]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/mfd/db8500-prcmu.c
Merge tag 'mfd-next-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-jammy-kernel.git] / drivers / mfd / db8500-prcmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/err.h>
20 #include <linux/spinlock.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/completion.h>
25 #include <linux/irq.h>
26 #include <linux/jiffies.h>
27 #include <linux/bitops.h>
28 #include <linux/fs.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/mfd/core.h>
35 #include <linux/mfd/dbx500-prcmu.h>
36 #include <linux/mfd/abx500/ab8500.h>
37 #include <linux/regulator/db8500-prcmu.h>
38 #include <linux/regulator/machine.h>
39 #include <linux/platform_data/ux500_wdt.h>
40 #include "db8500-prcmu-regs.h"
41
42 /* Index of different voltages to be used when accessing AVSData */
43 #define PRCM_AVS_BASE 0x2FC
44 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
45 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
46 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
47 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
48 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
49 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
50 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
51 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
52 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
53 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
54 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
55 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
56 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
57
58 #define PRCM_AVS_VOLTAGE 0
59 #define PRCM_AVS_VOLTAGE_MASK 0x3f
60 #define PRCM_AVS_ISSLOWSTARTUP 6
61 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
62 #define PRCM_AVS_ISMODEENABLE 7
63 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
64
65 #define PRCM_BOOT_STATUS 0xFFF
66 #define PRCM_ROMCODE_A2P 0xFFE
67 #define PRCM_ROMCODE_P2A 0xFFD
68 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
69
70 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
71
72 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
73 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
74 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
75 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
76 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
77 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
78 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
79 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80
81 /* Req Mailboxes */
82 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
83 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
84 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
85 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
86 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
87 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88
89 /* Ack Mailboxes */
90 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
91 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
92 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
93 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
94 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
95 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
96
97 /* Mailbox 0 headers */
98 #define MB0H_POWER_STATE_TRANS 0
99 #define MB0H_CONFIG_WAKEUPS_EXE 1
100 #define MB0H_READ_WAKEUP_ACK 3
101 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
102
103 #define MB0H_WAKEUP_EXE 2
104 #define MB0H_WAKEUP_SLEEP 5
105
106 /* Mailbox 0 REQs */
107 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
108 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
109 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
110 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
111 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
112 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113
114 /* Mailbox 0 ACKs */
115 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
116 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
117 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
118 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
119 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
120 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
121 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
122
123 /* Mailbox 1 headers */
124 #define MB1H_ARM_APE_OPP 0x0
125 #define MB1H_RESET_MODEM 0x2
126 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
127 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
128 #define MB1H_RELEASE_USB_WAKEUP 0x5
129 #define MB1H_PLL_ON_OFF 0x6
130
131 /* Mailbox 1 Requests */
132 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
133 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
134 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
135 #define PLL_SOC0_OFF 0x1
136 #define PLL_SOC0_ON 0x2
137 #define PLL_SOC1_OFF 0x4
138 #define PLL_SOC1_ON 0x8
139
140 /* Mailbox 1 ACKs */
141 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
142 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
143 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
144 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
145
146 /* Mailbox 2 headers */
147 #define MB2H_DPS 0x0
148 #define MB2H_AUTO_PWR 0x1
149
150 /* Mailbox 2 REQs */
151 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
152 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
153 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
154 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
155 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
156 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
157 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
158 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
159 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
160 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161
162 /* Mailbox 2 ACKs */
163 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
164 #define HWACC_PWR_ST_OK 0xFE
165
166 /* Mailbox 3 headers */
167 #define MB3H_ANC 0x0
168 #define MB3H_SIDETONE 0x1
169 #define MB3H_SYSCLK 0xE
170
171 /* Mailbox 3 Requests */
172 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
173 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
174 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
175 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
178 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
179
180 /* Mailbox 4 headers */
181 #define MB4H_DDR_INIT 0x0
182 #define MB4H_MEM_ST 0x1
183 #define MB4H_HOTDOG 0x12
184 #define MB4H_HOTMON 0x13
185 #define MB4H_HOT_PERIOD 0x14
186 #define MB4H_A9WDOG_CONF 0x16
187 #define MB4H_A9WDOG_EN 0x17
188 #define MB4H_A9WDOG_DIS 0x18
189 #define MB4H_A9WDOG_LOAD 0x19
190 #define MB4H_A9WDOG_KICK 0x20
191
192 /* Mailbox 4 Requests */
193 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
196 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
198 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
199 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
200 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
201 #define HOTMON_CONFIG_LOW BIT(0)
202 #define HOTMON_CONFIG_HIGH BIT(1)
203 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
204 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
205 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
206 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
207 #define A9WDOG_AUTO_OFF_EN BIT(7)
208 #define A9WDOG_AUTO_OFF_DIS 0
209 #define A9WDOG_ID_MASK 0xf
210
211 /* Mailbox 5 Requests */
212 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
213 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
214 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
215 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
216 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
217 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
218 #define PRCMU_I2C_STOP_EN BIT(3)
219
220 /* Mailbox 5 ACKs */
221 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
222 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
223 #define I2C_WR_OK 0x1
224 #define I2C_RD_OK 0x2
225
226 #define NUM_MB 8
227 #define MBOX_BIT BIT
228 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229
230 /*
231 * Wakeups/IRQs
232 */
233
234 #define WAKEUP_BIT_RTC BIT(0)
235 #define WAKEUP_BIT_RTT0 BIT(1)
236 #define WAKEUP_BIT_RTT1 BIT(2)
237 #define WAKEUP_BIT_HSI0 BIT(3)
238 #define WAKEUP_BIT_HSI1 BIT(4)
239 #define WAKEUP_BIT_CA_WAKE BIT(5)
240 #define WAKEUP_BIT_USB BIT(6)
241 #define WAKEUP_BIT_ABB BIT(7)
242 #define WAKEUP_BIT_ABB_FIFO BIT(8)
243 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
244 #define WAKEUP_BIT_CA_SLEEP BIT(10)
245 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
246 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
247 #define WAKEUP_BIT_ANC_OK BIT(13)
248 #define WAKEUP_BIT_SW_ERROR BIT(14)
249 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
250 #define WAKEUP_BIT_ARM BIT(17)
251 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
252 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
253 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
254 #define WAKEUP_BIT_GPIO0 BIT(23)
255 #define WAKEUP_BIT_GPIO1 BIT(24)
256 #define WAKEUP_BIT_GPIO2 BIT(25)
257 #define WAKEUP_BIT_GPIO3 BIT(26)
258 #define WAKEUP_BIT_GPIO4 BIT(27)
259 #define WAKEUP_BIT_GPIO5 BIT(28)
260 #define WAKEUP_BIT_GPIO6 BIT(29)
261 #define WAKEUP_BIT_GPIO7 BIT(30)
262 #define WAKEUP_BIT_GPIO8 BIT(31)
263
264 static struct {
265 bool valid;
266 struct prcmu_fw_version version;
267 } fw_info;
268
269 static struct irq_domain *db8500_irq_domain;
270
271 /*
272 * This vector maps irq numbers to the bits in the bit field used in
273 * communication with the PRCMU firmware.
274 *
275 * The reason for having this is to keep the irq numbers contiguous even though
276 * the bits in the bit field are not. (The bits also have a tendency to move
277 * around, to further complicate matters.)
278 */
279 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
280 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
281
282 #define IRQ_PRCMU_RTC 0
283 #define IRQ_PRCMU_RTT0 1
284 #define IRQ_PRCMU_RTT1 2
285 #define IRQ_PRCMU_HSI0 3
286 #define IRQ_PRCMU_HSI1 4
287 #define IRQ_PRCMU_CA_WAKE 5
288 #define IRQ_PRCMU_USB 6
289 #define IRQ_PRCMU_ABB 7
290 #define IRQ_PRCMU_ABB_FIFO 8
291 #define IRQ_PRCMU_ARM 9
292 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
293 #define IRQ_PRCMU_GPIO0 11
294 #define IRQ_PRCMU_GPIO1 12
295 #define IRQ_PRCMU_GPIO2 13
296 #define IRQ_PRCMU_GPIO3 14
297 #define IRQ_PRCMU_GPIO4 15
298 #define IRQ_PRCMU_GPIO5 16
299 #define IRQ_PRCMU_GPIO6 17
300 #define IRQ_PRCMU_GPIO7 18
301 #define IRQ_PRCMU_GPIO8 19
302 #define IRQ_PRCMU_CA_SLEEP 20
303 #define IRQ_PRCMU_HOTMON_LOW 21
304 #define IRQ_PRCMU_HOTMON_HIGH 22
305 #define NUM_PRCMU_WAKEUPS 23
306
307 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
308 IRQ_ENTRY(RTC),
309 IRQ_ENTRY(RTT0),
310 IRQ_ENTRY(RTT1),
311 IRQ_ENTRY(HSI0),
312 IRQ_ENTRY(HSI1),
313 IRQ_ENTRY(CA_WAKE),
314 IRQ_ENTRY(USB),
315 IRQ_ENTRY(ABB),
316 IRQ_ENTRY(ABB_FIFO),
317 IRQ_ENTRY(CA_SLEEP),
318 IRQ_ENTRY(ARM),
319 IRQ_ENTRY(HOTMON_LOW),
320 IRQ_ENTRY(HOTMON_HIGH),
321 IRQ_ENTRY(MODEM_SW_RESET_REQ),
322 IRQ_ENTRY(GPIO0),
323 IRQ_ENTRY(GPIO1),
324 IRQ_ENTRY(GPIO2),
325 IRQ_ENTRY(GPIO3),
326 IRQ_ENTRY(GPIO4),
327 IRQ_ENTRY(GPIO5),
328 IRQ_ENTRY(GPIO6),
329 IRQ_ENTRY(GPIO7),
330 IRQ_ENTRY(GPIO8)
331 };
332
333 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
334 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
335 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
336 WAKEUP_ENTRY(RTC),
337 WAKEUP_ENTRY(RTT0),
338 WAKEUP_ENTRY(RTT1),
339 WAKEUP_ENTRY(HSI0),
340 WAKEUP_ENTRY(HSI1),
341 WAKEUP_ENTRY(USB),
342 WAKEUP_ENTRY(ABB),
343 WAKEUP_ENTRY(ABB_FIFO),
344 WAKEUP_ENTRY(ARM)
345 };
346
347 /*
348 * mb0_transfer - state needed for mailbox 0 communication.
349 * @lock: The transaction lock.
350 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
351 * the request data.
352 * @mask_work: Work structure used for (un)masking wakeup interrupts.
353 * @req: Request data that need to persist between requests.
354 */
355 static struct {
356 spinlock_t lock;
357 spinlock_t dbb_irqs_lock;
358 struct work_struct mask_work;
359 struct mutex ac_wake_lock;
360 struct completion ac_wake_work;
361 struct {
362 u32 dbb_irqs;
363 u32 dbb_wakeups;
364 u32 abb_events;
365 } req;
366 } mb0_transfer;
367
368 /*
369 * mb1_transfer - state needed for mailbox 1 communication.
370 * @lock: The transaction lock.
371 * @work: The transaction completion structure.
372 * @ape_opp: The current APE OPP.
373 * @ack: Reply ("acknowledge") data.
374 */
375 static struct {
376 struct mutex lock;
377 struct completion work;
378 u8 ape_opp;
379 struct {
380 u8 header;
381 u8 arm_opp;
382 u8 ape_opp;
383 u8 ape_voltage_status;
384 } ack;
385 } mb1_transfer;
386
387 /*
388 * mb2_transfer - state needed for mailbox 2 communication.
389 * @lock: The transaction lock.
390 * @work: The transaction completion structure.
391 * @auto_pm_lock: The autonomous power management configuration lock.
392 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
393 * @req: Request data that need to persist between requests.
394 * @ack: Reply ("acknowledge") data.
395 */
396 static struct {
397 struct mutex lock;
398 struct completion work;
399 spinlock_t auto_pm_lock;
400 bool auto_pm_enabled;
401 struct {
402 u8 status;
403 } ack;
404 } mb2_transfer;
405
406 /*
407 * mb3_transfer - state needed for mailbox 3 communication.
408 * @lock: The request lock.
409 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
410 * @sysclk_work: Work structure used for sysclk requests.
411 */
412 static struct {
413 spinlock_t lock;
414 struct mutex sysclk_lock;
415 struct completion sysclk_work;
416 } mb3_transfer;
417
418 /*
419 * mb4_transfer - state needed for mailbox 4 communication.
420 * @lock: The transaction lock.
421 * @work: The transaction completion structure.
422 */
423 static struct {
424 struct mutex lock;
425 struct completion work;
426 } mb4_transfer;
427
428 /*
429 * mb5_transfer - state needed for mailbox 5 communication.
430 * @lock: The transaction lock.
431 * @work: The transaction completion structure.
432 * @ack: Reply ("acknowledge") data.
433 */
434 static struct {
435 struct mutex lock;
436 struct completion work;
437 struct {
438 u8 status;
439 u8 value;
440 } ack;
441 } mb5_transfer;
442
443 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
444
445 /* Spinlocks */
446 static DEFINE_SPINLOCK(prcmu_lock);
447 static DEFINE_SPINLOCK(clkout_lock);
448
449 /* Global var to runtime determine TCDM base for v2 or v1 */
450 static __iomem void *tcdm_base;
451 static __iomem void *prcmu_base;
452
453 struct clk_mgt {
454 u32 offset;
455 u32 pllsw;
456 int branch;
457 bool clk38div;
458 };
459
460 enum {
461 PLL_RAW,
462 PLL_FIX,
463 PLL_DIV
464 };
465
466 static DEFINE_SPINLOCK(clk_mgt_lock);
467
468 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
469 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
470 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
471 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
472 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
478 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
484 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
485 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
488 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
489 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
492 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
493 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
494 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
496 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
499 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 };
501
502 struct dsiclk {
503 u32 divsel_mask;
504 u32 divsel_shift;
505 u32 divsel;
506 };
507
508 static struct dsiclk dsiclk[2] = {
509 {
510 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
511 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
512 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 },
514 {
515 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
516 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
517 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
518 }
519 };
520
521 struct dsiescclk {
522 u32 en;
523 u32 div_mask;
524 u32 div_shift;
525 };
526
527 static struct dsiescclk dsiescclk[3] = {
528 {
529 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
530 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
531 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 },
533 {
534 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
535 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
536 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 },
538 {
539 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
540 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
541 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
542 }
543 };
544
545 u32 db8500_prcmu_read(unsigned int reg)
546 {
547 return readl(prcmu_base + reg);
548 }
549
550 void db8500_prcmu_write(unsigned int reg, u32 value)
551 {
552 unsigned long flags;
553
554 spin_lock_irqsave(&prcmu_lock, flags);
555 writel(value, (prcmu_base + reg));
556 spin_unlock_irqrestore(&prcmu_lock, flags);
557 }
558
559 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
560 {
561 u32 val;
562 unsigned long flags;
563
564 spin_lock_irqsave(&prcmu_lock, flags);
565 val = readl(prcmu_base + reg);
566 val = ((val & ~mask) | (value & mask));
567 writel(val, (prcmu_base + reg));
568 spin_unlock_irqrestore(&prcmu_lock, flags);
569 }
570
571 struct prcmu_fw_version *prcmu_get_fw_version(void)
572 {
573 return fw_info.valid ? &fw_info.version : NULL;
574 }
575
576 static bool prcmu_is_ulppll_disabled(void)
577 {
578 struct prcmu_fw_version *ver;
579
580 ver = prcmu_get_fw_version();
581 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
582 }
583
584 bool prcmu_has_arm_maxopp(void)
585 {
586 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
587 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
588 }
589
590 /**
591 * prcmu_set_rc_a2p - This function is used to run few power state sequences
592 * @val: Value to be set, i.e. transition requested
593 * Returns: 0 on success, -EINVAL on invalid argument
594 *
595 * This function is used to run the following power state sequences -
596 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
597 */
598 int prcmu_set_rc_a2p(enum romcode_write val)
599 {
600 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
601 return -EINVAL;
602 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
603 return 0;
604 }
605
606 /**
607 * prcmu_get_rc_p2a - This function is used to get power state sequences
608 * Returns: the power transition that has last happened
609 *
610 * This function can return the following transitions-
611 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
612 */
613 enum romcode_read prcmu_get_rc_p2a(void)
614 {
615 return readb(tcdm_base + PRCM_ROMCODE_P2A);
616 }
617
618 /**
619 * prcmu_get_xp70_current_state - Return the current XP70 power mode
620 * Returns: Returns the current AP(ARM) power mode: init,
621 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
622 */
623 enum ap_pwrst prcmu_get_xp70_current_state(void)
624 {
625 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
626 }
627
628 /**
629 * prcmu_config_clkout - Configure one of the programmable clock outputs.
630 * @clkout: The CLKOUT number (0 or 1).
631 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
632 * @div: The divider to be applied.
633 *
634 * Configures one of the programmable clock outputs (CLKOUTs).
635 * @div should be in the range [1,63] to request a configuration, or 0 to
636 * inform that the configuration is no longer requested.
637 */
638 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
639 {
640 static int requests[2];
641 int r = 0;
642 unsigned long flags;
643 u32 val;
644 u32 bits;
645 u32 mask;
646 u32 div_mask;
647
648 BUG_ON(clkout > 1);
649 BUG_ON(div > 63);
650 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
651
652 if (!div && !requests[clkout])
653 return -EINVAL;
654
655 if (clkout == 0) {
656 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
657 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
658 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
659 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
660 } else {
661 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
662 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
663 PRCM_CLKOCR_CLK1TYPE);
664 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
665 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
666 }
667 bits &= mask;
668
669 spin_lock_irqsave(&clkout_lock, flags);
670
671 val = readl(PRCM_CLKOCR);
672 if (val & div_mask) {
673 if (div) {
674 if ((val & mask) != bits) {
675 r = -EBUSY;
676 goto unlock_and_return;
677 }
678 } else {
679 if ((val & mask & ~div_mask) != bits) {
680 r = -EINVAL;
681 goto unlock_and_return;
682 }
683 }
684 }
685 writel((bits | (val & ~mask)), PRCM_CLKOCR);
686 requests[clkout] += (div ? 1 : -1);
687
688 unlock_and_return:
689 spin_unlock_irqrestore(&clkout_lock, flags);
690
691 return r;
692 }
693
694 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
695 {
696 unsigned long flags;
697
698 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
699
700 spin_lock_irqsave(&mb0_transfer.lock, flags);
701
702 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
703 cpu_relax();
704
705 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
706 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
707 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
708 writeb((keep_ulp_clk ? 1 : 0),
709 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
710 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
711 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
712
713 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
714
715 return 0;
716 }
717
718 u8 db8500_prcmu_get_power_state_result(void)
719 {
720 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
721 }
722
723 /* This function should only be called while mb0_transfer.lock is held. */
724 static void config_wakeups(void)
725 {
726 const u8 header[2] = {
727 MB0H_CONFIG_WAKEUPS_EXE,
728 MB0H_CONFIG_WAKEUPS_SLEEP
729 };
730 static u32 last_dbb_events;
731 static u32 last_abb_events;
732 u32 dbb_events;
733 u32 abb_events;
734 unsigned int i;
735
736 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
737 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
738
739 abb_events = mb0_transfer.req.abb_events;
740
741 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
742 return;
743
744 for (i = 0; i < 2; i++) {
745 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
746 cpu_relax();
747 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
748 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
749 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
750 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
751 }
752 last_dbb_events = dbb_events;
753 last_abb_events = abb_events;
754 }
755
756 void db8500_prcmu_enable_wakeups(u32 wakeups)
757 {
758 unsigned long flags;
759 u32 bits;
760 int i;
761
762 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
763
764 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
765 if (wakeups & BIT(i))
766 bits |= prcmu_wakeup_bit[i];
767 }
768
769 spin_lock_irqsave(&mb0_transfer.lock, flags);
770
771 mb0_transfer.req.dbb_wakeups = bits;
772 config_wakeups();
773
774 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
775 }
776
777 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
778 {
779 unsigned long flags;
780
781 spin_lock_irqsave(&mb0_transfer.lock, flags);
782
783 mb0_transfer.req.abb_events = abb_events;
784 config_wakeups();
785
786 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
787 }
788
789 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
790 {
791 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
792 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
793 else
794 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
795 }
796
797 /**
798 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
799 * @opp: The new ARM operating point to which transition is to be made
800 * Returns: 0 on success, non-zero on failure
801 *
802 * This function sets the the operating point of the ARM.
803 */
804 int db8500_prcmu_set_arm_opp(u8 opp)
805 {
806 int r;
807
808 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
809 return -EINVAL;
810
811 r = 0;
812
813 mutex_lock(&mb1_transfer.lock);
814
815 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
816 cpu_relax();
817
818 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
819 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
820 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
821
822 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
823 wait_for_completion(&mb1_transfer.work);
824
825 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
826 (mb1_transfer.ack.arm_opp != opp))
827 r = -EIO;
828
829 mutex_unlock(&mb1_transfer.lock);
830
831 return r;
832 }
833
834 /**
835 * db8500_prcmu_get_arm_opp - get the current ARM OPP
836 *
837 * Returns: the current ARM OPP
838 */
839 int db8500_prcmu_get_arm_opp(void)
840 {
841 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
842 }
843
844 /**
845 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
846 *
847 * Returns: the current DDR OPP
848 */
849 int db8500_prcmu_get_ddr_opp(void)
850 {
851 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
852 }
853
854 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
855 static void request_even_slower_clocks(bool enable)
856 {
857 u32 clock_reg[] = {
858 PRCM_ACLK_MGT,
859 PRCM_DMACLK_MGT
860 };
861 unsigned long flags;
862 unsigned int i;
863
864 spin_lock_irqsave(&clk_mgt_lock, flags);
865
866 /* Grab the HW semaphore. */
867 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
868 cpu_relax();
869
870 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
871 u32 val;
872 u32 div;
873
874 val = readl(prcmu_base + clock_reg[i]);
875 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
876 if (enable) {
877 if ((div <= 1) || (div > 15)) {
878 pr_err("prcmu: Bad clock divider %d in %s\n",
879 div, __func__);
880 goto unlock_and_return;
881 }
882 div <<= 1;
883 } else {
884 if (div <= 2)
885 goto unlock_and_return;
886 div >>= 1;
887 }
888 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
889 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
890 writel(val, prcmu_base + clock_reg[i]);
891 }
892
893 unlock_and_return:
894 /* Release the HW semaphore. */
895 writel(0, PRCM_SEM);
896
897 spin_unlock_irqrestore(&clk_mgt_lock, flags);
898 }
899
900 /**
901 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
902 * @opp: The new APE operating point to which transition is to be made
903 * Returns: 0 on success, non-zero on failure
904 *
905 * This function sets the operating point of the APE.
906 */
907 int db8500_prcmu_set_ape_opp(u8 opp)
908 {
909 int r = 0;
910
911 if (opp == mb1_transfer.ape_opp)
912 return 0;
913
914 mutex_lock(&mb1_transfer.lock);
915
916 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
917 request_even_slower_clocks(false);
918
919 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
920 goto skip_message;
921
922 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
923 cpu_relax();
924
925 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
926 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
927 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
928 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
929
930 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
931 wait_for_completion(&mb1_transfer.work);
932
933 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
934 (mb1_transfer.ack.ape_opp != opp))
935 r = -EIO;
936
937 skip_message:
938 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
939 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
940 request_even_slower_clocks(true);
941 if (!r)
942 mb1_transfer.ape_opp = opp;
943
944 mutex_unlock(&mb1_transfer.lock);
945
946 return r;
947 }
948
949 /**
950 * db8500_prcmu_get_ape_opp - get the current APE OPP
951 *
952 * Returns: the current APE OPP
953 */
954 int db8500_prcmu_get_ape_opp(void)
955 {
956 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
957 }
958
959 /**
960 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
961 * @enable: true to request the higher voltage, false to drop a request.
962 *
963 * Calls to this function to enable and disable requests must be balanced.
964 */
965 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
966 {
967 int r = 0;
968 u8 header;
969 static unsigned int requests;
970
971 mutex_lock(&mb1_transfer.lock);
972
973 if (enable) {
974 if (0 != requests++)
975 goto unlock_and_return;
976 header = MB1H_REQUEST_APE_OPP_100_VOLT;
977 } else {
978 if (requests == 0) {
979 r = -EIO;
980 goto unlock_and_return;
981 } else if (1 != requests--) {
982 goto unlock_and_return;
983 }
984 header = MB1H_RELEASE_APE_OPP_100_VOLT;
985 }
986
987 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
988 cpu_relax();
989
990 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
991
992 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
993 wait_for_completion(&mb1_transfer.work);
994
995 if ((mb1_transfer.ack.header != header) ||
996 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
997 r = -EIO;
998
999 unlock_and_return:
1000 mutex_unlock(&mb1_transfer.lock);
1001
1002 return r;
1003 }
1004
1005 /**
1006 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1007 *
1008 * This function releases the power state requirements of a USB wakeup.
1009 */
1010 int prcmu_release_usb_wakeup_state(void)
1011 {
1012 int r = 0;
1013
1014 mutex_lock(&mb1_transfer.lock);
1015
1016 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1017 cpu_relax();
1018
1019 writeb(MB1H_RELEASE_USB_WAKEUP,
1020 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1021
1022 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1023 wait_for_completion(&mb1_transfer.work);
1024
1025 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1026 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1027 r = -EIO;
1028
1029 mutex_unlock(&mb1_transfer.lock);
1030
1031 return r;
1032 }
1033
1034 static int request_pll(u8 clock, bool enable)
1035 {
1036 int r = 0;
1037
1038 if (clock == PRCMU_PLLSOC0)
1039 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1040 else if (clock == PRCMU_PLLSOC1)
1041 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1042 else
1043 return -EINVAL;
1044
1045 mutex_lock(&mb1_transfer.lock);
1046
1047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1048 cpu_relax();
1049
1050 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1051 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1052
1053 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1054 wait_for_completion(&mb1_transfer.work);
1055
1056 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1057 r = -EIO;
1058
1059 mutex_unlock(&mb1_transfer.lock);
1060
1061 return r;
1062 }
1063
1064 /**
1065 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1066 * @epod_id: The EPOD to set
1067 * @epod_state: The new EPOD state
1068 *
1069 * This function sets the state of a EPOD (power domain). It may not be called
1070 * from interrupt context.
1071 */
1072 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1073 {
1074 int r = 0;
1075 bool ram_retention = false;
1076 int i;
1077
1078 /* check argument */
1079 BUG_ON(epod_id >= NUM_EPOD_ID);
1080
1081 /* set flag if retention is possible */
1082 switch (epod_id) {
1083 case EPOD_ID_SVAMMDSP:
1084 case EPOD_ID_SIAMMDSP:
1085 case EPOD_ID_ESRAM12:
1086 case EPOD_ID_ESRAM34:
1087 ram_retention = true;
1088 break;
1089 }
1090
1091 /* check argument */
1092 BUG_ON(epod_state > EPOD_STATE_ON);
1093 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1094
1095 /* get lock */
1096 mutex_lock(&mb2_transfer.lock);
1097
1098 /* wait for mailbox */
1099 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1100 cpu_relax();
1101
1102 /* fill in mailbox */
1103 for (i = 0; i < NUM_EPOD_ID; i++)
1104 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1105 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1106
1107 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1108
1109 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1110
1111 /*
1112 * The current firmware version does not handle errors correctly,
1113 * and we cannot recover if there is an error.
1114 * This is expected to change when the firmware is updated.
1115 */
1116 if (!wait_for_completion_timeout(&mb2_transfer.work,
1117 msecs_to_jiffies(20000))) {
1118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1119 __func__);
1120 r = -EIO;
1121 goto unlock_and_return;
1122 }
1123
1124 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1125 r = -EIO;
1126
1127 unlock_and_return:
1128 mutex_unlock(&mb2_transfer.lock);
1129 return r;
1130 }
1131
1132 /**
1133 * prcmu_configure_auto_pm - Configure autonomous power management.
1134 * @sleep: Configuration for ApSleep.
1135 * @idle: Configuration for ApIdle.
1136 */
1137 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1138 struct prcmu_auto_pm_config *idle)
1139 {
1140 u32 sleep_cfg;
1141 u32 idle_cfg;
1142 unsigned long flags;
1143
1144 BUG_ON((sleep == NULL) || (idle == NULL));
1145
1146 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1147 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1149 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1151 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1152
1153 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1154 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1155 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1156 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1157 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1158 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1159
1160 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1161
1162 /*
1163 * The autonomous power management configuration is done through
1164 * fields in mailbox 2, but these fields are only used as shared
1165 * variables - i.e. there is no need to send a message.
1166 */
1167 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1168 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1169
1170 mb2_transfer.auto_pm_enabled =
1171 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1174 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1175
1176 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1177 }
1178 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1179
1180 bool prcmu_is_auto_pm_enabled(void)
1181 {
1182 return mb2_transfer.auto_pm_enabled;
1183 }
1184
1185 static int request_sysclk(bool enable)
1186 {
1187 int r;
1188 unsigned long flags;
1189
1190 r = 0;
1191
1192 mutex_lock(&mb3_transfer.sysclk_lock);
1193
1194 spin_lock_irqsave(&mb3_transfer.lock, flags);
1195
1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1197 cpu_relax();
1198
1199 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1200
1201 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1202 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1203
1204 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1205
1206 /*
1207 * The firmware only sends an ACK if we want to enable the
1208 * SysClk, and it succeeds.
1209 */
1210 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1211 msecs_to_jiffies(20000))) {
1212 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1213 __func__);
1214 r = -EIO;
1215 }
1216
1217 mutex_unlock(&mb3_transfer.sysclk_lock);
1218
1219 return r;
1220 }
1221
1222 static int request_timclk(bool enable)
1223 {
1224 u32 val;
1225
1226 /*
1227 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1228 * PLL is disabled so we cannot use doze mode, this will
1229 * stop the clock on this firmware.
1230 */
1231 if (prcmu_is_ulppll_disabled())
1232 val = 0;
1233 else
1234 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1235
1236 if (!enable)
1237 val |= PRCM_TCR_STOP_TIMERS |
1238 PRCM_TCR_DOZE_MODE |
1239 PRCM_TCR_TENSEL_MASK;
1240
1241 writel(val, PRCM_TCR);
1242
1243 return 0;
1244 }
1245
1246 static int request_clock(u8 clock, bool enable)
1247 {
1248 u32 val;
1249 unsigned long flags;
1250
1251 spin_lock_irqsave(&clk_mgt_lock, flags);
1252
1253 /* Grab the HW semaphore. */
1254 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1255 cpu_relax();
1256
1257 val = readl(prcmu_base + clk_mgt[clock].offset);
1258 if (enable) {
1259 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1260 } else {
1261 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1263 }
1264 writel(val, prcmu_base + clk_mgt[clock].offset);
1265
1266 /* Release the HW semaphore. */
1267 writel(0, PRCM_SEM);
1268
1269 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1270
1271 return 0;
1272 }
1273
1274 static int request_sga_clock(u8 clock, bool enable)
1275 {
1276 u32 val;
1277 int ret;
1278
1279 if (enable) {
1280 val = readl(PRCM_CGATING_BYPASS);
1281 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1282 }
1283
1284 ret = request_clock(clock, enable);
1285
1286 if (!ret && !enable) {
1287 val = readl(PRCM_CGATING_BYPASS);
1288 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1289 }
1290
1291 return ret;
1292 }
1293
1294 static inline bool plldsi_locked(void)
1295 {
1296 return (readl(PRCM_PLLDSI_LOCKP) &
1297 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1298 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1299 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1300 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1301 }
1302
1303 static int request_plldsi(bool enable)
1304 {
1305 int r = 0;
1306 u32 val;
1307
1308 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1309 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1310 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1311
1312 val = readl(PRCM_PLLDSI_ENABLE);
1313 if (enable)
1314 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1315 else
1316 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1317 writel(val, PRCM_PLLDSI_ENABLE);
1318
1319 if (enable) {
1320 unsigned int i;
1321 bool locked = plldsi_locked();
1322
1323 for (i = 10; !locked && (i > 0); --i) {
1324 udelay(100);
1325 locked = plldsi_locked();
1326 }
1327 if (locked) {
1328 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1329 PRCM_APE_RESETN_SET);
1330 } else {
1331 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1332 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1333 PRCM_MMIP_LS_CLAMP_SET);
1334 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1335 writel(val, PRCM_PLLDSI_ENABLE);
1336 r = -EAGAIN;
1337 }
1338 } else {
1339 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1340 }
1341 return r;
1342 }
1343
1344 static int request_dsiclk(u8 n, bool enable)
1345 {
1346 u32 val;
1347
1348 val = readl(PRCM_DSI_PLLOUT_SEL);
1349 val &= ~dsiclk[n].divsel_mask;
1350 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1351 dsiclk[n].divsel_shift);
1352 writel(val, PRCM_DSI_PLLOUT_SEL);
1353 return 0;
1354 }
1355
1356 static int request_dsiescclk(u8 n, bool enable)
1357 {
1358 u32 val;
1359
1360 val = readl(PRCM_DSITVCLK_DIV);
1361 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1362 writel(val, PRCM_DSITVCLK_DIV);
1363 return 0;
1364 }
1365
1366 /**
1367 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1368 * @clock: The clock for which the request is made.
1369 * @enable: Whether the clock should be enabled (true) or disabled (false).
1370 *
1371 * This function should only be used by the clock implementation.
1372 * Do not use it from any other place!
1373 */
1374 int db8500_prcmu_request_clock(u8 clock, bool enable)
1375 {
1376 if (clock == PRCMU_SGACLK)
1377 return request_sga_clock(clock, enable);
1378 else if (clock < PRCMU_NUM_REG_CLOCKS)
1379 return request_clock(clock, enable);
1380 else if (clock == PRCMU_TIMCLK)
1381 return request_timclk(enable);
1382 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1383 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1384 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1385 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1386 else if (clock == PRCMU_PLLDSI)
1387 return request_plldsi(enable);
1388 else if (clock == PRCMU_SYSCLK)
1389 return request_sysclk(enable);
1390 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1391 return request_pll(clock, enable);
1392 else
1393 return -EINVAL;
1394 }
1395
1396 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1397 int branch)
1398 {
1399 u64 rate;
1400 u32 val;
1401 u32 d;
1402 u32 div = 1;
1403
1404 val = readl(reg);
1405
1406 rate = src_rate;
1407 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1408
1409 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1410 if (d > 1)
1411 div *= d;
1412
1413 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1414 if (d > 1)
1415 div *= d;
1416
1417 if (val & PRCM_PLL_FREQ_SELDIV2)
1418 div *= 2;
1419
1420 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1421 (val & PRCM_PLL_FREQ_DIV2EN) &&
1422 ((reg == PRCM_PLLSOC0_FREQ) ||
1423 (reg == PRCM_PLLARM_FREQ) ||
1424 (reg == PRCM_PLLDDR_FREQ))))
1425 div *= 2;
1426
1427 (void)do_div(rate, div);
1428
1429 return (unsigned long)rate;
1430 }
1431
1432 #define ROOT_CLOCK_RATE 38400000
1433
1434 static unsigned long clock_rate(u8 clock)
1435 {
1436 u32 val;
1437 u32 pllsw;
1438 unsigned long rate = ROOT_CLOCK_RATE;
1439
1440 val = readl(prcmu_base + clk_mgt[clock].offset);
1441
1442 if (val & PRCM_CLK_MGT_CLK38) {
1443 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1444 rate /= 2;
1445 return rate;
1446 }
1447
1448 val |= clk_mgt[clock].pllsw;
1449 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1450
1451 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1452 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1453 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1454 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1455 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1456 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1457 else
1458 return 0;
1459
1460 if ((clock == PRCMU_SGACLK) &&
1461 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1462 u64 r = (rate * 10);
1463
1464 (void)do_div(r, 25);
1465 return (unsigned long)r;
1466 }
1467 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1468 if (val)
1469 return rate / val;
1470 else
1471 return 0;
1472 }
1473
1474 static unsigned long armss_rate(void)
1475 {
1476 u32 r;
1477 unsigned long rate;
1478
1479 r = readl(PRCM_ARM_CHGCLKREQ);
1480
1481 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1482 /* External ARMCLKFIX clock */
1483
1484 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1485
1486 /* Check PRCM_ARM_CHGCLKREQ divider */
1487 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1488 rate /= 2;
1489
1490 /* Check PRCM_ARMCLKFIX_MGT divider */
1491 r = readl(PRCM_ARMCLKFIX_MGT);
1492 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1493 rate /= r;
1494
1495 } else {/* ARM PLL */
1496 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1497 }
1498
1499 return rate;
1500 }
1501
1502 static unsigned long dsiclk_rate(u8 n)
1503 {
1504 u32 divsel;
1505 u32 div = 1;
1506
1507 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1508 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1509
1510 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1511 divsel = dsiclk[n].divsel;
1512 else
1513 dsiclk[n].divsel = divsel;
1514
1515 switch (divsel) {
1516 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1517 div *= 2;
1518 fallthrough;
1519 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1520 div *= 2;
1521 fallthrough;
1522 case PRCM_DSI_PLLOUT_SEL_PHI:
1523 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1524 PLL_RAW) / div;
1525 default:
1526 return 0;
1527 }
1528 }
1529
1530 static unsigned long dsiescclk_rate(u8 n)
1531 {
1532 u32 div;
1533
1534 div = readl(PRCM_DSITVCLK_DIV);
1535 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1536 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1537 }
1538
1539 unsigned long prcmu_clock_rate(u8 clock)
1540 {
1541 if (clock < PRCMU_NUM_REG_CLOCKS)
1542 return clock_rate(clock);
1543 else if (clock == PRCMU_TIMCLK)
1544 return prcmu_is_ulppll_disabled() ?
1545 32768 : ROOT_CLOCK_RATE / 16;
1546 else if (clock == PRCMU_SYSCLK)
1547 return ROOT_CLOCK_RATE;
1548 else if (clock == PRCMU_PLLSOC0)
1549 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1550 else if (clock == PRCMU_PLLSOC1)
1551 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1552 else if (clock == PRCMU_ARMSS)
1553 return armss_rate();
1554 else if (clock == PRCMU_PLLDDR)
1555 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1556 else if (clock == PRCMU_PLLDSI)
1557 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1558 PLL_RAW);
1559 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1560 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1561 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1562 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1563 else
1564 return 0;
1565 }
1566
1567 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1568 {
1569 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1570 return ROOT_CLOCK_RATE;
1571 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1572 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1573 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1574 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1575 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1576 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1577 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1578 else
1579 return 0;
1580 }
1581
1582 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1583 {
1584 u32 div;
1585
1586 div = (src_rate / rate);
1587 if (div == 0)
1588 return 1;
1589 if (rate < (src_rate / div))
1590 div++;
1591 return div;
1592 }
1593
1594 static long round_clock_rate(u8 clock, unsigned long rate)
1595 {
1596 u32 val;
1597 u32 div;
1598 unsigned long src_rate;
1599 long rounded_rate;
1600
1601 val = readl(prcmu_base + clk_mgt[clock].offset);
1602 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1603 clk_mgt[clock].branch);
1604 div = clock_divider(src_rate, rate);
1605 if (val & PRCM_CLK_MGT_CLK38) {
1606 if (clk_mgt[clock].clk38div) {
1607 if (div > 2)
1608 div = 2;
1609 } else {
1610 div = 1;
1611 }
1612 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1613 u64 r = (src_rate * 10);
1614
1615 (void)do_div(r, 25);
1616 if (r <= rate)
1617 return (unsigned long)r;
1618 }
1619 rounded_rate = (src_rate / min(div, (u32)31));
1620
1621 return rounded_rate;
1622 }
1623
1624 static const unsigned long db8500_armss_freqs[] = {
1625 199680000,
1626 399360000,
1627 798720000,
1628 998400000
1629 };
1630
1631 /* The DB8520 has slightly higher ARMSS max frequency */
1632 static const unsigned long db8520_armss_freqs[] = {
1633 199680000,
1634 399360000,
1635 798720000,
1636 1152000000
1637 };
1638
1639 static long round_armss_rate(unsigned long rate)
1640 {
1641 unsigned long freq = 0;
1642 const unsigned long *freqs;
1643 int nfreqs;
1644 int i;
1645
1646 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1647 freqs = db8520_armss_freqs;
1648 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1649 } else {
1650 freqs = db8500_armss_freqs;
1651 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1652 }
1653
1654 /* Find the corresponding arm opp from the cpufreq table. */
1655 for (i = 0; i < nfreqs; i++) {
1656 freq = freqs[i];
1657 if (rate <= freq)
1658 break;
1659 }
1660
1661 /* Return the last valid value, even if a match was not found. */
1662 return freq;
1663 }
1664
1665 #define MIN_PLL_VCO_RATE 600000000ULL
1666 #define MAX_PLL_VCO_RATE 1680640000ULL
1667
1668 static long round_plldsi_rate(unsigned long rate)
1669 {
1670 long rounded_rate = 0;
1671 unsigned long src_rate;
1672 unsigned long rem;
1673 u32 r;
1674
1675 src_rate = clock_rate(PRCMU_HDMICLK);
1676 rem = rate;
1677
1678 for (r = 7; (rem > 0) && (r > 0); r--) {
1679 u64 d;
1680
1681 d = (r * rate);
1682 (void)do_div(d, src_rate);
1683 if (d < 6)
1684 d = 6;
1685 else if (d > 255)
1686 d = 255;
1687 d *= src_rate;
1688 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1689 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1690 continue;
1691 (void)do_div(d, r);
1692 if (rate < d) {
1693 if (rounded_rate == 0)
1694 rounded_rate = (long)d;
1695 break;
1696 }
1697 if ((rate - d) < rem) {
1698 rem = (rate - d);
1699 rounded_rate = (long)d;
1700 }
1701 }
1702 return rounded_rate;
1703 }
1704
1705 static long round_dsiclk_rate(unsigned long rate)
1706 {
1707 u32 div;
1708 unsigned long src_rate;
1709 long rounded_rate;
1710
1711 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1712 PLL_RAW);
1713 div = clock_divider(src_rate, rate);
1714 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1715
1716 return rounded_rate;
1717 }
1718
1719 static long round_dsiescclk_rate(unsigned long rate)
1720 {
1721 u32 div;
1722 unsigned long src_rate;
1723 long rounded_rate;
1724
1725 src_rate = clock_rate(PRCMU_TVCLK);
1726 div = clock_divider(src_rate, rate);
1727 rounded_rate = (src_rate / min(div, (u32)255));
1728
1729 return rounded_rate;
1730 }
1731
1732 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1733 {
1734 if (clock < PRCMU_NUM_REG_CLOCKS)
1735 return round_clock_rate(clock, rate);
1736 else if (clock == PRCMU_ARMSS)
1737 return round_armss_rate(rate);
1738 else if (clock == PRCMU_PLLDSI)
1739 return round_plldsi_rate(rate);
1740 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1741 return round_dsiclk_rate(rate);
1742 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1743 return round_dsiescclk_rate(rate);
1744 else
1745 return (long)prcmu_clock_rate(clock);
1746 }
1747
1748 static void set_clock_rate(u8 clock, unsigned long rate)
1749 {
1750 u32 val;
1751 u32 div;
1752 unsigned long src_rate;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&clk_mgt_lock, flags);
1756
1757 /* Grab the HW semaphore. */
1758 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1759 cpu_relax();
1760
1761 val = readl(prcmu_base + clk_mgt[clock].offset);
1762 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1763 clk_mgt[clock].branch);
1764 div = clock_divider(src_rate, rate);
1765 if (val & PRCM_CLK_MGT_CLK38) {
1766 if (clk_mgt[clock].clk38div) {
1767 if (div > 1)
1768 val |= PRCM_CLK_MGT_CLK38DIV;
1769 else
1770 val &= ~PRCM_CLK_MGT_CLK38DIV;
1771 }
1772 } else if (clock == PRCMU_SGACLK) {
1773 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1774 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1775 if (div == 3) {
1776 u64 r = (src_rate * 10);
1777
1778 (void)do_div(r, 25);
1779 if (r <= rate) {
1780 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1781 div = 0;
1782 }
1783 }
1784 val |= min(div, (u32)31);
1785 } else {
1786 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1787 val |= min(div, (u32)31);
1788 }
1789 writel(val, prcmu_base + clk_mgt[clock].offset);
1790
1791 /* Release the HW semaphore. */
1792 writel(0, PRCM_SEM);
1793
1794 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1795 }
1796
1797 static int set_armss_rate(unsigned long rate)
1798 {
1799 unsigned long freq;
1800 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1801 const unsigned long *freqs;
1802 int nfreqs;
1803 int i;
1804
1805 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1806 freqs = db8520_armss_freqs;
1807 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1808 } else {
1809 freqs = db8500_armss_freqs;
1810 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1811 }
1812
1813 /* Find the corresponding arm opp from the cpufreq table. */
1814 for (i = 0; i < nfreqs; i++) {
1815 freq = freqs[i];
1816 if (rate == freq)
1817 break;
1818 }
1819
1820 if (rate != freq)
1821 return -EINVAL;
1822
1823 /* Set the new arm opp. */
1824 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1825 return db8500_prcmu_set_arm_opp(opps[i]);
1826 }
1827
1828 static int set_plldsi_rate(unsigned long rate)
1829 {
1830 unsigned long src_rate;
1831 unsigned long rem;
1832 u32 pll_freq = 0;
1833 u32 r;
1834
1835 src_rate = clock_rate(PRCMU_HDMICLK);
1836 rem = rate;
1837
1838 for (r = 7; (rem > 0) && (r > 0); r--) {
1839 u64 d;
1840 u64 hwrate;
1841
1842 d = (r * rate);
1843 (void)do_div(d, src_rate);
1844 if (d < 6)
1845 d = 6;
1846 else if (d > 255)
1847 d = 255;
1848 hwrate = (d * src_rate);
1849 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1850 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1851 continue;
1852 (void)do_div(hwrate, r);
1853 if (rate < hwrate) {
1854 if (pll_freq == 0)
1855 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1856 (r << PRCM_PLL_FREQ_R_SHIFT));
1857 break;
1858 }
1859 if ((rate - hwrate) < rem) {
1860 rem = (rate - hwrate);
1861 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1862 (r << PRCM_PLL_FREQ_R_SHIFT));
1863 }
1864 }
1865 if (pll_freq == 0)
1866 return -EINVAL;
1867
1868 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1869 writel(pll_freq, PRCM_PLLDSI_FREQ);
1870
1871 return 0;
1872 }
1873
1874 static void set_dsiclk_rate(u8 n, unsigned long rate)
1875 {
1876 u32 val;
1877 u32 div;
1878
1879 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1880 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1881
1882 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1883 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1884 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1885
1886 val = readl(PRCM_DSI_PLLOUT_SEL);
1887 val &= ~dsiclk[n].divsel_mask;
1888 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1889 writel(val, PRCM_DSI_PLLOUT_SEL);
1890 }
1891
1892 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1893 {
1894 u32 val;
1895 u32 div;
1896
1897 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1898 val = readl(PRCM_DSITVCLK_DIV);
1899 val &= ~dsiescclk[n].div_mask;
1900 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1901 writel(val, PRCM_DSITVCLK_DIV);
1902 }
1903
1904 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1905 {
1906 if (clock < PRCMU_NUM_REG_CLOCKS)
1907 set_clock_rate(clock, rate);
1908 else if (clock == PRCMU_ARMSS)
1909 return set_armss_rate(rate);
1910 else if (clock == PRCMU_PLLDSI)
1911 return set_plldsi_rate(rate);
1912 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1913 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1914 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1915 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1916 return 0;
1917 }
1918
1919 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1920 {
1921 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1922 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1923 return -EINVAL;
1924
1925 mutex_lock(&mb4_transfer.lock);
1926
1927 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1928 cpu_relax();
1929
1930 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1931 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1932 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1933 writeb(DDR_PWR_STATE_ON,
1934 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1935 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1936
1937 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1938 wait_for_completion(&mb4_transfer.work);
1939
1940 mutex_unlock(&mb4_transfer.lock);
1941
1942 return 0;
1943 }
1944
1945 int db8500_prcmu_config_hotdog(u8 threshold)
1946 {
1947 mutex_lock(&mb4_transfer.lock);
1948
1949 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1950 cpu_relax();
1951
1952 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1953 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1954
1955 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1956 wait_for_completion(&mb4_transfer.work);
1957
1958 mutex_unlock(&mb4_transfer.lock);
1959
1960 return 0;
1961 }
1962
1963 int db8500_prcmu_config_hotmon(u8 low, u8 high)
1964 {
1965 mutex_lock(&mb4_transfer.lock);
1966
1967 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1968 cpu_relax();
1969
1970 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1971 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1972 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1973 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1974 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1975
1976 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1977 wait_for_completion(&mb4_transfer.work);
1978
1979 mutex_unlock(&mb4_transfer.lock);
1980
1981 return 0;
1982 }
1983 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1984
1985 static int config_hot_period(u16 val)
1986 {
1987 mutex_lock(&mb4_transfer.lock);
1988
1989 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1990 cpu_relax();
1991
1992 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1993 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1994
1995 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1996 wait_for_completion(&mb4_transfer.work);
1997
1998 mutex_unlock(&mb4_transfer.lock);
1999
2000 return 0;
2001 }
2002
2003 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2004 {
2005 if (cycles32k == 0xFFFF)
2006 return -EINVAL;
2007
2008 return config_hot_period(cycles32k);
2009 }
2010 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2011
2012 int db8500_prcmu_stop_temp_sense(void)
2013 {
2014 return config_hot_period(0xFFFF);
2015 }
2016 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2017
2018 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2019 {
2020
2021 mutex_lock(&mb4_transfer.lock);
2022
2023 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2024 cpu_relax();
2025
2026 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2027 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2028 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2029 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2030
2031 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2032
2033 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2034 wait_for_completion(&mb4_transfer.work);
2035
2036 mutex_unlock(&mb4_transfer.lock);
2037
2038 return 0;
2039
2040 }
2041
2042 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2043 {
2044 BUG_ON(num == 0 || num > 0xf);
2045 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2046 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2047 A9WDOG_AUTO_OFF_DIS);
2048 }
2049 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2050
2051 int db8500_prcmu_enable_a9wdog(u8 id)
2052 {
2053 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2054 }
2055 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2056
2057 int db8500_prcmu_disable_a9wdog(u8 id)
2058 {
2059 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2060 }
2061 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2062
2063 int db8500_prcmu_kick_a9wdog(u8 id)
2064 {
2065 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2066 }
2067 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2068
2069 /*
2070 * timeout is 28 bit, in ms.
2071 */
2072 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2073 {
2074 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2075 (id & A9WDOG_ID_MASK) |
2076 /*
2077 * Put the lowest 28 bits of timeout at
2078 * offset 4. Four first bits are used for id.
2079 */
2080 (u8)((timeout << 4) & 0xf0),
2081 (u8)((timeout >> 4) & 0xff),
2082 (u8)((timeout >> 12) & 0xff),
2083 (u8)((timeout >> 20) & 0xff));
2084 }
2085 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2086
2087 /**
2088 * prcmu_abb_read() - Read register value(s) from the ABB.
2089 * @slave: The I2C slave address.
2090 * @reg: The (start) register address.
2091 * @value: The read out value(s).
2092 * @size: The number of registers to read.
2093 *
2094 * Reads register value(s) from the ABB.
2095 * @size has to be 1 for the current firmware version.
2096 */
2097 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2098 {
2099 int r;
2100
2101 if (size != 1)
2102 return -EINVAL;
2103
2104 mutex_lock(&mb5_transfer.lock);
2105
2106 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2107 cpu_relax();
2108
2109 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2110 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2111 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2112 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2113 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2114
2115 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2116
2117 if (!wait_for_completion_timeout(&mb5_transfer.work,
2118 msecs_to_jiffies(20000))) {
2119 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2120 __func__);
2121 r = -EIO;
2122 } else {
2123 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2124 }
2125
2126 if (!r)
2127 *value = mb5_transfer.ack.value;
2128
2129 mutex_unlock(&mb5_transfer.lock);
2130
2131 return r;
2132 }
2133
2134 /**
2135 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2136 * @slave: The I2C slave address.
2137 * @reg: The (start) register address.
2138 * @value: The value(s) to write.
2139 * @mask: The mask(s) to use.
2140 * @size: The number of registers to write.
2141 *
2142 * Writes masked register value(s) to the ABB.
2143 * For each @value, only the bits set to 1 in the corresponding @mask
2144 * will be written. The other bits are not changed.
2145 * @size has to be 1 for the current firmware version.
2146 */
2147 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2148 {
2149 int r;
2150
2151 if (size != 1)
2152 return -EINVAL;
2153
2154 mutex_lock(&mb5_transfer.lock);
2155
2156 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2157 cpu_relax();
2158
2159 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2160 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2161 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2162 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2163 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2164
2165 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2166
2167 if (!wait_for_completion_timeout(&mb5_transfer.work,
2168 msecs_to_jiffies(20000))) {
2169 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2170 __func__);
2171 r = -EIO;
2172 } else {
2173 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2174 }
2175
2176 mutex_unlock(&mb5_transfer.lock);
2177
2178 return r;
2179 }
2180
2181 /**
2182 * prcmu_abb_write() - Write register value(s) to the ABB.
2183 * @slave: The I2C slave address.
2184 * @reg: The (start) register address.
2185 * @value: The value(s) to write.
2186 * @size: The number of registers to write.
2187 *
2188 * Writes register value(s) to the ABB.
2189 * @size has to be 1 for the current firmware version.
2190 */
2191 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2192 {
2193 u8 mask = ~0;
2194
2195 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2196 }
2197
2198 /**
2199 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2200 */
2201 int prcmu_ac_wake_req(void)
2202 {
2203 u32 val;
2204 int ret = 0;
2205
2206 mutex_lock(&mb0_transfer.ac_wake_lock);
2207
2208 val = readl(PRCM_HOSTACCESS_REQ);
2209 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2210 goto unlock_and_return;
2211
2212 atomic_set(&ac_wake_req_state, 1);
2213
2214 /*
2215 * Force Modem Wake-up before hostaccess_req ping-pong.
2216 * It prevents Modem to enter in Sleep while acking the hostaccess
2217 * request. The 31us delay has been calculated by HWI.
2218 */
2219 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2220 writel(val, PRCM_HOSTACCESS_REQ);
2221
2222 udelay(31);
2223
2224 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2225 writel(val, PRCM_HOSTACCESS_REQ);
2226
2227 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2228 msecs_to_jiffies(5000))) {
2229 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2230 __func__);
2231 ret = -EFAULT;
2232 }
2233
2234 unlock_and_return:
2235 mutex_unlock(&mb0_transfer.ac_wake_lock);
2236 return ret;
2237 }
2238
2239 /**
2240 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2241 */
2242 void prcmu_ac_sleep_req(void)
2243 {
2244 u32 val;
2245
2246 mutex_lock(&mb0_transfer.ac_wake_lock);
2247
2248 val = readl(PRCM_HOSTACCESS_REQ);
2249 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2250 goto unlock_and_return;
2251
2252 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2253 PRCM_HOSTACCESS_REQ);
2254
2255 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2256 msecs_to_jiffies(5000))) {
2257 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2258 __func__);
2259 }
2260
2261 atomic_set(&ac_wake_req_state, 0);
2262
2263 unlock_and_return:
2264 mutex_unlock(&mb0_transfer.ac_wake_lock);
2265 }
2266
2267 bool db8500_prcmu_is_ac_wake_requested(void)
2268 {
2269 return (atomic_read(&ac_wake_req_state) != 0);
2270 }
2271
2272 /**
2273 * db8500_prcmu_system_reset - System reset
2274 *
2275 * Saves the reset reason code and then sets the APE_SOFTRST register which
2276 * fires interrupt to fw
2277 *
2278 * @reset_code: The reason for system reset
2279 */
2280 void db8500_prcmu_system_reset(u16 reset_code)
2281 {
2282 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2283 writel(1, PRCM_APE_SOFTRST);
2284 }
2285
2286 /**
2287 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2288 *
2289 * Retrieves the reset reason code stored by prcmu_system_reset() before
2290 * last restart.
2291 */
2292 u16 db8500_prcmu_get_reset_code(void)
2293 {
2294 return readw(tcdm_base + PRCM_SW_RST_REASON);
2295 }
2296
2297 /**
2298 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2299 */
2300 void db8500_prcmu_modem_reset(void)
2301 {
2302 mutex_lock(&mb1_transfer.lock);
2303
2304 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2305 cpu_relax();
2306
2307 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2308 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2309 wait_for_completion(&mb1_transfer.work);
2310
2311 /*
2312 * No need to check return from PRCMU as modem should go in reset state
2313 * This state is already managed by upper layer
2314 */
2315
2316 mutex_unlock(&mb1_transfer.lock);
2317 }
2318
2319 static void ack_dbb_wakeup(void)
2320 {
2321 unsigned long flags;
2322
2323 spin_lock_irqsave(&mb0_transfer.lock, flags);
2324
2325 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2326 cpu_relax();
2327
2328 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2329 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2330
2331 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2332 }
2333
2334 static inline void print_unknown_header_warning(u8 n, u8 header)
2335 {
2336 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2337 header, n);
2338 }
2339
2340 static bool read_mailbox_0(void)
2341 {
2342 bool r;
2343 u32 ev;
2344 unsigned int n;
2345 u8 header;
2346
2347 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2348 switch (header) {
2349 case MB0H_WAKEUP_EXE:
2350 case MB0H_WAKEUP_SLEEP:
2351 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2352 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2353 else
2354 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2355
2356 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2357 complete(&mb0_transfer.ac_wake_work);
2358 if (ev & WAKEUP_BIT_SYSCLK_OK)
2359 complete(&mb3_transfer.sysclk_work);
2360
2361 ev &= mb0_transfer.req.dbb_irqs;
2362
2363 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2364 if (ev & prcmu_irq_bit[n])
2365 generic_handle_domain_irq(db8500_irq_domain, n);
2366 }
2367 r = true;
2368 break;
2369 default:
2370 print_unknown_header_warning(0, header);
2371 r = false;
2372 break;
2373 }
2374 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2375 return r;
2376 }
2377
2378 static bool read_mailbox_1(void)
2379 {
2380 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2381 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2382 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2383 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2384 PRCM_ACK_MB1_CURRENT_APE_OPP);
2385 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2386 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2387 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2388 complete(&mb1_transfer.work);
2389 return false;
2390 }
2391
2392 static bool read_mailbox_2(void)
2393 {
2394 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2395 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2396 complete(&mb2_transfer.work);
2397 return false;
2398 }
2399
2400 static bool read_mailbox_3(void)
2401 {
2402 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2403 return false;
2404 }
2405
2406 static bool read_mailbox_4(void)
2407 {
2408 u8 header;
2409 bool do_complete = true;
2410
2411 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2412 switch (header) {
2413 case MB4H_MEM_ST:
2414 case MB4H_HOTDOG:
2415 case MB4H_HOTMON:
2416 case MB4H_HOT_PERIOD:
2417 case MB4H_A9WDOG_CONF:
2418 case MB4H_A9WDOG_EN:
2419 case MB4H_A9WDOG_DIS:
2420 case MB4H_A9WDOG_LOAD:
2421 case MB4H_A9WDOG_KICK:
2422 break;
2423 default:
2424 print_unknown_header_warning(4, header);
2425 do_complete = false;
2426 break;
2427 }
2428
2429 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2430
2431 if (do_complete)
2432 complete(&mb4_transfer.work);
2433
2434 return false;
2435 }
2436
2437 static bool read_mailbox_5(void)
2438 {
2439 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2440 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2441 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2442 complete(&mb5_transfer.work);
2443 return false;
2444 }
2445
2446 static bool read_mailbox_6(void)
2447 {
2448 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2449 return false;
2450 }
2451
2452 static bool read_mailbox_7(void)
2453 {
2454 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2455 return false;
2456 }
2457
2458 static bool (* const read_mailbox[NUM_MB])(void) = {
2459 read_mailbox_0,
2460 read_mailbox_1,
2461 read_mailbox_2,
2462 read_mailbox_3,
2463 read_mailbox_4,
2464 read_mailbox_5,
2465 read_mailbox_6,
2466 read_mailbox_7
2467 };
2468
2469 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2470 {
2471 u32 bits;
2472 u8 n;
2473 irqreturn_t r;
2474
2475 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2476 if (unlikely(!bits))
2477 return IRQ_NONE;
2478
2479 r = IRQ_HANDLED;
2480 for (n = 0; bits; n++) {
2481 if (bits & MBOX_BIT(n)) {
2482 bits -= MBOX_BIT(n);
2483 if (read_mailbox[n]())
2484 r = IRQ_WAKE_THREAD;
2485 }
2486 }
2487 return r;
2488 }
2489
2490 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2491 {
2492 ack_dbb_wakeup();
2493 return IRQ_HANDLED;
2494 }
2495
2496 static void prcmu_mask_work(struct work_struct *work)
2497 {
2498 unsigned long flags;
2499
2500 spin_lock_irqsave(&mb0_transfer.lock, flags);
2501
2502 config_wakeups();
2503
2504 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2505 }
2506
2507 static void prcmu_irq_mask(struct irq_data *d)
2508 {
2509 unsigned long flags;
2510
2511 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2512
2513 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2514
2515 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2516
2517 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2518 schedule_work(&mb0_transfer.mask_work);
2519 }
2520
2521 static void prcmu_irq_unmask(struct irq_data *d)
2522 {
2523 unsigned long flags;
2524
2525 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2526
2527 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2528
2529 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2530
2531 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2532 schedule_work(&mb0_transfer.mask_work);
2533 }
2534
2535 static void noop(struct irq_data *d)
2536 {
2537 }
2538
2539 static struct irq_chip prcmu_irq_chip = {
2540 .name = "prcmu",
2541 .irq_disable = prcmu_irq_mask,
2542 .irq_ack = noop,
2543 .irq_mask = prcmu_irq_mask,
2544 .irq_unmask = prcmu_irq_unmask,
2545 };
2546
2547 static char *fw_project_name(u32 project)
2548 {
2549 switch (project) {
2550 case PRCMU_FW_PROJECT_U8500:
2551 return "U8500";
2552 case PRCMU_FW_PROJECT_U8400:
2553 return "U8400";
2554 case PRCMU_FW_PROJECT_U9500:
2555 return "U9500";
2556 case PRCMU_FW_PROJECT_U8500_MBB:
2557 return "U8500 MBB";
2558 case PRCMU_FW_PROJECT_U8500_C1:
2559 return "U8500 C1";
2560 case PRCMU_FW_PROJECT_U8500_C2:
2561 return "U8500 C2";
2562 case PRCMU_FW_PROJECT_U8500_C3:
2563 return "U8500 C3";
2564 case PRCMU_FW_PROJECT_U8500_C4:
2565 return "U8500 C4";
2566 case PRCMU_FW_PROJECT_U9500_MBL:
2567 return "U9500 MBL";
2568 case PRCMU_FW_PROJECT_U8500_SSG1:
2569 return "U8500 Samsung 1";
2570 case PRCMU_FW_PROJECT_U8500_MBL2:
2571 return "U8500 MBL2";
2572 case PRCMU_FW_PROJECT_U8520:
2573 return "U8520 MBL";
2574 case PRCMU_FW_PROJECT_U8420:
2575 return "U8420";
2576 case PRCMU_FW_PROJECT_U8500_SSG2:
2577 return "U8500 Samsung 2";
2578 case PRCMU_FW_PROJECT_U8420_SYSCLK:
2579 return "U8420-sysclk";
2580 case PRCMU_FW_PROJECT_U9540:
2581 return "U9540";
2582 case PRCMU_FW_PROJECT_A9420:
2583 return "A9420";
2584 case PRCMU_FW_PROJECT_L8540:
2585 return "L8540";
2586 case PRCMU_FW_PROJECT_L8580:
2587 return "L8580";
2588 default:
2589 return "Unknown";
2590 }
2591 }
2592
2593 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2594 irq_hw_number_t hwirq)
2595 {
2596 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2597 handle_simple_irq);
2598
2599 return 0;
2600 }
2601
2602 static const struct irq_domain_ops db8500_irq_ops = {
2603 .map = db8500_irq_map,
2604 .xlate = irq_domain_xlate_twocell,
2605 };
2606
2607 static int db8500_irq_init(struct device_node *np)
2608 {
2609 int i;
2610
2611 db8500_irq_domain = irq_domain_add_simple(
2612 np, NUM_PRCMU_WAKEUPS, 0,
2613 &db8500_irq_ops, NULL);
2614
2615 if (!db8500_irq_domain) {
2616 pr_err("Failed to create irqdomain\n");
2617 return -ENOSYS;
2618 }
2619
2620 /* All wakeups will be used, so create mappings for all */
2621 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2622 irq_create_mapping(db8500_irq_domain, i);
2623
2624 return 0;
2625 }
2626
2627 static void dbx500_fw_version_init(struct device_node *np)
2628 {
2629 void __iomem *tcpm_base;
2630 u32 version;
2631
2632 tcpm_base = of_iomap(np, 1);
2633 if (!tcpm_base) {
2634 pr_err("no prcmu tcpm mem region provided\n");
2635 return;
2636 }
2637
2638 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2639 fw_info.version.project = (version & 0xFF);
2640 fw_info.version.api_version = (version >> 8) & 0xFF;
2641 fw_info.version.func_version = (version >> 16) & 0xFF;
2642 fw_info.version.errata = (version >> 24) & 0xFF;
2643 strncpy(fw_info.version.project_name,
2644 fw_project_name(fw_info.version.project),
2645 PRCMU_FW_PROJECT_NAME_LEN);
2646 fw_info.valid = true;
2647 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2648 fw_info.version.project_name,
2649 fw_info.version.project,
2650 fw_info.version.api_version,
2651 fw_info.version.func_version,
2652 fw_info.version.errata);
2653 iounmap(tcpm_base);
2654 }
2655
2656 void __init db8500_prcmu_early_init(void)
2657 {
2658 /*
2659 * This is a temporary remap to bring up the clocks. It is
2660 * subsequently replaces with a real remap. After the merge of
2661 * the mailbox subsystem all of this early code goes away, and the
2662 * clock driver can probe independently. An early initcall will
2663 * still be needed, but it can be diverted into drivers/clk/ux500.
2664 */
2665 struct device_node *np;
2666
2667 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2668 prcmu_base = of_iomap(np, 0);
2669 if (!prcmu_base) {
2670 of_node_put(np);
2671 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2672 return;
2673 }
2674 dbx500_fw_version_init(np);
2675 of_node_put(np);
2676
2677 spin_lock_init(&mb0_transfer.lock);
2678 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2679 mutex_init(&mb0_transfer.ac_wake_lock);
2680 init_completion(&mb0_transfer.ac_wake_work);
2681 mutex_init(&mb1_transfer.lock);
2682 init_completion(&mb1_transfer.work);
2683 mb1_transfer.ape_opp = APE_NO_CHANGE;
2684 mutex_init(&mb2_transfer.lock);
2685 init_completion(&mb2_transfer.work);
2686 spin_lock_init(&mb2_transfer.auto_pm_lock);
2687 spin_lock_init(&mb3_transfer.lock);
2688 mutex_init(&mb3_transfer.sysclk_lock);
2689 init_completion(&mb3_transfer.sysclk_work);
2690 mutex_init(&mb4_transfer.lock);
2691 init_completion(&mb4_transfer.work);
2692 mutex_init(&mb5_transfer.lock);
2693 init_completion(&mb5_transfer.work);
2694
2695 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2696 }
2697
2698 static void init_prcm_registers(void)
2699 {
2700 u32 val;
2701
2702 val = readl(PRCM_A9PL_FORCE_CLKEN);
2703 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706 }
2707
2708 /*
2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710 */
2711 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712 REGULATOR_SUPPLY("v-ape", NULL),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718 /* "v-mmc" changed to "vcore" in the mainline kernel */
2719 REGULATOR_SUPPLY("vcore", "sdi0"),
2720 REGULATOR_SUPPLY("vcore", "sdi1"),
2721 REGULATOR_SUPPLY("vcore", "sdi2"),
2722 REGULATOR_SUPPLY("vcore", "sdi3"),
2723 REGULATOR_SUPPLY("vcore", "sdi4"),
2724 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726 /* "v-uart" changed to "vcore" in the mainline kernel */
2727 REGULATOR_SUPPLY("vcore", "uart0"),
2728 REGULATOR_SUPPLY("vcore", "uart1"),
2729 REGULATOR_SUPPLY("vcore", "uart2"),
2730 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 };
2734
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737 /* AV8100 regulator */
2738 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 };
2740
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743 REGULATOR_SUPPLY("vsupply", "mcde"),
2744 };
2745
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 };
2750
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 };
2755
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 };
2760
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 };
2765
2766 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767 REGULATOR_SUPPLY("v-mali", NULL),
2768 };
2769
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772 REGULATOR_SUPPLY("esram12", "cm_control"),
2773 };
2774
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777 REGULATOR_SUPPLY("v-esram34", "mcde"),
2778 REGULATOR_SUPPLY("esram34", "cm_control"),
2779 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 };
2781
2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783 [DB8500_REGULATOR_VAPE] = {
2784 .constraints = {
2785 .name = "db8500-vape",
2786 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787 .always_on = true,
2788 },
2789 .consumer_supplies = db8500_vape_consumers,
2790 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791 },
2792 [DB8500_REGULATOR_VARM] = {
2793 .constraints = {
2794 .name = "db8500-varm",
2795 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796 },
2797 },
2798 [DB8500_REGULATOR_VMODEM] = {
2799 .constraints = {
2800 .name = "db8500-vmodem",
2801 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802 },
2803 },
2804 [DB8500_REGULATOR_VPLL] = {
2805 .constraints = {
2806 .name = "db8500-vpll",
2807 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 },
2809 },
2810 [DB8500_REGULATOR_VSMPS1] = {
2811 .constraints = {
2812 .name = "db8500-vsmps1",
2813 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814 },
2815 },
2816 [DB8500_REGULATOR_VSMPS2] = {
2817 .constraints = {
2818 .name = "db8500-vsmps2",
2819 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820 },
2821 .consumer_supplies = db8500_vsmps2_consumers,
2822 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823 },
2824 [DB8500_REGULATOR_VSMPS3] = {
2825 .constraints = {
2826 .name = "db8500-vsmps3",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 },
2829 },
2830 [DB8500_REGULATOR_VRF1] = {
2831 .constraints = {
2832 .name = "db8500-vrf1",
2833 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834 },
2835 },
2836 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837 /* dependency to u8500-vape is handled outside regulator framework */
2838 .constraints = {
2839 .name = "db8500-sva-mmdsp",
2840 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841 },
2842 .consumer_supplies = db8500_svammdsp_consumers,
2843 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844 },
2845 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846 .constraints = {
2847 /* "ret" means "retention" */
2848 .name = "db8500-sva-mmdsp-ret",
2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 },
2851 },
2852 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853 /* dependency to u8500-vape is handled outside regulator framework */
2854 .constraints = {
2855 .name = "db8500-sva-pipe",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 },
2858 .consumer_supplies = db8500_svapipe_consumers,
2859 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860 },
2861 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862 /* dependency to u8500-vape is handled outside regulator framework */
2863 .constraints = {
2864 .name = "db8500-sia-mmdsp",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 },
2867 .consumer_supplies = db8500_siammdsp_consumers,
2868 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869 },
2870 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871 .constraints = {
2872 .name = "db8500-sia-mmdsp-ret",
2873 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874 },
2875 },
2876 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877 /* dependency to u8500-vape is handled outside regulator framework */
2878 .constraints = {
2879 .name = "db8500-sia-pipe",
2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 },
2882 .consumer_supplies = db8500_siapipe_consumers,
2883 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884 },
2885 [DB8500_REGULATOR_SWITCH_SGA] = {
2886 .supply_regulator = "db8500-vape",
2887 .constraints = {
2888 .name = "db8500-sga",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 .consumer_supplies = db8500_sga_consumers,
2892 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893
2894 },
2895 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896 .supply_regulator = "db8500-vape",
2897 .constraints = {
2898 .name = "db8500-b2r2-mcde",
2899 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 },
2901 .consumer_supplies = db8500_b2r2_mcde_consumers,
2902 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903 },
2904 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905 /*
2906 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907 * no need to hold Vape
2908 */
2909 .constraints = {
2910 .name = "db8500-esram12",
2911 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912 },
2913 .consumer_supplies = db8500_esram12_consumers,
2914 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915 },
2916 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917 .constraints = {
2918 .name = "db8500-esram12-ret",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
2921 },
2922 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923 /*
2924 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925 * no need to hold Vape
2926 */
2927 .constraints = {
2928 .name = "db8500-esram34",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 },
2931 .consumer_supplies = db8500_esram34_consumers,
2932 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933 },
2934 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935 .constraints = {
2936 .name = "db8500-esram34-ret",
2937 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 },
2939 },
2940 };
2941
2942 static struct ux500_wdt_data db8500_wdt_pdata = {
2943 .timeout = 600, /* 10 minutes */
2944 .has_28_bits_resolution = true,
2945 };
2946
2947 static const struct mfd_cell common_prcmu_devs[] = {
2948 {
2949 .name = "ux500_wdt",
2950 .platform_data = &db8500_wdt_pdata,
2951 .pdata_size = sizeof(db8500_wdt_pdata),
2952 .id = -1,
2953 },
2954 MFD_CELL_NAME("db8500-cpuidle"),
2955 };
2956
2957 static const struct mfd_cell db8500_prcmu_devs[] = {
2958 MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2959 &db8500_regulators, sizeof(db8500_regulators), 0,
2960 "stericsson,db8500-prcmu-regulator"),
2961 MFD_CELL_OF("db8500-thermal",
2962 NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2963 };
2964
2965 static int db8500_prcmu_register_ab8500(struct device *parent)
2966 {
2967 struct device_node *np;
2968 struct resource ab850x_resource;
2969 const struct mfd_cell ab8500_cell = {
2970 .name = "ab8500-core",
2971 .of_compatible = "stericsson,ab8500",
2972 .id = AB8500_VERSION_AB8500,
2973 .resources = &ab850x_resource,
2974 .num_resources = 1,
2975 };
2976 const struct mfd_cell ab8505_cell = {
2977 .name = "ab8505-core",
2978 .of_compatible = "stericsson,ab8505",
2979 .id = AB8500_VERSION_AB8505,
2980 .resources = &ab850x_resource,
2981 .num_resources = 1,
2982 };
2983 const struct mfd_cell *ab850x_cell;
2984
2985 if (!parent->of_node)
2986 return -ENODEV;
2987
2988 /* Look up the device node, sneak the IRQ out of it */
2989 for_each_child_of_node(parent->of_node, np) {
2990 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2991 ab850x_cell = &ab8500_cell;
2992 break;
2993 }
2994 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2995 ab850x_cell = &ab8505_cell;
2996 break;
2997 }
2998 }
2999 if (!np) {
3000 dev_info(parent, "could not find AB850X node in the device tree\n");
3001 return -ENODEV;
3002 }
3003 of_irq_to_resource_table(np, &ab850x_resource, 1);
3004
3005 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
3006 }
3007
3008 static int db8500_prcmu_probe(struct platform_device *pdev)
3009 {
3010 struct device_node *np = pdev->dev.of_node;
3011 int irq = 0, err = 0;
3012 struct resource *res;
3013
3014 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3015 if (!res) {
3016 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3017 return -EINVAL;
3018 }
3019 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3020 if (!prcmu_base) {
3021 dev_err(&pdev->dev,
3022 "failed to ioremap prcmu register memory\n");
3023 return -ENOMEM;
3024 }
3025 init_prcm_registers();
3026 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3027 if (!res) {
3028 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3029 return -EINVAL;
3030 }
3031 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3032 resource_size(res));
3033 if (!tcdm_base) {
3034 dev_err(&pdev->dev,
3035 "failed to ioremap prcmu-tcdm register memory\n");
3036 return -ENOMEM;
3037 }
3038
3039 /* Clean up the mailbox interrupts after pre-kernel code. */
3040 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3041
3042 irq = platform_get_irq(pdev, 0);
3043 if (irq <= 0)
3044 return irq;
3045
3046 err = request_threaded_irq(irq, prcmu_irq_handler,
3047 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3048 if (err < 0) {
3049 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3050 return err;
3051 }
3052
3053 db8500_irq_init(np);
3054
3055 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3056
3057 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3058 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3059 if (err) {
3060 pr_err("prcmu: Failed to add subdevices\n");
3061 return err;
3062 }
3063
3064 /* TODO: Remove restriction when clk definitions are available. */
3065 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3066 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3067 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3068 db8500_irq_domain);
3069 if (err) {
3070 mfd_remove_devices(&pdev->dev);
3071 pr_err("prcmu: Failed to add subdevices\n");
3072 return err;
3073 }
3074 }
3075
3076 err = db8500_prcmu_register_ab8500(&pdev->dev);
3077 if (err) {
3078 mfd_remove_devices(&pdev->dev);
3079 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3080 return err;
3081 }
3082
3083 pr_info("DB8500 PRCMU initialized\n");
3084 return err;
3085 }
3086 static const struct of_device_id db8500_prcmu_match[] = {
3087 { .compatible = "stericsson,db8500-prcmu"},
3088 { },
3089 };
3090
3091 static struct platform_driver db8500_prcmu_driver = {
3092 .driver = {
3093 .name = "db8500-prcmu",
3094 .of_match_table = db8500_prcmu_match,
3095 },
3096 .probe = db8500_prcmu_probe,
3097 };
3098
3099 static int __init db8500_prcmu_init(void)
3100 {
3101 return platform_driver_register(&db8500_prcmu_driver);
3102 }
3103 core_initcall(db8500_prcmu_init);