addressing *addressing;
1138 const struct ddr_device_info *device_info;
1139
1140 device_info = emif->plat_data->device_info;
1141 addressing = get_addressing_table(device_info);
1142
1143 /*
1144 * Init power management settings
1145 * We don't know the frequency yet. Use a high frequency
1146 * value for a conservative timeout setting
1147 */
1148 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1149 emif->plat_data->ip_rev);
1150 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1151 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1152
1153 /* Init ZQ calibration settings */
1154 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1155 device_info->cal_resistors_per_cs);
1156 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1157
1158 /* Check temperature level temperature level*/
1159 get_temperature_level(emif);
1160 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1161 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1162
1163 /* Init temperature polling */
1164 temp_alert_cfg = get_temp_alert_config(addressing,
1165 emif->plat_data->custom_configs, device_info->cs1_used,
1166 device_info->io_width, get_emif_bus_width(emif));
1167 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1168
1169 /*
1170 * Program external PHY control registers that are not frequency
1171 * dependent
1172 */
1173 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1174 return;
1175 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1176 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1177 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1178 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1179 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1180 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1181 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1182 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1183 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1184 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1185 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1186 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1187 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1188 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1189 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1190 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1191 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1192 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1193 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1194 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1195 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1196 }
1197
1198 static void get_default_timings(struct emif_data *emif)
1199 {
1200 struct emif_platform_data *pd = emif->plat_data;
1201
1202 pd->timings = lpddr2_jedec_timings;
1203 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1204
1205 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1206 }
1207
1208 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1209 u32 ip_rev, struct device *dev)
1210 {
1211 int valid;
1212
1213 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1214 type == DDR_TYPE_LPDDR2_S2)
1215 && (density >= DDR_DENSITY_64Mb
1216 && density <= DDR_DENSITY_8Gb)
1217 && (io_width >= DDR_IO_WIDTH_8
1218 && io_width <= DDR_IO_WIDTH_32);
1219
1220 /* Combinations of EMIF and PHY revisions that we support today */
1221 switch (ip_rev) {
1222 case EMIF_4D:
1223 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1224 break;
1225 case EMIF_4D5:
1226 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1227 break;
1228 default:
1229 valid = 0;
1230 }
1231
1232 if (!valid)
1233 dev_err(dev, "%s: invalid DDR details\n", __func__);
1234 return valid;
1235 }
1236
1237 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1238 struct device *dev)
1239 {
1240 int valid = 1;
1241
1242 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1243 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1244 valid = cust_cfgs->lpmode_freq_threshold &&
1245 cust_cfgs->lpmode_timeout_performance &&
1246 cust_cfgs->lpmode_timeout_power;
1247
1248 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1249 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1250
1251 if (!valid)
1252 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1253
1254 return valid;
1255 }
1256
1257 #if defined(CONFIG_OF)
1258 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1259 struct emif_data *emif)
1260 {
1261 struct emif_custom_configs *cust_cfgs = NULL;
1262 int len;
1263 const __be32 *lpmode, *poll_intvl;
1264
1265 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1266 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1267
1268 if (lpmode || poll_intvl)
1269 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1270 GFP_KERNEL);
1271
1272 if (!cust_cfgs)
1273 return;
1274
1275 if (lpmode) {
1276 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1277 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1278 of_property_read_u32(np_emif,
1279 "low-power-mode-timeout-performance",
1280 &cust_cfgs->lpmode_timeout_performance);
1281 of_property_read_u32(np_emif,
1282 "low-power-mode-timeout-power",
1283 &cust_cfgs->lpmode_timeout_power);
1284 of_property_read_u32(np_emif,
1285 "low-power-mode-freq-threshold",
1286 &cust_cfgs->lpmode_freq_threshold);
1287 }
1288
1289 if (poll_intvl) {
1290 cust_cfgs->mask |=
1291 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1292 cust_cfgs->temp_alert_poll_interval_ms =
1293 be32_to_cpup(poll_intvl);
1294 }
1295
1296 if (of_find_property(np_emif, "extended-temp-part", &len))
1297 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1298
1299 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1300 devm_kfree(emif->dev, cust_cfgs);
1301 return;
1302 }
1303
1304 emif->plat_data->custom_configs = cust_cfgs;
1305 }
1306
1307 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1308 struct device_node *np_ddr,
1309 struct ddr_device_info *dev_info)
1310 {
1311 u32 density = 0, io_width = 0;
1312 int len;
1313
1314 if (of_find_property(np_emif, "cs1-used", &len))
1315 dev_info->cs1_used = true;
1316
1317 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1318 dev_info->cal_resistors_per_cs = true;
1319
1320 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1321 dev_info->type = DDR_TYPE_LPDDR2_S4;
1322 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1323 dev_info->type = DDR_TYPE_LPDDR2_S2;
1324
1325 of_property_read_u32(np_ddr, "density", &density);
1326 of_property_read_u32(np_ddr, "io-width", &io_width);
1327
1328 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1329 if (density & (density - 1))
1330 dev_info->density = 0;
1331 else
1332 dev_info->density = __fls(density) - 5;
1333
1334 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1335 if (io_width & (io_width - 1))
1336 dev_info->io_width = 0;
1337 else
1338 dev_info->io_width = __fls(io_width) - 1;
1339 }
1340
1341 static struct emif_data * __init_or_module of_get_memory_device_details(
1342 struct device_node *np_emif, struct device *dev)
1343 {
1344 struct emif_data *emif = NULL;
1345 struct ddr_device_info *dev_info = NULL;
1346 struct emif_platform_data *pd = NULL;
1347 struct device_node *np_ddr;
1348 int len;
1349
1350 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1351 if (!np_ddr)
1352 goto error;
1353 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1354 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1355 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1356
1357 if (!emif || !pd || !dev_info) {
1358 dev_err(dev, "%s: Out of memory!!\n",
1359 __func__);
1360 goto error;
1361 }
1362
1363 emif->plat_data = pd;
1364 pd->device_info = dev_info;
1365 emif->dev = dev;
1366 emif->np_ddr = np_ddr;
1367 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1368
1369 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1370 emif->plat_data->ip_rev = EMIF_4D;
1371 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1372 emif->plat_data->ip_rev = EMIF_4D5;
1373
1374 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1375
1376 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1377 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1378
1379 of_get_ddr_info(np_emif, np_ddr, dev_info);
1380 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1381 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1382 emif->dev)) {
1383 dev_err(dev, "%s: invalid device data!!\n", __func__);
1384 goto error;
1385 }
1386 /*
1387 * For EMIF instances other than EMIF1 see if the devices connected
1388 * are exactly same as on EMIF1(which is typically the case). If so,
1389 * mark it as a duplicate of EMIF1. This will save some memory and
1390 * computation.
1391 */
1392 if (emif1 && emif1->np_ddr == np_ddr) {
1393 emif->duplicate = true;
1394 goto out;
1395 } else if (emif1) {
1396 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1397 __func__);
1398 }
1399
1400 of_get_custom_configs(np_emif, emif);
1401 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1402 emif->plat_data->device_info->type,
1403 &emif->plat_data->timings_arr_size);
1404
1405 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1406 goto out;
1407
1408 error:
1409 return NULL;
1410 out:
1411 return emif;
1412 }
1413
1414 #else
1415
1416 static struct emif_data * __init_or_module of_get_memory_device_details(
1417 struct device_node *np_emif, struct device *dev)
1418 {
1419 return NULL;
1420 }
1421 #endif
1422
1423 static struct emif_data *__init_or_module get_device_details(
1424 struct platform_device *pdev)
1425 {
1426 u32 size;
1427 struct emif_data *emif = NULL;
1428 struct ddr_device_info *dev_info;
1429 struct emif_custom_configs *cust_cfgs;
1430 struct emif_platform_data *pd;
1431 struct device *dev;
1432 void *temp;
1433
1434 pd = pdev->dev.platform_data;
1435 dev = &pdev->dev;
1436
1437 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1438 pd->device_info->density, pd->device_info->io_width,
1439 pd->phy_type, pd->ip_rev, dev))) {
1440 dev_err(dev, "%s: invalid device data\n", __func__);
1441 goto error;
1442 }
1443
1444 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1445 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1446 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1447
1448 if (!emif || !pd || !dev_info) {
1449 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1450 goto error;
1451 }
1452
1453 memcpy(temp, pd, sizeof(*pd));
1454 pd = temp;
1455 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1456
1457 pd->device_info = dev_info;
1458 emif->plat_data = pd;
1459 emif->dev = dev;
1460 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1461
1462 /*
1463 * For EMIF instances other than EMIF1 see if the devices connected
1464 * are exactly same as on EMIF1(which is typically the case). If so,
1465 * mark it as a duplicate of EMIF1 and skip copying timings data.
1466 * This will save some memory and some computation later.
1467 */
1468 emif->duplicate = emif1 && (memcmp(dev_info,
1469 emif1->plat_data->device_info,
1470 sizeof(struct ddr_device_info)) == 0);
1471
1472 if (emif->duplicate) {
1473 pd->timings = NULL;
1474 pd->min_tck = NULL;
1475 goto out;
1476 } else if (emif1) {
1477 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1478 __func__);
1479 }
1480
1481 /*
1482 * Copy custom configs - ignore allocation error, if any, as
1483 * custom_configs is not very critical
1484 */
1485 cust_cfgs = pd->custom_configs;
1486 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1487 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1488 if (temp)
1489 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1490 else
1491 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1492 __LINE__);
1493 pd->custom_configs = temp;
1494 }
1495
1496 /*
1497 * Copy timings and min-tck values from platform data. If it is not
1498 * available or if memory allocation fails, use JEDEC defaults
1499 */
1500 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1501 if (pd->timings) {
1502 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1503 if (temp) {
1504 memcpy(temp, pd->timings, size);
1505 pd->timings = temp;
1506 } else {
1507 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1508 __LINE__);
1509 get_default_timings(emif);
1510 }
1511 } else {
1512 get_default_timings(emif);
1513 }
1514
1515 if (pd->min_tck) {
1516 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1517 if (temp) {
1518 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1519 pd->min_tck = temp;
1520 } else {
1521 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1522 __LINE__);
1523 pd->min_tck = &lpddr2_jedec_min_tck;
1524 }
1525 } else {
1526 pd->min_tck = &lpddr2_jedec_min_tck;
1527 }
1528
1529 out:
1530 return emif;
1531
1532 error:
1533 return NULL;
1534 }
1535
1536 static int __init_or_module emif_probe(struct platform_device *pdev)
1537 {
1538 struct emif_data *emif;
1539 struct resource *res;
1540 int irq;
1541
1542 if (pdev->dev.of_node)
1543 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1544 else
1545 emif = get_device_details(pdev);
1546
1547 if (!emif) {
1548 pr_err("%s: error getting device data\n", __func__);
1549 goto error;
1550 }
1551
1552 list_add(&emif->node, &device_list);
1553 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1554
1555 /* Save pointers to each other in emif and device structures */
1556 emif->dev = &pdev->dev;
1557 platform_set_drvdata(pdev, emif);
1558
1559 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560 emif->base = devm_ioremap_resource(emif->dev, res);
1561 if (IS_ERR(emif->base))
1562 goto error;
1563
1564 irq = platform_get_irq(pdev, 0);
1565 if (irq < 0) {
1566 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1567 __func__, irq);
1568 goto error;
1569 }
1570
1571 emif_onetime_settings(emif);
1572 emif_debugfs_init(emif);
1573 disable_and_clear_all_interrupts(emif);
1574 setup_interrupts(emif, irq);
1575
1576 /* One-time actions taken on probing the first device */
1577 if (!emif1) {
1578 emif1 = emif;
1579 spin_lock_init(&emif_lock);
1580
1581 /*
1582 * TODO: register notifiers for frequency and voltage
1583 * change here once the respective frameworks are
1584 * available
1585 */
1586 }
1587
1588 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1589 __func__, emif->base, irq);
1590
1591 return 0;
1592 error:
1593 return -ENODEV;
1594 }
1595
1596 static int __exit emif_remove(struct platform_device *pdev)
1597 {
1598 struct emif_data *emif = platform_get_drvdata(pdev);
1599
1600 emif_debugfs_exit(emif);
1601
1602 return 0;
1603 }
1604
1605 static void emif_shutdown(struct platform_device *pdev)
1606 {
1607 struct emif_data *emif = platform_get_drvdata(pdev);
1608
1609 disable_and_clear_all_interrupts(emif);
1610 }
1611
1612 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1613 struct emif_regs *regs)
1614 {
1615 u32 cs1_used, ip_rev, phy_type;
1616 u32 cl, type;
1617 const struct lpddr2_timings *timings;
1618 const struct lpddr2_min_tck *min_tck;
1619 const struct ddr_device_info *device_info;
1620 const struct lpddr2_addressing *addressing;
1621 struct emif_data *emif_for_calc;
1622 struct device *dev;
1623 const struct emif_custom_configs *custom_configs;
1624
1625 dev = emif->dev;
1626 /*
1627 * If the devices on this EMIF instance is duplicate of EMIF1,
1628 * use EMIF1 details for the calculation
1629 */
1630 emif_for_calc = emif->duplicate ? emif1 : emif;
1631 timings = get_timings_table(emif_for_calc, freq);
1632 addressing = emif_for_calc->addressing;
1633 if (!timings || !addressing) {
1634 dev_err(dev, "%s: not enough data available for %dHz",
1635 __func__, freq);
1636 return -1;
1637 }
1638
1639 device_info = emif_for_calc->plat_data->device_info;
1640 type = device_info->type;
1641 cs1_used = device_info->cs1_used;
1642 ip_rev = emif_for_calc->plat_data->ip_rev;
1643 phy_type = emif_for_calc->plat_data->phy_type;
1644
1645 min_tck = emif_for_calc->plat_data->min_tck;
1646 custom_configs = emif_for_calc->plat_data->custom_configs;
1647
1648 set_ddr_clk_period(freq);
1649
1650 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1651 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1652 addressing);
1653 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1654 addressing, type);
1655 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1656 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1657
1658 cl = get_cl(emif);
1659
1660 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1661 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1662 timings, freq, cl);
1663 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1664 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1665 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1666 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1667 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1668 } else {
1669 return -1;
1670 }
1671
1672 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1673 regs->pwr_mgmt_ctrl_shdw =
1674 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1675 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1676
1677 if (ip_rev & EMIF_4D) {
1678 regs->read_idle_ctrl_shdw_normal =
1679 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1680
1681 regs->read_idle_ctrl_shdw_volt_ramp =
1682 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1683 } else if (ip_rev & EMIF_4D5) {
1684 regs->dll_calib_ctrl_shdw_normal =
1685 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1686
1687 regs->dll_calib_ctrl_shdw_volt_ramp =
1688 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1689 }
1690
1691 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1692 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1693 addressing);
1694
1695 regs->sdram_tim1_shdw_derated =
1696 get_sdram_tim_1_shdw_derated(timings, min_tck,
1697 addressing);
1698
1699 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1700 min_tck, addressing, type, ip_rev,
1701 EMIF_DERATED_TIMINGS);
1702 }
1703
1704 regs->freq = freq;
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1711 * given frequency(freq):
1712 *
1713 * As an optimisation, every EMIF instance other than EMIF1 shares the
1714 * register cache with EMIF1 if the devices connected on this instance
1715 * are same as that on EMIF1(indicated by the duplicate flag)
1716 *
1717 * If we do not have an entry corresponding to the frequency given, we
1718 * allocate a new entry and calculate the values
1719 *
1720 * Upon finding the right reg dump, save it in curr_regs. It can be
1721 * directly used for thermal de-rating and voltage ramping changes.
1722 */
1723 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1724 {
1725 int i;
1726 struct emif_regs **regs_cache;
1727 struct emif_regs *regs = NULL;
1728 struct device *dev;
1729
1730 dev = emif->dev;
1731 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1732 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1733 return emif->curr_regs;
1734 }
1735
1736 if (emif->duplicate)
1737 regs_cache = emif1->regs_cache;
1738 else
1739 regs_cache = emif->regs_cache;
1740
1741 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1742 if (regs_cache[i]->freq == freq) {
1743 regs = regs_cache[i];
1744 dev_dbg(dev,
1745 "%s: reg dump found in reg cache for %u Hz\n",
1746 __func__, freq);
1747 break;
1748 }
1749 }
1750
1751 /*
1752 * If we don't have an entry for this frequency in the cache create one
1753 * and calculate the values
1754 */
1755 if (!regs) {
1756 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1757 if (!regs)
1758 return NULL;
1759
1760 if (get_emif_reg_values(emif, freq, regs)) {
1761 devm_kfree(emif->dev, regs);
1762 return NULL;
1763 }
1764
1765 /*
1766 * Now look for an un-used entry in the cache and save the
1767 * newly created struct. If there are no free entries
1768 * over-write the last entry
1769 */
1770 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1771 ;
1772
1773 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1774 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1775 __func__);
1776 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1777 devm_kfree(emif->dev, regs_cache[i]);
1778 }
1779 regs_cache[i] = regs;
1780 }
1781
1782 return regs;
1783 }
1784
1785 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1786 {
1787 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1788 volt_state);
1789
1790 if (!emif->curr_regs) {
1791 dev_err(emif->dev,
1792 "%s: volt-notify before registers are ready: %d\n",
1793 __func__, volt_state);
1794 return;
1795 }
1796
1797 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1798 }
1799
1800 /*
1801 * TODO: voltage notify handling should be hooked up to
1802 * regulator framework as soon as the necessary support
1803 * is available in mainline kernel. This function is un-used
1804 * right now.
1805 */
1806 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1807 {
1808 struct emif_data *emif;
1809
1810 spin_lock_irqsave(&emif_lock, irq_state);
1811
1812 list_for_each_entry(emif, &device_list, node)
1813 do_volt_notify_handling(emif, volt_state);
1814 do_freq_update();
1815
1816 spin_unlock_irqrestore(&emif_lock, irq_state);
1817 }
1818
1819 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1820 {
1821 struct emif_regs *regs;
1822
1823 regs = get_regs(emif, new_freq);
1824 if (!regs)
1825 return;
1826
1827 emif->curr_regs = regs;
1828
1829 /*
1830 * Update the shadow registers:
1831 * Temperature and voltage-ramp sensitive settings are also configured
1832 * in terms of DDR cycles. So, we need to update them too when there
1833 * is a freq change
1834 */
1835 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1836 __func__, new_freq);
1837 setup_registers(emif, regs);
1838 setup_temperature_sensitive_regs(emif, regs);
1839 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1840
1841 /*
1842 * Part of workaround for errata i728. See do_freq_update()
1843 * for more details
1844 */
1845 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1846 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1847 }
1848
1849 /*
1850 * TODO: frequency notify handling should be hooked up to
1851 * clock framework as soon as the necessary support is
1852 * available in mainline kernel. This function is un-used
1853 * right now.
1854 */
1855 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1856 {
1857 struct emif_data *emif;
1858
1859 /*
1860 * NOTE: we are taking the spin-lock here and releases it
1861 * only in post-notifier. This doesn't look good and
1862 * Sparse complains about it, but this seems to be
1863 * un-avoidable. We need to lock a sequence of events
1864 * that is split between EMIF and clock framework.
1865 *
1866 * 1. EMIF driver updates EMIF timings in shadow registers in the
1867 * frequency pre-notify callback from clock framework
1868 * 2. clock framework sets up the registers for the new frequency
1869 * 3. clock framework initiates a hw-sequence that updates
1870 * the frequency EMIF timings synchronously.
1871 *
1872 * All these 3 steps should be performed as an atomic operation
1873 * vis-a-vis similar sequence in the EMIF interrupt handler
1874 * for temperature events. Otherwise, there could be race
1875 * conditions that could result in incorrect EMIF timings for
1876 * a given frequency
1877 */
1878 spin_lock_irqsave(&emif_lock, irq_state);
1879
1880 list_for_each_entry(emif, &device_list, node)
1881 do_freq_pre_notify_handling(emif, new_freq);
1882 }
1883
1884 static void do_freq_post_notify_handling(struct emif_data *emif)
1885 {
1886 /*
1887 * Part of workaround for errata i728. See do_freq_update()
1888 * for more details
1889 */
1890 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1891 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1892 }
1893
1894 /*
1895 * TODO: frequency notify handling should be hooked up to
1896 * clock framework as soon as the necessary support is
1897 * available in mainline kernel. This function is un-used
1898 * right now.
1899 */
1900 static void __attribute__((unused)) freq_post_notify_handling(void)
1901 {
1902 struct emif_data *emif;
1903
1904 list_for_each_entry(emif, &device_list, node)
1905 do_freq_post_notify_handling(emif);
1906
1907 /*
1908 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1909 * for more details
1910 */
1911 spin_unlock_irqrestore(&emif_lock, irq_state);
1912 }
1913
1914 #if defined(CONFIG_OF)
1915 static const struct of_device_id emif_of_match[] = {
1916 { .compatible = "ti,emif-4d" },
1917 { .compatible = "ti,emif-4d5" },
1918 {},
1919 };
1920 MODULE_DEVICE_TABLE(of, emif_of_match);
1921 #endif
1922
1923 static struct platform_driver emif_driver = {
1924 .remove = __exit_p(emif_remove),
1925 .shutdown = emif_shutdown,
1926 .driver = {
1927 .name = "emif",
1928 .of_match_table = of_match_ptr(emif_of_match),
1929 },
1930 };
1931
1932 module_platform_driver_probe(emif_driver, emif_probe);
1933
1934 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1935 MODULE_LICENSE("GPL");
1936 MODULE_ALIAS("platform:emif");
1937 MODULE_AUTHOR("Texas Instruments Inc");