]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mfd/db8500-prcmu.c
netfilter: conntrack: refine gc worker heuristics, redux
[mirror_ubuntu-artful-kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE 0x2FC
43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57 #define PRCM_AVS_VOLTAGE 0
58 #define PRCM_AVS_VOLTAGE_MASK 0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP 6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE 7
62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64 #define PRCM_BOOT_STATUS 0xFFF
65 #define PRCM_ROMCODE_A2P 0xFFE
66 #define PRCM_ROMCODE_P2A 0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS 0
98 #define MB0H_CONFIG_WAKEUPS_EXE 1
99 #define MB0H_READ_WAKEUP_ACK 3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF 0x1
135 #define PLL_SOC0_ON 0x2
136 #define PLL_SOC1_OFF 0x4
137 #define PLL_SOC1_ON 0x8
138
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145 /* Mailbox 2 headers */
146 #define MB2H_DPS 0x0
147 #define MB2H_AUTO_PWR 0x1
148
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164
165 /* Mailbox 3 headers */
166 #define MB3H_ANC 0x0
167 #define MB3H_SIDETONE 0x1
168 #define MB3H_SYSCLK 0xE
169
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT 0x0
181 #define MB4H_MEM_ST 0x1
182 #define MB4H_HOTDOG 0x12
183 #define MB4H_HOTMON 0x13
184 #define MB4H_HOT_PERIOD 0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN 0x17
187 #define MB4H_A9WDOG_DIS 0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW BIT(0)
201 #define HOTMON_CONFIG_HIGH BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS 0
208 #define A9WDOG_ID_MASK 0xf
209
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN BIT(3)
218
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229 /*
230 * Wakeups/IRQs
231 */
232
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262
263 static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266 } fw_info;
267
268 static struct irq_domain *db8500_irq_domain;
269
270 /*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330 };
331
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344 };
345
346 /*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354 static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365 } mb0_transfer;
366
367 /*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374 static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384 } mb1_transfer;
385
386 /*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395 static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403 } mb2_transfer;
404
405 /*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411 static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415 } mb3_transfer;
416
417 /*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422 static struct {
423 struct mutex lock;
424 struct completion work;
425 } mb4_transfer;
426
427 /*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433 static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440 } mb5_transfer;
441
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451
452 struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457 };
458
459 enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463 };
464
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500
501 struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505 };
506
507 static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518 };
519
520 struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524 };
525
526 static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542 };
543
544
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL 0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551 #define PRCMU_CLK_PLL_DIV_SHIFT 0
552 #define PRCMU_CLK_PLL_SW_SHIFT 5
553 #define PRCMU_CLK_38 (1 << 9)
554 #define PRCMU_CLK_38_SRC (1 << 10)
555 #define PRCMU_CLK_38_DIV (1 << 11)
556
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
568 #define PRCMU_ENABLE_PLLDSI 0x00000001
569 #define PRCMU_DISABLE_PLLDSI 0x00000000
570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575 #define PRCMU_DSI_RESET_SW 0x00000007
576
577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 int i;
582
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594 /* Start DSI PLL */
595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 /* Reset DSI PLL */
597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 for (i = 0; i < 10; i++) {
599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 return 0;
607 }
608
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 return 0;
616 }
617
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 unsigned long flags;
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 cpu_relax();
627
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632 /* Release the HW semaphore. */
633 writel(0, PRCM_SEM);
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638 }
639
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642 return readl(prcmu_base + reg);
643 }
644
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647 unsigned long flags;
648
649 spin_lock_irqsave(&prcmu_lock, flags);
650 writel(value, (prcmu_base + reg));
651 spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656 u32 val;
657 unsigned long flags;
658
659 spin_lock_irqsave(&prcmu_lock, flags);
660 val = readl(prcmu_base + reg);
661 val = ((val & ~mask) | (value & mask));
662 writel(val, (prcmu_base + reg));
663 spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668 return fw_info.valid ? &fw_info.version : NULL;
669 }
670
671 bool prcmu_has_arm_maxopp(void)
672 {
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676
677 /**
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
681 *
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 return -EINVAL;
689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 return 0;
691 }
692
693 /**
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
696 *
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699 */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702 return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704
705 /**
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709 */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714
715 /**
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
720 *
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
724 */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727 static int requests[2];
728 int r = 0;
729 unsigned long flags;
730 u32 val;
731 u32 bits;
732 u32 mask;
733 u32 div_mask;
734
735 BUG_ON(clkout > 1);
736 BUG_ON(div > 63);
737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739 if (!div && !requests[clkout])
740 return -EINVAL;
741
742 if (clkout == 0) {
743 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747 } else {
748 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750 PRCM_CLKOCR_CLK1TYPE);
751 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753 }
754 bits &= mask;
755
756 spin_lock_irqsave(&clkout_lock, flags);
757
758 val = readl(PRCM_CLKOCR);
759 if (val & div_mask) {
760 if (div) {
761 if ((val & mask) != bits) {
762 r = -EBUSY;
763 goto unlock_and_return;
764 }
765 } else {
766 if ((val & mask & ~div_mask) != bits) {
767 r = -EINVAL;
768 goto unlock_and_return;
769 }
770 }
771 }
772 writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 requests[clkout] += (div ? 1 : -1);
774
775 unlock_and_return:
776 spin_unlock_irqrestore(&clkout_lock, flags);
777
778 return r;
779 }
780
781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 {
783 unsigned long flags;
784
785 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786
787 spin_lock_irqsave(&mb0_transfer.lock, flags);
788
789 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 cpu_relax();
791
792 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795 writeb((keep_ulp_clk ? 1 : 0),
796 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799
800 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801
802 return 0;
803 }
804
805 u8 db8500_prcmu_get_power_state_result(void)
806 {
807 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808 }
809
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
812 {
813 const u8 header[2] = {
814 MB0H_CONFIG_WAKEUPS_EXE,
815 MB0H_CONFIG_WAKEUPS_SLEEP
816 };
817 static u32 last_dbb_events;
818 static u32 last_abb_events;
819 u32 dbb_events;
820 u32 abb_events;
821 unsigned int i;
822
823 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825
826 abb_events = mb0_transfer.req.abb_events;
827
828 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829 return;
830
831 for (i = 0; i < 2; i++) {
832 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 cpu_relax();
834 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 }
839 last_dbb_events = dbb_events;
840 last_abb_events = abb_events;
841 }
842
843 void db8500_prcmu_enable_wakeups(u32 wakeups)
844 {
845 unsigned long flags;
846 u32 bits;
847 int i;
848
849 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850
851 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852 if (wakeups & BIT(i))
853 bits |= prcmu_wakeup_bit[i];
854 }
855
856 spin_lock_irqsave(&mb0_transfer.lock, flags);
857
858 mb0_transfer.req.dbb_wakeups = bits;
859 config_wakeups();
860
861 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862 }
863
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 {
866 unsigned long flags;
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.abb_events = abb_events;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875
876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 {
878 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880 else
881 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882 }
883
884 /**
885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886 * @opp: The new ARM operating point to which transition is to be made
887 * Returns: 0 on success, non-zero on failure
888 *
889 * This function sets the the operating point of the ARM.
890 */
891 int db8500_prcmu_set_arm_opp(u8 opp)
892 {
893 int r;
894
895 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896 return -EINVAL;
897
898 r = 0;
899
900 mutex_lock(&mb1_transfer.lock);
901
902 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 cpu_relax();
904
905 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908
909 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 wait_for_completion(&mb1_transfer.work);
911
912 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913 (mb1_transfer.ack.arm_opp != opp))
914 r = -EIO;
915
916 mutex_unlock(&mb1_transfer.lock);
917
918 return r;
919 }
920
921 /**
922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
923 *
924 * Returns: the current ARM OPP
925 */
926 int db8500_prcmu_get_arm_opp(void)
927 {
928 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929 }
930
931 /**
932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933 *
934 * Returns: the current DDR OPP
935 */
936 int db8500_prcmu_get_ddr_opp(void)
937 {
938 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 }
940
941 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942 static void request_even_slower_clocks(bool enable)
943 {
944 u32 clock_reg[] = {
945 PRCM_ACLK_MGT,
946 PRCM_DMACLK_MGT
947 };
948 unsigned long flags;
949 unsigned int i;
950
951 spin_lock_irqsave(&clk_mgt_lock, flags);
952
953 /* Grab the HW semaphore. */
954 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
955 cpu_relax();
956
957 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
958 u32 val;
959 u32 div;
960
961 val = readl(prcmu_base + clock_reg[i]);
962 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
963 if (enable) {
964 if ((div <= 1) || (div > 15)) {
965 pr_err("prcmu: Bad clock divider %d in %s\n",
966 div, __func__);
967 goto unlock_and_return;
968 }
969 div <<= 1;
970 } else {
971 if (div <= 2)
972 goto unlock_and_return;
973 div >>= 1;
974 }
975 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
976 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
977 writel(val, prcmu_base + clock_reg[i]);
978 }
979
980 unlock_and_return:
981 /* Release the HW semaphore. */
982 writel(0, PRCM_SEM);
983
984 spin_unlock_irqrestore(&clk_mgt_lock, flags);
985 }
986
987 /**
988 * db8500_set_ape_opp - set the appropriate APE OPP
989 * @opp: The new APE operating point to which transition is to be made
990 * Returns: 0 on success, non-zero on failure
991 *
992 * This function sets the operating point of the APE.
993 */
994 int db8500_prcmu_set_ape_opp(u8 opp)
995 {
996 int r = 0;
997
998 if (opp == mb1_transfer.ape_opp)
999 return 0;
1000
1001 mutex_lock(&mb1_transfer.lock);
1002
1003 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004 request_even_slower_clocks(false);
1005
1006 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007 goto skip_message;
1008
1009 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010 cpu_relax();
1011
1012 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018 wait_for_completion(&mb1_transfer.work);
1019
1020 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021 (mb1_transfer.ack.ape_opp != opp))
1022 r = -EIO;
1023
1024 skip_message:
1025 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027 request_even_slower_clocks(true);
1028 if (!r)
1029 mb1_transfer.ape_opp = opp;
1030
1031 mutex_unlock(&mb1_transfer.lock);
1032
1033 return r;
1034 }
1035
1036 /**
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 *
1039 * Returns: the current APE OPP
1040 */
1041 int db8500_prcmu_get_ape_opp(void)
1042 {
1043 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044 }
1045
1046 /**
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1049 *
1050 * Calls to this function to enable and disable requests must be balanced.
1051 */
1052 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053 {
1054 int r = 0;
1055 u8 header;
1056 static unsigned int requests;
1057
1058 mutex_lock(&mb1_transfer.lock);
1059
1060 if (enable) {
1061 if (0 != requests++)
1062 goto unlock_and_return;
1063 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064 } else {
1065 if (requests == 0) {
1066 r = -EIO;
1067 goto unlock_and_return;
1068 } else if (1 != requests--) {
1069 goto unlock_and_return;
1070 }
1071 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072 }
1073
1074 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075 cpu_relax();
1076
1077 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080 wait_for_completion(&mb1_transfer.work);
1081
1082 if ((mb1_transfer.ack.header != header) ||
1083 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084 r = -EIO;
1085
1086 unlock_and_return:
1087 mutex_unlock(&mb1_transfer.lock);
1088
1089 return r;
1090 }
1091
1092 /**
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 *
1095 * This function releases the power state requirements of a USB wakeup.
1096 */
1097 int prcmu_release_usb_wakeup_state(void)
1098 {
1099 int r = 0;
1100
1101 mutex_lock(&mb1_transfer.lock);
1102
1103 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104 cpu_relax();
1105
1106 writeb(MB1H_RELEASE_USB_WAKEUP,
1107 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 wait_for_completion(&mb1_transfer.work);
1111
1112 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 r = -EIO;
1115
1116 mutex_unlock(&mb1_transfer.lock);
1117
1118 return r;
1119 }
1120
1121 static int request_pll(u8 clock, bool enable)
1122 {
1123 int r = 0;
1124
1125 if (clock == PRCMU_PLLSOC0)
1126 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127 else if (clock == PRCMU_PLLSOC1)
1128 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129 else
1130 return -EINVAL;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 cpu_relax();
1136
1137 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144 r = -EIO;
1145
1146 mutex_unlock(&mb1_transfer.lock);
1147
1148 return r;
1149 }
1150
1151 /**
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1155 *
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1158 */
1159 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160 {
1161 int r = 0;
1162 bool ram_retention = false;
1163 int i;
1164
1165 /* check argument */
1166 BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168 /* set flag if retention is possible */
1169 switch (epod_id) {
1170 case EPOD_ID_SVAMMDSP:
1171 case EPOD_ID_SIAMMDSP:
1172 case EPOD_ID_ESRAM12:
1173 case EPOD_ID_ESRAM34:
1174 ram_retention = true;
1175 break;
1176 }
1177
1178 /* check argument */
1179 BUG_ON(epod_state > EPOD_STATE_ON);
1180 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182 /* get lock */
1183 mutex_lock(&mb2_transfer.lock);
1184
1185 /* wait for mailbox */
1186 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187 cpu_relax();
1188
1189 /* fill in mailbox */
1190 for (i = 0; i < NUM_EPOD_ID; i++)
1191 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198 /*
1199 * The current firmware version does not handle errors correctly,
1200 * and we cannot recover if there is an error.
1201 * This is expected to change when the firmware is updated.
1202 */
1203 if (!wait_for_completion_timeout(&mb2_transfer.work,
1204 msecs_to_jiffies(20000))) {
1205 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206 __func__);
1207 r = -EIO;
1208 goto unlock_and_return;
1209 }
1210
1211 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212 r = -EIO;
1213
1214 unlock_and_return:
1215 mutex_unlock(&mb2_transfer.lock);
1216 return r;
1217 }
1218
1219 /**
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle: Configuration for ApIdle.
1223 */
1224 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225 struct prcmu_auto_pm_config *idle)
1226 {
1227 u32 sleep_cfg;
1228 u32 idle_cfg;
1229 unsigned long flags;
1230
1231 BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249 /*
1250 * The autonomous power management configuration is done through
1251 * fields in mailbox 2, but these fields are only used as shared
1252 * variables - i.e. there is no need to send a message.
1253 */
1254 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257 mb2_transfer.auto_pm_enabled =
1258 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264 }
1265 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267 bool prcmu_is_auto_pm_enabled(void)
1268 {
1269 return mb2_transfer.auto_pm_enabled;
1270 }
1271
1272 static int request_sysclk(bool enable)
1273 {
1274 int r;
1275 unsigned long flags;
1276
1277 r = 0;
1278
1279 mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281 spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284 cpu_relax();
1285
1286 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293 /*
1294 * The firmware only sends an ACK if we want to enable the
1295 * SysClk, and it succeeds.
1296 */
1297 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298 msecs_to_jiffies(20000))) {
1299 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300 __func__);
1301 r = -EIO;
1302 }
1303
1304 mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306 return r;
1307 }
1308
1309 static int request_timclk(bool enable)
1310 {
1311 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312
1313 if (!enable)
1314 val |= PRCM_TCR_STOP_TIMERS;
1315 writel(val, PRCM_TCR);
1316
1317 return 0;
1318 }
1319
1320 static int request_clock(u8 clock, bool enable)
1321 {
1322 u32 val;
1323 unsigned long flags;
1324
1325 spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327 /* Grab the HW semaphore. */
1328 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329 cpu_relax();
1330
1331 val = readl(prcmu_base + clk_mgt[clock].offset);
1332 if (enable) {
1333 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334 } else {
1335 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 }
1338 writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340 /* Release the HW semaphore. */
1341 writel(0, PRCM_SEM);
1342
1343 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345 return 0;
1346 }
1347
1348 static int request_sga_clock(u8 clock, bool enable)
1349 {
1350 u32 val;
1351 int ret;
1352
1353 if (enable) {
1354 val = readl(PRCM_CGATING_BYPASS);
1355 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356 }
1357
1358 ret = request_clock(clock, enable);
1359
1360 if (!ret && !enable) {
1361 val = readl(PRCM_CGATING_BYPASS);
1362 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363 }
1364
1365 return ret;
1366 }
1367
1368 static inline bool plldsi_locked(void)
1369 {
1370 return (readl(PRCM_PLLDSI_LOCKP) &
1371 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375 }
1376
1377 static int request_plldsi(bool enable)
1378 {
1379 int r = 0;
1380 u32 val;
1381
1382 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386 val = readl(PRCM_PLLDSI_ENABLE);
1387 if (enable)
1388 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389 else
1390 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391 writel(val, PRCM_PLLDSI_ENABLE);
1392
1393 if (enable) {
1394 unsigned int i;
1395 bool locked = plldsi_locked();
1396
1397 for (i = 10; !locked && (i > 0); --i) {
1398 udelay(100);
1399 locked = plldsi_locked();
1400 }
1401 if (locked) {
1402 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403 PRCM_APE_RESETN_SET);
1404 } else {
1405 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407 PRCM_MMIP_LS_CLAMP_SET);
1408 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409 writel(val, PRCM_PLLDSI_ENABLE);
1410 r = -EAGAIN;
1411 }
1412 } else {
1413 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414 }
1415 return r;
1416 }
1417
1418 static int request_dsiclk(u8 n, bool enable)
1419 {
1420 u32 val;
1421
1422 val = readl(PRCM_DSI_PLLOUT_SEL);
1423 val &= ~dsiclk[n].divsel_mask;
1424 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425 dsiclk[n].divsel_shift);
1426 writel(val, PRCM_DSI_PLLOUT_SEL);
1427 return 0;
1428 }
1429
1430 static int request_dsiescclk(u8 n, bool enable)
1431 {
1432 u32 val;
1433
1434 val = readl(PRCM_DSITVCLK_DIV);
1435 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436 writel(val, PRCM_DSITVCLK_DIV);
1437 return 0;
1438 }
1439
1440 /**
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock: The clock for which the request is made.
1443 * @enable: Whether the clock should be enabled (true) or disabled (false).
1444 *
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1447 */
1448 int db8500_prcmu_request_clock(u8 clock, bool enable)
1449 {
1450 if (clock == PRCMU_SGACLK)
1451 return request_sga_clock(clock, enable);
1452 else if (clock < PRCMU_NUM_REG_CLOCKS)
1453 return request_clock(clock, enable);
1454 else if (clock == PRCMU_TIMCLK)
1455 return request_timclk(enable);
1456 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460 else if (clock == PRCMU_PLLDSI)
1461 return request_plldsi(enable);
1462 else if (clock == PRCMU_SYSCLK)
1463 return request_sysclk(enable);
1464 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465 return request_pll(clock, enable);
1466 else
1467 return -EINVAL;
1468 }
1469
1470 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471 int branch)
1472 {
1473 u64 rate;
1474 u32 val;
1475 u32 d;
1476 u32 div = 1;
1477
1478 val = readl(reg);
1479
1480 rate = src_rate;
1481 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484 if (d > 1)
1485 div *= d;
1486
1487 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488 if (d > 1)
1489 div *= d;
1490
1491 if (val & PRCM_PLL_FREQ_SELDIV2)
1492 div *= 2;
1493
1494 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495 (val & PRCM_PLL_FREQ_DIV2EN) &&
1496 ((reg == PRCM_PLLSOC0_FREQ) ||
1497 (reg == PRCM_PLLARM_FREQ) ||
1498 (reg == PRCM_PLLDDR_FREQ))))
1499 div *= 2;
1500
1501 (void)do_div(rate, div);
1502
1503 return (unsigned long)rate;
1504 }
1505
1506 #define ROOT_CLOCK_RATE 38400000
1507
1508 static unsigned long clock_rate(u8 clock)
1509 {
1510 u32 val;
1511 u32 pllsw;
1512 unsigned long rate = ROOT_CLOCK_RATE;
1513
1514 val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516 if (val & PRCM_CLK_MGT_CLK38) {
1517 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518 rate /= 2;
1519 return rate;
1520 }
1521
1522 val |= clk_mgt[clock].pllsw;
1523 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531 else
1532 return 0;
1533
1534 if ((clock == PRCMU_SGACLK) &&
1535 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536 u64 r = (rate * 10);
1537
1538 (void)do_div(r, 25);
1539 return (unsigned long)r;
1540 }
1541 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542 if (val)
1543 return rate / val;
1544 else
1545 return 0;
1546 }
1547
1548 static unsigned long armss_rate(void)
1549 {
1550 u32 r;
1551 unsigned long rate;
1552
1553 r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556 /* External ARMCLKFIX clock */
1557
1558 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560 /* Check PRCM_ARM_CHGCLKREQ divider */
1561 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562 rate /= 2;
1563
1564 /* Check PRCM_ARMCLKFIX_MGT divider */
1565 r = readl(PRCM_ARMCLKFIX_MGT);
1566 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567 rate /= r;
1568
1569 } else {/* ARM PLL */
1570 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571 }
1572
1573 return rate;
1574 }
1575
1576 static unsigned long dsiclk_rate(u8 n)
1577 {
1578 u32 divsel;
1579 u32 div = 1;
1580
1581 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585 divsel = dsiclk[n].divsel;
1586 else
1587 dsiclk[n].divsel = divsel;
1588
1589 switch (divsel) {
1590 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591 div *= 2;
1592 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1593 div *= 2;
1594 case PRCM_DSI_PLLOUT_SEL_PHI:
1595 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1596 PLL_RAW) / div;
1597 default:
1598 return 0;
1599 }
1600 }
1601
1602 static unsigned long dsiescclk_rate(u8 n)
1603 {
1604 u32 div;
1605
1606 div = readl(PRCM_DSITVCLK_DIV);
1607 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1608 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1609 }
1610
1611 unsigned long prcmu_clock_rate(u8 clock)
1612 {
1613 if (clock < PRCMU_NUM_REG_CLOCKS)
1614 return clock_rate(clock);
1615 else if (clock == PRCMU_TIMCLK)
1616 return ROOT_CLOCK_RATE / 16;
1617 else if (clock == PRCMU_SYSCLK)
1618 return ROOT_CLOCK_RATE;
1619 else if (clock == PRCMU_PLLSOC0)
1620 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1621 else if (clock == PRCMU_PLLSOC1)
1622 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623 else if (clock == PRCMU_ARMSS)
1624 return armss_rate();
1625 else if (clock == PRCMU_PLLDDR)
1626 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1627 else if (clock == PRCMU_PLLDSI)
1628 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1629 PLL_RAW);
1630 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1631 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1632 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1633 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1634 else
1635 return 0;
1636 }
1637
1638 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1639 {
1640 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1641 return ROOT_CLOCK_RATE;
1642 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1643 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1645 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1647 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1649 else
1650 return 0;
1651 }
1652
1653 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1654 {
1655 u32 div;
1656
1657 div = (src_rate / rate);
1658 if (div == 0)
1659 return 1;
1660 if (rate < (src_rate / div))
1661 div++;
1662 return div;
1663 }
1664
1665 static long round_clock_rate(u8 clock, unsigned long rate)
1666 {
1667 u32 val;
1668 u32 div;
1669 unsigned long src_rate;
1670 long rounded_rate;
1671
1672 val = readl(prcmu_base + clk_mgt[clock].offset);
1673 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1674 clk_mgt[clock].branch);
1675 div = clock_divider(src_rate, rate);
1676 if (val & PRCM_CLK_MGT_CLK38) {
1677 if (clk_mgt[clock].clk38div) {
1678 if (div > 2)
1679 div = 2;
1680 } else {
1681 div = 1;
1682 }
1683 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1684 u64 r = (src_rate * 10);
1685
1686 (void)do_div(r, 25);
1687 if (r <= rate)
1688 return (unsigned long)r;
1689 }
1690 rounded_rate = (src_rate / min(div, (u32)31));
1691
1692 return rounded_rate;
1693 }
1694
1695 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1696 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1697 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1698 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1699 { .frequency = 800000, .driver_data = ARM_100_OPP,},
1700 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1701 { .frequency = CPUFREQ_TABLE_END,},
1702 };
1703
1704 static long round_armss_rate(unsigned long rate)
1705 {
1706 struct cpufreq_frequency_table *pos;
1707 long freq = 0;
1708
1709 /* cpufreq table frequencies is in KHz. */
1710 rate = rate / 1000;
1711
1712 /* Find the corresponding arm opp from the cpufreq table. */
1713 cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1714 freq = pos->frequency;
1715 if (freq == rate)
1716 break;
1717 }
1718
1719 /* Return the last valid value, even if a match was not found. */
1720 return freq * 1000;
1721 }
1722
1723 #define MIN_PLL_VCO_RATE 600000000ULL
1724 #define MAX_PLL_VCO_RATE 1680640000ULL
1725
1726 static long round_plldsi_rate(unsigned long rate)
1727 {
1728 long rounded_rate = 0;
1729 unsigned long src_rate;
1730 unsigned long rem;
1731 u32 r;
1732
1733 src_rate = clock_rate(PRCMU_HDMICLK);
1734 rem = rate;
1735
1736 for (r = 7; (rem > 0) && (r > 0); r--) {
1737 u64 d;
1738
1739 d = (r * rate);
1740 (void)do_div(d, src_rate);
1741 if (d < 6)
1742 d = 6;
1743 else if (d > 255)
1744 d = 255;
1745 d *= src_rate;
1746 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1747 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1748 continue;
1749 (void)do_div(d, r);
1750 if (rate < d) {
1751 if (rounded_rate == 0)
1752 rounded_rate = (long)d;
1753 break;
1754 }
1755 if ((rate - d) < rem) {
1756 rem = (rate - d);
1757 rounded_rate = (long)d;
1758 }
1759 }
1760 return rounded_rate;
1761 }
1762
1763 static long round_dsiclk_rate(unsigned long rate)
1764 {
1765 u32 div;
1766 unsigned long src_rate;
1767 long rounded_rate;
1768
1769 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1770 PLL_RAW);
1771 div = clock_divider(src_rate, rate);
1772 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1773
1774 return rounded_rate;
1775 }
1776
1777 static long round_dsiescclk_rate(unsigned long rate)
1778 {
1779 u32 div;
1780 unsigned long src_rate;
1781 long rounded_rate;
1782
1783 src_rate = clock_rate(PRCMU_TVCLK);
1784 div = clock_divider(src_rate, rate);
1785 rounded_rate = (src_rate / min(div, (u32)255));
1786
1787 return rounded_rate;
1788 }
1789
1790 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1791 {
1792 if (clock < PRCMU_NUM_REG_CLOCKS)
1793 return round_clock_rate(clock, rate);
1794 else if (clock == PRCMU_ARMSS)
1795 return round_armss_rate(rate);
1796 else if (clock == PRCMU_PLLDSI)
1797 return round_plldsi_rate(rate);
1798 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1799 return round_dsiclk_rate(rate);
1800 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1801 return round_dsiescclk_rate(rate);
1802 else
1803 return (long)prcmu_clock_rate(clock);
1804 }
1805
1806 static void set_clock_rate(u8 clock, unsigned long rate)
1807 {
1808 u32 val;
1809 u32 div;
1810 unsigned long src_rate;
1811 unsigned long flags;
1812
1813 spin_lock_irqsave(&clk_mgt_lock, flags);
1814
1815 /* Grab the HW semaphore. */
1816 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1817 cpu_relax();
1818
1819 val = readl(prcmu_base + clk_mgt[clock].offset);
1820 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1821 clk_mgt[clock].branch);
1822 div = clock_divider(src_rate, rate);
1823 if (val & PRCM_CLK_MGT_CLK38) {
1824 if (clk_mgt[clock].clk38div) {
1825 if (div > 1)
1826 val |= PRCM_CLK_MGT_CLK38DIV;
1827 else
1828 val &= ~PRCM_CLK_MGT_CLK38DIV;
1829 }
1830 } else if (clock == PRCMU_SGACLK) {
1831 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1832 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1833 if (div == 3) {
1834 u64 r = (src_rate * 10);
1835
1836 (void)do_div(r, 25);
1837 if (r <= rate) {
1838 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1839 div = 0;
1840 }
1841 }
1842 val |= min(div, (u32)31);
1843 } else {
1844 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1845 val |= min(div, (u32)31);
1846 }
1847 writel(val, prcmu_base + clk_mgt[clock].offset);
1848
1849 /* Release the HW semaphore. */
1850 writel(0, PRCM_SEM);
1851
1852 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1853 }
1854
1855 static int set_armss_rate(unsigned long rate)
1856 {
1857 struct cpufreq_frequency_table *pos;
1858
1859 /* cpufreq table frequencies is in KHz. */
1860 rate = rate / 1000;
1861
1862 /* Find the corresponding arm opp from the cpufreq table. */
1863 cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1864 if (pos->frequency == rate)
1865 break;
1866
1867 if (pos->frequency != rate)
1868 return -EINVAL;
1869
1870 /* Set the new arm opp. */
1871 return db8500_prcmu_set_arm_opp(pos->driver_data);
1872 }
1873
1874 static int set_plldsi_rate(unsigned long rate)
1875 {
1876 unsigned long src_rate;
1877 unsigned long rem;
1878 u32 pll_freq = 0;
1879 u32 r;
1880
1881 src_rate = clock_rate(PRCMU_HDMICLK);
1882 rem = rate;
1883
1884 for (r = 7; (rem > 0) && (r > 0); r--) {
1885 u64 d;
1886 u64 hwrate;
1887
1888 d = (r * rate);
1889 (void)do_div(d, src_rate);
1890 if (d < 6)
1891 d = 6;
1892 else if (d > 255)
1893 d = 255;
1894 hwrate = (d * src_rate);
1895 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897 continue;
1898 (void)do_div(hwrate, r);
1899 if (rate < hwrate) {
1900 if (pll_freq == 0)
1901 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902 (r << PRCM_PLL_FREQ_R_SHIFT));
1903 break;
1904 }
1905 if ((rate - hwrate) < rem) {
1906 rem = (rate - hwrate);
1907 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908 (r << PRCM_PLL_FREQ_R_SHIFT));
1909 }
1910 }
1911 if (pll_freq == 0)
1912 return -EINVAL;
1913
1914 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915 writel(pll_freq, PRCM_PLLDSI_FREQ);
1916
1917 return 0;
1918 }
1919
1920 static void set_dsiclk_rate(u8 n, unsigned long rate)
1921 {
1922 u32 val;
1923 u32 div;
1924
1925 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927
1928 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1931
1932 val = readl(PRCM_DSI_PLLOUT_SEL);
1933 val &= ~dsiclk[n].divsel_mask;
1934 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935 writel(val, PRCM_DSI_PLLOUT_SEL);
1936 }
1937
1938 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939 {
1940 u32 val;
1941 u32 div;
1942
1943 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944 val = readl(PRCM_DSITVCLK_DIV);
1945 val &= ~dsiescclk[n].div_mask;
1946 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947 writel(val, PRCM_DSITVCLK_DIV);
1948 }
1949
1950 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951 {
1952 if (clock < PRCMU_NUM_REG_CLOCKS)
1953 set_clock_rate(clock, rate);
1954 else if (clock == PRCMU_ARMSS)
1955 return set_armss_rate(rate);
1956 else if (clock == PRCMU_PLLDSI)
1957 return set_plldsi_rate(rate);
1958 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962 return 0;
1963 }
1964
1965 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1966 {
1967 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969 return -EINVAL;
1970
1971 mutex_lock(&mb4_transfer.lock);
1972
1973 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1974 cpu_relax();
1975
1976 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979 writeb(DDR_PWR_STATE_ON,
1980 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982
1983 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1984 wait_for_completion(&mb4_transfer.work);
1985
1986 mutex_unlock(&mb4_transfer.lock);
1987
1988 return 0;
1989 }
1990
1991 int db8500_prcmu_config_hotdog(u8 threshold)
1992 {
1993 mutex_lock(&mb4_transfer.lock);
1994
1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996 cpu_relax();
1997
1998 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000
2001 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2002 wait_for_completion(&mb4_transfer.work);
2003
2004 mutex_unlock(&mb4_transfer.lock);
2005
2006 return 0;
2007 }
2008
2009 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2010 {
2011 mutex_lock(&mb4_transfer.lock);
2012
2013 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2014 cpu_relax();
2015
2016 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021
2022 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2023 wait_for_completion(&mb4_transfer.work);
2024
2025 mutex_unlock(&mb4_transfer.lock);
2026
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2030
2031 static int config_hot_period(u16 val)
2032 {
2033 mutex_lock(&mb4_transfer.lock);
2034
2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036 cpu_relax();
2037
2038 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
2041 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042 wait_for_completion(&mb4_transfer.work);
2043
2044 mutex_unlock(&mb4_transfer.lock);
2045
2046 return 0;
2047 }
2048
2049 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2050 {
2051 if (cycles32k == 0xFFFF)
2052 return -EINVAL;
2053
2054 return config_hot_period(cycles32k);
2055 }
2056 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2057
2058 int db8500_prcmu_stop_temp_sense(void)
2059 {
2060 return config_hot_period(0xFFFF);
2061 }
2062 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2063
2064 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065 {
2066
2067 mutex_lock(&mb4_transfer.lock);
2068
2069 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070 cpu_relax();
2071
2072 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076
2077 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
2079 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080 wait_for_completion(&mb4_transfer.work);
2081
2082 mutex_unlock(&mb4_transfer.lock);
2083
2084 return 0;
2085
2086 }
2087
2088 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2089 {
2090 BUG_ON(num == 0 || num > 0xf);
2091 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093 A9WDOG_AUTO_OFF_DIS);
2094 }
2095 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2096
2097 int db8500_prcmu_enable_a9wdog(u8 id)
2098 {
2099 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100 }
2101 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2102
2103 int db8500_prcmu_disable_a9wdog(u8 id)
2104 {
2105 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106 }
2107 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2108
2109 int db8500_prcmu_kick_a9wdog(u8 id)
2110 {
2111 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112 }
2113 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2114
2115 /*
2116 * timeout is 28 bit, in ms.
2117 */
2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119 {
2120 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121 (id & A9WDOG_ID_MASK) |
2122 /*
2123 * Put the lowest 28 bits of timeout at
2124 * offset 4. Four first bits are used for id.
2125 */
2126 (u8)((timeout << 4) & 0xf0),
2127 (u8)((timeout >> 4) & 0xff),
2128 (u8)((timeout >> 12) & 0xff),
2129 (u8)((timeout >> 20) & 0xff));
2130 }
2131 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2132
2133 /**
2134 * prcmu_abb_read() - Read register value(s) from the ABB.
2135 * @slave: The I2C slave address.
2136 * @reg: The (start) register address.
2137 * @value: The read out value(s).
2138 * @size: The number of registers to read.
2139 *
2140 * Reads register value(s) from the ABB.
2141 * @size has to be 1 for the current firmware version.
2142 */
2143 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144 {
2145 int r;
2146
2147 if (size != 1)
2148 return -EINVAL;
2149
2150 mutex_lock(&mb5_transfer.lock);
2151
2152 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2153 cpu_relax();
2154
2155 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2156 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160
2161 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2162
2163 if (!wait_for_completion_timeout(&mb5_transfer.work,
2164 msecs_to_jiffies(20000))) {
2165 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166 __func__);
2167 r = -EIO;
2168 } else {
2169 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2170 }
2171
2172 if (!r)
2173 *value = mb5_transfer.ack.value;
2174
2175 mutex_unlock(&mb5_transfer.lock);
2176
2177 return r;
2178 }
2179
2180 /**
2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2182 * @slave: The I2C slave address.
2183 * @reg: The (start) register address.
2184 * @value: The value(s) to write.
2185 * @mask: The mask(s) to use.
2186 * @size: The number of registers to write.
2187 *
2188 * Writes masked register value(s) to the ABB.
2189 * For each @value, only the bits set to 1 in the corresponding @mask
2190 * will be written. The other bits are not changed.
2191 * @size has to be 1 for the current firmware version.
2192 */
2193 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2194 {
2195 int r;
2196
2197 if (size != 1)
2198 return -EINVAL;
2199
2200 mutex_lock(&mb5_transfer.lock);
2201
2202 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2203 cpu_relax();
2204
2205 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2206 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210
2211 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2212
2213 if (!wait_for_completion_timeout(&mb5_transfer.work,
2214 msecs_to_jiffies(20000))) {
2215 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216 __func__);
2217 r = -EIO;
2218 } else {
2219 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2220 }
2221
2222 mutex_unlock(&mb5_transfer.lock);
2223
2224 return r;
2225 }
2226
2227 /**
2228 * prcmu_abb_write() - Write register value(s) to the ABB.
2229 * @slave: The I2C slave address.
2230 * @reg: The (start) register address.
2231 * @value: The value(s) to write.
2232 * @size: The number of registers to write.
2233 *
2234 * Writes register value(s) to the ABB.
2235 * @size has to be 1 for the current firmware version.
2236 */
2237 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238 {
2239 u8 mask = ~0;
2240
2241 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242 }
2243
2244 /**
2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246 */
2247 int prcmu_ac_wake_req(void)
2248 {
2249 u32 val;
2250 int ret = 0;
2251
2252 mutex_lock(&mb0_transfer.ac_wake_lock);
2253
2254 val = readl(PRCM_HOSTACCESS_REQ);
2255 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256 goto unlock_and_return;
2257
2258 atomic_set(&ac_wake_req_state, 1);
2259
2260 /*
2261 * Force Modem Wake-up before hostaccess_req ping-pong.
2262 * It prevents Modem to enter in Sleep while acking the hostaccess
2263 * request. The 31us delay has been calculated by HWI.
2264 */
2265 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266 writel(val, PRCM_HOSTACCESS_REQ);
2267
2268 udelay(31);
2269
2270 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271 writel(val, PRCM_HOSTACCESS_REQ);
2272
2273 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2274 msecs_to_jiffies(5000))) {
2275 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2276 __func__);
2277 ret = -EFAULT;
2278 }
2279
2280 unlock_and_return:
2281 mutex_unlock(&mb0_transfer.ac_wake_lock);
2282 return ret;
2283 }
2284
2285 /**
2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2287 */
2288 void prcmu_ac_sleep_req(void)
2289 {
2290 u32 val;
2291
2292 mutex_lock(&mb0_transfer.ac_wake_lock);
2293
2294 val = readl(PRCM_HOSTACCESS_REQ);
2295 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296 goto unlock_and_return;
2297
2298 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2299 PRCM_HOSTACCESS_REQ);
2300
2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302 msecs_to_jiffies(5000))) {
2303 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2304 __func__);
2305 }
2306
2307 atomic_set(&ac_wake_req_state, 0);
2308
2309 unlock_and_return:
2310 mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 }
2312
2313 bool db8500_prcmu_is_ac_wake_requested(void)
2314 {
2315 return (atomic_read(&ac_wake_req_state) != 0);
2316 }
2317
2318 /**
2319 * db8500_prcmu_system_reset - System reset
2320 *
2321 * Saves the reset reason code and then sets the APE_SOFTRST register which
2322 * fires interrupt to fw
2323 */
2324 void db8500_prcmu_system_reset(u16 reset_code)
2325 {
2326 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2327 writel(1, PRCM_APE_SOFTRST);
2328 }
2329
2330 /**
2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332 *
2333 * Retrieves the reset reason code stored by prcmu_system_reset() before
2334 * last restart.
2335 */
2336 u16 db8500_prcmu_get_reset_code(void)
2337 {
2338 return readw(tcdm_base + PRCM_SW_RST_REASON);
2339 }
2340
2341 /**
2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2343 */
2344 void db8500_prcmu_modem_reset(void)
2345 {
2346 mutex_lock(&mb1_transfer.lock);
2347
2348 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2349 cpu_relax();
2350
2351 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2352 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2353 wait_for_completion(&mb1_transfer.work);
2354
2355 /*
2356 * No need to check return from PRCMU as modem should go in reset state
2357 * This state is already managed by upper layer
2358 */
2359
2360 mutex_unlock(&mb1_transfer.lock);
2361 }
2362
2363 static void ack_dbb_wakeup(void)
2364 {
2365 unsigned long flags;
2366
2367 spin_lock_irqsave(&mb0_transfer.lock, flags);
2368
2369 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2370 cpu_relax();
2371
2372 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2373 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2374
2375 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2376 }
2377
2378 static inline void print_unknown_header_warning(u8 n, u8 header)
2379 {
2380 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2381 header, n);
2382 }
2383
2384 static bool read_mailbox_0(void)
2385 {
2386 bool r;
2387 u32 ev;
2388 unsigned int n;
2389 u8 header;
2390
2391 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392 switch (header) {
2393 case MB0H_WAKEUP_EXE:
2394 case MB0H_WAKEUP_SLEEP:
2395 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397 else
2398 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399
2400 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401 complete(&mb0_transfer.ac_wake_work);
2402 if (ev & WAKEUP_BIT_SYSCLK_OK)
2403 complete(&mb3_transfer.sysclk_work);
2404
2405 ev &= mb0_transfer.req.dbb_irqs;
2406
2407 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408 if (ev & prcmu_irq_bit[n])
2409 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2410 }
2411 r = true;
2412 break;
2413 default:
2414 print_unknown_header_warning(0, header);
2415 r = false;
2416 break;
2417 }
2418 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2419 return r;
2420 }
2421
2422 static bool read_mailbox_1(void)
2423 {
2424 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428 PRCM_ACK_MB1_CURRENT_APE_OPP);
2429 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2431 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2432 complete(&mb1_transfer.work);
2433 return false;
2434 }
2435
2436 static bool read_mailbox_2(void)
2437 {
2438 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2439 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2440 complete(&mb2_transfer.work);
2441 return false;
2442 }
2443
2444 static bool read_mailbox_3(void)
2445 {
2446 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2447 return false;
2448 }
2449
2450 static bool read_mailbox_4(void)
2451 {
2452 u8 header;
2453 bool do_complete = true;
2454
2455 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456 switch (header) {
2457 case MB4H_MEM_ST:
2458 case MB4H_HOTDOG:
2459 case MB4H_HOTMON:
2460 case MB4H_HOT_PERIOD:
2461 case MB4H_A9WDOG_CONF:
2462 case MB4H_A9WDOG_EN:
2463 case MB4H_A9WDOG_DIS:
2464 case MB4H_A9WDOG_LOAD:
2465 case MB4H_A9WDOG_KICK:
2466 break;
2467 default:
2468 print_unknown_header_warning(4, header);
2469 do_complete = false;
2470 break;
2471 }
2472
2473 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2474
2475 if (do_complete)
2476 complete(&mb4_transfer.work);
2477
2478 return false;
2479 }
2480
2481 static bool read_mailbox_5(void)
2482 {
2483 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2485 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2486 complete(&mb5_transfer.work);
2487 return false;
2488 }
2489
2490 static bool read_mailbox_6(void)
2491 {
2492 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2493 return false;
2494 }
2495
2496 static bool read_mailbox_7(void)
2497 {
2498 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2499 return false;
2500 }
2501
2502 static bool (* const read_mailbox[NUM_MB])(void) = {
2503 read_mailbox_0,
2504 read_mailbox_1,
2505 read_mailbox_2,
2506 read_mailbox_3,
2507 read_mailbox_4,
2508 read_mailbox_5,
2509 read_mailbox_6,
2510 read_mailbox_7
2511 };
2512
2513 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514 {
2515 u32 bits;
2516 u8 n;
2517 irqreturn_t r;
2518
2519 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2520 if (unlikely(!bits))
2521 return IRQ_NONE;
2522
2523 r = IRQ_HANDLED;
2524 for (n = 0; bits; n++) {
2525 if (bits & MBOX_BIT(n)) {
2526 bits -= MBOX_BIT(n);
2527 if (read_mailbox[n]())
2528 r = IRQ_WAKE_THREAD;
2529 }
2530 }
2531 return r;
2532 }
2533
2534 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535 {
2536 ack_dbb_wakeup();
2537 return IRQ_HANDLED;
2538 }
2539
2540 static void prcmu_mask_work(struct work_struct *work)
2541 {
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(&mb0_transfer.lock, flags);
2545
2546 config_wakeups();
2547
2548 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549 }
2550
2551 static void prcmu_irq_mask(struct irq_data *d)
2552 {
2553 unsigned long flags;
2554
2555 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2558
2559 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560
2561 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562 schedule_work(&mb0_transfer.mask_work);
2563 }
2564
2565 static void prcmu_irq_unmask(struct irq_data *d)
2566 {
2567 unsigned long flags;
2568
2569 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2572
2573 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574
2575 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576 schedule_work(&mb0_transfer.mask_work);
2577 }
2578
2579 static void noop(struct irq_data *d)
2580 {
2581 }
2582
2583 static struct irq_chip prcmu_irq_chip = {
2584 .name = "prcmu",
2585 .irq_disable = prcmu_irq_mask,
2586 .irq_ack = noop,
2587 .irq_mask = prcmu_irq_mask,
2588 .irq_unmask = prcmu_irq_unmask,
2589 };
2590
2591 static __init char *fw_project_name(u32 project)
2592 {
2593 switch (project) {
2594 case PRCMU_FW_PROJECT_U8500:
2595 return "U8500";
2596 case PRCMU_FW_PROJECT_U8400:
2597 return "U8400";
2598 case PRCMU_FW_PROJECT_U9500:
2599 return "U9500";
2600 case PRCMU_FW_PROJECT_U8500_MBB:
2601 return "U8500 MBB";
2602 case PRCMU_FW_PROJECT_U8500_C1:
2603 return "U8500 C1";
2604 case PRCMU_FW_PROJECT_U8500_C2:
2605 return "U8500 C2";
2606 case PRCMU_FW_PROJECT_U8500_C3:
2607 return "U8500 C3";
2608 case PRCMU_FW_PROJECT_U8500_C4:
2609 return "U8500 C4";
2610 case PRCMU_FW_PROJECT_U9500_MBL:
2611 return "U9500 MBL";
2612 case PRCMU_FW_PROJECT_U8500_MBL:
2613 return "U8500 MBL";
2614 case PRCMU_FW_PROJECT_U8500_MBL2:
2615 return "U8500 MBL2";
2616 case PRCMU_FW_PROJECT_U8520:
2617 return "U8520 MBL";
2618 case PRCMU_FW_PROJECT_U8420:
2619 return "U8420";
2620 case PRCMU_FW_PROJECT_U9540:
2621 return "U9540";
2622 case PRCMU_FW_PROJECT_A9420:
2623 return "A9420";
2624 case PRCMU_FW_PROJECT_L8540:
2625 return "L8540";
2626 case PRCMU_FW_PROJECT_L8580:
2627 return "L8580";
2628 default:
2629 return "Unknown";
2630 }
2631 }
2632
2633 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634 irq_hw_number_t hwirq)
2635 {
2636 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637 handle_simple_irq);
2638
2639 return 0;
2640 }
2641
2642 static const struct irq_domain_ops db8500_irq_ops = {
2643 .map = db8500_irq_map,
2644 .xlate = irq_domain_xlate_twocell,
2645 };
2646
2647 static int db8500_irq_init(struct device_node *np)
2648 {
2649 int i;
2650
2651 db8500_irq_domain = irq_domain_add_simple(
2652 np, NUM_PRCMU_WAKEUPS, 0,
2653 &db8500_irq_ops, NULL);
2654
2655 if (!db8500_irq_domain) {
2656 pr_err("Failed to create irqdomain\n");
2657 return -ENOSYS;
2658 }
2659
2660 /* All wakeups will be used, so create mappings for all */
2661 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662 irq_create_mapping(db8500_irq_domain, i);
2663
2664 return 0;
2665 }
2666
2667 static void dbx500_fw_version_init(struct platform_device *pdev,
2668 u32 version_offset)
2669 {
2670 struct resource *res;
2671 void __iomem *tcpm_base;
2672 u32 version;
2673
2674 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675 "prcmu-tcpm");
2676 if (!res) {
2677 dev_err(&pdev->dev,
2678 "Error: no prcmu tcpm memory region provided\n");
2679 return;
2680 }
2681 tcpm_base = ioremap(res->start, resource_size(res));
2682 if (!tcpm_base) {
2683 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684 return;
2685 }
2686
2687 version = readl(tcpm_base + version_offset);
2688 fw_info.version.project = (version & 0xFF);
2689 fw_info.version.api_version = (version >> 8) & 0xFF;
2690 fw_info.version.func_version = (version >> 16) & 0xFF;
2691 fw_info.version.errata = (version >> 24) & 0xFF;
2692 strncpy(fw_info.version.project_name,
2693 fw_project_name(fw_info.version.project),
2694 PRCMU_FW_PROJECT_NAME_LEN);
2695 fw_info.valid = true;
2696 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697 fw_info.version.project_name,
2698 fw_info.version.project,
2699 fw_info.version.api_version,
2700 fw_info.version.func_version,
2701 fw_info.version.errata);
2702 iounmap(tcpm_base);
2703 }
2704
2705 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2706 {
2707 /*
2708 * This is a temporary remap to bring up the clocks. It is
2709 * subsequently replaces with a real remap. After the merge of
2710 * the mailbox subsystem all of this early code goes away, and the
2711 * clock driver can probe independently. An early initcall will
2712 * still be needed, but it can be diverted into drivers/clk/ux500.
2713 */
2714 prcmu_base = ioremap(phy_base, size);
2715 if (!prcmu_base)
2716 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2717
2718 spin_lock_init(&mb0_transfer.lock);
2719 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720 mutex_init(&mb0_transfer.ac_wake_lock);
2721 init_completion(&mb0_transfer.ac_wake_work);
2722 mutex_init(&mb1_transfer.lock);
2723 init_completion(&mb1_transfer.work);
2724 mb1_transfer.ape_opp = APE_NO_CHANGE;
2725 mutex_init(&mb2_transfer.lock);
2726 init_completion(&mb2_transfer.work);
2727 spin_lock_init(&mb2_transfer.auto_pm_lock);
2728 spin_lock_init(&mb3_transfer.lock);
2729 mutex_init(&mb3_transfer.sysclk_lock);
2730 init_completion(&mb3_transfer.sysclk_work);
2731 mutex_init(&mb4_transfer.lock);
2732 init_completion(&mb4_transfer.work);
2733 mutex_init(&mb5_transfer.lock);
2734 init_completion(&mb5_transfer.work);
2735
2736 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2737 }
2738
2739 static void __init init_prcm_registers(void)
2740 {
2741 u32 val;
2742
2743 val = readl(PRCM_A9PL_FORCE_CLKEN);
2744 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747 }
2748
2749 /*
2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751 */
2752 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753 REGULATOR_SUPPLY("v-ape", NULL),
2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2759 /* "v-mmc" changed to "vcore" in the mainline kernel */
2760 REGULATOR_SUPPLY("vcore", "sdi0"),
2761 REGULATOR_SUPPLY("vcore", "sdi1"),
2762 REGULATOR_SUPPLY("vcore", "sdi2"),
2763 REGULATOR_SUPPLY("vcore", "sdi3"),
2764 REGULATOR_SUPPLY("vcore", "sdi4"),
2765 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767 /* "v-uart" changed to "vcore" in the mainline kernel */
2768 REGULATOR_SUPPLY("vcore", "uart0"),
2769 REGULATOR_SUPPLY("vcore", "uart1"),
2770 REGULATOR_SUPPLY("vcore", "uart2"),
2771 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2772 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2773 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2774 };
2775
2776 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2777 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778 /* AV8100 regulator */
2779 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780 };
2781
2782 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2783 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2784 REGULATOR_SUPPLY("vsupply", "mcde"),
2785 };
2786
2787 /* SVA MMDSP regulator switch */
2788 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790 };
2791
2792 /* SVA pipe regulator switch */
2793 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795 };
2796
2797 /* SIA MMDSP regulator switch */
2798 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800 };
2801
2802 /* SIA pipe regulator switch */
2803 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805 };
2806
2807 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808 REGULATOR_SUPPLY("v-mali", NULL),
2809 };
2810
2811 /* ESRAM1 and 2 regulator switch */
2812 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813 REGULATOR_SUPPLY("esram12", "cm_control"),
2814 };
2815
2816 /* ESRAM3 and 4 regulator switch */
2817 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818 REGULATOR_SUPPLY("v-esram34", "mcde"),
2819 REGULATOR_SUPPLY("esram34", "cm_control"),
2820 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2821 };
2822
2823 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824 [DB8500_REGULATOR_VAPE] = {
2825 .constraints = {
2826 .name = "db8500-vape",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 .always_on = true,
2829 },
2830 .consumer_supplies = db8500_vape_consumers,
2831 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832 },
2833 [DB8500_REGULATOR_VARM] = {
2834 .constraints = {
2835 .name = "db8500-varm",
2836 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837 },
2838 },
2839 [DB8500_REGULATOR_VMODEM] = {
2840 .constraints = {
2841 .name = "db8500-vmodem",
2842 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843 },
2844 },
2845 [DB8500_REGULATOR_VPLL] = {
2846 .constraints = {
2847 .name = "db8500-vpll",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_VSMPS1] = {
2852 .constraints = {
2853 .name = "db8500-vsmps1",
2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855 },
2856 },
2857 [DB8500_REGULATOR_VSMPS2] = {
2858 .constraints = {
2859 .name = "db8500-vsmps2",
2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861 },
2862 .consumer_supplies = db8500_vsmps2_consumers,
2863 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864 },
2865 [DB8500_REGULATOR_VSMPS3] = {
2866 .constraints = {
2867 .name = "db8500-vsmps3",
2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869 },
2870 },
2871 [DB8500_REGULATOR_VRF1] = {
2872 .constraints = {
2873 .name = "db8500-vrf1",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875 },
2876 },
2877 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2878 /* dependency to u8500-vape is handled outside regulator framework */
2879 .constraints = {
2880 .name = "db8500-sva-mmdsp",
2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882 },
2883 .consumer_supplies = db8500_svammdsp_consumers,
2884 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2885 },
2886 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887 .constraints = {
2888 /* "ret" means "retention" */
2889 .name = "db8500-sva-mmdsp-ret",
2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 },
2892 },
2893 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2894 /* dependency to u8500-vape is handled outside regulator framework */
2895 .constraints = {
2896 .name = "db8500-sva-pipe",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
2899 .consumer_supplies = db8500_svapipe_consumers,
2900 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2901 },
2902 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2903 /* dependency to u8500-vape is handled outside regulator framework */
2904 .constraints = {
2905 .name = "db8500-sia-mmdsp",
2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907 },
2908 .consumer_supplies = db8500_siammdsp_consumers,
2909 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2910 },
2911 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912 .constraints = {
2913 .name = "db8500-sia-mmdsp-ret",
2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 },
2916 },
2917 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2918 /* dependency to u8500-vape is handled outside regulator framework */
2919 .constraints = {
2920 .name = "db8500-sia-pipe",
2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922 },
2923 .consumer_supplies = db8500_siapipe_consumers,
2924 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2925 },
2926 [DB8500_REGULATOR_SWITCH_SGA] = {
2927 .supply_regulator = "db8500-vape",
2928 .constraints = {
2929 .name = "db8500-sga",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 },
2932 .consumer_supplies = db8500_sga_consumers,
2933 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
2935 },
2936 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937 .supply_regulator = "db8500-vape",
2938 .constraints = {
2939 .name = "db8500-b2r2-mcde",
2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941 },
2942 .consumer_supplies = db8500_b2r2_mcde_consumers,
2943 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944 },
2945 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2946 /*
2947 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948 * no need to hold Vape
2949 */
2950 .constraints = {
2951 .name = "db8500-esram12",
2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 },
2954 .consumer_supplies = db8500_esram12_consumers,
2955 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2956 },
2957 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958 .constraints = {
2959 .name = "db8500-esram12-ret",
2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 },
2962 },
2963 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2964 /*
2965 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966 * no need to hold Vape
2967 */
2968 .constraints = {
2969 .name = "db8500-esram34",
2970 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971 },
2972 .consumer_supplies = db8500_esram34_consumers,
2973 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2974 },
2975 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976 .constraints = {
2977 .name = "db8500-esram34-ret",
2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979 },
2980 },
2981 };
2982
2983 static struct ux500_wdt_data db8500_wdt_pdata = {
2984 .timeout = 600, /* 10 minutes */
2985 .has_28_bits_resolution = true,
2986 };
2987 /*
2988 * Thermal Sensor
2989 */
2990
2991 static struct resource db8500_thsens_resources[] = {
2992 {
2993 .name = "IRQ_HOTMON_LOW",
2994 .start = IRQ_PRCMU_HOTMON_LOW,
2995 .end = IRQ_PRCMU_HOTMON_LOW,
2996 .flags = IORESOURCE_IRQ,
2997 },
2998 {
2999 .name = "IRQ_HOTMON_HIGH",
3000 .start = IRQ_PRCMU_HOTMON_HIGH,
3001 .end = IRQ_PRCMU_HOTMON_HIGH,
3002 .flags = IORESOURCE_IRQ,
3003 },
3004 };
3005
3006 static struct db8500_thsens_platform_data db8500_thsens_data = {
3007 .trip_points[0] = {
3008 .temp = 70000,
3009 .type = THERMAL_TRIP_ACTIVE,
3010 .cdev_name = {
3011 [0] = "thermal-cpufreq-0",
3012 },
3013 },
3014 .trip_points[1] = {
3015 .temp = 75000,
3016 .type = THERMAL_TRIP_ACTIVE,
3017 .cdev_name = {
3018 [0] = "thermal-cpufreq-0",
3019 },
3020 },
3021 .trip_points[2] = {
3022 .temp = 80000,
3023 .type = THERMAL_TRIP_ACTIVE,
3024 .cdev_name = {
3025 [0] = "thermal-cpufreq-0",
3026 },
3027 },
3028 .trip_points[3] = {
3029 .temp = 85000,
3030 .type = THERMAL_TRIP_CRITICAL,
3031 },
3032 .num_trips = 4,
3033 };
3034
3035 static const struct mfd_cell common_prcmu_devs[] = {
3036 {
3037 .name = "ux500_wdt",
3038 .platform_data = &db8500_wdt_pdata,
3039 .pdata_size = sizeof(db8500_wdt_pdata),
3040 .id = -1,
3041 },
3042 };
3043
3044 static const struct mfd_cell db8500_prcmu_devs[] = {
3045 {
3046 .name = "db8500-prcmu-regulators",
3047 .of_compatible = "stericsson,db8500-prcmu-regulator",
3048 .platform_data = &db8500_regulators,
3049 .pdata_size = sizeof(db8500_regulators),
3050 },
3051 {
3052 .name = "cpufreq-ux500",
3053 .of_compatible = "stericsson,cpufreq-ux500",
3054 .platform_data = &db8500_cpufreq_table,
3055 .pdata_size = sizeof(db8500_cpufreq_table),
3056 },
3057 {
3058 .name = "cpuidle-dbx500",
3059 .of_compatible = "stericsson,cpuidle-dbx500",
3060 },
3061 {
3062 .name = "db8500-thermal",
3063 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3064 .resources = db8500_thsens_resources,
3065 .platform_data = &db8500_thsens_data,
3066 .pdata_size = sizeof(db8500_thsens_data),
3067 },
3068 };
3069
3070 static void db8500_prcmu_update_cpufreq(void)
3071 {
3072 if (prcmu_has_arm_maxopp()) {
3073 db8500_cpufreq_table[3].frequency = 1000000;
3074 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3075 }
3076 }
3077
3078 static int db8500_prcmu_register_ab8500(struct device *parent)
3079 {
3080 struct device_node *np;
3081 struct resource ab8500_resource;
3082 const struct mfd_cell ab8500_cell = {
3083 .name = "ab8500-core",
3084 .of_compatible = "stericsson,ab8500",
3085 .id = AB8500_VERSION_AB8500,
3086 .resources = &ab8500_resource,
3087 .num_resources = 1,
3088 };
3089
3090 if (!parent->of_node)
3091 return -ENODEV;
3092
3093 /* Look up the device node, sneak the IRQ out of it */
3094 for_each_child_of_node(parent->of_node, np) {
3095 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3096 break;
3097 }
3098 if (!np) {
3099 dev_info(parent, "could not find AB8500 node in the device tree\n");
3100 return -ENODEV;
3101 }
3102 of_irq_to_resource_table(np, &ab8500_resource, 1);
3103
3104 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3105 }
3106
3107 /**
3108 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3109 *
3110 */
3111 static int db8500_prcmu_probe(struct platform_device *pdev)
3112 {
3113 struct device_node *np = pdev->dev.of_node;
3114 int irq = 0, err = 0;
3115 struct resource *res;
3116
3117 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3118 if (!res) {
3119 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3120 return -EINVAL;
3121 }
3122 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3123 if (!prcmu_base) {
3124 dev_err(&pdev->dev,
3125 "failed to ioremap prcmu register memory\n");
3126 return -ENOMEM;
3127 }
3128 init_prcm_registers();
3129 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3130 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3131 if (!res) {
3132 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3133 return -EINVAL;
3134 }
3135 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3136 resource_size(res));
3137 if (!tcdm_base) {
3138 dev_err(&pdev->dev,
3139 "failed to ioremap prcmu-tcdm register memory\n");
3140 return -ENOMEM;
3141 }
3142
3143 /* Clean up the mailbox interrupts after pre-kernel code. */
3144 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3145
3146 irq = platform_get_irq(pdev, 0);
3147 if (irq <= 0) {
3148 dev_err(&pdev->dev, "no prcmu irq provided\n");
3149 return irq;
3150 }
3151
3152 err = request_threaded_irq(irq, prcmu_irq_handler,
3153 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3154 if (err < 0) {
3155 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3156 return err;
3157 }
3158
3159 db8500_irq_init(np);
3160
3161 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3162
3163 db8500_prcmu_update_cpufreq();
3164
3165 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3166 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3167 if (err) {
3168 pr_err("prcmu: Failed to add subdevices\n");
3169 return err;
3170 }
3171
3172 /* TODO: Remove restriction when clk definitions are available. */
3173 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3174 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3175 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3176 db8500_irq_domain);
3177 if (err) {
3178 mfd_remove_devices(&pdev->dev);
3179 pr_err("prcmu: Failed to add subdevices\n");
3180 return err;
3181 }
3182 }
3183
3184 err = db8500_prcmu_register_ab8500(&pdev->dev);
3185 if (err) {
3186 mfd_remove_devices(&pdev->dev);
3187 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188 return err;
3189 }
3190
3191 pr_info("DB8500 PRCMU initialized\n");
3192 return err;
3193 }
3194 static const struct of_device_id db8500_prcmu_match[] = {
3195 { .compatible = "stericsson,db8500-prcmu"},
3196 { },
3197 };
3198
3199 static struct platform_driver db8500_prcmu_driver = {
3200 .driver = {
3201 .name = "db8500-prcmu",
3202 .of_match_table = db8500_prcmu_match,
3203 },
3204 .probe = db8500_prcmu_probe,
3205 };
3206
3207 static int __init db8500_prcmu_init(void)
3208 {
3209 return platform_driver_register(&db8500_prcmu_driver);
3210 }
3211
3212 core_initcall(db8500_prcmu_init);
3213
3214 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3215 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3216 MODULE_LICENSE("GPL v2");