]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/memory/samsung/exynos5422-dmc.c
4312233e8e0af58cbe0a68aaafb801f35e18445e
[mirror_ubuntu-jammy-kernel.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include "../jedec_ddr.h"
22 #include "../of_memory.h"
23
24 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
25 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
26 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
27 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
28 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
29 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
30 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
31 #define CDREX_PAUSE (0x2091c)
32 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
33 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
34 #define EXYNOS5_TIMING_SET_SWI BIT(28)
35 #define USE_MX_MSPLL_TIMINGS (1)
36 #define USE_BPLL_TIMINGS (0)
37 #define EXYNOS5_AREF_NORMAL (0x2e)
38
39 #define DREX_PPCCLKCON (0x0130)
40 #define DREX_PEREV2CONFIG (0x013c)
41 #define DREX_PMNC_PPC (0xE000)
42 #define DREX_CNTENS_PPC (0xE010)
43 #define DREX_CNTENC_PPC (0xE020)
44 #define DREX_INTENS_PPC (0xE030)
45 #define DREX_INTENC_PPC (0xE040)
46 #define DREX_FLAG_PPC (0xE050)
47 #define DREX_PMCNT2_PPC (0xE130)
48
49 /*
50 * A value for register DREX_PMNC_PPC which should be written to reset
51 * the cycle counter CCNT (a reference wall clock). It sets zero to the
52 * CCNT counter.
53 */
54 #define CC_RESET BIT(2)
55
56 /*
57 * A value for register DREX_PMNC_PPC which does the reset of all performance
58 * counters to zero.
59 */
60 #define PPC_COUNTER_RESET BIT(1)
61
62 /*
63 * Enables all configured counters (including cycle counter). The value should
64 * be written to the register DREX_PMNC_PPC.
65 */
66 #define PPC_ENABLE BIT(0)
67
68 /* A value for register DREX_PPCCLKCON which enables performance events clock.
69 * Must be written before first access to the performance counters register
70 * set, otherwise it could crash.
71 */
72 #define PEREV_CLK_EN BIT(0)
73
74 /*
75 * Values which are used to enable counters, interrupts or configure flags of
76 * the performance counters. They configure counter 2 and cycle counter.
77 */
78 #define PERF_CNT2 BIT(2)
79 #define PERF_CCNT BIT(31)
80
81 /*
82 * Performance event types which are used for setting the preferred event
83 * to track in the counters.
84 * There is a set of different types, the values are from range 0 to 0x6f.
85 * These settings should be written to the configuration register which manages
86 * the type of the event (register DREX_PEREV2CONFIG).
87 */
88 #define READ_TRANSFER_CH0 (0x6d)
89 #define READ_TRANSFER_CH1 (0x6f)
90
91 #define PERF_COUNTER_START_VALUE 0xff000000
92 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
93
94 /**
95 * struct dmc_opp_table - Operating level desciption
96 *
97 * Covers frequency and voltage settings of the DMC operating mode.
98 */
99 struct dmc_opp_table {
100 u32 freq_hz;
101 u32 volt_uv;
102 };
103
104 /**
105 * struct exynos5_dmc - main structure describing DMC device
106 *
107 * The main structure for the Dynamic Memory Controller which covers clocks,
108 * memory regions, HW information, parameters and current operating mode.
109 */
110 struct exynos5_dmc {
111 struct device *dev;
112 struct devfreq *df;
113 struct devfreq_simple_ondemand_data gov_data;
114 void __iomem *base_drexi0;
115 void __iomem *base_drexi1;
116 struct regmap *clk_regmap;
117 struct mutex lock;
118 unsigned long curr_rate;
119 unsigned long curr_volt;
120 unsigned long bypass_rate;
121 struct dmc_opp_table *opp;
122 struct dmc_opp_table opp_bypass;
123 int opp_count;
124 u32 timings_arr_size;
125 u32 *timing_row;
126 u32 *timing_data;
127 u32 *timing_power;
128 const struct lpddr3_timings *timings;
129 const struct lpddr3_min_tck *min_tck;
130 u32 bypass_timing_row;
131 u32 bypass_timing_data;
132 u32 bypass_timing_power;
133 struct regulator *vdd_mif;
134 struct clk *fout_spll;
135 struct clk *fout_bpll;
136 struct clk *mout_spll;
137 struct clk *mout_bpll;
138 struct clk *mout_mclk_cdrex;
139 struct clk *mout_mx_mspll_ccore;
140 struct clk *mx_mspll_ccore_phy;
141 struct clk *mout_mx_mspll_ccore_phy;
142 struct devfreq_event_dev **counter;
143 int num_counters;
144 u64 last_overflow_ts[2];
145 unsigned long load;
146 unsigned long total;
147 bool in_irq_mode;
148 };
149
150 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
151 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
152
153 #define TIMING_VAL2REG(timing, t_val) \
154 ({ \
155 u32 __val; \
156 __val = (t_val) << (timing)->bit_beg; \
157 __val; \
158 })
159
160 struct timing_reg {
161 char *name;
162 int bit_beg;
163 int bit_end;
164 unsigned int val;
165 };
166
167 static const struct timing_reg timing_row[] = {
168 TIMING_FIELD("tRFC", 24, 31),
169 TIMING_FIELD("tRRD", 20, 23),
170 TIMING_FIELD("tRP", 16, 19),
171 TIMING_FIELD("tRCD", 12, 15),
172 TIMING_FIELD("tRC", 6, 11),
173 TIMING_FIELD("tRAS", 0, 5),
174 };
175
176 static const struct timing_reg timing_data[] = {
177 TIMING_FIELD("tWTR", 28, 31),
178 TIMING_FIELD("tWR", 24, 27),
179 TIMING_FIELD("tRTP", 20, 23),
180 TIMING_FIELD("tW2W-C2C", 14, 14),
181 TIMING_FIELD("tR2R-C2C", 12, 12),
182 TIMING_FIELD("WL", 8, 11),
183 TIMING_FIELD("tDQSCK", 4, 7),
184 TIMING_FIELD("RL", 0, 3),
185 };
186
187 static const struct timing_reg timing_power[] = {
188 TIMING_FIELD("tFAW", 26, 31),
189 TIMING_FIELD("tXSR", 16, 25),
190 TIMING_FIELD("tXP", 8, 15),
191 TIMING_FIELD("tCKE", 4, 7),
192 TIMING_FIELD("tMRD", 0, 3),
193 };
194
195 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
196 ARRAY_SIZE(timing_power))
197
198 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
199 {
200 int i, ret;
201
202 for (i = 0; i < dmc->num_counters; i++) {
203 if (!dmc->counter[i])
204 continue;
205 ret = devfreq_event_set_event(dmc->counter[i]);
206 if (ret < 0)
207 return ret;
208 }
209 return 0;
210 }
211
212 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
213 {
214 int i, ret;
215
216 for (i = 0; i < dmc->num_counters; i++) {
217 if (!dmc->counter[i])
218 continue;
219 ret = devfreq_event_enable_edev(dmc->counter[i]);
220 if (ret < 0)
221 return ret;
222 }
223 return 0;
224 }
225
226 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
227 {
228 int i, ret;
229
230 for (i = 0; i < dmc->num_counters; i++) {
231 if (!dmc->counter[i])
232 continue;
233 ret = devfreq_event_disable_edev(dmc->counter[i]);
234 if (ret < 0)
235 return ret;
236 }
237 return 0;
238 }
239
240 /**
241 * find_target_freq_id() - Finds requested frequency in local DMC configuration
242 * @dmc: device for which the information is checked
243 * @target_rate: requested frequency in KHz
244 *
245 * Seeks in the local DMC driver structure for the requested frequency value
246 * and returns index or error value.
247 */
248 static int find_target_freq_idx(struct exynos5_dmc *dmc,
249 unsigned long target_rate)
250 {
251 int i;
252
253 for (i = dmc->opp_count - 1; i >= 0; i--)
254 if (dmc->opp[i].freq_hz <= target_rate)
255 return i;
256
257 return -EINVAL;
258 }
259
260 /**
261 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
262 * @dmc: device for which the new settings is going to be applied
263 * @set: boolean variable passing set value
264 *
265 * Changes the register set, which holds timing parameters.
266 * There is two register sets: 0 and 1. The register set 0
267 * is used in normal operation when the clock is provided from main PLL.
268 * The bank register set 1 is used when the main PLL frequency is going to be
269 * changed and the clock is taken from alternative, stable source.
270 * This function switches between these banks according to the
271 * currently used clock source.
272 */
273 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
274 {
275 unsigned int reg;
276 int ret;
277
278 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
279 if (ret)
280 return ret;
281
282 if (set)
283 reg |= EXYNOS5_TIMING_SET_SWI;
284 else
285 reg &= ~EXYNOS5_TIMING_SET_SWI;
286
287 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
288
289 return 0;
290 }
291
292 /**
293 * exynos5_init_freq_table() - Initialized PM OPP framework
294 * @dmc: DMC device for which the frequencies are used for OPP init
295 * @profile: devfreq device's profile
296 *
297 * Populate the devfreq device's OPP table based on current frequency, voltage.
298 */
299 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
300 struct devfreq_dev_profile *profile)
301 {
302 int i, ret;
303 int idx;
304 unsigned long freq;
305
306 ret = dev_pm_opp_of_add_table(dmc->dev);
307 if (ret < 0) {
308 dev_err(dmc->dev, "Failed to get OPP table\n");
309 return ret;
310 }
311
312 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
313
314 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
315 sizeof(struct dmc_opp_table), GFP_KERNEL);
316 if (!dmc->opp)
317 goto err_opp;
318
319 idx = dmc->opp_count - 1;
320 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
321 struct dev_pm_opp *opp;
322
323 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
324 if (IS_ERR(opp))
325 goto err_opp;
326
327 dmc->opp[idx - i].freq_hz = freq;
328 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
329
330 dev_pm_opp_put(opp);
331 }
332
333 return 0;
334
335 err_opp:
336 dev_pm_opp_of_remove_table(dmc->dev);
337
338 return -EINVAL;
339 }
340
341 /**
342 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
343 * @dmc: device for which the new settings is going to be applied
344 * @param: DRAM parameters which passes timing data
345 *
346 * Low-level function for changing timings for DRAM memory clocking from
347 * 'bypass' clock source (fixed frequency @400MHz).
348 * It uses timing bank registers set 1.
349 */
350 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
351 {
352 writel(EXYNOS5_AREF_NORMAL,
353 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
354
355 writel(dmc->bypass_timing_row,
356 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
357 writel(dmc->bypass_timing_row,
358 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
359 writel(dmc->bypass_timing_data,
360 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
361 writel(dmc->bypass_timing_data,
362 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
363 writel(dmc->bypass_timing_power,
364 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
365 writel(dmc->bypass_timing_power,
366 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
367 }
368
369 /**
370 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
371 * @dmc: device for which the new settings is going to be applied
372 * @target_rate: target frequency of the DMC
373 *
374 * Low-level function for changing timings for DRAM memory operating from main
375 * clock source (BPLL), which can have different frequencies. Thus, each
376 * frequency must have corresponding timings register values in order to keep
377 * the needed delays.
378 * It uses timing bank registers set 0.
379 */
380 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
381 unsigned long target_rate)
382 {
383 int idx;
384
385 for (idx = dmc->opp_count - 1; idx >= 0; idx--)
386 if (dmc->opp[idx].freq_hz <= target_rate)
387 break;
388
389 if (idx < 0)
390 return -EINVAL;
391
392 writel(EXYNOS5_AREF_NORMAL,
393 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
394
395 writel(dmc->timing_row[idx],
396 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
397 writel(dmc->timing_row[idx],
398 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
399 writel(dmc->timing_data[idx],
400 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
401 writel(dmc->timing_data[idx],
402 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
403 writel(dmc->timing_power[idx],
404 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
405 writel(dmc->timing_power[idx],
406 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
407
408 return 0;
409 }
410
411 /**
412 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
413 * @dmc: device for which it is going to be set
414 * @target_volt: new voltage which is chosen to be final
415 *
416 * Function tries to align voltage to the safe level for 'normal' mode.
417 * It checks the need of higher voltage and changes the value. The target
418 * voltage might be lower that currently set and still the system will be
419 * stable.
420 */
421 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
422 unsigned long target_volt)
423 {
424 int ret = 0;
425
426 if (dmc->curr_volt <= target_volt)
427 return 0;
428
429 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
430 target_volt);
431 if (!ret)
432 dmc->curr_volt = target_volt;
433
434 return ret;
435 }
436
437 /**
438 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
439 * @dmc: device for which it is going to be set
440 * @target_volt: new voltage which is chosen to be final
441 *
442 * Function tries to align voltage to the safe level for the 'bypass' mode.
443 * It checks the need of higher voltage and changes the value.
444 * The target voltage must not be less than currently needed, because
445 * for current frequency the device might become unstable.
446 */
447 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
448 unsigned long target_volt)
449 {
450 int ret = 0;
451 unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
452
453 target_volt = max(bypass_volt, target_volt);
454
455 if (dmc->curr_volt >= target_volt)
456 return 0;
457
458 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
459 target_volt);
460 if (!ret)
461 dmc->curr_volt = target_volt;
462
463 return ret;
464 }
465
466 /**
467 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
468 * @dmc: device for which it is going to be set
469 * @target_rate: new frequency which is chosen to be final
470 *
471 * Function changes the DRAM timings for the temporary 'bypass' mode.
472 */
473 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
474 unsigned long target_rate)
475 {
476 int idx = find_target_freq_idx(dmc, target_rate);
477
478 if (idx < 0)
479 return -EINVAL;
480
481 exynos5_set_bypass_dram_timings(dmc);
482
483 return 0;
484 }
485
486 /**
487 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
488 * @dmc: DMC device for which the switching is going to happen
489 * @target_rate: new frequency which is going to be set as a final
490 * @target_volt: new voltage which is going to be set as a final
491 *
492 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
493 * This mode is used only temporary but if required, changes voltage and timings
494 * for DRAM chips. It switches the main clock to stable clock source for the
495 * period of the main PLL reconfiguration.
496 */
497 static int
498 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
499 unsigned long target_rate,
500 unsigned long target_volt)
501 {
502 int ret;
503
504 /*
505 * Having higher voltage for a particular frequency does not harm
506 * the chip. Use it for the temporary frequency change when one
507 * voltage manipulation might be avoided.
508 */
509 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
510 if (ret)
511 return ret;
512
513 /*
514 * Longer delays for DRAM does not cause crash, the opposite does.
515 */
516 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
517 if (ret)
518 return ret;
519
520 /*
521 * Delays are long enough, so use them for the new coming clock.
522 */
523 ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
524
525 return ret;
526 }
527
528 /**
529 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
530 * using safe procedure
531 * @dmc: device for which the frequency is going to be changed
532 * @target_rate: requested new frequency
533 * @target_volt: requested voltage which corresponds to the new frequency
534 *
535 * The DMC frequency change procedure requires a few steps.
536 * The main requirement is to change the clock source in the clk mux
537 * for the time of main clock PLL locking. The assumption is that the
538 * alternative clock source set as parent is stable.
539 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
540 * clock. This requires alignment in DRAM timing parameters for the new
541 * T-period. There is two bank sets for keeping DRAM
542 * timings: set 0 and set 1. The set 0 is used when main clock source is
543 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
544 * the two bank sets is part of the process.
545 * The voltage must also be aligned to the minimum required level. There is
546 * this intermediate step with switching to 'bypass' parent clock source.
547 * if the old voltage is lower, it requires an increase of the voltage level.
548 * The complexity of the voltage manipulation is hidden in low level function.
549 * In this function there is last alignment of the voltage level at the end.
550 */
551 static int
552 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
553 unsigned long target_rate,
554 unsigned long target_volt)
555 {
556 int ret;
557
558 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
559 target_volt);
560 if (ret)
561 return ret;
562
563 /*
564 * Voltage is set at least to a level needed for this frequency,
565 * so switching clock source is safe now.
566 */
567 clk_prepare_enable(dmc->fout_spll);
568 clk_prepare_enable(dmc->mout_spll);
569 clk_prepare_enable(dmc->mout_mx_mspll_ccore);
570
571 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
572 if (ret)
573 goto disable_clocks;
574
575 /*
576 * We are safe to increase the timings for current bypass frequency.
577 * Thanks to this the settings will be ready for the upcoming clock
578 * source change.
579 */
580 exynos5_dram_change_timings(dmc, target_rate);
581
582 clk_set_rate(dmc->fout_bpll, target_rate);
583
584 ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
585 if (ret)
586 goto disable_clocks;
587
588 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
589 if (ret)
590 goto disable_clocks;
591
592 /*
593 * Make sure if the voltage is not from 'bypass' settings and align to
594 * the right level for power efficiency.
595 */
596 ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
597
598 disable_clocks:
599 clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
600 clk_disable_unprepare(dmc->mout_spll);
601 clk_disable_unprepare(dmc->fout_spll);
602
603 return ret;
604 }
605
606 /**
607 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
608 * table.
609 * @dmc: device for which the frequency is going to be changed
610 * @freq: requested frequency in KHz
611 * @target_rate: returned frequency which is the same or lower than
612 * requested
613 * @target_volt: returned voltage which corresponds to the returned
614 * frequency
615 *
616 * Function gets requested frequency and checks OPP framework for needed
617 * frequency and voltage. It populates the values 'target_rate' and
618 * 'target_volt' or returns error value when OPP framework fails.
619 */
620 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
621 unsigned long *freq,
622 unsigned long *target_rate,
623 unsigned long *target_volt, u32 flags)
624 {
625 struct dev_pm_opp *opp;
626
627 opp = devfreq_recommended_opp(dmc->dev, freq, flags);
628 if (IS_ERR(opp))
629 return PTR_ERR(opp);
630
631 *target_rate = dev_pm_opp_get_freq(opp);
632 *target_volt = dev_pm_opp_get_voltage(opp);
633 dev_pm_opp_put(opp);
634
635 return 0;
636 }
637
638 /**
639 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
640 * @dev: device for which the frequency is going to be changed
641 * @freq: requested frequency in KHz
642 * @flags: flags provided for this frequency change request
643 *
644 * An entry function provided to the devfreq framework which provides frequency
645 * change of the DMC. The function gets the possible rate from OPP table based
646 * on requested frequency. It calls the next function responsible for the
647 * frequency and voltage change. In case of failure, does not set 'curr_rate'
648 * and returns error value to the framework.
649 */
650 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
651 u32 flags)
652 {
653 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
654 unsigned long target_rate = 0;
655 unsigned long target_volt = 0;
656 int ret;
657
658 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
659 flags);
660
661 if (ret)
662 return ret;
663
664 if (target_rate == dmc->curr_rate)
665 return 0;
666
667 mutex_lock(&dmc->lock);
668
669 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
670
671 if (ret) {
672 mutex_unlock(&dmc->lock);
673 return ret;
674 }
675
676 dmc->curr_rate = target_rate;
677
678 mutex_unlock(&dmc->lock);
679 return 0;
680 }
681
682 /**
683 * exynos5_counters_get() - Gets the performance counters values.
684 * @dmc: device for which the counters are going to be checked
685 * @load_count: variable which is populated with counter value
686 * @total_count: variable which is used as 'wall clock' reference
687 *
688 * Function which provides performance counters values. It sums up counters for
689 * two DMC channels. The 'total_count' is used as a reference and max value.
690 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
691 */
692 static int exynos5_counters_get(struct exynos5_dmc *dmc,
693 unsigned long *load_count,
694 unsigned long *total_count)
695 {
696 unsigned long total = 0;
697 struct devfreq_event_data event;
698 int ret, i;
699
700 *load_count = 0;
701
702 /* Take into account only read+write counters, but stop all */
703 for (i = 0; i < dmc->num_counters; i++) {
704 if (!dmc->counter[i])
705 continue;
706
707 ret = devfreq_event_get_event(dmc->counter[i], &event);
708 if (ret < 0)
709 return ret;
710
711 *load_count += event.load_count;
712
713 if (total < event.total_count)
714 total = event.total_count;
715 }
716
717 *total_count = total;
718
719 return 0;
720 }
721
722 /**
723 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
724 * @dmc: device for which the counters are going to be checked
725 * @beg_value: initial value for the counter
726 *
727 * Function which enables needed counters, interrupts and sets initial values
728 * then starts the counters.
729 */
730 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
731 u32 beg_value)
732 {
733 /* Enable interrupts for counter 2 */
734 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
735 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
736
737 /* Enable counter 2 and CCNT */
738 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
739 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
740
741 /* Clear overflow flag for all counters */
742 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
743 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
744
745 /* Reset all counters */
746 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
747 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
748
749 /*
750 * Set start value for the counters, the number of samples that
751 * will be gathered is calculated as: 0xffffffff - beg_value
752 */
753 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
754 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
755
756 /* Start all counters */
757 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
758 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
759 }
760
761 /**
762 * exynos5_dmc_perf_events_calc() - Calculate utilization
763 * @dmc: device for which the counters are going to be checked
764 * @diff_ts: time between last interrupt and current one
765 *
766 * Function which calculates needed utilization for the devfreq governor.
767 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
768 * between interrupts, which approximates utilization.
769 */
770 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
771 {
772 /*
773 * This is a simple algorithm for managing traffic on DMC.
774 * When there is almost no load the counters overflow every 4s,
775 * no mater the DMC frequency.
776 * The high load might be approximated using linear function.
777 * Knowing that, simple calculation can provide 'busy_time' and
778 * 'total_time' to the devfreq governor which picks up target
779 * frequency.
780 * We want a fast ramp up and slow decay in frequency change function.
781 */
782 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
783 /*
784 * Set higher utilization for the simple_ondemand governor.
785 * The governor should increase the frequency of the DMC.
786 */
787 dmc->load = 70;
788 dmc->total = 100;
789 } else {
790 /*
791 * Set low utilization for the simple_ondemand governor.
792 * The governor should decrease the frequency of the DMC.
793 */
794 dmc->load = 35;
795 dmc->total = 100;
796 }
797
798 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
799 }
800
801 /**
802 * exynos5_dmc_perf_events_check() - Checks the status of the counters
803 * @dmc: device for which the counters are going to be checked
804 *
805 * Function which is called from threaded IRQ to check the counters state
806 * and to call approximation for the needed utilization.
807 */
808 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
809 {
810 u32 val;
811 u64 diff_ts, ts;
812
813 ts = ktime_get_ns();
814
815 /* Stop all counters */
816 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
817 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
818
819 /* Check the source in interrupt flag registers (which channel) */
820 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
821 if (val) {
822 diff_ts = ts - dmc->last_overflow_ts[0];
823 dmc->last_overflow_ts[0] = ts;
824 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
825 } else {
826 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
827 diff_ts = ts - dmc->last_overflow_ts[1];
828 dmc->last_overflow_ts[1] = ts;
829 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
830 }
831
832 exynos5_dmc_perf_events_calc(dmc, diff_ts);
833
834 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
835 }
836
837 /**
838 * exynos5_dmc_enable_perf_events() - Enable performance events
839 * @dmc: device for which the counters are going to be checked
840 *
841 * Function which is setup needed environment and enables counters.
842 */
843 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
844 {
845 u64 ts;
846
847 /* Enable Performance Event Clock */
848 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
849 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
850
851 /* Select read transfers as performance event2 */
852 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
853 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
854
855 ts = ktime_get_ns();
856 dmc->last_overflow_ts[0] = ts;
857 dmc->last_overflow_ts[1] = ts;
858
859 /* Devfreq shouldn't be faster than initialization, play safe though. */
860 dmc->load = 99;
861 dmc->total = 100;
862 }
863
864 /**
865 * exynos5_dmc_disable_perf_events() - Disable performance events
866 * @dmc: device for which the counters are going to be checked
867 *
868 * Function which stops, disables performance event counters and interrupts.
869 */
870 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
871 {
872 /* Stop all counters */
873 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
874 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
875
876 /* Disable interrupts for counter 2 */
877 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
878 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
879
880 /* Disable counter 2 and CCNT */
881 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
882 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
883
884 /* Clear overflow flag for all counters */
885 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
886 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
887 }
888
889 /**
890 * exynos5_dmc_get_status() - Read current DMC performance statistics.
891 * @dev: device for which the statistics are requested
892 * @stat: structure which has statistic fields
893 *
894 * Function reads the DMC performance counters and calculates 'busy_time'
895 * and 'total_time'. To protect from overflow, the values are shifted right
896 * by 10. After read out the counters are setup to count again.
897 */
898 static int exynos5_dmc_get_status(struct device *dev,
899 struct devfreq_dev_status *stat)
900 {
901 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
902 unsigned long load, total;
903 int ret;
904
905 if (dmc->in_irq_mode) {
906 stat->current_frequency = dmc->curr_rate;
907 stat->busy_time = dmc->load;
908 stat->total_time = dmc->total;
909 } else {
910 ret = exynos5_counters_get(dmc, &load, &total);
911 if (ret < 0)
912 return -EINVAL;
913
914 /* To protect from overflow, divide by 1024 */
915 stat->busy_time = load >> 10;
916 stat->total_time = total >> 10;
917
918 ret = exynos5_counters_set_event(dmc);
919 if (ret < 0) {
920 dev_err(dev, "could not set event counter\n");
921 return ret;
922 }
923 }
924
925 return 0;
926 }
927
928 /**
929 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
930 * @dev: device for which the framework checks operating frequency
931 * @freq: returned frequency value
932 *
933 * It returns the currently used frequency of the DMC. The real operating
934 * frequency might be lower when the clock source value could not be divided
935 * to the requested value.
936 */
937 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
938 {
939 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
940
941 mutex_lock(&dmc->lock);
942 *freq = dmc->curr_rate;
943 mutex_unlock(&dmc->lock);
944
945 return 0;
946 }
947
948 /**
949 * exynos5_dmc_df_profile - Devfreq governor's profile structure
950 *
951 * It provides to the devfreq framework needed functions and polling period.
952 */
953 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
954 .target = exynos5_dmc_target,
955 .get_dev_status = exynos5_dmc_get_status,
956 .get_cur_freq = exynos5_dmc_get_cur_freq,
957 };
958
959 /**
960 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
961 * @dmc: device for which the frequency is going to be set
962 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
963 *
964 * The initial bootloader frequency, which is present during boot, might be
965 * different that supported frequency values in the driver. It is possible
966 * due to different PLL settings or used PLL as a source.
967 * This function provides the 'initial_freq' for the devfreq framework
968 * statistics engine which supports only registered values. Thus, some alignment
969 * must be made.
970 */
971 static unsigned long
972 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
973 unsigned long bootloader_init_freq)
974 {
975 unsigned long aligned_freq;
976 int idx;
977
978 idx = find_target_freq_idx(dmc, bootloader_init_freq);
979 if (idx >= 0)
980 aligned_freq = dmc->opp[idx].freq_hz;
981 else
982 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
983
984 return aligned_freq;
985 }
986
987 /**
988 * create_timings_aligned() - Create register values and align with standard
989 * @dmc: device for which the frequency is going to be set
990 * @idx: speed bin in the OPP table
991 * @clk_period_ps: the period of the clock, known as tCK
992 *
993 * The function calculates timings and creates a register value ready for
994 * a frequency transition. The register contains a few timings. They are
995 * shifted by a known offset. The timing value is calculated based on memory
996 * specyfication: minimal time required and minimal cycles required.
997 */
998 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
999 u32 *reg_timing_data, u32 *reg_timing_power,
1000 u32 clk_period_ps)
1001 {
1002 u32 val;
1003 const struct timing_reg *reg;
1004
1005 if (clk_period_ps == 0)
1006 return -EINVAL;
1007
1008 *reg_timing_row = 0;
1009 *reg_timing_data = 0;
1010 *reg_timing_power = 0;
1011
1012 val = dmc->timings->tRFC / clk_period_ps;
1013 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1014 val = max(val, dmc->min_tck->tRFC);
1015 reg = &timing_row[0];
1016 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1017
1018 val = dmc->timings->tRRD / clk_period_ps;
1019 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1020 val = max(val, dmc->min_tck->tRRD);
1021 reg = &timing_row[1];
1022 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024 val = dmc->timings->tRPab / clk_period_ps;
1025 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1026 val = max(val, dmc->min_tck->tRPab);
1027 reg = &timing_row[2];
1028 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030 val = dmc->timings->tRCD / clk_period_ps;
1031 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1032 val = max(val, dmc->min_tck->tRCD);
1033 reg = &timing_row[3];
1034 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036 val = dmc->timings->tRC / clk_period_ps;
1037 val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1038 val = max(val, dmc->min_tck->tRC);
1039 reg = &timing_row[4];
1040 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042 val = dmc->timings->tRAS / clk_period_ps;
1043 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1044 val = max(val, dmc->min_tck->tRAS);
1045 reg = &timing_row[5];
1046 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1047
1048 /* data related timings */
1049 val = dmc->timings->tWTR / clk_period_ps;
1050 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1051 val = max(val, dmc->min_tck->tWTR);
1052 reg = &timing_data[0];
1053 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1054
1055 val = dmc->timings->tWR / clk_period_ps;
1056 val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1057 val = max(val, dmc->min_tck->tWR);
1058 reg = &timing_data[1];
1059 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061 val = dmc->timings->tRTP / clk_period_ps;
1062 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1063 val = max(val, dmc->min_tck->tRTP);
1064 reg = &timing_data[2];
1065 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067 val = dmc->timings->tW2W_C2C / clk_period_ps;
1068 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1069 val = max(val, dmc->min_tck->tW2W_C2C);
1070 reg = &timing_data[3];
1071 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073 val = dmc->timings->tR2R_C2C / clk_period_ps;
1074 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1075 val = max(val, dmc->min_tck->tR2R_C2C);
1076 reg = &timing_data[4];
1077 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079 val = dmc->timings->tWL / clk_period_ps;
1080 val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1081 val = max(val, dmc->min_tck->tWL);
1082 reg = &timing_data[5];
1083 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085 val = dmc->timings->tDQSCK / clk_period_ps;
1086 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1087 val = max(val, dmc->min_tck->tDQSCK);
1088 reg = &timing_data[6];
1089 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091 val = dmc->timings->tRL / clk_period_ps;
1092 val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1093 val = max(val, dmc->min_tck->tRL);
1094 reg = &timing_data[7];
1095 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1096
1097 /* power related timings */
1098 val = dmc->timings->tFAW / clk_period_ps;
1099 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1100 val = max(val, dmc->min_tck->tFAW);
1101 reg = &timing_power[0];
1102 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1103
1104 val = dmc->timings->tXSR / clk_period_ps;
1105 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1106 val = max(val, dmc->min_tck->tXSR);
1107 reg = &timing_power[1];
1108 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110 val = dmc->timings->tXP / clk_period_ps;
1111 val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1112 val = max(val, dmc->min_tck->tXP);
1113 reg = &timing_power[2];
1114 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116 val = dmc->timings->tCKE / clk_period_ps;
1117 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1118 val = max(val, dmc->min_tck->tCKE);
1119 reg = &timing_power[3];
1120 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122 val = dmc->timings->tMRD / clk_period_ps;
1123 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1124 val = max(val, dmc->min_tck->tMRD);
1125 reg = &timing_power[4];
1126 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1127
1128 return 0;
1129 }
1130
1131 /**
1132 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1133 * @dmc: device for which the frequency is going to be set
1134 *
1135 * The function parses DT entries with DRAM information.
1136 */
1137 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1138 {
1139 int ret = 0;
1140 int idx;
1141 struct device_node *np_ddr;
1142 u32 freq_mhz, clk_period_ps;
1143
1144 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1145 if (!np_ddr) {
1146 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1147 return -EINVAL;
1148 }
1149
1150 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1151 sizeof(u32), GFP_KERNEL);
1152 if (!dmc->timing_row)
1153 return -ENOMEM;
1154
1155 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1156 sizeof(u32), GFP_KERNEL);
1157 if (!dmc->timing_data)
1158 return -ENOMEM;
1159
1160 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1161 sizeof(u32), GFP_KERNEL);
1162 if (!dmc->timing_power)
1163 return -ENOMEM;
1164
1165 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1166 DDR_TYPE_LPDDR3,
1167 &dmc->timings_arr_size);
1168 if (!dmc->timings) {
1169 of_node_put(np_ddr);
1170 dev_warn(dmc->dev, "could not get timings from DT\n");
1171 return -EINVAL;
1172 }
1173
1174 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1175 if (!dmc->min_tck) {
1176 of_node_put(np_ddr);
1177 dev_warn(dmc->dev, "could not get tck from DT\n");
1178 return -EINVAL;
1179 }
1180
1181 /* Sorted array of OPPs with frequency ascending */
1182 for (idx = 0; idx < dmc->opp_count; idx++) {
1183 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1184 clk_period_ps = 1000000 / freq_mhz;
1185
1186 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1187 &dmc->timing_data[idx],
1188 &dmc->timing_power[idx],
1189 clk_period_ps);
1190 }
1191
1192 of_node_put(np_ddr);
1193
1194 /* Take the highest frequency's timings as 'bypass' */
1195 dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1196 dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1197 dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1198
1199 return ret;
1200 }
1201
1202 /**
1203 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1204 * @dmc: DMC structure containing needed fields
1205 *
1206 * Get the needed clocks defined in DT device, enable and set the right parents.
1207 * Read current frequency and initialize the initial rate for governor.
1208 */
1209 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1210 {
1211 int ret;
1212 unsigned long target_volt = 0;
1213 unsigned long target_rate = 0;
1214 unsigned int tmp;
1215
1216 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1217 if (IS_ERR(dmc->fout_spll))
1218 return PTR_ERR(dmc->fout_spll);
1219
1220 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1221 if (IS_ERR(dmc->fout_bpll))
1222 return PTR_ERR(dmc->fout_bpll);
1223
1224 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1225 if (IS_ERR(dmc->mout_mclk_cdrex))
1226 return PTR_ERR(dmc->mout_mclk_cdrex);
1227
1228 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1229 if (IS_ERR(dmc->mout_bpll))
1230 return PTR_ERR(dmc->mout_bpll);
1231
1232 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1233 "mout_mx_mspll_ccore");
1234 if (IS_ERR(dmc->mout_mx_mspll_ccore))
1235 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1236
1237 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1238 if (IS_ERR(dmc->mout_spll)) {
1239 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1240 if (IS_ERR(dmc->mout_spll))
1241 return PTR_ERR(dmc->mout_spll);
1242 }
1243
1244 /*
1245 * Convert frequency to KHz values and set it for the governor.
1246 */
1247 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1248 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1249 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1250
1251 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1252 &target_volt, 0);
1253 if (ret)
1254 return ret;
1255
1256 dmc->curr_volt = target_volt;
1257
1258 clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1259
1260 dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1261
1262 clk_prepare_enable(dmc->fout_bpll);
1263 clk_prepare_enable(dmc->mout_bpll);
1264
1265 /*
1266 * Some bootloaders do not set clock routes correctly.
1267 * Stop one path in clocks to PHY.
1268 */
1269 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1270 tmp &= ~(BIT(1) | BIT(0));
1271 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1272
1273 return 0;
1274 }
1275
1276 /**
1277 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1278 * @dmc: DMC for which it does the setup
1279 *
1280 * Initialization of performance counters in DMC for estimating usage.
1281 * The counter's values are used for calculation of a memory bandwidth and based
1282 * on that the governor changes the frequency.
1283 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1284 */
1285 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1286 {
1287 int counters_size;
1288 int ret, i;
1289
1290 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1291 if (dmc->num_counters < 0) {
1292 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1293 return dmc->num_counters;
1294 }
1295
1296 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1297 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1298 if (!dmc->counter)
1299 return -ENOMEM;
1300
1301 for (i = 0; i < dmc->num_counters; i++) {
1302 dmc->counter[i] =
1303 devfreq_event_get_edev_by_phandle(dmc->dev, i);
1304 if (IS_ERR_OR_NULL(dmc->counter[i]))
1305 return -EPROBE_DEFER;
1306 }
1307
1308 ret = exynos5_counters_enable_edev(dmc);
1309 if (ret < 0) {
1310 dev_err(dmc->dev, "could not enable event counter\n");
1311 return ret;
1312 }
1313
1314 ret = exynos5_counters_set_event(dmc);
1315 if (ret < 0) {
1316 exynos5_counters_disable_edev(dmc);
1317 dev_err(dmc->dev, "could not set event counter\n");
1318 return ret;
1319 }
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1326 * @dmc: device which is used for changing this feature
1327 * @set: a boolean state passing enable/disable request
1328 *
1329 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1330 * changes its configuration. In such situation access to the memory is blocked
1331 * in DMC automatically. This feature is used when clock frequency change
1332 * request appears and touches clock tree.
1333 */
1334 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1335 {
1336 unsigned int val;
1337 int ret;
1338
1339 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1340 if (ret)
1341 return ret;
1342
1343 val |= 1UL;
1344 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1345
1346 return 0;
1347 }
1348
1349 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1350 {
1351 int res;
1352 struct exynos5_dmc *dmc = priv;
1353
1354 mutex_lock(&dmc->df->lock);
1355 exynos5_dmc_perf_events_check(dmc);
1356 res = update_devfreq(dmc->df);
1357 mutex_unlock(&dmc->df->lock);
1358
1359 if (res)
1360 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1361
1362 return IRQ_HANDLED;
1363 }
1364
1365 /**
1366 * exynos5_dmc_probe() - Probe function for the DMC driver
1367 * @pdev: platform device for which the driver is going to be initialized
1368 *
1369 * Initialize basic components: clocks, regulators, performance counters, etc.
1370 * Read out product version and based on the information setup
1371 * internal structures for the controller (frequency and voltage) and for DRAM
1372 * memory parameters: timings for each operating frequency.
1373 * Register new devfreq device for controlling DVFS of the DMC.
1374 */
1375 static int exynos5_dmc_probe(struct platform_device *pdev)
1376 {
1377 int ret = 0;
1378 struct device *dev = &pdev->dev;
1379 struct device_node *np = dev->of_node;
1380 struct exynos5_dmc *dmc;
1381 int irq[2];
1382
1383 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1384 if (!dmc)
1385 return -ENOMEM;
1386
1387 mutex_init(&dmc->lock);
1388
1389 dmc->dev = dev;
1390 platform_set_drvdata(pdev, dmc);
1391
1392 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1393 if (IS_ERR(dmc->base_drexi0))
1394 return PTR_ERR(dmc->base_drexi0);
1395
1396 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1397 if (IS_ERR(dmc->base_drexi1))
1398 return PTR_ERR(dmc->base_drexi1);
1399
1400 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1401 "samsung,syscon-clk");
1402 if (IS_ERR(dmc->clk_regmap))
1403 return PTR_ERR(dmc->clk_regmap);
1404
1405 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1406 if (ret) {
1407 dev_warn(dev, "couldn't initialize frequency settings\n");
1408 return ret;
1409 }
1410
1411 dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1412 if (IS_ERR(dmc->vdd_mif)) {
1413 ret = PTR_ERR(dmc->vdd_mif);
1414 return ret;
1415 }
1416
1417 ret = exynos5_dmc_init_clks(dmc);
1418 if (ret)
1419 return ret;
1420
1421 ret = of_get_dram_timings(dmc);
1422 if (ret) {
1423 dev_warn(dev, "couldn't initialize timings settings\n");
1424 goto remove_clocks;
1425 }
1426
1427 ret = exynos5_dmc_set_pause_on_switching(dmc);
1428 if (ret) {
1429 dev_warn(dev, "couldn't get access to PAUSE register\n");
1430 goto remove_clocks;
1431 }
1432
1433 /* There is two modes in which the driver works: polling or IRQ */
1434 irq[0] = platform_get_irq_byname(pdev, "drex_0");
1435 irq[1] = platform_get_irq_byname(pdev, "drex_1");
1436 if (irq[0] > 0 && irq[1] > 0) {
1437 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1438 dmc_irq_thread, IRQF_ONESHOT,
1439 dev_name(dev), dmc);
1440 if (ret) {
1441 dev_err(dev, "couldn't grab IRQ\n");
1442 goto remove_clocks;
1443 }
1444
1445 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1446 dmc_irq_thread, IRQF_ONESHOT,
1447 dev_name(dev), dmc);
1448 if (ret) {
1449 dev_err(dev, "couldn't grab IRQ\n");
1450 goto remove_clocks;
1451 }
1452
1453 /*
1454 * Setup default thresholds for the devfreq governor.
1455 * The values are chosen based on experiments.
1456 */
1457 dmc->gov_data.upthreshold = 55;
1458 dmc->gov_data.downdifferential = 5;
1459
1460 exynos5_dmc_enable_perf_events(dmc);
1461
1462 dmc->in_irq_mode = 1;
1463 } else {
1464 ret = exynos5_performance_counters_init(dmc);
1465 if (ret) {
1466 dev_warn(dev, "couldn't probe performance counters\n");
1467 goto remove_clocks;
1468 }
1469
1470 /*
1471 * Setup default thresholds for the devfreq governor.
1472 * The values are chosen based on experiments.
1473 */
1474 dmc->gov_data.upthreshold = 30;
1475 dmc->gov_data.downdifferential = 5;
1476
1477 exynos5_dmc_df_profile.polling_ms = 500;
1478 }
1479
1480 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1481 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1482 &dmc->gov_data);
1483
1484 if (IS_ERR(dmc->df)) {
1485 ret = PTR_ERR(dmc->df);
1486 goto err_devfreq_add;
1487 }
1488
1489 if (dmc->in_irq_mode)
1490 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1491
1492 dev_info(dev, "DMC initialized\n");
1493
1494 return 0;
1495
1496 err_devfreq_add:
1497 if (dmc->in_irq_mode)
1498 exynos5_dmc_disable_perf_events(dmc);
1499 else
1500 exynos5_counters_disable_edev(dmc);
1501 remove_clocks:
1502 clk_disable_unprepare(dmc->mout_bpll);
1503 clk_disable_unprepare(dmc->fout_bpll);
1504
1505 return ret;
1506 }
1507
1508 /**
1509 * exynos5_dmc_remove() - Remove function for the platform device
1510 * @pdev: platform device which is going to be removed
1511 *
1512 * The function relies on 'devm' framework function which automatically
1513 * clean the device's resources. It just calls explicitly disable function for
1514 * the performance counters.
1515 */
1516 static int exynos5_dmc_remove(struct platform_device *pdev)
1517 {
1518 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1519
1520 if (dmc->in_irq_mode)
1521 exynos5_dmc_disable_perf_events(dmc);
1522 else
1523 exynos5_counters_disable_edev(dmc);
1524
1525 clk_disable_unprepare(dmc->mout_bpll);
1526 clk_disable_unprepare(dmc->fout_bpll);
1527
1528 dev_pm_opp_remove_table(dmc->dev);
1529
1530 return 0;
1531 }
1532
1533 static const struct of_device_id exynos5_dmc_of_match[] = {
1534 { .compatible = "samsung,exynos5422-dmc", },
1535 { },
1536 };
1537 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1538
1539 static struct platform_driver exynos5_dmc_platdrv = {
1540 .probe = exynos5_dmc_probe,
1541 .remove = exynos5_dmc_remove,
1542 .driver = {
1543 .name = "exynos5-dmc",
1544 .of_match_table = exynos5_dmc_of_match,
1545 },
1546 };
1547 module_platform_driver(exynos5_dmc_platdrv);
1548 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1549 MODULE_LICENSE("GPL v2");
1550 MODULE_AUTHOR("Lukasz Luba");