]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mfd/db8500-prcmu.c
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE 0x2FC
46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
59
60 #define PRCM_AVS_VOLTAGE 0
61 #define PRCM_AVS_VOLTAGE_MASK 0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP 6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE 7
65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
66
67 #define PRCM_BOOT_STATUS 0xFFF
68 #define PRCM_ROMCODE_A2P 0xFFE
69 #define PRCM_ROMCODE_P2A 0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
71
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73
74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
82
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
90
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS 0
101 #define MB0H_CONFIG_WAKEUPS_EXE 1
102 #define MB0H_READ_WAKEUP_ACK 3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
104
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
115
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF 0x1
138 #define PLL_SOC0_ON 0x2
139 #define PLL_SOC1_OFF 0x4
140 #define PLL_SOC1_ON 0x8
141
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
147
148 /* Mailbox 2 headers */
149 #define MB2H_DPS 0x0
150 #define MB2H_AUTO_PWR 0x1
151
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
163
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167
168 /* Mailbox 3 headers */
169 #define MB3H_ANC 0x0
170 #define MB3H_SIDETONE 0x1
171 #define MB3H_SYSCLK 0xE
172
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
181
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT 0x0
184 #define MB4H_MEM_ST 0x1
185 #define MB4H_HOTDOG 0x12
186 #define MB4H_HOTMON 0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN 0x17
190 #define MB4H_A9WDOG_DIS 0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW BIT(0)
204 #define HOTMON_CONFIG_HIGH BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS 0
211 #define A9WDOG_ID_MASK 0xf
212
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN BIT(3)
223
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233
234 /*
235 * Wakeups/IRQs
236 */
237
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267
268 static struct {
269 bool valid;
270 struct prcmu_fw_version version;
271 } fw_info;
272
273 /*
274 * This vector maps irq numbers to the bits in the bit field used in
275 * communication with the PRCMU firmware.
276 *
277 * The reason for having this is to keep the irq numbers contiguous even though
278 * the bits in the bit field are not. (The bits also have a tendency to move
279 * around, to further complicate matters.)
280 */
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284 IRQ_ENTRY(RTC),
285 IRQ_ENTRY(RTT0),
286 IRQ_ENTRY(RTT1),
287 IRQ_ENTRY(HSI0),
288 IRQ_ENTRY(HSI1),
289 IRQ_ENTRY(CA_WAKE),
290 IRQ_ENTRY(USB),
291 IRQ_ENTRY(ABB),
292 IRQ_ENTRY(ABB_FIFO),
293 IRQ_ENTRY(CA_SLEEP),
294 IRQ_ENTRY(ARM),
295 IRQ_ENTRY(HOTMON_LOW),
296 IRQ_ENTRY(HOTMON_HIGH),
297 IRQ_ENTRY(MODEM_SW_RESET_REQ),
298 IRQ_ENTRY(GPIO0),
299 IRQ_ENTRY(GPIO1),
300 IRQ_ENTRY(GPIO2),
301 IRQ_ENTRY(GPIO3),
302 IRQ_ENTRY(GPIO4),
303 IRQ_ENTRY(GPIO5),
304 IRQ_ENTRY(GPIO6),
305 IRQ_ENTRY(GPIO7),
306 IRQ_ENTRY(GPIO8)
307 };
308
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312 WAKEUP_ENTRY(RTC),
313 WAKEUP_ENTRY(RTT0),
314 WAKEUP_ENTRY(RTT1),
315 WAKEUP_ENTRY(HSI0),
316 WAKEUP_ENTRY(HSI1),
317 WAKEUP_ENTRY(USB),
318 WAKEUP_ENTRY(ABB),
319 WAKEUP_ENTRY(ABB_FIFO),
320 WAKEUP_ENTRY(ARM)
321 };
322
323 /*
324 * mb0_transfer - state needed for mailbox 0 communication.
325 * @lock: The transaction lock.
326 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
327 * the request data.
328 * @mask_work: Work structure used for (un)masking wakeup interrupts.
329 * @req: Request data that need to persist between requests.
330 */
331 static struct {
332 spinlock_t lock;
333 spinlock_t dbb_irqs_lock;
334 struct work_struct mask_work;
335 struct mutex ac_wake_lock;
336 struct completion ac_wake_work;
337 struct {
338 u32 dbb_irqs;
339 u32 dbb_wakeups;
340 u32 abb_events;
341 } req;
342 } mb0_transfer;
343
344 /*
345 * mb1_transfer - state needed for mailbox 1 communication.
346 * @lock: The transaction lock.
347 * @work: The transaction completion structure.
348 * @ape_opp: The current APE OPP.
349 * @ack: Reply ("acknowledge") data.
350 */
351 static struct {
352 struct mutex lock;
353 struct completion work;
354 u8 ape_opp;
355 struct {
356 u8 header;
357 u8 arm_opp;
358 u8 ape_opp;
359 u8 ape_voltage_status;
360 } ack;
361 } mb1_transfer;
362
363 /*
364 * mb2_transfer - state needed for mailbox 2 communication.
365 * @lock: The transaction lock.
366 * @work: The transaction completion structure.
367 * @auto_pm_lock: The autonomous power management configuration lock.
368 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369 * @req: Request data that need to persist between requests.
370 * @ack: Reply ("acknowledge") data.
371 */
372 static struct {
373 struct mutex lock;
374 struct completion work;
375 spinlock_t auto_pm_lock;
376 bool auto_pm_enabled;
377 struct {
378 u8 status;
379 } ack;
380 } mb2_transfer;
381
382 /*
383 * mb3_transfer - state needed for mailbox 3 communication.
384 * @lock: The request lock.
385 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
386 * @sysclk_work: Work structure used for sysclk requests.
387 */
388 static struct {
389 spinlock_t lock;
390 struct mutex sysclk_lock;
391 struct completion sysclk_work;
392 } mb3_transfer;
393
394 /*
395 * mb4_transfer - state needed for mailbox 4 communication.
396 * @lock: The transaction lock.
397 * @work: The transaction completion structure.
398 */
399 static struct {
400 struct mutex lock;
401 struct completion work;
402 } mb4_transfer;
403
404 /*
405 * mb5_transfer - state needed for mailbox 5 communication.
406 * @lock: The transaction lock.
407 * @work: The transaction completion structure.
408 * @ack: Reply ("acknowledge") data.
409 */
410 static struct {
411 struct mutex lock;
412 struct completion work;
413 struct {
414 u8 status;
415 u8 value;
416 } ack;
417 } mb5_transfer;
418
419 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420
421 /* Spinlocks */
422 static DEFINE_SPINLOCK(prcmu_lock);
423 static DEFINE_SPINLOCK(clkout_lock);
424
425 /* Global var to runtime determine TCDM base for v2 or v1 */
426 static __iomem void *tcdm_base;
427
428 struct clk_mgt {
429 void __iomem *reg;
430 u32 pllsw;
431 int branch;
432 bool clk38div;
433 };
434
435 enum {
436 PLL_RAW,
437 PLL_FIX,
438 PLL_DIV
439 };
440
441 static DEFINE_SPINLOCK(clk_mgt_lock);
442
443 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
444 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
445 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
446 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
447 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
448 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
449 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
450 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
452 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
454 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
456 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
460 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
463 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
464 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
467 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
468 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
469 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
471 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
475 };
476
477 struct dsiclk {
478 u32 divsel_mask;
479 u32 divsel_shift;
480 u32 divsel;
481 };
482
483 static struct dsiclk dsiclk[2] = {
484 {
485 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
486 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
487 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
488 },
489 {
490 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
491 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
492 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493 }
494 };
495
496 struct dsiescclk {
497 u32 en;
498 u32 div_mask;
499 u32 div_shift;
500 };
501
502 static struct dsiescclk dsiescclk[3] = {
503 {
504 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
505 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
506 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
507 },
508 {
509 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
510 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
511 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
512 },
513 {
514 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
515 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
516 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
517 }
518 };
519
520 /*
521 * Used by MCDE to setup all necessary PRCMU registers
522 */
523 #define PRCMU_RESET_DSIPLL 0x00004000
524 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
525
526 #define PRCMU_CLK_PLL_DIV_SHIFT 0
527 #define PRCMU_CLK_PLL_SW_SHIFT 5
528 #define PRCMU_CLK_38 (1 << 9)
529 #define PRCMU_CLK_38_SRC (1 << 10)
530 #define PRCMU_CLK_38_DIV (1 << 11)
531
532 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
533 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
534
535 /* DPI 50000000 Hz */
536 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
537 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
538 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
539
540 /* D=101, N=1, R=4, SELDIV2=0 */
541 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
542
543 #define PRCMU_ENABLE_PLLDSI 0x00000001
544 #define PRCMU_DISABLE_PLLDSI 0x00000000
545 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
546 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
547 /* ESC clk, div0=1, div1=1, div2=3 */
548 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
549 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
550 #define PRCMU_DSI_RESET_SW 0x00000007
551
552 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
553
554 int db8500_prcmu_enable_dsipll(void)
555 {
556 int i;
557
558 /* Clear DSIPLL_RESETN */
559 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
560 /* Unclamp DSIPLL in/out */
561 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
562
563 /* Set DSI PLL FREQ */
564 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
565 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
566 /* Enable Escape clocks */
567 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
568
569 /* Start DSI PLL */
570 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
571 /* Reset DSI PLL */
572 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
573 for (i = 0; i < 10; i++) {
574 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
575 == PRCMU_PLLDSI_LOCKP_LOCKED)
576 break;
577 udelay(100);
578 }
579 /* Set DSIPLL_RESETN */
580 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
581 return 0;
582 }
583
584 int db8500_prcmu_disable_dsipll(void)
585 {
586 /* Disable dsi pll */
587 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
588 /* Disable escapeclock */
589 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
590 return 0;
591 }
592
593 int db8500_prcmu_set_display_clocks(void)
594 {
595 unsigned long flags;
596
597 spin_lock_irqsave(&clk_mgt_lock, flags);
598
599 /* Grab the HW semaphore. */
600 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
601 cpu_relax();
602
603 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
604 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
605 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
606
607 /* Release the HW semaphore. */
608 writel(0, PRCM_SEM);
609
610 spin_unlock_irqrestore(&clk_mgt_lock, flags);
611
612 return 0;
613 }
614
615 u32 db8500_prcmu_read(unsigned int reg)
616 {
617 return readl(_PRCMU_BASE + reg);
618 }
619
620 void db8500_prcmu_write(unsigned int reg, u32 value)
621 {
622 unsigned long flags;
623
624 spin_lock_irqsave(&prcmu_lock, flags);
625 writel(value, (_PRCMU_BASE + reg));
626 spin_unlock_irqrestore(&prcmu_lock, flags);
627 }
628
629 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
630 {
631 u32 val;
632 unsigned long flags;
633
634 spin_lock_irqsave(&prcmu_lock, flags);
635 val = readl(_PRCMU_BASE + reg);
636 val = ((val & ~mask) | (value & mask));
637 writel(val, (_PRCMU_BASE + reg));
638 spin_unlock_irqrestore(&prcmu_lock, flags);
639 }
640
641 struct prcmu_fw_version *prcmu_get_fw_version(void)
642 {
643 return fw_info.valid ? &fw_info.version : NULL;
644 }
645
646 bool prcmu_has_arm_maxopp(void)
647 {
648 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
649 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
650 }
651
652 /**
653 * prcmu_get_boot_status - PRCMU boot status checking
654 * Returns: the current PRCMU boot status
655 */
656 int prcmu_get_boot_status(void)
657 {
658 return readb(tcdm_base + PRCM_BOOT_STATUS);
659 }
660
661 /**
662 * prcmu_set_rc_a2p - This function is used to run few power state sequences
663 * @val: Value to be set, i.e. transition requested
664 * Returns: 0 on success, -EINVAL on invalid argument
665 *
666 * This function is used to run the following power state sequences -
667 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
668 */
669 int prcmu_set_rc_a2p(enum romcode_write val)
670 {
671 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
672 return -EINVAL;
673 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
674 return 0;
675 }
676
677 /**
678 * prcmu_get_rc_p2a - This function is used to get power state sequences
679 * Returns: the power transition that has last happened
680 *
681 * This function can return the following transitions-
682 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
683 */
684 enum romcode_read prcmu_get_rc_p2a(void)
685 {
686 return readb(tcdm_base + PRCM_ROMCODE_P2A);
687 }
688
689 /**
690 * prcmu_get_current_mode - Return the current XP70 power mode
691 * Returns: Returns the current AP(ARM) power mode: init,
692 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
693 */
694 enum ap_pwrst prcmu_get_xp70_current_state(void)
695 {
696 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
697 }
698
699 /**
700 * prcmu_config_clkout - Configure one of the programmable clock outputs.
701 * @clkout: The CLKOUT number (0 or 1).
702 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
703 * @div: The divider to be applied.
704 *
705 * Configures one of the programmable clock outputs (CLKOUTs).
706 * @div should be in the range [1,63] to request a configuration, or 0 to
707 * inform that the configuration is no longer requested.
708 */
709 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
710 {
711 static int requests[2];
712 int r = 0;
713 unsigned long flags;
714 u32 val;
715 u32 bits;
716 u32 mask;
717 u32 div_mask;
718
719 BUG_ON(clkout > 1);
720 BUG_ON(div > 63);
721 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
722
723 if (!div && !requests[clkout])
724 return -EINVAL;
725
726 switch (clkout) {
727 case 0:
728 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
729 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
730 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
731 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
732 break;
733 case 1:
734 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
735 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
736 PRCM_CLKOCR_CLK1TYPE);
737 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
738 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
739 break;
740 }
741 bits &= mask;
742
743 spin_lock_irqsave(&clkout_lock, flags);
744
745 val = readl(PRCM_CLKOCR);
746 if (val & div_mask) {
747 if (div) {
748 if ((val & mask) != bits) {
749 r = -EBUSY;
750 goto unlock_and_return;
751 }
752 } else {
753 if ((val & mask & ~div_mask) != bits) {
754 r = -EINVAL;
755 goto unlock_and_return;
756 }
757 }
758 }
759 writel((bits | (val & ~mask)), PRCM_CLKOCR);
760 requests[clkout] += (div ? 1 : -1);
761
762 unlock_and_return:
763 spin_unlock_irqrestore(&clkout_lock, flags);
764
765 return r;
766 }
767
768 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
769 {
770 unsigned long flags;
771
772 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
773
774 spin_lock_irqsave(&mb0_transfer.lock, flags);
775
776 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
777 cpu_relax();
778
779 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
780 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
781 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
782 writeb((keep_ulp_clk ? 1 : 0),
783 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
784 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
785 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
786
787 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
788
789 return 0;
790 }
791
792 u8 db8500_prcmu_get_power_state_result(void)
793 {
794 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
795 }
796
797 /* This function decouple the gic from the prcmu */
798 int db8500_prcmu_gic_decouple(void)
799 {
800 u32 val = readl(PRCM_A9_MASK_REQ);
801
802 /* Set bit 0 register value to 1 */
803 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
804 PRCM_A9_MASK_REQ);
805
806 /* Make sure the register is updated */
807 readl(PRCM_A9_MASK_REQ);
808
809 /* Wait a few cycles for the gic mask completion */
810 udelay(1);
811
812 return 0;
813 }
814
815 /* This function recouple the gic with the prcmu */
816 int db8500_prcmu_gic_recouple(void)
817 {
818 u32 val = readl(PRCM_A9_MASK_REQ);
819
820 /* Set bit 0 register value to 0 */
821 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
822
823 return 0;
824 }
825
826 #define PRCMU_GIC_NUMBER_REGS 5
827
828 /*
829 * This function checks if there are pending irq on the gic. It only
830 * makes sense if the gic has been decoupled before with the
831 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
832 * disables the forwarding of the interrupt to any CPU interface. It
833 * does not prevent the interrupt from changing state, for example
834 * becoming pending, or active and pending if it is already
835 * active. Hence, we have to check the interrupt is pending *and* is
836 * active.
837 */
838 bool db8500_prcmu_gic_pending_irq(void)
839 {
840 u32 pr; /* Pending register */
841 u32 er; /* Enable register */
842 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
843 int i;
844
845 /* 5 registers. STI & PPI not skipped */
846 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
847
848 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
849 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
850
851 if (pr & er)
852 return true; /* There is a pending interrupt */
853 }
854
855 return false;
856 }
857
858 /*
859 * This function checks if there are pending interrupt on the
860 * prcmu which has been delegated to monitor the irqs with the
861 * db8500_prcmu_copy_gic_settings function.
862 */
863 bool db8500_prcmu_pending_irq(void)
864 {
865 u32 it, im;
866 int i;
867
868 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
869 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
870 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
871 if (it & im)
872 return true; /* There is a pending interrupt */
873 }
874
875 return false;
876 }
877
878 /*
879 * This function checks if the specified cpu is in in WFI. It's usage
880 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
881 * function. Of course passing smp_processor_id() to this function will
882 * always return false...
883 */
884 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
885 {
886 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
887 PRCM_ARM_WFI_STANDBY_WFI0;
888 }
889
890 /*
891 * This function copies the gic SPI settings to the prcmu in order to
892 * monitor them and abort/finish the retention/off sequence or state.
893 */
894 int db8500_prcmu_copy_gic_settings(void)
895 {
896 u32 er; /* Enable register */
897 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
898 int i;
899
900 /* We skip the STI and PPI */
901 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
902 er = readl_relaxed(dist_base +
903 GIC_DIST_ENABLE_SET + (i + 1) * 4);
904 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
905 }
906
907 return 0;
908 }
909
910 /* This function should only be called while mb0_transfer.lock is held. */
911 static void config_wakeups(void)
912 {
913 const u8 header[2] = {
914 MB0H_CONFIG_WAKEUPS_EXE,
915 MB0H_CONFIG_WAKEUPS_SLEEP
916 };
917 static u32 last_dbb_events;
918 static u32 last_abb_events;
919 u32 dbb_events;
920 u32 abb_events;
921 unsigned int i;
922
923 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
924 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
925
926 abb_events = mb0_transfer.req.abb_events;
927
928 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
929 return;
930
931 for (i = 0; i < 2; i++) {
932 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
933 cpu_relax();
934 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
935 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
936 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
937 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
938 }
939 last_dbb_events = dbb_events;
940 last_abb_events = abb_events;
941 }
942
943 void db8500_prcmu_enable_wakeups(u32 wakeups)
944 {
945 unsigned long flags;
946 u32 bits;
947 int i;
948
949 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
950
951 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
952 if (wakeups & BIT(i))
953 bits |= prcmu_wakeup_bit[i];
954 }
955
956 spin_lock_irqsave(&mb0_transfer.lock, flags);
957
958 mb0_transfer.req.dbb_wakeups = bits;
959 config_wakeups();
960
961 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
962 }
963
964 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
965 {
966 unsigned long flags;
967
968 spin_lock_irqsave(&mb0_transfer.lock, flags);
969
970 mb0_transfer.req.abb_events = abb_events;
971 config_wakeups();
972
973 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
974 }
975
976 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
977 {
978 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
979 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
980 else
981 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
982 }
983
984 /**
985 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
986 * @opp: The new ARM operating point to which transition is to be made
987 * Returns: 0 on success, non-zero on failure
988 *
989 * This function sets the the operating point of the ARM.
990 */
991 int db8500_prcmu_set_arm_opp(u8 opp)
992 {
993 int r;
994
995 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
996 return -EINVAL;
997
998 r = 0;
999
1000 mutex_lock(&mb1_transfer.lock);
1001
1002 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1003 cpu_relax();
1004
1005 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1006 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1007 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1008
1009 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1010 wait_for_completion(&mb1_transfer.work);
1011
1012 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1013 (mb1_transfer.ack.arm_opp != opp))
1014 r = -EIO;
1015
1016 mutex_unlock(&mb1_transfer.lock);
1017
1018 return r;
1019 }
1020
1021 /**
1022 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1023 *
1024 * Returns: the current ARM OPP
1025 */
1026 int db8500_prcmu_get_arm_opp(void)
1027 {
1028 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1029 }
1030
1031 /**
1032 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1033 *
1034 * Returns: the current DDR OPP
1035 */
1036 int db8500_prcmu_get_ddr_opp(void)
1037 {
1038 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1039 }
1040
1041 /**
1042 * db8500_set_ddr_opp - set the appropriate DDR OPP
1043 * @opp: The new DDR operating point to which transition is to be made
1044 * Returns: 0 on success, non-zero on failure
1045 *
1046 * This function sets the operating point of the DDR.
1047 */
1048 int db8500_prcmu_set_ddr_opp(u8 opp)
1049 {
1050 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051 return -EINVAL;
1052 /* Changing the DDR OPP can hang the hardware pre-v21 */
1053 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1054 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1055
1056 return 0;
1057 }
1058
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable)
1061 {
1062 void __iomem *clock_reg[] = {
1063 PRCM_ACLK_MGT,
1064 PRCM_DMACLK_MGT
1065 };
1066 unsigned long flags;
1067 unsigned int i;
1068
1069 spin_lock_irqsave(&clk_mgt_lock, flags);
1070
1071 /* Grab the HW semaphore. */
1072 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073 cpu_relax();
1074
1075 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076 u32 val;
1077 u32 div;
1078
1079 val = readl(clock_reg[i]);
1080 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081 if (enable) {
1082 if ((div <= 1) || (div > 15)) {
1083 pr_err("prcmu: Bad clock divider %d in %s\n",
1084 div, __func__);
1085 goto unlock_and_return;
1086 }
1087 div <<= 1;
1088 } else {
1089 if (div <= 2)
1090 goto unlock_and_return;
1091 div >>= 1;
1092 }
1093 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095 writel(val, clock_reg[i]);
1096 }
1097
1098 unlock_and_return:
1099 /* Release the HW semaphore. */
1100 writel(0, PRCM_SEM);
1101
1102 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1103 }
1104
1105 /**
1106 * db8500_set_ape_opp - set the appropriate APE OPP
1107 * @opp: The new APE operating point to which transition is to be made
1108 * Returns: 0 on success, non-zero on failure
1109 *
1110 * This function sets the operating point of the APE.
1111 */
1112 int db8500_prcmu_set_ape_opp(u8 opp)
1113 {
1114 int r = 0;
1115
1116 if (opp == mb1_transfer.ape_opp)
1117 return 0;
1118
1119 mutex_lock(&mb1_transfer.lock);
1120
1121 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122 request_even_slower_clocks(false);
1123
1124 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125 goto skip_message;
1126
1127 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1128 cpu_relax();
1129
1130 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1132 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1134
1135 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1136 wait_for_completion(&mb1_transfer.work);
1137
1138 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139 (mb1_transfer.ack.ape_opp != opp))
1140 r = -EIO;
1141
1142 skip_message:
1143 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145 request_even_slower_clocks(true);
1146 if (!r)
1147 mb1_transfer.ape_opp = opp;
1148
1149 mutex_unlock(&mb1_transfer.lock);
1150
1151 return r;
1152 }
1153
1154 /**
1155 * db8500_prcmu_get_ape_opp - get the current APE OPP
1156 *
1157 * Returns: the current APE OPP
1158 */
1159 int db8500_prcmu_get_ape_opp(void)
1160 {
1161 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1162 }
1163
1164 /**
1165 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166 * @enable: true to request the higher voltage, false to drop a request.
1167 *
1168 * Calls to this function to enable and disable requests must be balanced.
1169 */
1170 int prcmu_request_ape_opp_100_voltage(bool enable)
1171 {
1172 int r = 0;
1173 u8 header;
1174 static unsigned int requests;
1175
1176 mutex_lock(&mb1_transfer.lock);
1177
1178 if (enable) {
1179 if (0 != requests++)
1180 goto unlock_and_return;
1181 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182 } else {
1183 if (requests == 0) {
1184 r = -EIO;
1185 goto unlock_and_return;
1186 } else if (1 != requests--) {
1187 goto unlock_and_return;
1188 }
1189 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1190 }
1191
1192 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1193 cpu_relax();
1194
1195 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1196
1197 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1198 wait_for_completion(&mb1_transfer.work);
1199
1200 if ((mb1_transfer.ack.header != header) ||
1201 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202 r = -EIO;
1203
1204 unlock_and_return:
1205 mutex_unlock(&mb1_transfer.lock);
1206
1207 return r;
1208 }
1209
1210 /**
1211 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1212 *
1213 * This function releases the power state requirements of a USB wakeup.
1214 */
1215 int prcmu_release_usb_wakeup_state(void)
1216 {
1217 int r = 0;
1218
1219 mutex_lock(&mb1_transfer.lock);
1220
1221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1222 cpu_relax();
1223
1224 writeb(MB1H_RELEASE_USB_WAKEUP,
1225 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1226
1227 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1228 wait_for_completion(&mb1_transfer.work);
1229
1230 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232 r = -EIO;
1233
1234 mutex_unlock(&mb1_transfer.lock);
1235
1236 return r;
1237 }
1238
1239 static int request_pll(u8 clock, bool enable)
1240 {
1241 int r = 0;
1242
1243 if (clock == PRCMU_PLLSOC0)
1244 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245 else if (clock == PRCMU_PLLSOC1)
1246 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247 else
1248 return -EINVAL;
1249
1250 mutex_lock(&mb1_transfer.lock);
1251
1252 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253 cpu_relax();
1254
1255 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1257
1258 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259 wait_for_completion(&mb1_transfer.work);
1260
1261 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262 r = -EIO;
1263
1264 mutex_unlock(&mb1_transfer.lock);
1265
1266 return r;
1267 }
1268
1269 /**
1270 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271 * @epod_id: The EPOD to set
1272 * @epod_state: The new EPOD state
1273 *
1274 * This function sets the state of a EPOD (power domain). It may not be called
1275 * from interrupt context.
1276 */
1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1278 {
1279 int r = 0;
1280 bool ram_retention = false;
1281 int i;
1282
1283 /* check argument */
1284 BUG_ON(epod_id >= NUM_EPOD_ID);
1285
1286 /* set flag if retention is possible */
1287 switch (epod_id) {
1288 case EPOD_ID_SVAMMDSP:
1289 case EPOD_ID_SIAMMDSP:
1290 case EPOD_ID_ESRAM12:
1291 case EPOD_ID_ESRAM34:
1292 ram_retention = true;
1293 break;
1294 }
1295
1296 /* check argument */
1297 BUG_ON(epod_state > EPOD_STATE_ON);
1298 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1299
1300 /* get lock */
1301 mutex_lock(&mb2_transfer.lock);
1302
1303 /* wait for mailbox */
1304 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1305 cpu_relax();
1306
1307 /* fill in mailbox */
1308 for (i = 0; i < NUM_EPOD_ID; i++)
1309 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1311
1312 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1313
1314 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1315
1316 /*
1317 * The current firmware version does not handle errors correctly,
1318 * and we cannot recover if there is an error.
1319 * This is expected to change when the firmware is updated.
1320 */
1321 if (!wait_for_completion_timeout(&mb2_transfer.work,
1322 msecs_to_jiffies(20000))) {
1323 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324 __func__);
1325 r = -EIO;
1326 goto unlock_and_return;
1327 }
1328
1329 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330 r = -EIO;
1331
1332 unlock_and_return:
1333 mutex_unlock(&mb2_transfer.lock);
1334 return r;
1335 }
1336
1337 /**
1338 * prcmu_configure_auto_pm - Configure autonomous power management.
1339 * @sleep: Configuration for ApSleep.
1340 * @idle: Configuration for ApIdle.
1341 */
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343 struct prcmu_auto_pm_config *idle)
1344 {
1345 u32 sleep_cfg;
1346 u32 idle_cfg;
1347 unsigned long flags;
1348
1349 BUG_ON((sleep == NULL) || (idle == NULL));
1350
1351 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1357
1358 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1364
1365 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1366
1367 /*
1368 * The autonomous power management configuration is done through
1369 * fields in mailbox 2, but these fields are only used as shared
1370 * variables - i.e. there is no need to send a message.
1371 */
1372 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1374
1375 mb2_transfer.auto_pm_enabled =
1376 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1380
1381 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1382 }
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1384
1385 bool prcmu_is_auto_pm_enabled(void)
1386 {
1387 return mb2_transfer.auto_pm_enabled;
1388 }
1389
1390 static int request_sysclk(bool enable)
1391 {
1392 int r;
1393 unsigned long flags;
1394
1395 r = 0;
1396
1397 mutex_lock(&mb3_transfer.sysclk_lock);
1398
1399 spin_lock_irqsave(&mb3_transfer.lock, flags);
1400
1401 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1402 cpu_relax();
1403
1404 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1405
1406 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1407 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1408
1409 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1410
1411 /*
1412 * The firmware only sends an ACK if we want to enable the
1413 * SysClk, and it succeeds.
1414 */
1415 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416 msecs_to_jiffies(20000))) {
1417 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418 __func__);
1419 r = -EIO;
1420 }
1421
1422 mutex_unlock(&mb3_transfer.sysclk_lock);
1423
1424 return r;
1425 }
1426
1427 static int request_timclk(bool enable)
1428 {
1429 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1430
1431 if (!enable)
1432 val |= PRCM_TCR_STOP_TIMERS;
1433 writel(val, PRCM_TCR);
1434
1435 return 0;
1436 }
1437
1438 static int request_clock(u8 clock, bool enable)
1439 {
1440 u32 val;
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(&clk_mgt_lock, flags);
1444
1445 /* Grab the HW semaphore. */
1446 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1447 cpu_relax();
1448
1449 val = readl(clk_mgt[clock].reg);
1450 if (enable) {
1451 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452 } else {
1453 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1455 }
1456 writel(val, clk_mgt[clock].reg);
1457
1458 /* Release the HW semaphore. */
1459 writel(0, PRCM_SEM);
1460
1461 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1462
1463 return 0;
1464 }
1465
1466 static int request_sga_clock(u8 clock, bool enable)
1467 {
1468 u32 val;
1469 int ret;
1470
1471 if (enable) {
1472 val = readl(PRCM_CGATING_BYPASS);
1473 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1474 }
1475
1476 ret = request_clock(clock, enable);
1477
1478 if (!ret && !enable) {
1479 val = readl(PRCM_CGATING_BYPASS);
1480 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 }
1482
1483 return ret;
1484 }
1485
1486 static inline bool plldsi_locked(void)
1487 {
1488 return (readl(PRCM_PLLDSI_LOCKP) &
1489 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1493 }
1494
1495 static int request_plldsi(bool enable)
1496 {
1497 int r = 0;
1498 u32 val;
1499
1500 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1503
1504 val = readl(PRCM_PLLDSI_ENABLE);
1505 if (enable)
1506 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507 else
1508 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509 writel(val, PRCM_PLLDSI_ENABLE);
1510
1511 if (enable) {
1512 unsigned int i;
1513 bool locked = plldsi_locked();
1514
1515 for (i = 10; !locked && (i > 0); --i) {
1516 udelay(100);
1517 locked = plldsi_locked();
1518 }
1519 if (locked) {
1520 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521 PRCM_APE_RESETN_SET);
1522 } else {
1523 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525 PRCM_MMIP_LS_CLAMP_SET);
1526 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527 writel(val, PRCM_PLLDSI_ENABLE);
1528 r = -EAGAIN;
1529 }
1530 } else {
1531 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1532 }
1533 return r;
1534 }
1535
1536 static int request_dsiclk(u8 n, bool enable)
1537 {
1538 u32 val;
1539
1540 val = readl(PRCM_DSI_PLLOUT_SEL);
1541 val &= ~dsiclk[n].divsel_mask;
1542 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543 dsiclk[n].divsel_shift);
1544 writel(val, PRCM_DSI_PLLOUT_SEL);
1545 return 0;
1546 }
1547
1548 static int request_dsiescclk(u8 n, bool enable)
1549 {
1550 u32 val;
1551
1552 val = readl(PRCM_DSITVCLK_DIV);
1553 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554 writel(val, PRCM_DSITVCLK_DIV);
1555 return 0;
1556 }
1557
1558 /**
1559 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560 * @clock: The clock for which the request is made.
1561 * @enable: Whether the clock should be enabled (true) or disabled (false).
1562 *
1563 * This function should only be used by the clock implementation.
1564 * Do not use it from any other place!
1565 */
1566 int db8500_prcmu_request_clock(u8 clock, bool enable)
1567 {
1568 if (clock == PRCMU_SGACLK)
1569 return request_sga_clock(clock, enable);
1570 else if (clock < PRCMU_NUM_REG_CLOCKS)
1571 return request_clock(clock, enable);
1572 else if (clock == PRCMU_TIMCLK)
1573 return request_timclk(enable);
1574 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578 else if (clock == PRCMU_PLLDSI)
1579 return request_plldsi(enable);
1580 else if (clock == PRCMU_SYSCLK)
1581 return request_sysclk(enable);
1582 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1583 return request_pll(clock, enable);
1584 else
1585 return -EINVAL;
1586 }
1587
1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589 int branch)
1590 {
1591 u64 rate;
1592 u32 val;
1593 u32 d;
1594 u32 div = 1;
1595
1596 val = readl(reg);
1597
1598 rate = src_rate;
1599 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1600
1601 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602 if (d > 1)
1603 div *= d;
1604
1605 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606 if (d > 1)
1607 div *= d;
1608
1609 if (val & PRCM_PLL_FREQ_SELDIV2)
1610 div *= 2;
1611
1612 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613 (val & PRCM_PLL_FREQ_DIV2EN) &&
1614 ((reg == PRCM_PLLSOC0_FREQ) ||
1615 (reg == PRCM_PLLDDR_FREQ))))
1616 div *= 2;
1617
1618 (void)do_div(rate, div);
1619
1620 return (unsigned long)rate;
1621 }
1622
1623 #define ROOT_CLOCK_RATE 38400000
1624
1625 static unsigned long clock_rate(u8 clock)
1626 {
1627 u32 val;
1628 u32 pllsw;
1629 unsigned long rate = ROOT_CLOCK_RATE;
1630
1631 val = readl(clk_mgt[clock].reg);
1632
1633 if (val & PRCM_CLK_MGT_CLK38) {
1634 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1635 rate /= 2;
1636 return rate;
1637 }
1638
1639 val |= clk_mgt[clock].pllsw;
1640 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1641
1642 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1643 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1644 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1645 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1646 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1647 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1648 else
1649 return 0;
1650
1651 if ((clock == PRCMU_SGACLK) &&
1652 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1653 u64 r = (rate * 10);
1654
1655 (void)do_div(r, 25);
1656 return (unsigned long)r;
1657 }
1658 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1659 if (val)
1660 return rate / val;
1661 else
1662 return 0;
1663 }
1664
1665 static unsigned long dsiclk_rate(u8 n)
1666 {
1667 u32 divsel;
1668 u32 div = 1;
1669
1670 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1671 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1672
1673 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1674 divsel = dsiclk[n].divsel;
1675
1676 switch (divsel) {
1677 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1678 div *= 2;
1679 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1680 div *= 2;
1681 case PRCM_DSI_PLLOUT_SEL_PHI:
1682 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1683 PLL_RAW) / div;
1684 default:
1685 return 0;
1686 }
1687 }
1688
1689 static unsigned long dsiescclk_rate(u8 n)
1690 {
1691 u32 div;
1692
1693 div = readl(PRCM_DSITVCLK_DIV);
1694 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1695 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1696 }
1697
1698 unsigned long prcmu_clock_rate(u8 clock)
1699 {
1700 if (clock < PRCMU_NUM_REG_CLOCKS)
1701 return clock_rate(clock);
1702 else if (clock == PRCMU_TIMCLK)
1703 return ROOT_CLOCK_RATE / 16;
1704 else if (clock == PRCMU_SYSCLK)
1705 return ROOT_CLOCK_RATE;
1706 else if (clock == PRCMU_PLLSOC0)
1707 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1708 else if (clock == PRCMU_PLLSOC1)
1709 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1710 else if (clock == PRCMU_PLLDDR)
1711 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1712 else if (clock == PRCMU_PLLDSI)
1713 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1714 PLL_RAW);
1715 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1716 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1717 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1718 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1719 else
1720 return 0;
1721 }
1722
1723 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1724 {
1725 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1726 return ROOT_CLOCK_RATE;
1727 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1728 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1729 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1730 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1731 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1732 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1733 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1734 else
1735 return 0;
1736 }
1737
1738 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1739 {
1740 u32 div;
1741
1742 div = (src_rate / rate);
1743 if (div == 0)
1744 return 1;
1745 if (rate < (src_rate / div))
1746 div++;
1747 return div;
1748 }
1749
1750 static long round_clock_rate(u8 clock, unsigned long rate)
1751 {
1752 u32 val;
1753 u32 div;
1754 unsigned long src_rate;
1755 long rounded_rate;
1756
1757 val = readl(clk_mgt[clock].reg);
1758 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1759 clk_mgt[clock].branch);
1760 div = clock_divider(src_rate, rate);
1761 if (val & PRCM_CLK_MGT_CLK38) {
1762 if (clk_mgt[clock].clk38div) {
1763 if (div > 2)
1764 div = 2;
1765 } else {
1766 div = 1;
1767 }
1768 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1769 u64 r = (src_rate * 10);
1770
1771 (void)do_div(r, 25);
1772 if (r <= rate)
1773 return (unsigned long)r;
1774 }
1775 rounded_rate = (src_rate / min(div, (u32)31));
1776
1777 return rounded_rate;
1778 }
1779
1780 #define MIN_PLL_VCO_RATE 600000000ULL
1781 #define MAX_PLL_VCO_RATE 1680640000ULL
1782
1783 static long round_plldsi_rate(unsigned long rate)
1784 {
1785 long rounded_rate = 0;
1786 unsigned long src_rate;
1787 unsigned long rem;
1788 u32 r;
1789
1790 src_rate = clock_rate(PRCMU_HDMICLK);
1791 rem = rate;
1792
1793 for (r = 7; (rem > 0) && (r > 0); r--) {
1794 u64 d;
1795
1796 d = (r * rate);
1797 (void)do_div(d, src_rate);
1798 if (d < 6)
1799 d = 6;
1800 else if (d > 255)
1801 d = 255;
1802 d *= src_rate;
1803 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1804 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1805 continue;
1806 (void)do_div(d, r);
1807 if (rate < d) {
1808 if (rounded_rate == 0)
1809 rounded_rate = (long)d;
1810 break;
1811 }
1812 if ((rate - d) < rem) {
1813 rem = (rate - d);
1814 rounded_rate = (long)d;
1815 }
1816 }
1817 return rounded_rate;
1818 }
1819
1820 static long round_dsiclk_rate(unsigned long rate)
1821 {
1822 u32 div;
1823 unsigned long src_rate;
1824 long rounded_rate;
1825
1826 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1827 PLL_RAW);
1828 div = clock_divider(src_rate, rate);
1829 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1830
1831 return rounded_rate;
1832 }
1833
1834 static long round_dsiescclk_rate(unsigned long rate)
1835 {
1836 u32 div;
1837 unsigned long src_rate;
1838 long rounded_rate;
1839
1840 src_rate = clock_rate(PRCMU_TVCLK);
1841 div = clock_divider(src_rate, rate);
1842 rounded_rate = (src_rate / min(div, (u32)255));
1843
1844 return rounded_rate;
1845 }
1846
1847 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1848 {
1849 if (clock < PRCMU_NUM_REG_CLOCKS)
1850 return round_clock_rate(clock, rate);
1851 else if (clock == PRCMU_PLLDSI)
1852 return round_plldsi_rate(rate);
1853 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1854 return round_dsiclk_rate(rate);
1855 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1856 return round_dsiescclk_rate(rate);
1857 else
1858 return (long)prcmu_clock_rate(clock);
1859 }
1860
1861 static void set_clock_rate(u8 clock, unsigned long rate)
1862 {
1863 u32 val;
1864 u32 div;
1865 unsigned long src_rate;
1866 unsigned long flags;
1867
1868 spin_lock_irqsave(&clk_mgt_lock, flags);
1869
1870 /* Grab the HW semaphore. */
1871 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1872 cpu_relax();
1873
1874 val = readl(clk_mgt[clock].reg);
1875 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1876 clk_mgt[clock].branch);
1877 div = clock_divider(src_rate, rate);
1878 if (val & PRCM_CLK_MGT_CLK38) {
1879 if (clk_mgt[clock].clk38div) {
1880 if (div > 1)
1881 val |= PRCM_CLK_MGT_CLK38DIV;
1882 else
1883 val &= ~PRCM_CLK_MGT_CLK38DIV;
1884 }
1885 } else if (clock == PRCMU_SGACLK) {
1886 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1887 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1888 if (div == 3) {
1889 u64 r = (src_rate * 10);
1890
1891 (void)do_div(r, 25);
1892 if (r <= rate) {
1893 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1894 div = 0;
1895 }
1896 }
1897 val |= min(div, (u32)31);
1898 } else {
1899 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1900 val |= min(div, (u32)31);
1901 }
1902 writel(val, clk_mgt[clock].reg);
1903
1904 /* Release the HW semaphore. */
1905 writel(0, PRCM_SEM);
1906
1907 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1908 }
1909
1910 static int set_plldsi_rate(unsigned long rate)
1911 {
1912 unsigned long src_rate;
1913 unsigned long rem;
1914 u32 pll_freq = 0;
1915 u32 r;
1916
1917 src_rate = clock_rate(PRCMU_HDMICLK);
1918 rem = rate;
1919
1920 for (r = 7; (rem > 0) && (r > 0); r--) {
1921 u64 d;
1922 u64 hwrate;
1923
1924 d = (r * rate);
1925 (void)do_div(d, src_rate);
1926 if (d < 6)
1927 d = 6;
1928 else if (d > 255)
1929 d = 255;
1930 hwrate = (d * src_rate);
1931 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1932 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1933 continue;
1934 (void)do_div(hwrate, r);
1935 if (rate < hwrate) {
1936 if (pll_freq == 0)
1937 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1938 (r << PRCM_PLL_FREQ_R_SHIFT));
1939 break;
1940 }
1941 if ((rate - hwrate) < rem) {
1942 rem = (rate - hwrate);
1943 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1944 (r << PRCM_PLL_FREQ_R_SHIFT));
1945 }
1946 }
1947 if (pll_freq == 0)
1948 return -EINVAL;
1949
1950 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1951 writel(pll_freq, PRCM_PLLDSI_FREQ);
1952
1953 return 0;
1954 }
1955
1956 static void set_dsiclk_rate(u8 n, unsigned long rate)
1957 {
1958 u32 val;
1959 u32 div;
1960
1961 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1962 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1963
1964 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1965 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1966 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1967
1968 val = readl(PRCM_DSI_PLLOUT_SEL);
1969 val &= ~dsiclk[n].divsel_mask;
1970 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1971 writel(val, PRCM_DSI_PLLOUT_SEL);
1972 }
1973
1974 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1975 {
1976 u32 val;
1977 u32 div;
1978
1979 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1980 val = readl(PRCM_DSITVCLK_DIV);
1981 val &= ~dsiescclk[n].div_mask;
1982 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1983 writel(val, PRCM_DSITVCLK_DIV);
1984 }
1985
1986 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1987 {
1988 if (clock < PRCMU_NUM_REG_CLOCKS)
1989 set_clock_rate(clock, rate);
1990 else if (clock == PRCMU_PLLDSI)
1991 return set_plldsi_rate(rate);
1992 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1993 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1994 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1995 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1996 return 0;
1997 }
1998
1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 {
2001 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2002 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2003 return -EINVAL;
2004
2005 mutex_lock(&mb4_transfer.lock);
2006
2007 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2008 cpu_relax();
2009
2010 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2011 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2012 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2013 writeb(DDR_PWR_STATE_ON,
2014 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2015 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016
2017 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2018 wait_for_completion(&mb4_transfer.work);
2019
2020 mutex_unlock(&mb4_transfer.lock);
2021
2022 return 0;
2023 }
2024
2025 int db8500_prcmu_config_hotdog(u8 threshold)
2026 {
2027 mutex_lock(&mb4_transfer.lock);
2028
2029 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2030 cpu_relax();
2031
2032 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2033 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034
2035 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 wait_for_completion(&mb4_transfer.work);
2037
2038 mutex_unlock(&mb4_transfer.lock);
2039
2040 return 0;
2041 }
2042
2043 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 {
2045 mutex_lock(&mb4_transfer.lock);
2046
2047 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 cpu_relax();
2049
2050 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2051 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2052 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2053 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2054 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055
2056 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2057 wait_for_completion(&mb4_transfer.work);
2058
2059 mutex_unlock(&mb4_transfer.lock);
2060
2061 return 0;
2062 }
2063
2064 static int config_hot_period(u16 val)
2065 {
2066 mutex_lock(&mb4_transfer.lock);
2067
2068 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069 cpu_relax();
2070
2071 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2072 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073
2074 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 wait_for_completion(&mb4_transfer.work);
2076
2077 mutex_unlock(&mb4_transfer.lock);
2078
2079 return 0;
2080 }
2081
2082 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 {
2084 if (cycles32k == 0xFFFF)
2085 return -EINVAL;
2086
2087 return config_hot_period(cycles32k);
2088 }
2089
2090 int db8500_prcmu_stop_temp_sense(void)
2091 {
2092 return config_hot_period(0xFFFF);
2093 }
2094
2095 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2096 {
2097
2098 mutex_lock(&mb4_transfer.lock);
2099
2100 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2101 cpu_relax();
2102
2103 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2104 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2105 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2106 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107
2108 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109
2110 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2111 wait_for_completion(&mb4_transfer.work);
2112
2113 mutex_unlock(&mb4_transfer.lock);
2114
2115 return 0;
2116
2117 }
2118
2119 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 {
2121 BUG_ON(num == 0 || num > 0xf);
2122 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2123 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2124 A9WDOG_AUTO_OFF_DIS);
2125 }
2126
2127 int db8500_prcmu_enable_a9wdog(u8 id)
2128 {
2129 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2130 }
2131
2132 int db8500_prcmu_disable_a9wdog(u8 id)
2133 {
2134 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2135 }
2136
2137 int db8500_prcmu_kick_a9wdog(u8 id)
2138 {
2139 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2140 }
2141
2142 /*
2143 * timeout is 28 bit, in ms.
2144 */
2145 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2146 {
2147 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2148 (id & A9WDOG_ID_MASK) |
2149 /*
2150 * Put the lowest 28 bits of timeout at
2151 * offset 4. Four first bits are used for id.
2152 */
2153 (u8)((timeout << 4) & 0xf0),
2154 (u8)((timeout >> 4) & 0xff),
2155 (u8)((timeout >> 12) & 0xff),
2156 (u8)((timeout >> 20) & 0xff));
2157 }
2158
2159 /**
2160 * prcmu_abb_read() - Read register value(s) from the ABB.
2161 * @slave: The I2C slave address.
2162 * @reg: The (start) register address.
2163 * @value: The read out value(s).
2164 * @size: The number of registers to read.
2165 *
2166 * Reads register value(s) from the ABB.
2167 * @size has to be 1 for the current firmware version.
2168 */
2169 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2170 {
2171 int r;
2172
2173 if (size != 1)
2174 return -EINVAL;
2175
2176 mutex_lock(&mb5_transfer.lock);
2177
2178 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2179 cpu_relax();
2180
2181 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2182 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2183 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2184 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2185 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2186
2187 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2188
2189 if (!wait_for_completion_timeout(&mb5_transfer.work,
2190 msecs_to_jiffies(20000))) {
2191 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2192 __func__);
2193 r = -EIO;
2194 } else {
2195 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2196 }
2197
2198 if (!r)
2199 *value = mb5_transfer.ack.value;
2200
2201 mutex_unlock(&mb5_transfer.lock);
2202
2203 return r;
2204 }
2205
2206 /**
2207 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2208 * @slave: The I2C slave address.
2209 * @reg: The (start) register address.
2210 * @value: The value(s) to write.
2211 * @mask: The mask(s) to use.
2212 * @size: The number of registers to write.
2213 *
2214 * Writes masked register value(s) to the ABB.
2215 * For each @value, only the bits set to 1 in the corresponding @mask
2216 * will be written. The other bits are not changed.
2217 * @size has to be 1 for the current firmware version.
2218 */
2219 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2220 {
2221 int r;
2222
2223 if (size != 1)
2224 return -EINVAL;
2225
2226 mutex_lock(&mb5_transfer.lock);
2227
2228 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2229 cpu_relax();
2230
2231 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2232 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2233 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2234 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2235 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2236
2237 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2238
2239 if (!wait_for_completion_timeout(&mb5_transfer.work,
2240 msecs_to_jiffies(20000))) {
2241 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2242 __func__);
2243 r = -EIO;
2244 } else {
2245 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2246 }
2247
2248 mutex_unlock(&mb5_transfer.lock);
2249
2250 return r;
2251 }
2252
2253 /**
2254 * prcmu_abb_write() - Write register value(s) to the ABB.
2255 * @slave: The I2C slave address.
2256 * @reg: The (start) register address.
2257 * @value: The value(s) to write.
2258 * @size: The number of registers to write.
2259 *
2260 * Writes register value(s) to the ABB.
2261 * @size has to be 1 for the current firmware version.
2262 */
2263 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2264 {
2265 u8 mask = ~0;
2266
2267 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2268 }
2269
2270 /**
2271 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2272 */
2273 int prcmu_ac_wake_req(void)
2274 {
2275 u32 val;
2276 int ret = 0;
2277
2278 mutex_lock(&mb0_transfer.ac_wake_lock);
2279
2280 val = readl(PRCM_HOSTACCESS_REQ);
2281 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2282 goto unlock_and_return;
2283
2284 atomic_set(&ac_wake_req_state, 1);
2285
2286 /*
2287 * Force Modem Wake-up before hostaccess_req ping-pong.
2288 * It prevents Modem to enter in Sleep while acking the hostaccess
2289 * request. The 31us delay has been calculated by HWI.
2290 */
2291 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2292 writel(val, PRCM_HOSTACCESS_REQ);
2293
2294 udelay(31);
2295
2296 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2297 writel(val, PRCM_HOSTACCESS_REQ);
2298
2299 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2300 msecs_to_jiffies(5000))) {
2301 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2302 db8500_prcmu_debug_dump(__func__, true, true);
2303 #endif
2304 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2305 __func__);
2306 ret = -EFAULT;
2307 }
2308
2309 unlock_and_return:
2310 mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 return ret;
2312 }
2313
2314 /**
2315 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2316 */
2317 void prcmu_ac_sleep_req()
2318 {
2319 u32 val;
2320
2321 mutex_lock(&mb0_transfer.ac_wake_lock);
2322
2323 val = readl(PRCM_HOSTACCESS_REQ);
2324 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2325 goto unlock_and_return;
2326
2327 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2328 PRCM_HOSTACCESS_REQ);
2329
2330 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2331 msecs_to_jiffies(5000))) {
2332 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2333 __func__);
2334 }
2335
2336 atomic_set(&ac_wake_req_state, 0);
2337
2338 unlock_and_return:
2339 mutex_unlock(&mb0_transfer.ac_wake_lock);
2340 }
2341
2342 bool db8500_prcmu_is_ac_wake_requested(void)
2343 {
2344 return (atomic_read(&ac_wake_req_state) != 0);
2345 }
2346
2347 /**
2348 * db8500_prcmu_system_reset - System reset
2349 *
2350 * Saves the reset reason code and then sets the APE_SOFTRST register which
2351 * fires interrupt to fw
2352 */
2353 void db8500_prcmu_system_reset(u16 reset_code)
2354 {
2355 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2356 writel(1, PRCM_APE_SOFTRST);
2357 }
2358
2359 /**
2360 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2361 *
2362 * Retrieves the reset reason code stored by prcmu_system_reset() before
2363 * last restart.
2364 */
2365 u16 db8500_prcmu_get_reset_code(void)
2366 {
2367 return readw(tcdm_base + PRCM_SW_RST_REASON);
2368 }
2369
2370 /**
2371 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2372 */
2373 void db8500_prcmu_modem_reset(void)
2374 {
2375 mutex_lock(&mb1_transfer.lock);
2376
2377 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2378 cpu_relax();
2379
2380 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2381 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2382 wait_for_completion(&mb1_transfer.work);
2383
2384 /*
2385 * No need to check return from PRCMU as modem should go in reset state
2386 * This state is already managed by upper layer
2387 */
2388
2389 mutex_unlock(&mb1_transfer.lock);
2390 }
2391
2392 static void ack_dbb_wakeup(void)
2393 {
2394 unsigned long flags;
2395
2396 spin_lock_irqsave(&mb0_transfer.lock, flags);
2397
2398 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2399 cpu_relax();
2400
2401 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2402 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2403
2404 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2405 }
2406
2407 static inline void print_unknown_header_warning(u8 n, u8 header)
2408 {
2409 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2410 header, n);
2411 }
2412
2413 static bool read_mailbox_0(void)
2414 {
2415 bool r;
2416 u32 ev;
2417 unsigned int n;
2418 u8 header;
2419
2420 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2421 switch (header) {
2422 case MB0H_WAKEUP_EXE:
2423 case MB0H_WAKEUP_SLEEP:
2424 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2425 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2426 else
2427 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2428
2429 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2430 complete(&mb0_transfer.ac_wake_work);
2431 if (ev & WAKEUP_BIT_SYSCLK_OK)
2432 complete(&mb3_transfer.sysclk_work);
2433
2434 ev &= mb0_transfer.req.dbb_irqs;
2435
2436 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2437 if (ev & prcmu_irq_bit[n])
2438 generic_handle_irq(IRQ_PRCMU_BASE + n);
2439 }
2440 r = true;
2441 break;
2442 default:
2443 print_unknown_header_warning(0, header);
2444 r = false;
2445 break;
2446 }
2447 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2448 return r;
2449 }
2450
2451 static bool read_mailbox_1(void)
2452 {
2453 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2454 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2455 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2456 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2457 PRCM_ACK_MB1_CURRENT_APE_OPP);
2458 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2459 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2460 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2461 complete(&mb1_transfer.work);
2462 return false;
2463 }
2464
2465 static bool read_mailbox_2(void)
2466 {
2467 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2468 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2469 complete(&mb2_transfer.work);
2470 return false;
2471 }
2472
2473 static bool read_mailbox_3(void)
2474 {
2475 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2476 return false;
2477 }
2478
2479 static bool read_mailbox_4(void)
2480 {
2481 u8 header;
2482 bool do_complete = true;
2483
2484 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2485 switch (header) {
2486 case MB4H_MEM_ST:
2487 case MB4H_HOTDOG:
2488 case MB4H_HOTMON:
2489 case MB4H_HOT_PERIOD:
2490 case MB4H_A9WDOG_CONF:
2491 case MB4H_A9WDOG_EN:
2492 case MB4H_A9WDOG_DIS:
2493 case MB4H_A9WDOG_LOAD:
2494 case MB4H_A9WDOG_KICK:
2495 break;
2496 default:
2497 print_unknown_header_warning(4, header);
2498 do_complete = false;
2499 break;
2500 }
2501
2502 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2503
2504 if (do_complete)
2505 complete(&mb4_transfer.work);
2506
2507 return false;
2508 }
2509
2510 static bool read_mailbox_5(void)
2511 {
2512 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2513 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2514 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2515 complete(&mb5_transfer.work);
2516 return false;
2517 }
2518
2519 static bool read_mailbox_6(void)
2520 {
2521 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2522 return false;
2523 }
2524
2525 static bool read_mailbox_7(void)
2526 {
2527 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2528 return false;
2529 }
2530
2531 static bool (* const read_mailbox[NUM_MB])(void) = {
2532 read_mailbox_0,
2533 read_mailbox_1,
2534 read_mailbox_2,
2535 read_mailbox_3,
2536 read_mailbox_4,
2537 read_mailbox_5,
2538 read_mailbox_6,
2539 read_mailbox_7
2540 };
2541
2542 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2543 {
2544 u32 bits;
2545 u8 n;
2546 irqreturn_t r;
2547
2548 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2549 if (unlikely(!bits))
2550 return IRQ_NONE;
2551
2552 r = IRQ_HANDLED;
2553 for (n = 0; bits; n++) {
2554 if (bits & MBOX_BIT(n)) {
2555 bits -= MBOX_BIT(n);
2556 if (read_mailbox[n]())
2557 r = IRQ_WAKE_THREAD;
2558 }
2559 }
2560 return r;
2561 }
2562
2563 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2564 {
2565 ack_dbb_wakeup();
2566 return IRQ_HANDLED;
2567 }
2568
2569 static void prcmu_mask_work(struct work_struct *work)
2570 {
2571 unsigned long flags;
2572
2573 spin_lock_irqsave(&mb0_transfer.lock, flags);
2574
2575 config_wakeups();
2576
2577 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2578 }
2579
2580 static void prcmu_irq_mask(struct irq_data *d)
2581 {
2582 unsigned long flags;
2583
2584 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2585
2586 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2587
2588 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2591 schedule_work(&mb0_transfer.mask_work);
2592 }
2593
2594 static void prcmu_irq_unmask(struct irq_data *d)
2595 {
2596 unsigned long flags;
2597
2598 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2599
2600 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2601
2602 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2603
2604 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2605 schedule_work(&mb0_transfer.mask_work);
2606 }
2607
2608 static void noop(struct irq_data *d)
2609 {
2610 }
2611
2612 static struct irq_chip prcmu_irq_chip = {
2613 .name = "prcmu",
2614 .irq_disable = prcmu_irq_mask,
2615 .irq_ack = noop,
2616 .irq_mask = prcmu_irq_mask,
2617 .irq_unmask = prcmu_irq_unmask,
2618 };
2619
2620 static char *fw_project_name(u8 project)
2621 {
2622 switch (project) {
2623 case PRCMU_FW_PROJECT_U8500:
2624 return "U8500";
2625 case PRCMU_FW_PROJECT_U8500_C2:
2626 return "U8500 C2";
2627 case PRCMU_FW_PROJECT_U9500:
2628 return "U9500";
2629 case PRCMU_FW_PROJECT_U9500_C2:
2630 return "U9500 C2";
2631 case PRCMU_FW_PROJECT_U8520:
2632 return "U8520";
2633 case PRCMU_FW_PROJECT_U8420:
2634 return "U8420";
2635 default:
2636 return "Unknown";
2637 }
2638 }
2639
2640 void __init db8500_prcmu_early_init(void)
2641 {
2642 unsigned int i;
2643 if (cpu_is_u8500v2()) {
2644 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2645
2646 if (tcpm_base != NULL) {
2647 u32 version;
2648 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2649 fw_info.version.project = version & 0xFF;
2650 fw_info.version.api_version = (version >> 8) & 0xFF;
2651 fw_info.version.func_version = (version >> 16) & 0xFF;
2652 fw_info.version.errata = (version >> 24) & 0xFF;
2653 fw_info.valid = true;
2654 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2655 fw_project_name(fw_info.version.project),
2656 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2657 (version >> 24) & 0xFF);
2658 iounmap(tcpm_base);
2659 }
2660
2661 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2662 } else {
2663 pr_err("prcmu: Unsupported chip version\n");
2664 BUG();
2665 }
2666
2667 spin_lock_init(&mb0_transfer.lock);
2668 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2669 mutex_init(&mb0_transfer.ac_wake_lock);
2670 init_completion(&mb0_transfer.ac_wake_work);
2671 mutex_init(&mb1_transfer.lock);
2672 init_completion(&mb1_transfer.work);
2673 mb1_transfer.ape_opp = APE_NO_CHANGE;
2674 mutex_init(&mb2_transfer.lock);
2675 init_completion(&mb2_transfer.work);
2676 spin_lock_init(&mb2_transfer.auto_pm_lock);
2677 spin_lock_init(&mb3_transfer.lock);
2678 mutex_init(&mb3_transfer.sysclk_lock);
2679 init_completion(&mb3_transfer.sysclk_work);
2680 mutex_init(&mb4_transfer.lock);
2681 init_completion(&mb4_transfer.work);
2682 mutex_init(&mb5_transfer.lock);
2683 init_completion(&mb5_transfer.work);
2684
2685 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2686
2687 /* Initalize irqs. */
2688 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2689 unsigned int irq;
2690
2691 irq = IRQ_PRCMU_BASE + i;
2692 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2693 handle_simple_irq);
2694 set_irq_flags(irq, IRQF_VALID);
2695 }
2696 }
2697
2698 static void __init init_prcm_registers(void)
2699 {
2700 u32 val;
2701
2702 val = readl(PRCM_A9PL_FORCE_CLKEN);
2703 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706 }
2707
2708 /*
2709 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710 */
2711 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712 REGULATOR_SUPPLY("v-ape", NULL),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718 /* "v-mmc" changed to "vcore" in the mainline kernel */
2719 REGULATOR_SUPPLY("vcore", "sdi0"),
2720 REGULATOR_SUPPLY("vcore", "sdi1"),
2721 REGULATOR_SUPPLY("vcore", "sdi2"),
2722 REGULATOR_SUPPLY("vcore", "sdi3"),
2723 REGULATOR_SUPPLY("vcore", "sdi4"),
2724 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726 /* "v-uart" changed to "vcore" in the mainline kernel */
2727 REGULATOR_SUPPLY("vcore", "uart0"),
2728 REGULATOR_SUPPLY("vcore", "uart1"),
2729 REGULATOR_SUPPLY("vcore", "uart2"),
2730 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 };
2734
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737 /* AV8100 regulator */
2738 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 };
2740
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743 REGULATOR_SUPPLY("vsupply", "mcde"),
2744 };
2745
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 };
2750
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 };
2755
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 };
2760
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 };
2765
2766 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767 REGULATOR_SUPPLY("v-mali", NULL),
2768 };
2769
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772 REGULATOR_SUPPLY("esram12", "cm_control"),
2773 };
2774
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777 REGULATOR_SUPPLY("v-esram34", "mcde"),
2778 REGULATOR_SUPPLY("esram34", "cm_control"),
2779 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 };
2781
2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783 [DB8500_REGULATOR_VAPE] = {
2784 .constraints = {
2785 .name = "db8500-vape",
2786 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787 .always_on = true,
2788 },
2789 .consumer_supplies = db8500_vape_consumers,
2790 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791 },
2792 [DB8500_REGULATOR_VARM] = {
2793 .constraints = {
2794 .name = "db8500-varm",
2795 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796 },
2797 },
2798 [DB8500_REGULATOR_VMODEM] = {
2799 .constraints = {
2800 .name = "db8500-vmodem",
2801 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802 },
2803 },
2804 [DB8500_REGULATOR_VPLL] = {
2805 .constraints = {
2806 .name = "db8500-vpll",
2807 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 },
2809 },
2810 [DB8500_REGULATOR_VSMPS1] = {
2811 .constraints = {
2812 .name = "db8500-vsmps1",
2813 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814 },
2815 },
2816 [DB8500_REGULATOR_VSMPS2] = {
2817 .constraints = {
2818 .name = "db8500-vsmps2",
2819 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820 },
2821 .consumer_supplies = db8500_vsmps2_consumers,
2822 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823 },
2824 [DB8500_REGULATOR_VSMPS3] = {
2825 .constraints = {
2826 .name = "db8500-vsmps3",
2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 },
2829 },
2830 [DB8500_REGULATOR_VRF1] = {
2831 .constraints = {
2832 .name = "db8500-vrf1",
2833 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834 },
2835 },
2836 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837 /* dependency to u8500-vape is handled outside regulator framework */
2838 .constraints = {
2839 .name = "db8500-sva-mmdsp",
2840 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841 },
2842 .consumer_supplies = db8500_svammdsp_consumers,
2843 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844 },
2845 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846 .constraints = {
2847 /* "ret" means "retention" */
2848 .name = "db8500-sva-mmdsp-ret",
2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 },
2851 },
2852 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853 /* dependency to u8500-vape is handled outside regulator framework */
2854 .constraints = {
2855 .name = "db8500-sva-pipe",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 },
2858 .consumer_supplies = db8500_svapipe_consumers,
2859 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860 },
2861 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862 /* dependency to u8500-vape is handled outside regulator framework */
2863 .constraints = {
2864 .name = "db8500-sia-mmdsp",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 },
2867 .consumer_supplies = db8500_siammdsp_consumers,
2868 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869 },
2870 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871 .constraints = {
2872 .name = "db8500-sia-mmdsp-ret",
2873 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874 },
2875 },
2876 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877 /* dependency to u8500-vape is handled outside regulator framework */
2878 .constraints = {
2879 .name = "db8500-sia-pipe",
2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 },
2882 .consumer_supplies = db8500_siapipe_consumers,
2883 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884 },
2885 [DB8500_REGULATOR_SWITCH_SGA] = {
2886 .supply_regulator = "db8500-vape",
2887 .constraints = {
2888 .name = "db8500-sga",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 .consumer_supplies = db8500_sga_consumers,
2892 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893
2894 },
2895 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896 .supply_regulator = "db8500-vape",
2897 .constraints = {
2898 .name = "db8500-b2r2-mcde",
2899 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 },
2901 .consumer_supplies = db8500_b2r2_mcde_consumers,
2902 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903 },
2904 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905 /*
2906 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907 * no need to hold Vape
2908 */
2909 .constraints = {
2910 .name = "db8500-esram12",
2911 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912 },
2913 .consumer_supplies = db8500_esram12_consumers,
2914 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915 },
2916 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917 .constraints = {
2918 .name = "db8500-esram12-ret",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
2921 },
2922 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923 /*
2924 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925 * no need to hold Vape
2926 */
2927 .constraints = {
2928 .name = "db8500-esram34",
2929 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 },
2931 .consumer_supplies = db8500_esram34_consumers,
2932 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933 },
2934 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935 .constraints = {
2936 .name = "db8500-esram34-ret",
2937 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 },
2939 },
2940 };
2941
2942 static struct resource ab8500_resources[] = {
2943 [0] = {
2944 .start = IRQ_DB8500_AB8500,
2945 .end = IRQ_DB8500_AB8500,
2946 .flags = IORESOURCE_IRQ
2947 }
2948 };
2949
2950 static struct mfd_cell db8500_prcmu_devs[] = {
2951 {
2952 .name = "db8500-prcmu-regulators",
2953 .of_compatible = "stericsson,db8500-prcmu-regulator",
2954 .platform_data = &db8500_regulators,
2955 .pdata_size = sizeof(db8500_regulators),
2956 },
2957 {
2958 .name = "cpufreq-u8500",
2959 .of_compatible = "stericsson,cpufreq-u8500",
2960 },
2961 {
2962 .name = "ab8500-core",
2963 .of_compatible = "stericsson,ab8500",
2964 .num_resources = ARRAY_SIZE(ab8500_resources),
2965 .resources = ab8500_resources,
2966 .id = AB8500_VERSION_AB8500,
2967 },
2968 };
2969
2970 /**
2971 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2972 *
2973 */
2974 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
2975 {
2976 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
2977 struct device_node *np = pdev->dev.of_node;
2978 int irq = 0, err = 0, i;
2979
2980 if (ux500_is_svp())
2981 return -ENODEV;
2982
2983 init_prcm_registers();
2984
2985 /* Clean up the mailbox interrupts after pre-kernel code. */
2986 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2987
2988 if (np)
2989 irq = platform_get_irq(pdev, 0);
2990
2991 if (!np || irq <= 0)
2992 irq = IRQ_DB8500_PRCMU1;
2993
2994 err = request_threaded_irq(irq, prcmu_irq_handler,
2995 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2996 if (err < 0) {
2997 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2998 err = -EBUSY;
2999 goto no_irq_return;
3000 }
3001
3002 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3003 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3004 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3005 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3006 }
3007 }
3008
3009 if (cpu_is_u8500v20_or_later())
3010 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3011
3012 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3013 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3014 if (err) {
3015 pr_err("prcmu: Failed to add subdevices\n");
3016 return err;
3017 }
3018
3019 pr_info("DB8500 PRCMU initialized\n");
3020
3021 no_irq_return:
3022 return err;
3023 }
3024 static const struct of_device_id db8500_prcmu_match[] = {
3025 { .compatible = "stericsson,db8500-prcmu"},
3026 { },
3027 };
3028
3029 static struct platform_driver db8500_prcmu_driver = {
3030 .driver = {
3031 .name = "db8500-prcmu",
3032 .owner = THIS_MODULE,
3033 .of_match_table = db8500_prcmu_match,
3034 },
3035 .probe = db8500_prcmu_probe,
3036 };
3037
3038 static int __init db8500_prcmu_init(void)
3039 {
3040 return platform_driver_register(&db8500_prcmu_driver);
3041 }
3042
3043 core_initcall(db8500_prcmu_init);
3044
3045 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3046 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3047 MODULE_LICENSE("GPL v2");