]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mfd/db8500-prcmu.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS 0x0
147 #define MB2H_AUTO_PWR 0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC 0x0
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230 * Wakeups/IRQs
231 */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354 static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365 } mb0_transfer;
366
367 /*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374 static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384 } mb1_transfer;
385
386 /*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395 static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403 } mb2_transfer;
404
405 /*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411 static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422 static struct {
423 struct mutex lock;
424 struct completion work;
425 } mb4_transfer;
426
427 /*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433 static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457 };
458
459 enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518 };
519
520 struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542 };
543
544
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL 0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551 #define PRCMU_CLK_PLL_DIV_SHIFT 0
552 #define PRCMU_CLK_PLL_SW_SHIFT 5
553 #define PRCMU_CLK_38 (1 << 9)
554 #define PRCMU_CLK_38_SRC (1 << 10)
555 #define PRCMU_CLK_38_DIV (1 << 11)
556
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
568 #define PRCMU_ENABLE_PLLDSI 0x00000001
569 #define PRCMU_DISABLE_PLLDSI 0x00000000
570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575 #define PRCMU_DSI_RESET_SW 0x00000007
576
577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 int i;
582
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594 /* Start DSI PLL */
595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 /* Reset DSI PLL */
597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 for (i = 0; i < 10; i++) {
599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 return 0;
607 }
608
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 return 0;
616 }
617
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 unsigned long flags;
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 cpu_relax();
627
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632 /* Release the HW semaphore. */
633 writel(0, PRCM_SEM);
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638 }
639
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642 return readl(prcmu_base + reg);
643 }
644
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647 unsigned long flags;
648
649 spin_lock_irqsave(&prcmu_lock, flags);
650 writel(value, (prcmu_base + reg));
651 spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656 u32 val;
657 unsigned long flags;
658
659 spin_lock_irqsave(&prcmu_lock, flags);
660 val = readl(prcmu_base + reg);
661 val = ((val & ~mask) | (value & mask));
662 writel(val, (prcmu_base + reg));
663 spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668 return fw_info.valid ? &fw_info.version : NULL;
669 }
670
671 bool prcmu_has_arm_maxopp(void)
672 {
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676
677 /**
678 * prcmu_get_boot_status - PRCMU boot status checking
679 * Returns: the current PRCMU boot status
680 */
681 int prcmu_get_boot_status(void)
682 {
683 return readb(tcdm_base + PRCM_BOOT_STATUS);
684 }
685
686 /**
687 * prcmu_set_rc_a2p - This function is used to run few power state sequences
688 * @val: Value to be set, i.e. transition requested
689 * Returns: 0 on success, -EINVAL on invalid argument
690 *
691 * This function is used to run the following power state sequences -
692 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693 */
694 int prcmu_set_rc_a2p(enum romcode_write val)
695 {
696 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
697 return -EINVAL;
698 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
699 return 0;
700 }
701
702 /**
703 * prcmu_get_rc_p2a - This function is used to get power state sequences
704 * Returns: the power transition that has last happened
705 *
706 * This function can return the following transitions-
707 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708 */
709 enum romcode_read prcmu_get_rc_p2a(void)
710 {
711 return readb(tcdm_base + PRCM_ROMCODE_P2A);
712 }
713
714 /**
715 * prcmu_get_current_mode - Return the current XP70 power mode
716 * Returns: Returns the current AP(ARM) power mode: init,
717 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718 */
719 enum ap_pwrst prcmu_get_xp70_current_state(void)
720 {
721 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
722 }
723
724 /**
725 * prcmu_config_clkout - Configure one of the programmable clock outputs.
726 * @clkout: The CLKOUT number (0 or 1).
727 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
728 * @div: The divider to be applied.
729 *
730 * Configures one of the programmable clock outputs (CLKOUTs).
731 * @div should be in the range [1,63] to request a configuration, or 0 to
732 * inform that the configuration is no longer requested.
733 */
734 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735 {
736 static int requests[2];
737 int r = 0;
738 unsigned long flags;
739 u32 val;
740 u32 bits;
741 u32 mask;
742 u32 div_mask;
743
744 BUG_ON(clkout > 1);
745 BUG_ON(div > 63);
746 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747
748 if (!div && !requests[clkout])
749 return -EINVAL;
750
751 switch (clkout) {
752 case 0:
753 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
754 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
755 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
756 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
757 break;
758 case 1:
759 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
760 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
761 PRCM_CLKOCR_CLK1TYPE);
762 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
763 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
764 break;
765 }
766 bits &= mask;
767
768 spin_lock_irqsave(&clkout_lock, flags);
769
770 val = readl(PRCM_CLKOCR);
771 if (val & div_mask) {
772 if (div) {
773 if ((val & mask) != bits) {
774 r = -EBUSY;
775 goto unlock_and_return;
776 }
777 } else {
778 if ((val & mask & ~div_mask) != bits) {
779 r = -EINVAL;
780 goto unlock_and_return;
781 }
782 }
783 }
784 writel((bits | (val & ~mask)), PRCM_CLKOCR);
785 requests[clkout] += (div ? 1 : -1);
786
787 unlock_and_return:
788 spin_unlock_irqrestore(&clkout_lock, flags);
789
790 return r;
791 }
792
793 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
794 {
795 unsigned long flags;
796
797 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
798
799 spin_lock_irqsave(&mb0_transfer.lock, flags);
800
801 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
802 cpu_relax();
803
804 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
805 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
806 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
807 writeb((keep_ulp_clk ? 1 : 0),
808 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
809 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
810 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
811
812 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813
814 return 0;
815 }
816
817 u8 db8500_prcmu_get_power_state_result(void)
818 {
819 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
820 }
821
822 /* This function should only be called while mb0_transfer.lock is held. */
823 static void config_wakeups(void)
824 {
825 const u8 header[2] = {
826 MB0H_CONFIG_WAKEUPS_EXE,
827 MB0H_CONFIG_WAKEUPS_SLEEP
828 };
829 static u32 last_dbb_events;
830 static u32 last_abb_events;
831 u32 dbb_events;
832 u32 abb_events;
833 unsigned int i;
834
835 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
836 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
837
838 abb_events = mb0_transfer.req.abb_events;
839
840 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
841 return;
842
843 for (i = 0; i < 2; i++) {
844 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
845 cpu_relax();
846 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
847 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
848 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
849 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
850 }
851 last_dbb_events = dbb_events;
852 last_abb_events = abb_events;
853 }
854
855 void db8500_prcmu_enable_wakeups(u32 wakeups)
856 {
857 unsigned long flags;
858 u32 bits;
859 int i;
860
861 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
862
863 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
864 if (wakeups & BIT(i))
865 bits |= prcmu_wakeup_bit[i];
866 }
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.dbb_wakeups = bits;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875
876 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
877 {
878 unsigned long flags;
879
880 spin_lock_irqsave(&mb0_transfer.lock, flags);
881
882 mb0_transfer.req.abb_events = abb_events;
883 config_wakeups();
884
885 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
886 }
887
888 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
889 {
890 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
891 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
892 else
893 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
894 }
895
896 /**
897 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
898 * @opp: The new ARM operating point to which transition is to be made
899 * Returns: 0 on success, non-zero on failure
900 *
901 * This function sets the the operating point of the ARM.
902 */
903 int db8500_prcmu_set_arm_opp(u8 opp)
904 {
905 int r;
906
907 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
908 return -EINVAL;
909
910 r = 0;
911
912 mutex_lock(&mb1_transfer.lock);
913
914 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
915 cpu_relax();
916
917 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
918 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
919 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
920
921 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
922 wait_for_completion(&mb1_transfer.work);
923
924 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
925 (mb1_transfer.ack.arm_opp != opp))
926 r = -EIO;
927
928 mutex_unlock(&mb1_transfer.lock);
929
930 return r;
931 }
932
933 /**
934 * db8500_prcmu_get_arm_opp - get the current ARM OPP
935 *
936 * Returns: the current ARM OPP
937 */
938 int db8500_prcmu_get_arm_opp(void)
939 {
940 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
941 }
942
943 /**
944 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
945 *
946 * Returns: the current DDR OPP
947 */
948 int db8500_prcmu_get_ddr_opp(void)
949 {
950 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
951 }
952
953 /**
954 * db8500_set_ddr_opp - set the appropriate DDR OPP
955 * @opp: The new DDR operating point to which transition is to be made
956 * Returns: 0 on success, non-zero on failure
957 *
958 * This function sets the operating point of the DDR.
959 */
960 static bool enable_set_ddr_opp;
961 int db8500_prcmu_set_ddr_opp(u8 opp)
962 {
963 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
964 return -EINVAL;
965 /* Changing the DDR OPP can hang the hardware pre-v21 */
966 if (enable_set_ddr_opp)
967 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
968
969 return 0;
970 }
971
972 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
973 static void request_even_slower_clocks(bool enable)
974 {
975 u32 clock_reg[] = {
976 PRCM_ACLK_MGT,
977 PRCM_DMACLK_MGT
978 };
979 unsigned long flags;
980 unsigned int i;
981
982 spin_lock_irqsave(&clk_mgt_lock, flags);
983
984 /* Grab the HW semaphore. */
985 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
986 cpu_relax();
987
988 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
989 u32 val;
990 u32 div;
991
992 val = readl(prcmu_base + clock_reg[i]);
993 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
994 if (enable) {
995 if ((div <= 1) || (div > 15)) {
996 pr_err("prcmu: Bad clock divider %d in %s\n",
997 div, __func__);
998 goto unlock_and_return;
999 }
1000 div <<= 1;
1001 } else {
1002 if (div <= 2)
1003 goto unlock_and_return;
1004 div >>= 1;
1005 }
1006 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1007 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1008 writel(val, prcmu_base + clock_reg[i]);
1009 }
1010
1011 unlock_and_return:
1012 /* Release the HW semaphore. */
1013 writel(0, PRCM_SEM);
1014
1015 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1016 }
1017
1018 /**
1019 * db8500_set_ape_opp - set the appropriate APE OPP
1020 * @opp: The new APE operating point to which transition is to be made
1021 * Returns: 0 on success, non-zero on failure
1022 *
1023 * This function sets the operating point of the APE.
1024 */
1025 int db8500_prcmu_set_ape_opp(u8 opp)
1026 {
1027 int r = 0;
1028
1029 if (opp == mb1_transfer.ape_opp)
1030 return 0;
1031
1032 mutex_lock(&mb1_transfer.lock);
1033
1034 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1035 request_even_slower_clocks(false);
1036
1037 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1038 goto skip_message;
1039
1040 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1041 cpu_relax();
1042
1043 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1044 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1045 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1046 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1047
1048 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1049 wait_for_completion(&mb1_transfer.work);
1050
1051 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1052 (mb1_transfer.ack.ape_opp != opp))
1053 r = -EIO;
1054
1055 skip_message:
1056 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1057 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1058 request_even_slower_clocks(true);
1059 if (!r)
1060 mb1_transfer.ape_opp = opp;
1061
1062 mutex_unlock(&mb1_transfer.lock);
1063
1064 return r;
1065 }
1066
1067 /**
1068 * db8500_prcmu_get_ape_opp - get the current APE OPP
1069 *
1070 * Returns: the current APE OPP
1071 */
1072 int db8500_prcmu_get_ape_opp(void)
1073 {
1074 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1075 }
1076
1077 /**
1078 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1079 * @enable: true to request the higher voltage, false to drop a request.
1080 *
1081 * Calls to this function to enable and disable requests must be balanced.
1082 */
1083 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1084 {
1085 int r = 0;
1086 u8 header;
1087 static unsigned int requests;
1088
1089 mutex_lock(&mb1_transfer.lock);
1090
1091 if (enable) {
1092 if (0 != requests++)
1093 goto unlock_and_return;
1094 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1095 } else {
1096 if (requests == 0) {
1097 r = -EIO;
1098 goto unlock_and_return;
1099 } else if (1 != requests--) {
1100 goto unlock_and_return;
1101 }
1102 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1103 }
1104
1105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1106 cpu_relax();
1107
1108 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109
1110 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1111 wait_for_completion(&mb1_transfer.work);
1112
1113 if ((mb1_transfer.ack.header != header) ||
1114 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1115 r = -EIO;
1116
1117 unlock_and_return:
1118 mutex_unlock(&mb1_transfer.lock);
1119
1120 return r;
1121 }
1122
1123 /**
1124 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125 *
1126 * This function releases the power state requirements of a USB wakeup.
1127 */
1128 int prcmu_release_usb_wakeup_state(void)
1129 {
1130 int r = 0;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 cpu_relax();
1136
1137 writeb(MB1H_RELEASE_USB_WAKEUP,
1138 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1144 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1145 r = -EIO;
1146
1147 mutex_unlock(&mb1_transfer.lock);
1148
1149 return r;
1150 }
1151
1152 static int request_pll(u8 clock, bool enable)
1153 {
1154 int r = 0;
1155
1156 if (clock == PRCMU_PLLSOC0)
1157 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1158 else if (clock == PRCMU_PLLSOC1)
1159 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1160 else
1161 return -EINVAL;
1162
1163 mutex_lock(&mb1_transfer.lock);
1164
1165 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1166 cpu_relax();
1167
1168 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1169 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1170
1171 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1172 wait_for_completion(&mb1_transfer.work);
1173
1174 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1175 r = -EIO;
1176
1177 mutex_unlock(&mb1_transfer.lock);
1178
1179 return r;
1180 }
1181
1182 /**
1183 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1184 * @epod_id: The EPOD to set
1185 * @epod_state: The new EPOD state
1186 *
1187 * This function sets the state of a EPOD (power domain). It may not be called
1188 * from interrupt context.
1189 */
1190 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1191 {
1192 int r = 0;
1193 bool ram_retention = false;
1194 int i;
1195
1196 /* check argument */
1197 BUG_ON(epod_id >= NUM_EPOD_ID);
1198
1199 /* set flag if retention is possible */
1200 switch (epod_id) {
1201 case EPOD_ID_SVAMMDSP:
1202 case EPOD_ID_SIAMMDSP:
1203 case EPOD_ID_ESRAM12:
1204 case EPOD_ID_ESRAM34:
1205 ram_retention = true;
1206 break;
1207 }
1208
1209 /* check argument */
1210 BUG_ON(epod_state > EPOD_STATE_ON);
1211 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1212
1213 /* get lock */
1214 mutex_lock(&mb2_transfer.lock);
1215
1216 /* wait for mailbox */
1217 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1218 cpu_relax();
1219
1220 /* fill in mailbox */
1221 for (i = 0; i < NUM_EPOD_ID; i++)
1222 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1223 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1224
1225 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1226
1227 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1228
1229 /*
1230 * The current firmware version does not handle errors correctly,
1231 * and we cannot recover if there is an error.
1232 * This is expected to change when the firmware is updated.
1233 */
1234 if (!wait_for_completion_timeout(&mb2_transfer.work,
1235 msecs_to_jiffies(20000))) {
1236 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1237 __func__);
1238 r = -EIO;
1239 goto unlock_and_return;
1240 }
1241
1242 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1243 r = -EIO;
1244
1245 unlock_and_return:
1246 mutex_unlock(&mb2_transfer.lock);
1247 return r;
1248 }
1249
1250 /**
1251 * prcmu_configure_auto_pm - Configure autonomous power management.
1252 * @sleep: Configuration for ApSleep.
1253 * @idle: Configuration for ApIdle.
1254 */
1255 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1256 struct prcmu_auto_pm_config *idle)
1257 {
1258 u32 sleep_cfg;
1259 u32 idle_cfg;
1260 unsigned long flags;
1261
1262 BUG_ON((sleep == NULL) || (idle == NULL));
1263
1264 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1265 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1267 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1269 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1270
1271 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1272 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1273 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1274 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1275 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1276 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1277
1278 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1279
1280 /*
1281 * The autonomous power management configuration is done through
1282 * fields in mailbox 2, but these fields are only used as shared
1283 * variables - i.e. there is no need to send a message.
1284 */
1285 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1286 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1287
1288 mb2_transfer.auto_pm_enabled =
1289 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1292 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1293
1294 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1295 }
1296 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1297
1298 bool prcmu_is_auto_pm_enabled(void)
1299 {
1300 return mb2_transfer.auto_pm_enabled;
1301 }
1302
1303 static int request_sysclk(bool enable)
1304 {
1305 int r;
1306 unsigned long flags;
1307
1308 r = 0;
1309
1310 mutex_lock(&mb3_transfer.sysclk_lock);
1311
1312 spin_lock_irqsave(&mb3_transfer.lock, flags);
1313
1314 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1315 cpu_relax();
1316
1317 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1318
1319 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1320 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1321
1322 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1323
1324 /*
1325 * The firmware only sends an ACK if we want to enable the
1326 * SysClk, and it succeeds.
1327 */
1328 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1329 msecs_to_jiffies(20000))) {
1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331 __func__);
1332 r = -EIO;
1333 }
1334
1335 mutex_unlock(&mb3_transfer.sysclk_lock);
1336
1337 return r;
1338 }
1339
1340 static int request_timclk(bool enable)
1341 {
1342 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1343
1344 if (!enable)
1345 val |= PRCM_TCR_STOP_TIMERS;
1346 writel(val, PRCM_TCR);
1347
1348 return 0;
1349 }
1350
1351 static int request_clock(u8 clock, bool enable)
1352 {
1353 u32 val;
1354 unsigned long flags;
1355
1356 spin_lock_irqsave(&clk_mgt_lock, flags);
1357
1358 /* Grab the HW semaphore. */
1359 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1360 cpu_relax();
1361
1362 val = readl(prcmu_base + clk_mgt[clock].offset);
1363 if (enable) {
1364 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1365 } else {
1366 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1367 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1368 }
1369 writel(val, prcmu_base + clk_mgt[clock].offset);
1370
1371 /* Release the HW semaphore. */
1372 writel(0, PRCM_SEM);
1373
1374 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1375
1376 return 0;
1377 }
1378
1379 static int request_sga_clock(u8 clock, bool enable)
1380 {
1381 u32 val;
1382 int ret;
1383
1384 if (enable) {
1385 val = readl(PRCM_CGATING_BYPASS);
1386 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1387 }
1388
1389 ret = request_clock(clock, enable);
1390
1391 if (!ret && !enable) {
1392 val = readl(PRCM_CGATING_BYPASS);
1393 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1394 }
1395
1396 return ret;
1397 }
1398
1399 static inline bool plldsi_locked(void)
1400 {
1401 return (readl(PRCM_PLLDSI_LOCKP) &
1402 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1403 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1404 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1405 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1406 }
1407
1408 static int request_plldsi(bool enable)
1409 {
1410 int r = 0;
1411 u32 val;
1412
1413 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1414 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1415 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1416
1417 val = readl(PRCM_PLLDSI_ENABLE);
1418 if (enable)
1419 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1420 else
1421 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1422 writel(val, PRCM_PLLDSI_ENABLE);
1423
1424 if (enable) {
1425 unsigned int i;
1426 bool locked = plldsi_locked();
1427
1428 for (i = 10; !locked && (i > 0); --i) {
1429 udelay(100);
1430 locked = plldsi_locked();
1431 }
1432 if (locked) {
1433 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1434 PRCM_APE_RESETN_SET);
1435 } else {
1436 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1437 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1438 PRCM_MMIP_LS_CLAMP_SET);
1439 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1440 writel(val, PRCM_PLLDSI_ENABLE);
1441 r = -EAGAIN;
1442 }
1443 } else {
1444 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1445 }
1446 return r;
1447 }
1448
1449 static int request_dsiclk(u8 n, bool enable)
1450 {
1451 u32 val;
1452
1453 val = readl(PRCM_DSI_PLLOUT_SEL);
1454 val &= ~dsiclk[n].divsel_mask;
1455 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1456 dsiclk[n].divsel_shift);
1457 writel(val, PRCM_DSI_PLLOUT_SEL);
1458 return 0;
1459 }
1460
1461 static int request_dsiescclk(u8 n, bool enable)
1462 {
1463 u32 val;
1464
1465 val = readl(PRCM_DSITVCLK_DIV);
1466 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1467 writel(val, PRCM_DSITVCLK_DIV);
1468 return 0;
1469 }
1470
1471 /**
1472 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1473 * @clock: The clock for which the request is made.
1474 * @enable: Whether the clock should be enabled (true) or disabled (false).
1475 *
1476 * This function should only be used by the clock implementation.
1477 * Do not use it from any other place!
1478 */
1479 int db8500_prcmu_request_clock(u8 clock, bool enable)
1480 {
1481 if (clock == PRCMU_SGACLK)
1482 return request_sga_clock(clock, enable);
1483 else if (clock < PRCMU_NUM_REG_CLOCKS)
1484 return request_clock(clock, enable);
1485 else if (clock == PRCMU_TIMCLK)
1486 return request_timclk(enable);
1487 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1488 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1489 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1490 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1491 else if (clock == PRCMU_PLLDSI)
1492 return request_plldsi(enable);
1493 else if (clock == PRCMU_SYSCLK)
1494 return request_sysclk(enable);
1495 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1496 return request_pll(clock, enable);
1497 else
1498 return -EINVAL;
1499 }
1500
1501 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1502 int branch)
1503 {
1504 u64 rate;
1505 u32 val;
1506 u32 d;
1507 u32 div = 1;
1508
1509 val = readl(reg);
1510
1511 rate = src_rate;
1512 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1513
1514 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1515 if (d > 1)
1516 div *= d;
1517
1518 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1519 if (d > 1)
1520 div *= d;
1521
1522 if (val & PRCM_PLL_FREQ_SELDIV2)
1523 div *= 2;
1524
1525 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1526 (val & PRCM_PLL_FREQ_DIV2EN) &&
1527 ((reg == PRCM_PLLSOC0_FREQ) ||
1528 (reg == PRCM_PLLARM_FREQ) ||
1529 (reg == PRCM_PLLDDR_FREQ))))
1530 div *= 2;
1531
1532 (void)do_div(rate, div);
1533
1534 return (unsigned long)rate;
1535 }
1536
1537 #define ROOT_CLOCK_RATE 38400000
1538
1539 static unsigned long clock_rate(u8 clock)
1540 {
1541 u32 val;
1542 u32 pllsw;
1543 unsigned long rate = ROOT_CLOCK_RATE;
1544
1545 val = readl(prcmu_base + clk_mgt[clock].offset);
1546
1547 if (val & PRCM_CLK_MGT_CLK38) {
1548 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1549 rate /= 2;
1550 return rate;
1551 }
1552
1553 val |= clk_mgt[clock].pllsw;
1554 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1555
1556 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1557 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1558 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1559 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1560 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1561 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1562 else
1563 return 0;
1564
1565 if ((clock == PRCMU_SGACLK) &&
1566 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1567 u64 r = (rate * 10);
1568
1569 (void)do_div(r, 25);
1570 return (unsigned long)r;
1571 }
1572 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1573 if (val)
1574 return rate / val;
1575 else
1576 return 0;
1577 }
1578
1579 static unsigned long armss_rate(void)
1580 {
1581 u32 r;
1582 unsigned long rate;
1583
1584 r = readl(PRCM_ARM_CHGCLKREQ);
1585
1586 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1587 /* External ARMCLKFIX clock */
1588
1589 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1590
1591 /* Check PRCM_ARM_CHGCLKREQ divider */
1592 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1593 rate /= 2;
1594
1595 /* Check PRCM_ARMCLKFIX_MGT divider */
1596 r = readl(PRCM_ARMCLKFIX_MGT);
1597 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1598 rate /= r;
1599
1600 } else {/* ARM PLL */
1601 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1602 }
1603
1604 return rate;
1605 }
1606
1607 static unsigned long dsiclk_rate(u8 n)
1608 {
1609 u32 divsel;
1610 u32 div = 1;
1611
1612 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1613 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1614
1615 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1616 divsel = dsiclk[n].divsel;
1617 else
1618 dsiclk[n].divsel = divsel;
1619
1620 switch (divsel) {
1621 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1622 div *= 2;
1623 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1624 div *= 2;
1625 case PRCM_DSI_PLLOUT_SEL_PHI:
1626 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1627 PLL_RAW) / div;
1628 default:
1629 return 0;
1630 }
1631 }
1632
1633 static unsigned long dsiescclk_rate(u8 n)
1634 {
1635 u32 div;
1636
1637 div = readl(PRCM_DSITVCLK_DIV);
1638 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1639 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1640 }
1641
1642 unsigned long prcmu_clock_rate(u8 clock)
1643 {
1644 if (clock < PRCMU_NUM_REG_CLOCKS)
1645 return clock_rate(clock);
1646 else if (clock == PRCMU_TIMCLK)
1647 return ROOT_CLOCK_RATE / 16;
1648 else if (clock == PRCMU_SYSCLK)
1649 return ROOT_CLOCK_RATE;
1650 else if (clock == PRCMU_PLLSOC0)
1651 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1652 else if (clock == PRCMU_PLLSOC1)
1653 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1654 else if (clock == PRCMU_ARMSS)
1655 return armss_rate();
1656 else if (clock == PRCMU_PLLDDR)
1657 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1658 else if (clock == PRCMU_PLLDSI)
1659 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1660 PLL_RAW);
1661 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1662 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1663 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1664 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1665 else
1666 return 0;
1667 }
1668
1669 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1670 {
1671 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1672 return ROOT_CLOCK_RATE;
1673 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1674 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1675 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1676 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1677 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1678 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1679 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1680 else
1681 return 0;
1682 }
1683
1684 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1685 {
1686 u32 div;
1687
1688 div = (src_rate / rate);
1689 if (div == 0)
1690 return 1;
1691 if (rate < (src_rate / div))
1692 div++;
1693 return div;
1694 }
1695
1696 static long round_clock_rate(u8 clock, unsigned long rate)
1697 {
1698 u32 val;
1699 u32 div;
1700 unsigned long src_rate;
1701 long rounded_rate;
1702
1703 val = readl(prcmu_base + clk_mgt[clock].offset);
1704 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1705 clk_mgt[clock].branch);
1706 div = clock_divider(src_rate, rate);
1707 if (val & PRCM_CLK_MGT_CLK38) {
1708 if (clk_mgt[clock].clk38div) {
1709 if (div > 2)
1710 div = 2;
1711 } else {
1712 div = 1;
1713 }
1714 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1715 u64 r = (src_rate * 10);
1716
1717 (void)do_div(r, 25);
1718 if (r <= rate)
1719 return (unsigned long)r;
1720 }
1721 rounded_rate = (src_rate / min(div, (u32)31));
1722
1723 return rounded_rate;
1724 }
1725
1726 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1727 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1728 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1729 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1730 { .frequency = 800000, .driver_data = ARM_100_OPP,},
1731 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1732 { .frequency = CPUFREQ_TABLE_END,},
1733 };
1734
1735 static long round_armss_rate(unsigned long rate)
1736 {
1737 long freq = 0;
1738 int i = 0;
1739
1740 /* cpufreq table frequencies is in KHz. */
1741 rate = rate / 1000;
1742
1743 /* Find the corresponding arm opp from the cpufreq table. */
1744 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1745 freq = db8500_cpufreq_table[i].frequency;
1746 if (freq == rate)
1747 break;
1748 i++;
1749 }
1750
1751 /* Return the last valid value, even if a match was not found. */
1752 return freq * 1000;
1753 }
1754
1755 #define MIN_PLL_VCO_RATE 600000000ULL
1756 #define MAX_PLL_VCO_RATE 1680640000ULL
1757
1758 static long round_plldsi_rate(unsigned long rate)
1759 {
1760 long rounded_rate = 0;
1761 unsigned long src_rate;
1762 unsigned long rem;
1763 u32 r;
1764
1765 src_rate = clock_rate(PRCMU_HDMICLK);
1766 rem = rate;
1767
1768 for (r = 7; (rem > 0) && (r > 0); r--) {
1769 u64 d;
1770
1771 d = (r * rate);
1772 (void)do_div(d, src_rate);
1773 if (d < 6)
1774 d = 6;
1775 else if (d > 255)
1776 d = 255;
1777 d *= src_rate;
1778 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1779 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1780 continue;
1781 (void)do_div(d, r);
1782 if (rate < d) {
1783 if (rounded_rate == 0)
1784 rounded_rate = (long)d;
1785 break;
1786 }
1787 if ((rate - d) < rem) {
1788 rem = (rate - d);
1789 rounded_rate = (long)d;
1790 }
1791 }
1792 return rounded_rate;
1793 }
1794
1795 static long round_dsiclk_rate(unsigned long rate)
1796 {
1797 u32 div;
1798 unsigned long src_rate;
1799 long rounded_rate;
1800
1801 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1802 PLL_RAW);
1803 div = clock_divider(src_rate, rate);
1804 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1805
1806 return rounded_rate;
1807 }
1808
1809 static long round_dsiescclk_rate(unsigned long rate)
1810 {
1811 u32 div;
1812 unsigned long src_rate;
1813 long rounded_rate;
1814
1815 src_rate = clock_rate(PRCMU_TVCLK);
1816 div = clock_divider(src_rate, rate);
1817 rounded_rate = (src_rate / min(div, (u32)255));
1818
1819 return rounded_rate;
1820 }
1821
1822 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1823 {
1824 if (clock < PRCMU_NUM_REG_CLOCKS)
1825 return round_clock_rate(clock, rate);
1826 else if (clock == PRCMU_ARMSS)
1827 return round_armss_rate(rate);
1828 else if (clock == PRCMU_PLLDSI)
1829 return round_plldsi_rate(rate);
1830 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1831 return round_dsiclk_rate(rate);
1832 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1833 return round_dsiescclk_rate(rate);
1834 else
1835 return (long)prcmu_clock_rate(clock);
1836 }
1837
1838 static void set_clock_rate(u8 clock, unsigned long rate)
1839 {
1840 u32 val;
1841 u32 div;
1842 unsigned long src_rate;
1843 unsigned long flags;
1844
1845 spin_lock_irqsave(&clk_mgt_lock, flags);
1846
1847 /* Grab the HW semaphore. */
1848 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1849 cpu_relax();
1850
1851 val = readl(prcmu_base + clk_mgt[clock].offset);
1852 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1853 clk_mgt[clock].branch);
1854 div = clock_divider(src_rate, rate);
1855 if (val & PRCM_CLK_MGT_CLK38) {
1856 if (clk_mgt[clock].clk38div) {
1857 if (div > 1)
1858 val |= PRCM_CLK_MGT_CLK38DIV;
1859 else
1860 val &= ~PRCM_CLK_MGT_CLK38DIV;
1861 }
1862 } else if (clock == PRCMU_SGACLK) {
1863 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1864 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1865 if (div == 3) {
1866 u64 r = (src_rate * 10);
1867
1868 (void)do_div(r, 25);
1869 if (r <= rate) {
1870 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1871 div = 0;
1872 }
1873 }
1874 val |= min(div, (u32)31);
1875 } else {
1876 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1877 val |= min(div, (u32)31);
1878 }
1879 writel(val, prcmu_base + clk_mgt[clock].offset);
1880
1881 /* Release the HW semaphore. */
1882 writel(0, PRCM_SEM);
1883
1884 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1885 }
1886
1887 static int set_armss_rate(unsigned long rate)
1888 {
1889 int i = 0;
1890
1891 /* cpufreq table frequencies is in KHz. */
1892 rate = rate / 1000;
1893
1894 /* Find the corresponding arm opp from the cpufreq table. */
1895 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1896 if (db8500_cpufreq_table[i].frequency == rate)
1897 break;
1898 i++;
1899 }
1900
1901 if (db8500_cpufreq_table[i].frequency != rate)
1902 return -EINVAL;
1903
1904 /* Set the new arm opp. */
1905 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1906 }
1907
1908 static int set_plldsi_rate(unsigned long rate)
1909 {
1910 unsigned long src_rate;
1911 unsigned long rem;
1912 u32 pll_freq = 0;
1913 u32 r;
1914
1915 src_rate = clock_rate(PRCMU_HDMICLK);
1916 rem = rate;
1917
1918 for (r = 7; (rem > 0) && (r > 0); r--) {
1919 u64 d;
1920 u64 hwrate;
1921
1922 d = (r * rate);
1923 (void)do_div(d, src_rate);
1924 if (d < 6)
1925 d = 6;
1926 else if (d > 255)
1927 d = 255;
1928 hwrate = (d * src_rate);
1929 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1930 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1931 continue;
1932 (void)do_div(hwrate, r);
1933 if (rate < hwrate) {
1934 if (pll_freq == 0)
1935 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1936 (r << PRCM_PLL_FREQ_R_SHIFT));
1937 break;
1938 }
1939 if ((rate - hwrate) < rem) {
1940 rem = (rate - hwrate);
1941 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1942 (r << PRCM_PLL_FREQ_R_SHIFT));
1943 }
1944 }
1945 if (pll_freq == 0)
1946 return -EINVAL;
1947
1948 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1949 writel(pll_freq, PRCM_PLLDSI_FREQ);
1950
1951 return 0;
1952 }
1953
1954 static void set_dsiclk_rate(u8 n, unsigned long rate)
1955 {
1956 u32 val;
1957 u32 div;
1958
1959 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1960 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1961
1962 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1963 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1964 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1965
1966 val = readl(PRCM_DSI_PLLOUT_SEL);
1967 val &= ~dsiclk[n].divsel_mask;
1968 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1969 writel(val, PRCM_DSI_PLLOUT_SEL);
1970 }
1971
1972 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1973 {
1974 u32 val;
1975 u32 div;
1976
1977 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1978 val = readl(PRCM_DSITVCLK_DIV);
1979 val &= ~dsiescclk[n].div_mask;
1980 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1981 writel(val, PRCM_DSITVCLK_DIV);
1982 }
1983
1984 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1985 {
1986 if (clock < PRCMU_NUM_REG_CLOCKS)
1987 set_clock_rate(clock, rate);
1988 else if (clock == PRCMU_ARMSS)
1989 return set_armss_rate(rate);
1990 else if (clock == PRCMU_PLLDSI)
1991 return set_plldsi_rate(rate);
1992 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1993 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1994 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1995 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1996 return 0;
1997 }
1998
1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 {
2001 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2002 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2003 return -EINVAL;
2004
2005 mutex_lock(&mb4_transfer.lock);
2006
2007 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2008 cpu_relax();
2009
2010 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2011 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2012 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2013 writeb(DDR_PWR_STATE_ON,
2014 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2015 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016
2017 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2018 wait_for_completion(&mb4_transfer.work);
2019
2020 mutex_unlock(&mb4_transfer.lock);
2021
2022 return 0;
2023 }
2024
2025 int db8500_prcmu_config_hotdog(u8 threshold)
2026 {
2027 mutex_lock(&mb4_transfer.lock);
2028
2029 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2030 cpu_relax();
2031
2032 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2033 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034
2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 wait_for_completion(&mb4_transfer.work);
2037
2038 mutex_unlock(&mb4_transfer.lock);
2039
2040 return 0;
2041 }
2042
2043 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 {
2045 mutex_lock(&mb4_transfer.lock);
2046
2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 cpu_relax();
2049
2050 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2051 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2052 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2053 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2054 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055
2056 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2057 wait_for_completion(&mb4_transfer.work);
2058
2059 mutex_unlock(&mb4_transfer.lock);
2060
2061 return 0;
2062 }
2063
2064 static int config_hot_period(u16 val)
2065 {
2066 mutex_lock(&mb4_transfer.lock);
2067
2068 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069 cpu_relax();
2070
2071 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2072 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073
2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 wait_for_completion(&mb4_transfer.work);
2076
2077 mutex_unlock(&mb4_transfer.lock);
2078
2079 return 0;
2080 }
2081
2082 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 {
2084 if (cycles32k == 0xFFFF)
2085 return -EINVAL;
2086
2087 return config_hot_period(cycles32k);
2088 }
2089
2090 int db8500_prcmu_stop_temp_sense(void)
2091 {
2092 return config_hot_period(0xFFFF);
2093 }
2094
2095 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2096 {
2097
2098 mutex_lock(&mb4_transfer.lock);
2099
2100 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2101 cpu_relax();
2102
2103 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2104 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2105 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2106 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107
2108 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109
2110 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2111 wait_for_completion(&mb4_transfer.work);
2112
2113 mutex_unlock(&mb4_transfer.lock);
2114
2115 return 0;
2116
2117 }
2118
2119 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 {
2121 BUG_ON(num == 0 || num > 0xf);
2122 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2123 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2124 A9WDOG_AUTO_OFF_DIS);
2125 }
2126 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2127
2128 int db8500_prcmu_enable_a9wdog(u8 id)
2129 {
2130 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2131 }
2132 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2133
2134 int db8500_prcmu_disable_a9wdog(u8 id)
2135 {
2136 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2137 }
2138 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2139
2140 int db8500_prcmu_kick_a9wdog(u8 id)
2141 {
2142 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2143 }
2144 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2145
2146 /*
2147 * timeout is 28 bit, in ms.
2148 */
2149 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2150 {
2151 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2152 (id & A9WDOG_ID_MASK) |
2153 /*
2154 * Put the lowest 28 bits of timeout at
2155 * offset 4. Four first bits are used for id.
2156 */
2157 (u8)((timeout << 4) & 0xf0),
2158 (u8)((timeout >> 4) & 0xff),
2159 (u8)((timeout >> 12) & 0xff),
2160 (u8)((timeout >> 20) & 0xff));
2161 }
2162 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2163
2164 /**
2165 * prcmu_abb_read() - Read register value(s) from the ABB.
2166 * @slave: The I2C slave address.
2167 * @reg: The (start) register address.
2168 * @value: The read out value(s).
2169 * @size: The number of registers to read.
2170 *
2171 * Reads register value(s) from the ABB.
2172 * @size has to be 1 for the current firmware version.
2173 */
2174 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2175 {
2176 int r;
2177
2178 if (size != 1)
2179 return -EINVAL;
2180
2181 mutex_lock(&mb5_transfer.lock);
2182
2183 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2184 cpu_relax();
2185
2186 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2187 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2188 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2189 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2190 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2191
2192 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2193
2194 if (!wait_for_completion_timeout(&mb5_transfer.work,
2195 msecs_to_jiffies(20000))) {
2196 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2197 __func__);
2198 r = -EIO;
2199 } else {
2200 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2201 }
2202
2203 if (!r)
2204 *value = mb5_transfer.ack.value;
2205
2206 mutex_unlock(&mb5_transfer.lock);
2207
2208 return r;
2209 }
2210
2211 /**
2212 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2213 * @slave: The I2C slave address.
2214 * @reg: The (start) register address.
2215 * @value: The value(s) to write.
2216 * @mask: The mask(s) to use.
2217 * @size: The number of registers to write.
2218 *
2219 * Writes masked register value(s) to the ABB.
2220 * For each @value, only the bits set to 1 in the corresponding @mask
2221 * will be written. The other bits are not changed.
2222 * @size has to be 1 for the current firmware version.
2223 */
2224 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2225 {
2226 int r;
2227
2228 if (size != 1)
2229 return -EINVAL;
2230
2231 mutex_lock(&mb5_transfer.lock);
2232
2233 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2234 cpu_relax();
2235
2236 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2237 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2238 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2239 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2240 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2241
2242 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2243
2244 if (!wait_for_completion_timeout(&mb5_transfer.work,
2245 msecs_to_jiffies(20000))) {
2246 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2247 __func__);
2248 r = -EIO;
2249 } else {
2250 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2251 }
2252
2253 mutex_unlock(&mb5_transfer.lock);
2254
2255 return r;
2256 }
2257
2258 /**
2259 * prcmu_abb_write() - Write register value(s) to the ABB.
2260 * @slave: The I2C slave address.
2261 * @reg: The (start) register address.
2262 * @value: The value(s) to write.
2263 * @size: The number of registers to write.
2264 *
2265 * Writes register value(s) to the ABB.
2266 * @size has to be 1 for the current firmware version.
2267 */
2268 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2269 {
2270 u8 mask = ~0;
2271
2272 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2273 }
2274
2275 /**
2276 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2277 */
2278 int prcmu_ac_wake_req(void)
2279 {
2280 u32 val;
2281 int ret = 0;
2282
2283 mutex_lock(&mb0_transfer.ac_wake_lock);
2284
2285 val = readl(PRCM_HOSTACCESS_REQ);
2286 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2287 goto unlock_and_return;
2288
2289 atomic_set(&ac_wake_req_state, 1);
2290
2291 /*
2292 * Force Modem Wake-up before hostaccess_req ping-pong.
2293 * It prevents Modem to enter in Sleep while acking the hostaccess
2294 * request. The 31us delay has been calculated by HWI.
2295 */
2296 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2297 writel(val, PRCM_HOSTACCESS_REQ);
2298
2299 udelay(31);
2300
2301 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2302 writel(val, PRCM_HOSTACCESS_REQ);
2303
2304 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2305 msecs_to_jiffies(5000))) {
2306 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2307 db8500_prcmu_debug_dump(__func__, true, true);
2308 #endif
2309 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2310 __func__);
2311 ret = -EFAULT;
2312 }
2313
2314 unlock_and_return:
2315 mutex_unlock(&mb0_transfer.ac_wake_lock);
2316 return ret;
2317 }
2318
2319 /**
2320 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2321 */
2322 void prcmu_ac_sleep_req(void)
2323 {
2324 u32 val;
2325
2326 mutex_lock(&mb0_transfer.ac_wake_lock);
2327
2328 val = readl(PRCM_HOSTACCESS_REQ);
2329 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2330 goto unlock_and_return;
2331
2332 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2333 PRCM_HOSTACCESS_REQ);
2334
2335 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2336 msecs_to_jiffies(5000))) {
2337 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2338 __func__);
2339 }
2340
2341 atomic_set(&ac_wake_req_state, 0);
2342
2343 unlock_and_return:
2344 mutex_unlock(&mb0_transfer.ac_wake_lock);
2345 }
2346
2347 bool db8500_prcmu_is_ac_wake_requested(void)
2348 {
2349 return (atomic_read(&ac_wake_req_state) != 0);
2350 }
2351
2352 /**
2353 * db8500_prcmu_system_reset - System reset
2354 *
2355 * Saves the reset reason code and then sets the APE_SOFTRST register which
2356 * fires interrupt to fw
2357 */
2358 void db8500_prcmu_system_reset(u16 reset_code)
2359 {
2360 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2361 writel(1, PRCM_APE_SOFTRST);
2362 }
2363
2364 /**
2365 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2366 *
2367 * Retrieves the reset reason code stored by prcmu_system_reset() before
2368 * last restart.
2369 */
2370 u16 db8500_prcmu_get_reset_code(void)
2371 {
2372 return readw(tcdm_base + PRCM_SW_RST_REASON);
2373 }
2374
2375 /**
2376 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2377 */
2378 void db8500_prcmu_modem_reset(void)
2379 {
2380 mutex_lock(&mb1_transfer.lock);
2381
2382 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2383 cpu_relax();
2384
2385 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2386 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2387 wait_for_completion(&mb1_transfer.work);
2388
2389 /*
2390 * No need to check return from PRCMU as modem should go in reset state
2391 * This state is already managed by upper layer
2392 */
2393
2394 mutex_unlock(&mb1_transfer.lock);
2395 }
2396
2397 static void ack_dbb_wakeup(void)
2398 {
2399 unsigned long flags;
2400
2401 spin_lock_irqsave(&mb0_transfer.lock, flags);
2402
2403 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2404 cpu_relax();
2405
2406 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2407 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2408
2409 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2410 }
2411
2412 static inline void print_unknown_header_warning(u8 n, u8 header)
2413 {
2414 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2415 header, n);
2416 }
2417
2418 static bool read_mailbox_0(void)
2419 {
2420 bool r;
2421 u32 ev;
2422 unsigned int n;
2423 u8 header;
2424
2425 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2426 switch (header) {
2427 case MB0H_WAKEUP_EXE:
2428 case MB0H_WAKEUP_SLEEP:
2429 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2430 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2431 else
2432 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2433
2434 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2435 complete(&mb0_transfer.ac_wake_work);
2436 if (ev & WAKEUP_BIT_SYSCLK_OK)
2437 complete(&mb3_transfer.sysclk_work);
2438
2439 ev &= mb0_transfer.req.dbb_irqs;
2440
2441 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2442 if (ev & prcmu_irq_bit[n])
2443 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2444 }
2445 r = true;
2446 break;
2447 default:
2448 print_unknown_header_warning(0, header);
2449 r = false;
2450 break;
2451 }
2452 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2453 return r;
2454 }
2455
2456 static bool read_mailbox_1(void)
2457 {
2458 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2459 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2460 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2461 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2462 PRCM_ACK_MB1_CURRENT_APE_OPP);
2463 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2464 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2465 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2466 complete(&mb1_transfer.work);
2467 return false;
2468 }
2469
2470 static bool read_mailbox_2(void)
2471 {
2472 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2473 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2474 complete(&mb2_transfer.work);
2475 return false;
2476 }
2477
2478 static bool read_mailbox_3(void)
2479 {
2480 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2481 return false;
2482 }
2483
2484 static bool read_mailbox_4(void)
2485 {
2486 u8 header;
2487 bool do_complete = true;
2488
2489 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2490 switch (header) {
2491 case MB4H_MEM_ST:
2492 case MB4H_HOTDOG:
2493 case MB4H_HOTMON:
2494 case MB4H_HOT_PERIOD:
2495 case MB4H_A9WDOG_CONF:
2496 case MB4H_A9WDOG_EN:
2497 case MB4H_A9WDOG_DIS:
2498 case MB4H_A9WDOG_LOAD:
2499 case MB4H_A9WDOG_KICK:
2500 break;
2501 default:
2502 print_unknown_header_warning(4, header);
2503 do_complete = false;
2504 break;
2505 }
2506
2507 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2508
2509 if (do_complete)
2510 complete(&mb4_transfer.work);
2511
2512 return false;
2513 }
2514
2515 static bool read_mailbox_5(void)
2516 {
2517 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2518 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2519 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2520 complete(&mb5_transfer.work);
2521 return false;
2522 }
2523
2524 static bool read_mailbox_6(void)
2525 {
2526 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2527 return false;
2528 }
2529
2530 static bool read_mailbox_7(void)
2531 {
2532 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2533 return false;
2534 }
2535
2536 static bool (* const read_mailbox[NUM_MB])(void) = {
2537 read_mailbox_0,
2538 read_mailbox_1,
2539 read_mailbox_2,
2540 read_mailbox_3,
2541 read_mailbox_4,
2542 read_mailbox_5,
2543 read_mailbox_6,
2544 read_mailbox_7
2545 };
2546
2547 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2548 {
2549 u32 bits;
2550 u8 n;
2551 irqreturn_t r;
2552
2553 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2554 if (unlikely(!bits))
2555 return IRQ_NONE;
2556
2557 r = IRQ_HANDLED;
2558 for (n = 0; bits; n++) {
2559 if (bits & MBOX_BIT(n)) {
2560 bits -= MBOX_BIT(n);
2561 if (read_mailbox[n]())
2562 r = IRQ_WAKE_THREAD;
2563 }
2564 }
2565 return r;
2566 }
2567
2568 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2569 {
2570 ack_dbb_wakeup();
2571 return IRQ_HANDLED;
2572 }
2573
2574 static void prcmu_mask_work(struct work_struct *work)
2575 {
2576 unsigned long flags;
2577
2578 spin_lock_irqsave(&mb0_transfer.lock, flags);
2579
2580 config_wakeups();
2581
2582 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2583 }
2584
2585 static void prcmu_irq_mask(struct irq_data *d)
2586 {
2587 unsigned long flags;
2588
2589 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2590
2591 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2592
2593 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2594
2595 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2596 schedule_work(&mb0_transfer.mask_work);
2597 }
2598
2599 static void prcmu_irq_unmask(struct irq_data *d)
2600 {
2601 unsigned long flags;
2602
2603 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2604
2605 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2606
2607 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2608
2609 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2610 schedule_work(&mb0_transfer.mask_work);
2611 }
2612
2613 static void noop(struct irq_data *d)
2614 {
2615 }
2616
2617 static struct irq_chip prcmu_irq_chip = {
2618 .name = "prcmu",
2619 .irq_disable = prcmu_irq_mask,
2620 .irq_ack = noop,
2621 .irq_mask = prcmu_irq_mask,
2622 .irq_unmask = prcmu_irq_unmask,
2623 };
2624
2625 static __init char *fw_project_name(u32 project)
2626 {
2627 switch (project) {
2628 case PRCMU_FW_PROJECT_U8500:
2629 return "U8500";
2630 case PRCMU_FW_PROJECT_U8400:
2631 return "U8400";
2632 case PRCMU_FW_PROJECT_U9500:
2633 return "U9500";
2634 case PRCMU_FW_PROJECT_U8500_MBB:
2635 return "U8500 MBB";
2636 case PRCMU_FW_PROJECT_U8500_C1:
2637 return "U8500 C1";
2638 case PRCMU_FW_PROJECT_U8500_C2:
2639 return "U8500 C2";
2640 case PRCMU_FW_PROJECT_U8500_C3:
2641 return "U8500 C3";
2642 case PRCMU_FW_PROJECT_U8500_C4:
2643 return "U8500 C4";
2644 case PRCMU_FW_PROJECT_U9500_MBL:
2645 return "U9500 MBL";
2646 case PRCMU_FW_PROJECT_U8500_MBL:
2647 return "U8500 MBL";
2648 case PRCMU_FW_PROJECT_U8500_MBL2:
2649 return "U8500 MBL2";
2650 case PRCMU_FW_PROJECT_U8520:
2651 return "U8520 MBL";
2652 case PRCMU_FW_PROJECT_U8420:
2653 return "U8420";
2654 case PRCMU_FW_PROJECT_U9540:
2655 return "U9540";
2656 case PRCMU_FW_PROJECT_A9420:
2657 return "A9420";
2658 case PRCMU_FW_PROJECT_L8540:
2659 return "L8540";
2660 case PRCMU_FW_PROJECT_L8580:
2661 return "L8580";
2662 default:
2663 return "Unknown";
2664 }
2665 }
2666
2667 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2668 irq_hw_number_t hwirq)
2669 {
2670 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2671 handle_simple_irq);
2672 set_irq_flags(virq, IRQF_VALID);
2673
2674 return 0;
2675 }
2676
2677 static struct irq_domain_ops db8500_irq_ops = {
2678 .map = db8500_irq_map,
2679 .xlate = irq_domain_xlate_twocell,
2680 };
2681
2682 static int db8500_irq_init(struct device_node *np)
2683 {
2684 int i;
2685
2686 db8500_irq_domain = irq_domain_add_simple(
2687 np, NUM_PRCMU_WAKEUPS, 0,
2688 &db8500_irq_ops, NULL);
2689
2690 if (!db8500_irq_domain) {
2691 pr_err("Failed to create irqdomain\n");
2692 return -ENOSYS;
2693 }
2694
2695 /* All wakeups will be used, so create mappings for all */
2696 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2697 irq_create_mapping(db8500_irq_domain, i);
2698
2699 return 0;
2700 }
2701
2702 static void dbx500_fw_version_init(struct platform_device *pdev,
2703 u32 version_offset)
2704 {
2705 struct resource *res;
2706 void __iomem *tcpm_base;
2707 u32 version;
2708
2709 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2710 "prcmu-tcpm");
2711 if (!res) {
2712 dev_err(&pdev->dev,
2713 "Error: no prcmu tcpm memory region provided\n");
2714 return;
2715 }
2716 tcpm_base = ioremap(res->start, resource_size(res));
2717 if (!tcpm_base) {
2718 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2719 return;
2720 }
2721
2722 version = readl(tcpm_base + version_offset);
2723 fw_info.version.project = (version & 0xFF);
2724 fw_info.version.api_version = (version >> 8) & 0xFF;
2725 fw_info.version.func_version = (version >> 16) & 0xFF;
2726 fw_info.version.errata = (version >> 24) & 0xFF;
2727 strncpy(fw_info.version.project_name,
2728 fw_project_name(fw_info.version.project),
2729 PRCMU_FW_PROJECT_NAME_LEN);
2730 fw_info.valid = true;
2731 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2732 fw_info.version.project_name,
2733 fw_info.version.project,
2734 fw_info.version.api_version,
2735 fw_info.version.func_version,
2736 fw_info.version.errata);
2737 iounmap(tcpm_base);
2738 }
2739
2740 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2741 {
2742 /*
2743 * This is a temporary remap to bring up the clocks. It is
2744 * subsequently replaces with a real remap. After the merge of
2745 * the mailbox subsystem all of this early code goes away, and the
2746 * clock driver can probe independently. An early initcall will
2747 * still be needed, but it can be diverted into drivers/clk/ux500.
2748 */
2749 prcmu_base = ioremap(phy_base, size);
2750 if (!prcmu_base)
2751 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2752
2753 spin_lock_init(&mb0_transfer.lock);
2754 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2755 mutex_init(&mb0_transfer.ac_wake_lock);
2756 init_completion(&mb0_transfer.ac_wake_work);
2757 mutex_init(&mb1_transfer.lock);
2758 init_completion(&mb1_transfer.work);
2759 mb1_transfer.ape_opp = APE_NO_CHANGE;
2760 mutex_init(&mb2_transfer.lock);
2761 init_completion(&mb2_transfer.work);
2762 spin_lock_init(&mb2_transfer.auto_pm_lock);
2763 spin_lock_init(&mb3_transfer.lock);
2764 mutex_init(&mb3_transfer.sysclk_lock);
2765 init_completion(&mb3_transfer.sysclk_work);
2766 mutex_init(&mb4_transfer.lock);
2767 init_completion(&mb4_transfer.work);
2768 mutex_init(&mb5_transfer.lock);
2769 init_completion(&mb5_transfer.work);
2770
2771 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2772 }
2773
2774 static void __init init_prcm_registers(void)
2775 {
2776 u32 val;
2777
2778 val = readl(PRCM_A9PL_FORCE_CLKEN);
2779 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2780 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2781 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2782 }
2783
2784 /*
2785 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2786 */
2787 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2788 REGULATOR_SUPPLY("v-ape", NULL),
2789 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2790 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2791 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2792 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2794 /* "v-mmc" changed to "vcore" in the mainline kernel */
2795 REGULATOR_SUPPLY("vcore", "sdi0"),
2796 REGULATOR_SUPPLY("vcore", "sdi1"),
2797 REGULATOR_SUPPLY("vcore", "sdi2"),
2798 REGULATOR_SUPPLY("vcore", "sdi3"),
2799 REGULATOR_SUPPLY("vcore", "sdi4"),
2800 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2801 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2802 /* "v-uart" changed to "vcore" in the mainline kernel */
2803 REGULATOR_SUPPLY("vcore", "uart0"),
2804 REGULATOR_SUPPLY("vcore", "uart1"),
2805 REGULATOR_SUPPLY("vcore", "uart2"),
2806 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2807 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2808 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2809 };
2810
2811 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2812 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2813 /* AV8100 regulator */
2814 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2815 };
2816
2817 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2818 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2819 REGULATOR_SUPPLY("vsupply", "mcde"),
2820 };
2821
2822 /* SVA MMDSP regulator switch */
2823 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2824 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2825 };
2826
2827 /* SVA pipe regulator switch */
2828 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2829 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2830 };
2831
2832 /* SIA MMDSP regulator switch */
2833 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2834 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2835 };
2836
2837 /* SIA pipe regulator switch */
2838 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2839 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2840 };
2841
2842 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2843 REGULATOR_SUPPLY("v-mali", NULL),
2844 };
2845
2846 /* ESRAM1 and 2 regulator switch */
2847 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2848 REGULATOR_SUPPLY("esram12", "cm_control"),
2849 };
2850
2851 /* ESRAM3 and 4 regulator switch */
2852 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2853 REGULATOR_SUPPLY("v-esram34", "mcde"),
2854 REGULATOR_SUPPLY("esram34", "cm_control"),
2855 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2856 };
2857
2858 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2859 [DB8500_REGULATOR_VAPE] = {
2860 .constraints = {
2861 .name = "db8500-vape",
2862 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2863 .always_on = true,
2864 },
2865 .consumer_supplies = db8500_vape_consumers,
2866 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2867 },
2868 [DB8500_REGULATOR_VARM] = {
2869 .constraints = {
2870 .name = "db8500-varm",
2871 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872 },
2873 },
2874 [DB8500_REGULATOR_VMODEM] = {
2875 .constraints = {
2876 .name = "db8500-vmodem",
2877 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 },
2879 },
2880 [DB8500_REGULATOR_VPLL] = {
2881 .constraints = {
2882 .name = "db8500-vpll",
2883 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2884 },
2885 },
2886 [DB8500_REGULATOR_VSMPS1] = {
2887 .constraints = {
2888 .name = "db8500-vsmps1",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 },
2892 [DB8500_REGULATOR_VSMPS2] = {
2893 .constraints = {
2894 .name = "db8500-vsmps2",
2895 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2896 },
2897 .consumer_supplies = db8500_vsmps2_consumers,
2898 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2899 },
2900 [DB8500_REGULATOR_VSMPS3] = {
2901 .constraints = {
2902 .name = "db8500-vsmps3",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 },
2905 },
2906 [DB8500_REGULATOR_VRF1] = {
2907 .constraints = {
2908 .name = "db8500-vrf1",
2909 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2910 },
2911 },
2912 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2913 /* dependency to u8500-vape is handled outside regulator framework */
2914 .constraints = {
2915 .name = "db8500-sva-mmdsp",
2916 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2917 },
2918 .consumer_supplies = db8500_svammdsp_consumers,
2919 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2920 },
2921 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2922 .constraints = {
2923 /* "ret" means "retention" */
2924 .name = "db8500-sva-mmdsp-ret",
2925 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2926 },
2927 },
2928 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2929 /* dependency to u8500-vape is handled outside regulator framework */
2930 .constraints = {
2931 .name = "db8500-sva-pipe",
2932 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2933 },
2934 .consumer_supplies = db8500_svapipe_consumers,
2935 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2936 },
2937 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2938 /* dependency to u8500-vape is handled outside regulator framework */
2939 .constraints = {
2940 .name = "db8500-sia-mmdsp",
2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942 },
2943 .consumer_supplies = db8500_siammdsp_consumers,
2944 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2945 },
2946 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2947 .constraints = {
2948 .name = "db8500-sia-mmdsp-ret",
2949 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2950 },
2951 },
2952 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2953 /* dependency to u8500-vape is handled outside regulator framework */
2954 .constraints = {
2955 .name = "db8500-sia-pipe",
2956 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2957 },
2958 .consumer_supplies = db8500_siapipe_consumers,
2959 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2960 },
2961 [DB8500_REGULATOR_SWITCH_SGA] = {
2962 .supply_regulator = "db8500-vape",
2963 .constraints = {
2964 .name = "db8500-sga",
2965 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2966 },
2967 .consumer_supplies = db8500_sga_consumers,
2968 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2969
2970 },
2971 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2972 .supply_regulator = "db8500-vape",
2973 .constraints = {
2974 .name = "db8500-b2r2-mcde",
2975 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2976 },
2977 .consumer_supplies = db8500_b2r2_mcde_consumers,
2978 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2979 },
2980 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2981 /*
2982 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2983 * no need to hold Vape
2984 */
2985 .constraints = {
2986 .name = "db8500-esram12",
2987 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2988 },
2989 .consumer_supplies = db8500_esram12_consumers,
2990 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2991 },
2992 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2993 .constraints = {
2994 .name = "db8500-esram12-ret",
2995 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2996 },
2997 },
2998 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2999 /*
3000 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3001 * no need to hold Vape
3002 */
3003 .constraints = {
3004 .name = "db8500-esram34",
3005 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3006 },
3007 .consumer_supplies = db8500_esram34_consumers,
3008 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3009 },
3010 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3011 .constraints = {
3012 .name = "db8500-esram34-ret",
3013 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3014 },
3015 },
3016 };
3017
3018 static struct ux500_wdt_data db8500_wdt_pdata = {
3019 .timeout = 600, /* 10 minutes */
3020 .has_28_bits_resolution = true,
3021 };
3022 /*
3023 * Thermal Sensor
3024 */
3025
3026 static struct resource db8500_thsens_resources[] = {
3027 {
3028 .name = "IRQ_HOTMON_LOW",
3029 .start = IRQ_PRCMU_HOTMON_LOW,
3030 .end = IRQ_PRCMU_HOTMON_LOW,
3031 .flags = IORESOURCE_IRQ,
3032 },
3033 {
3034 .name = "IRQ_HOTMON_HIGH",
3035 .start = IRQ_PRCMU_HOTMON_HIGH,
3036 .end = IRQ_PRCMU_HOTMON_HIGH,
3037 .flags = IORESOURCE_IRQ,
3038 },
3039 };
3040
3041 static struct db8500_thsens_platform_data db8500_thsens_data = {
3042 .trip_points[0] = {
3043 .temp = 70000,
3044 .type = THERMAL_TRIP_ACTIVE,
3045 .cdev_name = {
3046 [0] = "thermal-cpufreq-0",
3047 },
3048 },
3049 .trip_points[1] = {
3050 .temp = 75000,
3051 .type = THERMAL_TRIP_ACTIVE,
3052 .cdev_name = {
3053 [0] = "thermal-cpufreq-0",
3054 },
3055 },
3056 .trip_points[2] = {
3057 .temp = 80000,
3058 .type = THERMAL_TRIP_ACTIVE,
3059 .cdev_name = {
3060 [0] = "thermal-cpufreq-0",
3061 },
3062 },
3063 .trip_points[3] = {
3064 .temp = 85000,
3065 .type = THERMAL_TRIP_CRITICAL,
3066 },
3067 .num_trips = 4,
3068 };
3069
3070 static const struct mfd_cell common_prcmu_devs[] = {
3071 {
3072 .name = "ux500_wdt",
3073 .platform_data = &db8500_wdt_pdata,
3074 .pdata_size = sizeof(db8500_wdt_pdata),
3075 .id = -1,
3076 },
3077 };
3078
3079 static const struct mfd_cell db8500_prcmu_devs[] = {
3080 {
3081 .name = "db8500-prcmu-regulators",
3082 .of_compatible = "stericsson,db8500-prcmu-regulator",
3083 .platform_data = &db8500_regulators,
3084 .pdata_size = sizeof(db8500_regulators),
3085 },
3086 {
3087 .name = "cpufreq-ux500",
3088 .of_compatible = "stericsson,cpufreq-ux500",
3089 .platform_data = &db8500_cpufreq_table,
3090 .pdata_size = sizeof(db8500_cpufreq_table),
3091 },
3092 {
3093 .name = "cpuidle-dbx500",
3094 .of_compatible = "stericsson,cpuidle-dbx500",
3095 },
3096 {
3097 .name = "db8500-thermal",
3098 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3099 .resources = db8500_thsens_resources,
3100 .platform_data = &db8500_thsens_data,
3101 .pdata_size = sizeof(db8500_thsens_data),
3102 },
3103 };
3104
3105 static void db8500_prcmu_update_cpufreq(void)
3106 {
3107 if (prcmu_has_arm_maxopp()) {
3108 db8500_cpufreq_table[3].frequency = 1000000;
3109 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3110 }
3111 }
3112
3113 static int db8500_prcmu_register_ab8500(struct device *parent,
3114 struct ab8500_platform_data *pdata)
3115 {
3116 struct device_node *np;
3117 struct resource ab8500_resource;
3118 struct mfd_cell ab8500_cell = {
3119 .name = "ab8500-core",
3120 .of_compatible = "stericsson,ab8500",
3121 .id = AB8500_VERSION_AB8500,
3122 .platform_data = pdata,
3123 .pdata_size = sizeof(struct ab8500_platform_data),
3124 .resources = &ab8500_resource,
3125 .num_resources = 1,
3126 };
3127
3128 if (!parent->of_node)
3129 return -ENODEV;
3130
3131 /* Look up the device node, sneak the IRQ out of it */
3132 for_each_child_of_node(parent->of_node, np) {
3133 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3134 break;
3135 }
3136 if (!np) {
3137 dev_info(parent, "could not find AB8500 node in the device tree\n");
3138 return -ENODEV;
3139 }
3140 of_irq_to_resource_table(np, &ab8500_resource, 1);
3141
3142 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3143 }
3144
3145 /**
3146 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3147 *
3148 */
3149 static int db8500_prcmu_probe(struct platform_device *pdev)
3150 {
3151 struct device_node *np = pdev->dev.of_node;
3152 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3153 int irq = 0, err = 0;
3154 struct resource *res;
3155
3156 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3157 if (!res) {
3158 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3159 return -ENOENT;
3160 }
3161 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3162 if (!prcmu_base) {
3163 dev_err(&pdev->dev,
3164 "failed to ioremap prcmu register memory\n");
3165 return -ENOENT;
3166 }
3167 init_prcm_registers();
3168 dbx500_fw_version_init(pdev, pdata->version_offset);
3169 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3170 if (!res) {
3171 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3172 return -ENOENT;
3173 }
3174 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3175 resource_size(res));
3176
3177 /* Clean up the mailbox interrupts after pre-kernel code. */
3178 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3179
3180 irq = platform_get_irq(pdev, 0);
3181 if (irq <= 0) {
3182 dev_err(&pdev->dev, "no prcmu irq provided\n");
3183 return -ENOENT;
3184 }
3185
3186 err = request_threaded_irq(irq, prcmu_irq_handler,
3187 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3188 if (err < 0) {
3189 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3190 err = -EBUSY;
3191 goto no_irq_return;
3192 }
3193
3194 db8500_irq_init(np);
3195
3196 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3197
3198 db8500_prcmu_update_cpufreq();
3199
3200 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3201 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3202 if (err) {
3203 pr_err("prcmu: Failed to add subdevices\n");
3204 return err;
3205 }
3206
3207 /* TODO: Remove restriction when clk definitions are available. */
3208 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3209 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3210 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3211 db8500_irq_domain);
3212 if (err) {
3213 mfd_remove_devices(&pdev->dev);
3214 pr_err("prcmu: Failed to add subdevices\n");
3215 goto no_irq_return;
3216 }
3217 }
3218
3219 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3220 if (err) {
3221 mfd_remove_devices(&pdev->dev);
3222 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3223 goto no_irq_return;
3224 }
3225
3226 pr_info("DB8500 PRCMU initialized\n");
3227
3228 no_irq_return:
3229 return err;
3230 }
3231 static const struct of_device_id db8500_prcmu_match[] = {
3232 { .compatible = "stericsson,db8500-prcmu"},
3233 { },
3234 };
3235
3236 static struct platform_driver db8500_prcmu_driver = {
3237 .driver = {
3238 .name = "db8500-prcmu",
3239 .owner = THIS_MODULE,
3240 .of_match_table = db8500_prcmu_match,
3241 },
3242 .probe = db8500_prcmu_probe,
3243 };
3244
3245 static int __init db8500_prcmu_init(void)
3246 {
3247 return platform_driver_register(&db8500_prcmu_driver);
3248 }
3249
3250 core_initcall(db8500_prcmu_init);
3251
3252 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3253 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3254 MODULE_LICENSE("GPL v2");