]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/memory/samsung/exynos5422-dmc.c
Merge tag 'for-5.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include "../jedec_ddr.h"
22 #include "../of_memory.h"
23
24 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
25 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
26 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
27 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
28 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
29 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
30 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
31 #define CDREX_PAUSE (0x2091c)
32 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
33 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
34 #define EXYNOS5_TIMING_SET_SWI BIT(28)
35 #define USE_MX_MSPLL_TIMINGS (1)
36 #define USE_BPLL_TIMINGS (0)
37 #define EXYNOS5_AREF_NORMAL (0x2e)
38
39 #define DREX_PPCCLKCON (0x0130)
40 #define DREX_PEREV2CONFIG (0x013c)
41 #define DREX_PMNC_PPC (0xE000)
42 #define DREX_CNTENS_PPC (0xE010)
43 #define DREX_CNTENC_PPC (0xE020)
44 #define DREX_INTENS_PPC (0xE030)
45 #define DREX_INTENC_PPC (0xE040)
46 #define DREX_FLAG_PPC (0xE050)
47 #define DREX_PMCNT2_PPC (0xE130)
48
49 /*
50 * A value for register DREX_PMNC_PPC which should be written to reset
51 * the cycle counter CCNT (a reference wall clock). It sets zero to the
52 * CCNT counter.
53 */
54 #define CC_RESET BIT(2)
55
56 /*
57 * A value for register DREX_PMNC_PPC which does the reset of all performance
58 * counters to zero.
59 */
60 #define PPC_COUNTER_RESET BIT(1)
61
62 /*
63 * Enables all configured counters (including cycle counter). The value should
64 * be written to the register DREX_PMNC_PPC.
65 */
66 #define PPC_ENABLE BIT(0)
67
68 /* A value for register DREX_PPCCLKCON which enables performance events clock.
69 * Must be written before first access to the performance counters register
70 * set, otherwise it could crash.
71 */
72 #define PEREV_CLK_EN BIT(0)
73
74 /*
75 * Values which are used to enable counters, interrupts or configure flags of
76 * the performance counters. They configure counter 2 and cycle counter.
77 */
78 #define PERF_CNT2 BIT(2)
79 #define PERF_CCNT BIT(31)
80
81 /*
82 * Performance event types which are used for setting the preferred event
83 * to track in the counters.
84 * There is a set of different types, the values are from range 0 to 0x6f.
85 * These settings should be written to the configuration register which manages
86 * the type of the event (register DREX_PEREV2CONFIG).
87 */
88 #define READ_TRANSFER_CH0 (0x6d)
89 #define READ_TRANSFER_CH1 (0x6f)
90
91 #define PERF_COUNTER_START_VALUE 0xff000000
92 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
93
94 /**
95 * struct dmc_opp_table - Operating level desciption
96 *
97 * Covers frequency and voltage settings of the DMC operating mode.
98 */
99 struct dmc_opp_table {
100 u32 freq_hz;
101 u32 volt_uv;
102 };
103
104 /**
105 * struct exynos5_dmc - main structure describing DMC device
106 *
107 * The main structure for the Dynamic Memory Controller which covers clocks,
108 * memory regions, HW information, parameters and current operating mode.
109 */
110 struct exynos5_dmc {
111 struct device *dev;
112 struct devfreq *df;
113 struct devfreq_simple_ondemand_data gov_data;
114 void __iomem *base_drexi0;
115 void __iomem *base_drexi1;
116 struct regmap *clk_regmap;
117 struct mutex lock;
118 unsigned long curr_rate;
119 unsigned long curr_volt;
120 unsigned long bypass_rate;
121 struct dmc_opp_table *opp;
122 struct dmc_opp_table opp_bypass;
123 int opp_count;
124 u32 timings_arr_size;
125 u32 *timing_row;
126 u32 *timing_data;
127 u32 *timing_power;
128 const struct lpddr3_timings *timings;
129 const struct lpddr3_min_tck *min_tck;
130 u32 bypass_timing_row;
131 u32 bypass_timing_data;
132 u32 bypass_timing_power;
133 struct regulator *vdd_mif;
134 struct clk *fout_spll;
135 struct clk *fout_bpll;
136 struct clk *mout_spll;
137 struct clk *mout_bpll;
138 struct clk *mout_mclk_cdrex;
139 struct clk *mout_mx_mspll_ccore;
140 struct clk *mx_mspll_ccore_phy;
141 struct clk *mout_mx_mspll_ccore_phy;
142 struct devfreq_event_dev **counter;
143 int num_counters;
144 u64 last_overflow_ts[2];
145 unsigned long load;
146 unsigned long total;
147 bool in_irq_mode;
148 };
149
150 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
151 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
152
153 #define TIMING_VAL2REG(timing, t_val) \
154 ({ \
155 u32 __val; \
156 __val = (t_val) << (timing)->bit_beg; \
157 __val; \
158 })
159
160 struct timing_reg {
161 char *name;
162 int bit_beg;
163 int bit_end;
164 unsigned int val;
165 };
166
167 static const struct timing_reg timing_row[] = {
168 TIMING_FIELD("tRFC", 24, 31),
169 TIMING_FIELD("tRRD", 20, 23),
170 TIMING_FIELD("tRP", 16, 19),
171 TIMING_FIELD("tRCD", 12, 15),
172 TIMING_FIELD("tRC", 6, 11),
173 TIMING_FIELD("tRAS", 0, 5),
174 };
175
176 static const struct timing_reg timing_data[] = {
177 TIMING_FIELD("tWTR", 28, 31),
178 TIMING_FIELD("tWR", 24, 27),
179 TIMING_FIELD("tRTP", 20, 23),
180 TIMING_FIELD("tW2W-C2C", 14, 14),
181 TIMING_FIELD("tR2R-C2C", 12, 12),
182 TIMING_FIELD("WL", 8, 11),
183 TIMING_FIELD("tDQSCK", 4, 7),
184 TIMING_FIELD("RL", 0, 3),
185 };
186
187 static const struct timing_reg timing_power[] = {
188 TIMING_FIELD("tFAW", 26, 31),
189 TIMING_FIELD("tXSR", 16, 25),
190 TIMING_FIELD("tXP", 8, 15),
191 TIMING_FIELD("tCKE", 4, 7),
192 TIMING_FIELD("tMRD", 0, 3),
193 };
194
195 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
196 ARRAY_SIZE(timing_power))
197
198 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
199 {
200 int i, ret;
201
202 for (i = 0; i < dmc->num_counters; i++) {
203 if (!dmc->counter[i])
204 continue;
205 ret = devfreq_event_set_event(dmc->counter[i]);
206 if (ret < 0)
207 return ret;
208 }
209 return 0;
210 }
211
212 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
213 {
214 int i, ret;
215
216 for (i = 0; i < dmc->num_counters; i++) {
217 if (!dmc->counter[i])
218 continue;
219 ret = devfreq_event_enable_edev(dmc->counter[i]);
220 if (ret < 0)
221 return ret;
222 }
223 return 0;
224 }
225
226 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
227 {
228 int i, ret;
229
230 for (i = 0; i < dmc->num_counters; i++) {
231 if (!dmc->counter[i])
232 continue;
233 ret = devfreq_event_disable_edev(dmc->counter[i]);
234 if (ret < 0)
235 return ret;
236 }
237 return 0;
238 }
239
240 /**
241 * find_target_freq_id() - Finds requested frequency in local DMC configuration
242 * @dmc: device for which the information is checked
243 * @target_rate: requested frequency in KHz
244 *
245 * Seeks in the local DMC driver structure for the requested frequency value
246 * and returns index or error value.
247 */
248 static int find_target_freq_idx(struct exynos5_dmc *dmc,
249 unsigned long target_rate)
250 {
251 int i;
252
253 for (i = dmc->opp_count - 1; i >= 0; i--)
254 if (dmc->opp[i].freq_hz <= target_rate)
255 return i;
256
257 return -EINVAL;
258 }
259
260 /**
261 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
262 * @dmc: device for which the new settings is going to be applied
263 * @set: boolean variable passing set value
264 *
265 * Changes the register set, which holds timing parameters.
266 * There is two register sets: 0 and 1. The register set 0
267 * is used in normal operation when the clock is provided from main PLL.
268 * The bank register set 1 is used when the main PLL frequency is going to be
269 * changed and the clock is taken from alternative, stable source.
270 * This function switches between these banks according to the
271 * currently used clock source.
272 */
273 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
274 {
275 unsigned int reg;
276 int ret;
277
278 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
279
280 if (set)
281 reg |= EXYNOS5_TIMING_SET_SWI;
282 else
283 reg &= ~EXYNOS5_TIMING_SET_SWI;
284
285 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
286 }
287
288 /**
289 * exynos5_init_freq_table() - Initialized PM OPP framework
290 * @dmc: DMC device for which the frequencies are used for OPP init
291 * @profile: devfreq device's profile
292 *
293 * Populate the devfreq device's OPP table based on current frequency, voltage.
294 */
295 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
296 struct devfreq_dev_profile *profile)
297 {
298 int i, ret;
299 int idx;
300 unsigned long freq;
301
302 ret = dev_pm_opp_of_add_table(dmc->dev);
303 if (ret < 0) {
304 dev_err(dmc->dev, "Failed to get OPP table\n");
305 return ret;
306 }
307
308 dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
309
310 dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
311 sizeof(struct dmc_opp_table), GFP_KERNEL);
312 if (!dmc->opp)
313 goto err_opp;
314
315 idx = dmc->opp_count - 1;
316 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
317 struct dev_pm_opp *opp;
318
319 opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
320 if (IS_ERR(opp))
321 goto err_opp;
322
323 dmc->opp[idx - i].freq_hz = freq;
324 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
325
326 dev_pm_opp_put(opp);
327 }
328
329 return 0;
330
331 err_opp:
332 dev_pm_opp_of_remove_table(dmc->dev);
333
334 return -EINVAL;
335 }
336
337 /**
338 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
339 * @dmc: device for which the new settings is going to be applied
340 * @param: DRAM parameters which passes timing data
341 *
342 * Low-level function for changing timings for DRAM memory clocking from
343 * 'bypass' clock source (fixed frequency @400MHz).
344 * It uses timing bank registers set 1.
345 */
346 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
347 {
348 writel(EXYNOS5_AREF_NORMAL,
349 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
350
351 writel(dmc->bypass_timing_row,
352 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
353 writel(dmc->bypass_timing_row,
354 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
355 writel(dmc->bypass_timing_data,
356 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
357 writel(dmc->bypass_timing_data,
358 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
359 writel(dmc->bypass_timing_power,
360 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
361 writel(dmc->bypass_timing_power,
362 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
363 }
364
365 /**
366 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
367 * @dmc: device for which the new settings is going to be applied
368 * @target_rate: target frequency of the DMC
369 *
370 * Low-level function for changing timings for DRAM memory operating from main
371 * clock source (BPLL), which can have different frequencies. Thus, each
372 * frequency must have corresponding timings register values in order to keep
373 * the needed delays.
374 * It uses timing bank registers set 0.
375 */
376 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
377 unsigned long target_rate)
378 {
379 int idx;
380
381 for (idx = dmc->opp_count - 1; idx >= 0; idx--)
382 if (dmc->opp[idx].freq_hz <= target_rate)
383 break;
384
385 if (idx < 0)
386 return -EINVAL;
387
388 writel(EXYNOS5_AREF_NORMAL,
389 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390
391 writel(dmc->timing_row[idx],
392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
393 writel(dmc->timing_row[idx],
394 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
395 writel(dmc->timing_data[idx],
396 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
397 writel(dmc->timing_data[idx],
398 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
399 writel(dmc->timing_power[idx],
400 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
401 writel(dmc->timing_power[idx],
402 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
403
404 return 0;
405 }
406
407 /**
408 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
409 * @dmc: device for which it is going to be set
410 * @target_volt: new voltage which is chosen to be final
411 *
412 * Function tries to align voltage to the safe level for 'normal' mode.
413 * It checks the need of higher voltage and changes the value. The target
414 * voltage might be lower that currently set and still the system will be
415 * stable.
416 */
417 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
418 unsigned long target_volt)
419 {
420 int ret = 0;
421
422 if (dmc->curr_volt <= target_volt)
423 return 0;
424
425 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
426 target_volt);
427 if (!ret)
428 dmc->curr_volt = target_volt;
429
430 return ret;
431 }
432
433 /**
434 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
435 * @dmc: device for which it is going to be set
436 * @target_volt: new voltage which is chosen to be final
437 *
438 * Function tries to align voltage to the safe level for the 'bypass' mode.
439 * It checks the need of higher voltage and changes the value.
440 * The target voltage must not be less than currently needed, because
441 * for current frequency the device might become unstable.
442 */
443 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
444 unsigned long target_volt)
445 {
446 int ret = 0;
447 unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
448
449 target_volt = max(bypass_volt, target_volt);
450
451 if (dmc->curr_volt >= target_volt)
452 return 0;
453
454 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
455 target_volt);
456 if (!ret)
457 dmc->curr_volt = target_volt;
458
459 return ret;
460 }
461
462 /**
463 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
464 * @dmc: device for which it is going to be set
465 * @target_rate: new frequency which is chosen to be final
466 *
467 * Function changes the DRAM timings for the temporary 'bypass' mode.
468 */
469 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
470 unsigned long target_rate)
471 {
472 int idx = find_target_freq_idx(dmc, target_rate);
473
474 if (idx < 0)
475 return -EINVAL;
476
477 exynos5_set_bypass_dram_timings(dmc);
478
479 return 0;
480 }
481
482 /**
483 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
484 * @dmc: DMC device for which the switching is going to happen
485 * @target_rate: new frequency which is going to be set as a final
486 * @target_volt: new voltage which is going to be set as a final
487 *
488 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
489 * This mode is used only temporary but if required, changes voltage and timings
490 * for DRAM chips. It switches the main clock to stable clock source for the
491 * period of the main PLL reconfiguration.
492 */
493 static int
494 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
495 unsigned long target_rate,
496 unsigned long target_volt)
497 {
498 int ret;
499
500 /*
501 * Having higher voltage for a particular frequency does not harm
502 * the chip. Use it for the temporary frequency change when one
503 * voltage manipulation might be avoided.
504 */
505 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
506 if (ret)
507 return ret;
508
509 /*
510 * Longer delays for DRAM does not cause crash, the opposite does.
511 */
512 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
513 if (ret)
514 return ret;
515
516 /*
517 * Delays are long enough, so use them for the new coming clock.
518 */
519 exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
520
521 return ret;
522 }
523
524 /**
525 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
526 * using safe procedure
527 * @dmc: device for which the frequency is going to be changed
528 * @target_rate: requested new frequency
529 * @target_volt: requested voltage which corresponds to the new frequency
530 *
531 * The DMC frequency change procedure requires a few steps.
532 * The main requirement is to change the clock source in the clk mux
533 * for the time of main clock PLL locking. The assumption is that the
534 * alternative clock source set as parent is stable.
535 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
536 * clock. This requires alignment in DRAM timing parameters for the new
537 * T-period. There is two bank sets for keeping DRAM
538 * timings: set 0 and set 1. The set 0 is used when main clock source is
539 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
540 * the two bank sets is part of the process.
541 * The voltage must also be aligned to the minimum required level. There is
542 * this intermediate step with switching to 'bypass' parent clock source.
543 * if the old voltage is lower, it requires an increase of the voltage level.
544 * The complexity of the voltage manipulation is hidden in low level function.
545 * In this function there is last alignment of the voltage level at the end.
546 */
547 static int
548 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
549 unsigned long target_rate,
550 unsigned long target_volt)
551 {
552 int ret;
553
554 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
555 target_volt);
556 if (ret)
557 return ret;
558
559 /*
560 * Voltage is set at least to a level needed for this frequency,
561 * so switching clock source is safe now.
562 */
563 clk_prepare_enable(dmc->fout_spll);
564 clk_prepare_enable(dmc->mout_spll);
565 clk_prepare_enable(dmc->mout_mx_mspll_ccore);
566
567 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
568 if (ret)
569 goto disable_clocks;
570
571 /*
572 * We are safe to increase the timings for current bypass frequency.
573 * Thanks to this the settings will be ready for the upcoming clock
574 * source change.
575 */
576 exynos5_dram_change_timings(dmc, target_rate);
577
578 clk_set_rate(dmc->fout_bpll, target_rate);
579
580 exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
581
582 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
583 if (ret)
584 goto disable_clocks;
585
586 /*
587 * Make sure if the voltage is not from 'bypass' settings and align to
588 * the right level for power efficiency.
589 */
590 ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
591
592 disable_clocks:
593 clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
594 clk_disable_unprepare(dmc->mout_spll);
595 clk_disable_unprepare(dmc->fout_spll);
596
597 return ret;
598 }
599
600 /**
601 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
602 * table.
603 * @dmc: device for which the frequency is going to be changed
604 * @freq: requested frequency in KHz
605 * @target_rate: returned frequency which is the same or lower than
606 * requested
607 * @target_volt: returned voltage which corresponds to the returned
608 * frequency
609 *
610 * Function gets requested frequency and checks OPP framework for needed
611 * frequency and voltage. It populates the values 'target_rate' and
612 * 'target_volt' or returns error value when OPP framework fails.
613 */
614 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
615 unsigned long *freq,
616 unsigned long *target_rate,
617 unsigned long *target_volt, u32 flags)
618 {
619 struct dev_pm_opp *opp;
620
621 opp = devfreq_recommended_opp(dmc->dev, freq, flags);
622 if (IS_ERR(opp))
623 return PTR_ERR(opp);
624
625 *target_rate = dev_pm_opp_get_freq(opp);
626 *target_volt = dev_pm_opp_get_voltage(opp);
627 dev_pm_opp_put(opp);
628
629 return 0;
630 }
631
632 /**
633 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
634 * @dev: device for which the frequency is going to be changed
635 * @freq: requested frequency in KHz
636 * @flags: flags provided for this frequency change request
637 *
638 * An entry function provided to the devfreq framework which provides frequency
639 * change of the DMC. The function gets the possible rate from OPP table based
640 * on requested frequency. It calls the next function responsible for the
641 * frequency and voltage change. In case of failure, does not set 'curr_rate'
642 * and returns error value to the framework.
643 */
644 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
645 u32 flags)
646 {
647 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
648 unsigned long target_rate = 0;
649 unsigned long target_volt = 0;
650 int ret;
651
652 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
653 flags);
654
655 if (ret)
656 return ret;
657
658 if (target_rate == dmc->curr_rate)
659 return 0;
660
661 mutex_lock(&dmc->lock);
662
663 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
664
665 if (ret) {
666 mutex_unlock(&dmc->lock);
667 return ret;
668 }
669
670 dmc->curr_rate = target_rate;
671
672 mutex_unlock(&dmc->lock);
673 return 0;
674 }
675
676 /**
677 * exynos5_counters_get() - Gets the performance counters values.
678 * @dmc: device for which the counters are going to be checked
679 * @load_count: variable which is populated with counter value
680 * @total_count: variable which is used as 'wall clock' reference
681 *
682 * Function which provides performance counters values. It sums up counters for
683 * two DMC channels. The 'total_count' is used as a reference and max value.
684 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
685 */
686 static int exynos5_counters_get(struct exynos5_dmc *dmc,
687 unsigned long *load_count,
688 unsigned long *total_count)
689 {
690 unsigned long total = 0;
691 struct devfreq_event_data event;
692 int ret, i;
693
694 *load_count = 0;
695
696 /* Take into account only read+write counters, but stop all */
697 for (i = 0; i < dmc->num_counters; i++) {
698 if (!dmc->counter[i])
699 continue;
700
701 ret = devfreq_event_get_event(dmc->counter[i], &event);
702 if (ret < 0)
703 return ret;
704
705 *load_count += event.load_count;
706
707 if (total < event.total_count)
708 total = event.total_count;
709 }
710
711 *total_count = total;
712
713 return 0;
714 }
715
716 /**
717 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
718 * @dmc: device for which the counters are going to be checked
719 * @beg_value: initial value for the counter
720 *
721 * Function which enables needed counters, interrupts and sets initial values
722 * then starts the counters.
723 */
724 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
725 u32 beg_value)
726 {
727 /* Enable interrupts for counter 2 */
728 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
729 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
730
731 /* Enable counter 2 and CCNT */
732 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
733 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
734
735 /* Clear overflow flag for all counters */
736 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
737 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
738
739 /* Reset all counters */
740 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
741 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
742
743 /*
744 * Set start value for the counters, the number of samples that
745 * will be gathered is calculated as: 0xffffffff - beg_value
746 */
747 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
748 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
749
750 /* Start all counters */
751 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
752 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
753 }
754
755 /**
756 * exynos5_dmc_perf_events_calc() - Calculate utilization
757 * @dmc: device for which the counters are going to be checked
758 * @diff_ts: time between last interrupt and current one
759 *
760 * Function which calculates needed utilization for the devfreq governor.
761 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
762 * between interrupts, which approximates utilization.
763 */
764 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
765 {
766 /*
767 * This is a simple algorithm for managing traffic on DMC.
768 * When there is almost no load the counters overflow every 4s,
769 * no mater the DMC frequency.
770 * The high load might be approximated using linear function.
771 * Knowing that, simple calculation can provide 'busy_time' and
772 * 'total_time' to the devfreq governor which picks up target
773 * frequency.
774 * We want a fast ramp up and slow decay in frequency change function.
775 */
776 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
777 /*
778 * Set higher utilization for the simple_ondemand governor.
779 * The governor should increase the frequency of the DMC.
780 */
781 dmc->load = 70;
782 dmc->total = 100;
783 } else {
784 /*
785 * Set low utilization for the simple_ondemand governor.
786 * The governor should decrease the frequency of the DMC.
787 */
788 dmc->load = 35;
789 dmc->total = 100;
790 }
791
792 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
793 }
794
795 /**
796 * exynos5_dmc_perf_events_check() - Checks the status of the counters
797 * @dmc: device for which the counters are going to be checked
798 *
799 * Function which is called from threaded IRQ to check the counters state
800 * and to call approximation for the needed utilization.
801 */
802 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
803 {
804 u32 val;
805 u64 diff_ts, ts;
806
807 ts = ktime_get_ns();
808
809 /* Stop all counters */
810 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
811 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
812
813 /* Check the source in interrupt flag registers (which channel) */
814 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
815 if (val) {
816 diff_ts = ts - dmc->last_overflow_ts[0];
817 dmc->last_overflow_ts[0] = ts;
818 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
819 } else {
820 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
821 diff_ts = ts - dmc->last_overflow_ts[1];
822 dmc->last_overflow_ts[1] = ts;
823 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
824 }
825
826 exynos5_dmc_perf_events_calc(dmc, diff_ts);
827
828 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
829 }
830
831 /**
832 * exynos5_dmc_enable_perf_events() - Enable performance events
833 * @dmc: device for which the counters are going to be checked
834 *
835 * Function which is setup needed environment and enables counters.
836 */
837 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
838 {
839 u64 ts;
840
841 /* Enable Performance Event Clock */
842 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
843 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
844
845 /* Select read transfers as performance event2 */
846 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
847 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
848
849 ts = ktime_get_ns();
850 dmc->last_overflow_ts[0] = ts;
851 dmc->last_overflow_ts[1] = ts;
852
853 /* Devfreq shouldn't be faster than initialization, play safe though. */
854 dmc->load = 99;
855 dmc->total = 100;
856 }
857
858 /**
859 * exynos5_dmc_disable_perf_events() - Disable performance events
860 * @dmc: device for which the counters are going to be checked
861 *
862 * Function which stops, disables performance event counters and interrupts.
863 */
864 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
865 {
866 /* Stop all counters */
867 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
868 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
869
870 /* Disable interrupts for counter 2 */
871 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
872 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
873
874 /* Disable counter 2 and CCNT */
875 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
876 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
877
878 /* Clear overflow flag for all counters */
879 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
880 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
881 }
882
883 /**
884 * exynos5_dmc_get_status() - Read current DMC performance statistics.
885 * @dev: device for which the statistics are requested
886 * @stat: structure which has statistic fields
887 *
888 * Function reads the DMC performance counters and calculates 'busy_time'
889 * and 'total_time'. To protect from overflow, the values are shifted right
890 * by 10. After read out the counters are setup to count again.
891 */
892 static int exynos5_dmc_get_status(struct device *dev,
893 struct devfreq_dev_status *stat)
894 {
895 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
896 unsigned long load, total;
897 int ret;
898
899 if (dmc->in_irq_mode) {
900 stat->current_frequency = dmc->curr_rate;
901 stat->busy_time = dmc->load;
902 stat->total_time = dmc->total;
903 } else {
904 ret = exynos5_counters_get(dmc, &load, &total);
905 if (ret < 0)
906 return -EINVAL;
907
908 /* To protect from overflow, divide by 1024 */
909 stat->busy_time = load >> 10;
910 stat->total_time = total >> 10;
911
912 ret = exynos5_counters_set_event(dmc);
913 if (ret < 0) {
914 dev_err(dev, "could not set event counter\n");
915 return ret;
916 }
917 }
918
919 return 0;
920 }
921
922 /**
923 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
924 * @dev: device for which the framework checks operating frequency
925 * @freq: returned frequency value
926 *
927 * It returns the currently used frequency of the DMC. The real operating
928 * frequency might be lower when the clock source value could not be divided
929 * to the requested value.
930 */
931 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
932 {
933 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
934
935 mutex_lock(&dmc->lock);
936 *freq = dmc->curr_rate;
937 mutex_unlock(&dmc->lock);
938
939 return 0;
940 }
941
942 /**
943 * exynos5_dmc_df_profile - Devfreq governor's profile structure
944 *
945 * It provides to the devfreq framework needed functions and polling period.
946 */
947 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
948 .target = exynos5_dmc_target,
949 .get_dev_status = exynos5_dmc_get_status,
950 .get_cur_freq = exynos5_dmc_get_cur_freq,
951 };
952
953 /**
954 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
955 * @dmc: device for which the frequency is going to be set
956 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
957 *
958 * The initial bootloader frequency, which is present during boot, might be
959 * different that supported frequency values in the driver. It is possible
960 * due to different PLL settings or used PLL as a source.
961 * This function provides the 'initial_freq' for the devfreq framework
962 * statistics engine which supports only registered values. Thus, some alignment
963 * must be made.
964 */
965 static unsigned long
966 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
967 unsigned long bootloader_init_freq)
968 {
969 unsigned long aligned_freq;
970 int idx;
971
972 idx = find_target_freq_idx(dmc, bootloader_init_freq);
973 if (idx >= 0)
974 aligned_freq = dmc->opp[idx].freq_hz;
975 else
976 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
977
978 return aligned_freq;
979 }
980
981 /**
982 * create_timings_aligned() - Create register values and align with standard
983 * @dmc: device for which the frequency is going to be set
984 * @idx: speed bin in the OPP table
985 * @clk_period_ps: the period of the clock, known as tCK
986 *
987 * The function calculates timings and creates a register value ready for
988 * a frequency transition. The register contains a few timings. They are
989 * shifted by a known offset. The timing value is calculated based on memory
990 * specyfication: minimal time required and minimal cycles required.
991 */
992 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
993 u32 *reg_timing_data, u32 *reg_timing_power,
994 u32 clk_period_ps)
995 {
996 u32 val;
997 const struct timing_reg *reg;
998
999 if (clk_period_ps == 0)
1000 return -EINVAL;
1001
1002 *reg_timing_row = 0;
1003 *reg_timing_data = 0;
1004 *reg_timing_power = 0;
1005
1006 val = dmc->timings->tRFC / clk_period_ps;
1007 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1008 val = max(val, dmc->min_tck->tRFC);
1009 reg = &timing_row[0];
1010 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1011
1012 val = dmc->timings->tRRD / clk_period_ps;
1013 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1014 val = max(val, dmc->min_tck->tRRD);
1015 reg = &timing_row[1];
1016 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1017
1018 val = dmc->timings->tRPab / clk_period_ps;
1019 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1020 val = max(val, dmc->min_tck->tRPab);
1021 reg = &timing_row[2];
1022 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024 val = dmc->timings->tRCD / clk_period_ps;
1025 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1026 val = max(val, dmc->min_tck->tRCD);
1027 reg = &timing_row[3];
1028 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030 val = dmc->timings->tRC / clk_period_ps;
1031 val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1032 val = max(val, dmc->min_tck->tRC);
1033 reg = &timing_row[4];
1034 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036 val = dmc->timings->tRAS / clk_period_ps;
1037 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1038 val = max(val, dmc->min_tck->tRAS);
1039 reg = &timing_row[5];
1040 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042 /* data related timings */
1043 val = dmc->timings->tWTR / clk_period_ps;
1044 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1045 val = max(val, dmc->min_tck->tWTR);
1046 reg = &timing_data[0];
1047 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1048
1049 val = dmc->timings->tWR / clk_period_ps;
1050 val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1051 val = max(val, dmc->min_tck->tWR);
1052 reg = &timing_data[1];
1053 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1054
1055 val = dmc->timings->tRTP / clk_period_ps;
1056 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1057 val = max(val, dmc->min_tck->tRTP);
1058 reg = &timing_data[2];
1059 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061 val = dmc->timings->tW2W_C2C / clk_period_ps;
1062 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1063 val = max(val, dmc->min_tck->tW2W_C2C);
1064 reg = &timing_data[3];
1065 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067 val = dmc->timings->tR2R_C2C / clk_period_ps;
1068 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1069 val = max(val, dmc->min_tck->tR2R_C2C);
1070 reg = &timing_data[4];
1071 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073 val = dmc->timings->tWL / clk_period_ps;
1074 val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1075 val = max(val, dmc->min_tck->tWL);
1076 reg = &timing_data[5];
1077 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079 val = dmc->timings->tDQSCK / clk_period_ps;
1080 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1081 val = max(val, dmc->min_tck->tDQSCK);
1082 reg = &timing_data[6];
1083 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085 val = dmc->timings->tRL / clk_period_ps;
1086 val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1087 val = max(val, dmc->min_tck->tRL);
1088 reg = &timing_data[7];
1089 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091 /* power related timings */
1092 val = dmc->timings->tFAW / clk_period_ps;
1093 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1094 val = max(val, dmc->min_tck->tFAW);
1095 reg = &timing_power[0];
1096 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1097
1098 val = dmc->timings->tXSR / clk_period_ps;
1099 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1100 val = max(val, dmc->min_tck->tXSR);
1101 reg = &timing_power[1];
1102 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1103
1104 val = dmc->timings->tXP / clk_period_ps;
1105 val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1106 val = max(val, dmc->min_tck->tXP);
1107 reg = &timing_power[2];
1108 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110 val = dmc->timings->tCKE / clk_period_ps;
1111 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1112 val = max(val, dmc->min_tck->tCKE);
1113 reg = &timing_power[3];
1114 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116 val = dmc->timings->tMRD / clk_period_ps;
1117 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1118 val = max(val, dmc->min_tck->tMRD);
1119 reg = &timing_power[4];
1120 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122 return 0;
1123 }
1124
1125 /**
1126 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1127 * @dmc: device for which the frequency is going to be set
1128 *
1129 * The function parses DT entries with DRAM information.
1130 */
1131 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1132 {
1133 int ret = 0;
1134 int idx;
1135 struct device_node *np_ddr;
1136 u32 freq_mhz, clk_period_ps;
1137
1138 np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1139 if (!np_ddr) {
1140 dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1141 return -EINVAL;
1142 }
1143
1144 dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1145 sizeof(u32), GFP_KERNEL);
1146 if (!dmc->timing_row)
1147 return -ENOMEM;
1148
1149 dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1150 sizeof(u32), GFP_KERNEL);
1151 if (!dmc->timing_data)
1152 return -ENOMEM;
1153
1154 dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1155 sizeof(u32), GFP_KERNEL);
1156 if (!dmc->timing_power)
1157 return -ENOMEM;
1158
1159 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1160 DDR_TYPE_LPDDR3,
1161 &dmc->timings_arr_size);
1162 if (!dmc->timings) {
1163 of_node_put(np_ddr);
1164 dev_warn(dmc->dev, "could not get timings from DT\n");
1165 return -EINVAL;
1166 }
1167
1168 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1169 if (!dmc->min_tck) {
1170 of_node_put(np_ddr);
1171 dev_warn(dmc->dev, "could not get tck from DT\n");
1172 return -EINVAL;
1173 }
1174
1175 /* Sorted array of OPPs with frequency ascending */
1176 for (idx = 0; idx < dmc->opp_count; idx++) {
1177 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1178 clk_period_ps = 1000000 / freq_mhz;
1179
1180 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1181 &dmc->timing_data[idx],
1182 &dmc->timing_power[idx],
1183 clk_period_ps);
1184 }
1185
1186 of_node_put(np_ddr);
1187
1188 /* Take the highest frequency's timings as 'bypass' */
1189 dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1190 dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1191 dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1198 * @dmc: DMC structure containing needed fields
1199 *
1200 * Get the needed clocks defined in DT device, enable and set the right parents.
1201 * Read current frequency and initialize the initial rate for governor.
1202 */
1203 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1204 {
1205 int ret;
1206 unsigned long target_volt = 0;
1207 unsigned long target_rate = 0;
1208 unsigned int tmp;
1209
1210 dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1211 if (IS_ERR(dmc->fout_spll))
1212 return PTR_ERR(dmc->fout_spll);
1213
1214 dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1215 if (IS_ERR(dmc->fout_bpll))
1216 return PTR_ERR(dmc->fout_bpll);
1217
1218 dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1219 if (IS_ERR(dmc->mout_mclk_cdrex))
1220 return PTR_ERR(dmc->mout_mclk_cdrex);
1221
1222 dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1223 if (IS_ERR(dmc->mout_bpll))
1224 return PTR_ERR(dmc->mout_bpll);
1225
1226 dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1227 "mout_mx_mspll_ccore");
1228 if (IS_ERR(dmc->mout_mx_mspll_ccore))
1229 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1230
1231 dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1232 if (IS_ERR(dmc->mout_spll)) {
1233 dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1234 if (IS_ERR(dmc->mout_spll))
1235 return PTR_ERR(dmc->mout_spll);
1236 }
1237
1238 /*
1239 * Convert frequency to KHz values and set it for the governor.
1240 */
1241 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1242 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1243 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1244
1245 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1246 &target_volt, 0);
1247 if (ret)
1248 return ret;
1249
1250 dmc->curr_volt = target_volt;
1251
1252 clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1253
1254 dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1255
1256 clk_prepare_enable(dmc->fout_bpll);
1257 clk_prepare_enable(dmc->mout_bpll);
1258
1259 /*
1260 * Some bootloaders do not set clock routes correctly.
1261 * Stop one path in clocks to PHY.
1262 */
1263 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1264 tmp &= ~(BIT(1) | BIT(0));
1265 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1266
1267 return 0;
1268 }
1269
1270 /**
1271 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1272 * @dmc: DMC for which it does the setup
1273 *
1274 * Initialization of performance counters in DMC for estimating usage.
1275 * The counter's values are used for calculation of a memory bandwidth and based
1276 * on that the governor changes the frequency.
1277 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1278 */
1279 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1280 {
1281 int counters_size;
1282 int ret, i;
1283
1284 dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1285 if (dmc->num_counters < 0) {
1286 dev_err(dmc->dev, "could not get devfreq-event counters\n");
1287 return dmc->num_counters;
1288 }
1289
1290 counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1291 dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1292 if (!dmc->counter)
1293 return -ENOMEM;
1294
1295 for (i = 0; i < dmc->num_counters; i++) {
1296 dmc->counter[i] =
1297 devfreq_event_get_edev_by_phandle(dmc->dev, i);
1298 if (IS_ERR_OR_NULL(dmc->counter[i]))
1299 return -EPROBE_DEFER;
1300 }
1301
1302 ret = exynos5_counters_enable_edev(dmc);
1303 if (ret < 0) {
1304 dev_err(dmc->dev, "could not enable event counter\n");
1305 return ret;
1306 }
1307
1308 ret = exynos5_counters_set_event(dmc);
1309 if (ret < 0) {
1310 exynos5_counters_disable_edev(dmc);
1311 dev_err(dmc->dev, "could not set event counter\n");
1312 return ret;
1313 }
1314
1315 return 0;
1316 }
1317
1318 /**
1319 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1320 * @dmc: device which is used for changing this feature
1321 * @set: a boolean state passing enable/disable request
1322 *
1323 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1324 * changes its configuration. In such situation access to the memory is blocked
1325 * in DMC automatically. This feature is used when clock frequency change
1326 * request appears and touches clock tree.
1327 */
1328 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1329 {
1330 unsigned int val;
1331 int ret;
1332
1333 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1334 if (ret)
1335 return ret;
1336
1337 val |= 1UL;
1338 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1339
1340 return 0;
1341 }
1342
1343 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1344 {
1345 int res;
1346 struct exynos5_dmc *dmc = priv;
1347
1348 mutex_lock(&dmc->df->lock);
1349 exynos5_dmc_perf_events_check(dmc);
1350 res = update_devfreq(dmc->df);
1351 mutex_unlock(&dmc->df->lock);
1352
1353 if (res)
1354 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1355
1356 return IRQ_HANDLED;
1357 }
1358
1359 /**
1360 * exynos5_dmc_probe() - Probe function for the DMC driver
1361 * @pdev: platform device for which the driver is going to be initialized
1362 *
1363 * Initialize basic components: clocks, regulators, performance counters, etc.
1364 * Read out product version and based on the information setup
1365 * internal structures for the controller (frequency and voltage) and for DRAM
1366 * memory parameters: timings for each operating frequency.
1367 * Register new devfreq device for controlling DVFS of the DMC.
1368 */
1369 static int exynos5_dmc_probe(struct platform_device *pdev)
1370 {
1371 int ret = 0;
1372 struct device *dev = &pdev->dev;
1373 struct device_node *np = dev->of_node;
1374 struct exynos5_dmc *dmc;
1375 int irq[2];
1376
1377 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1378 if (!dmc)
1379 return -ENOMEM;
1380
1381 mutex_init(&dmc->lock);
1382
1383 dmc->dev = dev;
1384 platform_set_drvdata(pdev, dmc);
1385
1386 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1387 if (IS_ERR(dmc->base_drexi0))
1388 return PTR_ERR(dmc->base_drexi0);
1389
1390 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1391 if (IS_ERR(dmc->base_drexi1))
1392 return PTR_ERR(dmc->base_drexi1);
1393
1394 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1395 "samsung,syscon-clk");
1396 if (IS_ERR(dmc->clk_regmap))
1397 return PTR_ERR(dmc->clk_regmap);
1398
1399 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1400 if (ret) {
1401 dev_warn(dev, "couldn't initialize frequency settings\n");
1402 return ret;
1403 }
1404
1405 dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1406 if (IS_ERR(dmc->vdd_mif)) {
1407 ret = PTR_ERR(dmc->vdd_mif);
1408 return ret;
1409 }
1410
1411 ret = exynos5_dmc_init_clks(dmc);
1412 if (ret)
1413 return ret;
1414
1415 ret = of_get_dram_timings(dmc);
1416 if (ret) {
1417 dev_warn(dev, "couldn't initialize timings settings\n");
1418 goto remove_clocks;
1419 }
1420
1421 ret = exynos5_dmc_set_pause_on_switching(dmc);
1422 if (ret) {
1423 dev_warn(dev, "couldn't get access to PAUSE register\n");
1424 goto remove_clocks;
1425 }
1426
1427 /* There is two modes in which the driver works: polling or IRQ */
1428 irq[0] = platform_get_irq_byname(pdev, "drex_0");
1429 irq[1] = platform_get_irq_byname(pdev, "drex_1");
1430 if (irq[0] > 0 && irq[1] > 0) {
1431 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1432 dmc_irq_thread, IRQF_ONESHOT,
1433 dev_name(dev), dmc);
1434 if (ret) {
1435 dev_err(dev, "couldn't grab IRQ\n");
1436 goto remove_clocks;
1437 }
1438
1439 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1440 dmc_irq_thread, IRQF_ONESHOT,
1441 dev_name(dev), dmc);
1442 if (ret) {
1443 dev_err(dev, "couldn't grab IRQ\n");
1444 goto remove_clocks;
1445 }
1446
1447 /*
1448 * Setup default thresholds for the devfreq governor.
1449 * The values are chosen based on experiments.
1450 */
1451 dmc->gov_data.upthreshold = 55;
1452 dmc->gov_data.downdifferential = 5;
1453
1454 exynos5_dmc_enable_perf_events(dmc);
1455
1456 dmc->in_irq_mode = 1;
1457 } else {
1458 ret = exynos5_performance_counters_init(dmc);
1459 if (ret) {
1460 dev_warn(dev, "couldn't probe performance counters\n");
1461 goto remove_clocks;
1462 }
1463
1464 /*
1465 * Setup default thresholds for the devfreq governor.
1466 * The values are chosen based on experiments.
1467 */
1468 dmc->gov_data.upthreshold = 30;
1469 dmc->gov_data.downdifferential = 5;
1470
1471 exynos5_dmc_df_profile.polling_ms = 500;
1472 }
1473
1474
1475 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1476 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1477 &dmc->gov_data);
1478
1479 if (IS_ERR(dmc->df)) {
1480 ret = PTR_ERR(dmc->df);
1481 goto err_devfreq_add;
1482 }
1483
1484 if (dmc->in_irq_mode)
1485 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1486
1487 dev_info(dev, "DMC initialized\n");
1488
1489 return 0;
1490
1491 err_devfreq_add:
1492 if (dmc->in_irq_mode)
1493 exynos5_dmc_disable_perf_events(dmc);
1494 else
1495 exynos5_counters_disable_edev(dmc);
1496 remove_clocks:
1497 clk_disable_unprepare(dmc->mout_bpll);
1498 clk_disable_unprepare(dmc->fout_bpll);
1499
1500 return ret;
1501 }
1502
1503 /**
1504 * exynos5_dmc_remove() - Remove function for the platform device
1505 * @pdev: platform device which is going to be removed
1506 *
1507 * The function relies on 'devm' framework function which automatically
1508 * clean the device's resources. It just calls explicitly disable function for
1509 * the performance counters.
1510 */
1511 static int exynos5_dmc_remove(struct platform_device *pdev)
1512 {
1513 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1514
1515 if (dmc->in_irq_mode)
1516 exynos5_dmc_disable_perf_events(dmc);
1517 else
1518 exynos5_counters_disable_edev(dmc);
1519
1520 clk_disable_unprepare(dmc->mout_bpll);
1521 clk_disable_unprepare(dmc->fout_bpll);
1522
1523 dev_pm_opp_remove_table(dmc->dev);
1524
1525 return 0;
1526 }
1527
1528 static const struct of_device_id exynos5_dmc_of_match[] = {
1529 { .compatible = "samsung,exynos5422-dmc", },
1530 { },
1531 };
1532 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1533
1534 static struct platform_driver exynos5_dmc_platdrv = {
1535 .probe = exynos5_dmc_probe,
1536 .remove = exynos5_dmc_remove,
1537 .driver = {
1538 .name = "exynos5-dmc",
1539 .of_match_table = exynos5_dmc_of_match,
1540 },
1541 };
1542 module_platform_driver(exynos5_dmc_platdrv);
1543 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1544 MODULE_LICENSE("GPL v2");
1545 MODULE_AUTHOR("Lukasz Luba");