]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mfd/db8500-prcmu.c
Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[mirror_ubuntu-artful-kernel.git] / drivers / mfd / db8500-prcmu.c
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
4 *
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9 *
10 * U8500 PRCM Unit interface driver
11 *
12 */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE 0x2FC
46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
59
60 #define PRCM_AVS_VOLTAGE 0
61 #define PRCM_AVS_VOLTAGE_MASK 0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP 6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE 7
65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
66
67 #define PRCM_BOOT_STATUS 0xFFF
68 #define PRCM_ROMCODE_A2P 0xFFE
69 #define PRCM_ROMCODE_P2A 0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
71
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73
74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
82
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
90
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS 0
101 #define MB0H_CONFIG_WAKEUPS_EXE 1
102 #define MB0H_READ_WAKEUP_ACK 3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
104
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
115
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF 0x1
138 #define PLL_SOC0_ON 0x2
139 #define PLL_SOC1_OFF 0x4
140 #define PLL_SOC1_ON 0x8
141
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
147
148 /* Mailbox 2 headers */
149 #define MB2H_DPS 0x0
150 #define MB2H_AUTO_PWR 0x1
151
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
163
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167
168 /* Mailbox 3 headers */
169 #define MB3H_ANC 0x0
170 #define MB3H_SIDETONE 0x1
171 #define MB3H_SYSCLK 0xE
172
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
181
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT 0x0
184 #define MB4H_MEM_ST 0x1
185 #define MB4H_HOTDOG 0x12
186 #define MB4H_HOTMON 0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN 0x17
190 #define MB4H_A9WDOG_DIS 0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW BIT(0)
204 #define HOTMON_CONFIG_HIGH BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS 0
211 #define A9WDOG_ID_MASK 0xf
212
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN BIT(3)
223
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233
234 /*
235 * Wakeups/IRQs
236 */
237
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267
268 static struct {
269 bool valid;
270 struct prcmu_fw_version version;
271 } fw_info;
272
273 /*
274 * This vector maps irq numbers to the bits in the bit field used in
275 * communication with the PRCMU firmware.
276 *
277 * The reason for having this is to keep the irq numbers contiguous even though
278 * the bits in the bit field are not. (The bits also have a tendency to move
279 * around, to further complicate matters.)
280 */
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284 IRQ_ENTRY(RTC),
285 IRQ_ENTRY(RTT0),
286 IRQ_ENTRY(RTT1),
287 IRQ_ENTRY(HSI0),
288 IRQ_ENTRY(HSI1),
289 IRQ_ENTRY(CA_WAKE),
290 IRQ_ENTRY(USB),
291 IRQ_ENTRY(ABB),
292 IRQ_ENTRY(ABB_FIFO),
293 IRQ_ENTRY(CA_SLEEP),
294 IRQ_ENTRY(ARM),
295 IRQ_ENTRY(HOTMON_LOW),
296 IRQ_ENTRY(HOTMON_HIGH),
297 IRQ_ENTRY(MODEM_SW_RESET_REQ),
298 IRQ_ENTRY(GPIO0),
299 IRQ_ENTRY(GPIO1),
300 IRQ_ENTRY(GPIO2),
301 IRQ_ENTRY(GPIO3),
302 IRQ_ENTRY(GPIO4),
303 IRQ_ENTRY(GPIO5),
304 IRQ_ENTRY(GPIO6),
305 IRQ_ENTRY(GPIO7),
306 IRQ_ENTRY(GPIO8)
307 };
308
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312 WAKEUP_ENTRY(RTC),
313 WAKEUP_ENTRY(RTT0),
314 WAKEUP_ENTRY(RTT1),
315 WAKEUP_ENTRY(HSI0),
316 WAKEUP_ENTRY(HSI1),
317 WAKEUP_ENTRY(USB),
318 WAKEUP_ENTRY(ABB),
319 WAKEUP_ENTRY(ABB_FIFO),
320 WAKEUP_ENTRY(ARM)
321 };
322
323 /*
324 * mb0_transfer - state needed for mailbox 0 communication.
325 * @lock: The transaction lock.
326 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
327 * the request data.
328 * @mask_work: Work structure used for (un)masking wakeup interrupts.
329 * @req: Request data that need to persist between requests.
330 */
331 static struct {
332 spinlock_t lock;
333 spinlock_t dbb_irqs_lock;
334 struct work_struct mask_work;
335 struct mutex ac_wake_lock;
336 struct completion ac_wake_work;
337 struct {
338 u32 dbb_irqs;
339 u32 dbb_wakeups;
340 u32 abb_events;
341 } req;
342 } mb0_transfer;
343
344 /*
345 * mb1_transfer - state needed for mailbox 1 communication.
346 * @lock: The transaction lock.
347 * @work: The transaction completion structure.
348 * @ape_opp: The current APE OPP.
349 * @ack: Reply ("acknowledge") data.
350 */
351 static struct {
352 struct mutex lock;
353 struct completion work;
354 u8 ape_opp;
355 struct {
356 u8 header;
357 u8 arm_opp;
358 u8 ape_opp;
359 u8 ape_voltage_status;
360 } ack;
361 } mb1_transfer;
362
363 /*
364 * mb2_transfer - state needed for mailbox 2 communication.
365 * @lock: The transaction lock.
366 * @work: The transaction completion structure.
367 * @auto_pm_lock: The autonomous power management configuration lock.
368 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369 * @req: Request data that need to persist between requests.
370 * @ack: Reply ("acknowledge") data.
371 */
372 static struct {
373 struct mutex lock;
374 struct completion work;
375 spinlock_t auto_pm_lock;
376 bool auto_pm_enabled;
377 struct {
378 u8 status;
379 } ack;
380 } mb2_transfer;
381
382 /*
383 * mb3_transfer - state needed for mailbox 3 communication.
384 * @lock: The request lock.
385 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
386 * @sysclk_work: Work structure used for sysclk requests.
387 */
388 static struct {
389 spinlock_t lock;
390 struct mutex sysclk_lock;
391 struct completion sysclk_work;
392 } mb3_transfer;
393
394 /*
395 * mb4_transfer - state needed for mailbox 4 communication.
396 * @lock: The transaction lock.
397 * @work: The transaction completion structure.
398 */
399 static struct {
400 struct mutex lock;
401 struct completion work;
402 } mb4_transfer;
403
404 /*
405 * mb5_transfer - state needed for mailbox 5 communication.
406 * @lock: The transaction lock.
407 * @work: The transaction completion structure.
408 * @ack: Reply ("acknowledge") data.
409 */
410 static struct {
411 struct mutex lock;
412 struct completion work;
413 struct {
414 u8 status;
415 u8 value;
416 } ack;
417 } mb5_transfer;
418
419 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420
421 /* Functions definition */
422 static void compute_armss_rate(void);
423
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
427
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
430
431 struct clk_mgt {
432 void __iomem *reg;
433 u32 pllsw;
434 int branch;
435 bool clk38div;
436 };
437
438 enum {
439 PLL_RAW,
440 PLL_FIX,
441 PLL_DIV
442 };
443
444 static DEFINE_SPINLOCK(clk_mgt_lock);
445
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
478 };
479
480 struct dsiclk {
481 u32 divsel_mask;
482 u32 divsel_shift;
483 u32 divsel;
484 };
485
486 static struct dsiclk dsiclk[2] = {
487 {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
491 },
492 {
493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
496 }
497 };
498
499 struct dsiescclk {
500 u32 en;
501 u32 div_mask;
502 u32 div_shift;
503 };
504
505 static struct dsiescclk dsiescclk[3] = {
506 {
507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
510 },
511 {
512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
515 },
516 {
517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
520 }
521 };
522
523
524 /*
525 * Used by MCDE to setup all necessary PRCMU registers
526 */
527 #define PRCMU_RESET_DSIPLL 0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
529
530 #define PRCMU_CLK_PLL_DIV_SHIFT 0
531 #define PRCMU_CLK_PLL_SW_SHIFT 5
532 #define PRCMU_CLK_38 (1 << 9)
533 #define PRCMU_CLK_38_SRC (1 << 10)
534 #define PRCMU_CLK_38_DIV (1 << 11)
535
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
538
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
543
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
546
547 #define PRCMU_ENABLE_PLLDSI 0x00000001
548 #define PRCMU_DISABLE_PLLDSI 0x00000000
549 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
554 #define PRCMU_DSI_RESET_SW 0x00000007
555
556 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
557
558 int db8500_prcmu_enable_dsipll(void)
559 {
560 int i;
561
562 /* Clear DSIPLL_RESETN */
563 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564 /* Unclamp DSIPLL in/out */
565 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
566
567 /* Set DSI PLL FREQ */
568 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570 /* Enable Escape clocks */
571 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
572
573 /* Start DSI PLL */
574 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575 /* Reset DSI PLL */
576 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577 for (i = 0; i < 10; i++) {
578 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579 == PRCMU_PLLDSI_LOCKP_LOCKED)
580 break;
581 udelay(100);
582 }
583 /* Set DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585 return 0;
586 }
587
588 int db8500_prcmu_disable_dsipll(void)
589 {
590 /* Disable dsi pll */
591 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592 /* Disable escapeclock */
593 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 return 0;
595 }
596
597 int db8500_prcmu_set_display_clocks(void)
598 {
599 unsigned long flags;
600
601 spin_lock_irqsave(&clk_mgt_lock, flags);
602
603 /* Grab the HW semaphore. */
604 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 cpu_relax();
606
607 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
610
611 /* Release the HW semaphore. */
612 writel(0, PRCM_SEM);
613
614 spin_unlock_irqrestore(&clk_mgt_lock, flags);
615
616 return 0;
617 }
618
619 u32 db8500_prcmu_read(unsigned int reg)
620 {
621 return readl(_PRCMU_BASE + reg);
622 }
623
624 void db8500_prcmu_write(unsigned int reg, u32 value)
625 {
626 unsigned long flags;
627
628 spin_lock_irqsave(&prcmu_lock, flags);
629 writel(value, (_PRCMU_BASE + reg));
630 spin_unlock_irqrestore(&prcmu_lock, flags);
631 }
632
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
634 {
635 u32 val;
636 unsigned long flags;
637
638 spin_lock_irqsave(&prcmu_lock, flags);
639 val = readl(_PRCMU_BASE + reg);
640 val = ((val & ~mask) | (value & mask));
641 writel(val, (_PRCMU_BASE + reg));
642 spin_unlock_irqrestore(&prcmu_lock, flags);
643 }
644
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
646 {
647 return fw_info.valid ? &fw_info.version : NULL;
648 }
649
650 bool prcmu_has_arm_maxopp(void)
651 {
652 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
654 }
655
656 /**
657 * prcmu_get_boot_status - PRCMU boot status checking
658 * Returns: the current PRCMU boot status
659 */
660 int prcmu_get_boot_status(void)
661 {
662 return readb(tcdm_base + PRCM_BOOT_STATUS);
663 }
664
665 /**
666 * prcmu_set_rc_a2p - This function is used to run few power state sequences
667 * @val: Value to be set, i.e. transition requested
668 * Returns: 0 on success, -EINVAL on invalid argument
669 *
670 * This function is used to run the following power state sequences -
671 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
672 */
673 int prcmu_set_rc_a2p(enum romcode_write val)
674 {
675 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676 return -EINVAL;
677 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678 return 0;
679 }
680
681 /**
682 * prcmu_get_rc_p2a - This function is used to get power state sequences
683 * Returns: the power transition that has last happened
684 *
685 * This function can return the following transitions-
686 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
687 */
688 enum romcode_read prcmu_get_rc_p2a(void)
689 {
690 return readb(tcdm_base + PRCM_ROMCODE_P2A);
691 }
692
693 /**
694 * prcmu_get_current_mode - Return the current XP70 power mode
695 * Returns: Returns the current AP(ARM) power mode: init,
696 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
697 */
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
699 {
700 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
701 }
702
703 /**
704 * prcmu_config_clkout - Configure one of the programmable clock outputs.
705 * @clkout: The CLKOUT number (0 or 1).
706 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
707 * @div: The divider to be applied.
708 *
709 * Configures one of the programmable clock outputs (CLKOUTs).
710 * @div should be in the range [1,63] to request a configuration, or 0 to
711 * inform that the configuration is no longer requested.
712 */
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
714 {
715 static int requests[2];
716 int r = 0;
717 unsigned long flags;
718 u32 val;
719 u32 bits;
720 u32 mask;
721 u32 div_mask;
722
723 BUG_ON(clkout > 1);
724 BUG_ON(div > 63);
725 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
726
727 if (!div && !requests[clkout])
728 return -EINVAL;
729
730 switch (clkout) {
731 case 0:
732 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736 break;
737 case 1:
738 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740 PRCM_CLKOCR_CLK1TYPE);
741 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743 break;
744 }
745 bits &= mask;
746
747 spin_lock_irqsave(&clkout_lock, flags);
748
749 val = readl(PRCM_CLKOCR);
750 if (val & div_mask) {
751 if (div) {
752 if ((val & mask) != bits) {
753 r = -EBUSY;
754 goto unlock_and_return;
755 }
756 } else {
757 if ((val & mask & ~div_mask) != bits) {
758 r = -EINVAL;
759 goto unlock_and_return;
760 }
761 }
762 }
763 writel((bits | (val & ~mask)), PRCM_CLKOCR);
764 requests[clkout] += (div ? 1 : -1);
765
766 unlock_and_return:
767 spin_unlock_irqrestore(&clkout_lock, flags);
768
769 return r;
770 }
771
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
773 {
774 unsigned long flags;
775
776 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
777
778 spin_lock_irqsave(&mb0_transfer.lock, flags);
779
780 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 cpu_relax();
782
783 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786 writeb((keep_ulp_clk ? 1 : 0),
787 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
790
791 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
792
793 return 0;
794 }
795
796 u8 db8500_prcmu_get_power_state_result(void)
797 {
798 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
799 }
800
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
803 {
804 u32 val = readl(PRCM_A9_MASK_REQ);
805
806 /* Set bit 0 register value to 1 */
807 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 PRCM_A9_MASK_REQ);
809
810 /* Make sure the register is updated */
811 readl(PRCM_A9_MASK_REQ);
812
813 /* Wait a few cycles for the gic mask completion */
814 udelay(1);
815
816 return 0;
817 }
818
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
821 {
822 u32 val = readl(PRCM_A9_MASK_REQ);
823
824 /* Set bit 0 register value to 0 */
825 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
826
827 return 0;
828 }
829
830 #define PRCMU_GIC_NUMBER_REGS 5
831
832 /*
833 * This function checks if there are pending irq on the gic. It only
834 * makes sense if the gic has been decoupled before with the
835 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836 * disables the forwarding of the interrupt to any CPU interface. It
837 * does not prevent the interrupt from changing state, for example
838 * becoming pending, or active and pending if it is already
839 * active. Hence, we have to check the interrupt is pending *and* is
840 * active.
841 */
842 bool db8500_prcmu_gic_pending_irq(void)
843 {
844 u32 pr; /* Pending register */
845 u32 er; /* Enable register */
846 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 int i;
848
849 /* 5 registers. STI & PPI not skipped */
850 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
851
852 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
854
855 if (pr & er)
856 return true; /* There is a pending interrupt */
857 }
858
859 return false;
860 }
861
862 /*
863 * This function checks if there are pending interrupt on the
864 * prcmu which has been delegated to monitor the irqs with the
865 * db8500_prcmu_copy_gic_settings function.
866 */
867 bool db8500_prcmu_pending_irq(void)
868 {
869 u32 it, im;
870 int i;
871
872 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 if (it & im)
876 return true; /* There is a pending interrupt */
877 }
878
879 return false;
880 }
881
882 /*
883 * This function checks if the specified cpu is in in WFI. It's usage
884 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885 * function. Of course passing smp_processor_id() to this function will
886 * always return false...
887 */
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
889 {
890 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 PRCM_ARM_WFI_STANDBY_WFI0;
892 }
893
894 /*
895 * This function copies the gic SPI settings to the prcmu in order to
896 * monitor them and abort/finish the retention/off sequence or state.
897 */
898 int db8500_prcmu_copy_gic_settings(void)
899 {
900 u32 er; /* Enable register */
901 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 int i;
903
904 /* We skip the STI and PPI */
905 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 er = readl_relaxed(dist_base +
907 GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
909 }
910
911 return 0;
912 }
913
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
916 {
917 const u8 header[2] = {
918 MB0H_CONFIG_WAKEUPS_EXE,
919 MB0H_CONFIG_WAKEUPS_SLEEP
920 };
921 static u32 last_dbb_events;
922 static u32 last_abb_events;
923 u32 dbb_events;
924 u32 abb_events;
925 unsigned int i;
926
927 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
929
930 abb_events = mb0_transfer.req.abb_events;
931
932 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933 return;
934
935 for (i = 0; i < 2; i++) {
936 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 cpu_relax();
938 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
942 }
943 last_dbb_events = dbb_events;
944 last_abb_events = abb_events;
945 }
946
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
948 {
949 unsigned long flags;
950 u32 bits;
951 int i;
952
953 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
954
955 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956 if (wakeups & BIT(i))
957 bits |= prcmu_wakeup_bit[i];
958 }
959
960 spin_lock_irqsave(&mb0_transfer.lock, flags);
961
962 mb0_transfer.req.dbb_wakeups = bits;
963 config_wakeups();
964
965 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
966 }
967
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
969 {
970 unsigned long flags;
971
972 spin_lock_irqsave(&mb0_transfer.lock, flags);
973
974 mb0_transfer.req.abb_events = abb_events;
975 config_wakeups();
976
977 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
978 }
979
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
981 {
982 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984 else
985 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
986 }
987
988 /**
989 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990 * @opp: The new ARM operating point to which transition is to be made
991 * Returns: 0 on success, non-zero on failure
992 *
993 * This function sets the the operating point of the ARM.
994 */
995 int db8500_prcmu_set_arm_opp(u8 opp)
996 {
997 int r;
998
999 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000 return -EINVAL;
1001
1002 r = 0;
1003
1004 mutex_lock(&mb1_transfer.lock);
1005
1006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 cpu_relax();
1008
1009 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1012
1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 wait_for_completion(&mb1_transfer.work);
1015
1016 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017 (mb1_transfer.ack.arm_opp != opp))
1018 r = -EIO;
1019
1020 compute_armss_rate();
1021 mutex_unlock(&mb1_transfer.lock);
1022
1023 return r;
1024 }
1025
1026 /**
1027 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1028 *
1029 * Returns: the current ARM OPP
1030 */
1031 int db8500_prcmu_get_arm_opp(void)
1032 {
1033 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1034 }
1035
1036 /**
1037 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1038 *
1039 * Returns: the current DDR OPP
1040 */
1041 int db8500_prcmu_get_ddr_opp(void)
1042 {
1043 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1044 }
1045
1046 /**
1047 * db8500_set_ddr_opp - set the appropriate DDR OPP
1048 * @opp: The new DDR operating point to which transition is to be made
1049 * Returns: 0 on success, non-zero on failure
1050 *
1051 * This function sets the operating point of the DDR.
1052 */
1053 int db8500_prcmu_set_ddr_opp(u8 opp)
1054 {
1055 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1056 return -EINVAL;
1057 /* Changing the DDR OPP can hang the hardware pre-v21 */
1058 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1059 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1060
1061 return 0;
1062 }
1063
1064 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1065 static void request_even_slower_clocks(bool enable)
1066 {
1067 void __iomem *clock_reg[] = {
1068 PRCM_ACLK_MGT,
1069 PRCM_DMACLK_MGT
1070 };
1071 unsigned long flags;
1072 unsigned int i;
1073
1074 spin_lock_irqsave(&clk_mgt_lock, flags);
1075
1076 /* Grab the HW semaphore. */
1077 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1078 cpu_relax();
1079
1080 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1081 u32 val;
1082 u32 div;
1083
1084 val = readl(clock_reg[i]);
1085 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1086 if (enable) {
1087 if ((div <= 1) || (div > 15)) {
1088 pr_err("prcmu: Bad clock divider %d in %s\n",
1089 div, __func__);
1090 goto unlock_and_return;
1091 }
1092 div <<= 1;
1093 } else {
1094 if (div <= 2)
1095 goto unlock_and_return;
1096 div >>= 1;
1097 }
1098 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1099 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1100 writel(val, clock_reg[i]);
1101 }
1102
1103 unlock_and_return:
1104 /* Release the HW semaphore. */
1105 writel(0, PRCM_SEM);
1106
1107 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1108 }
1109
1110 /**
1111 * db8500_set_ape_opp - set the appropriate APE OPP
1112 * @opp: The new APE operating point to which transition is to be made
1113 * Returns: 0 on success, non-zero on failure
1114 *
1115 * This function sets the operating point of the APE.
1116 */
1117 int db8500_prcmu_set_ape_opp(u8 opp)
1118 {
1119 int r = 0;
1120
1121 if (opp == mb1_transfer.ape_opp)
1122 return 0;
1123
1124 mutex_lock(&mb1_transfer.lock);
1125
1126 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1127 request_even_slower_clocks(false);
1128
1129 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1130 goto skip_message;
1131
1132 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1133 cpu_relax();
1134
1135 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1136 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1137 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1138 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1139
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1144 (mb1_transfer.ack.ape_opp != opp))
1145 r = -EIO;
1146
1147 skip_message:
1148 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1149 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1150 request_even_slower_clocks(true);
1151 if (!r)
1152 mb1_transfer.ape_opp = opp;
1153
1154 mutex_unlock(&mb1_transfer.lock);
1155
1156 return r;
1157 }
1158
1159 /**
1160 * db8500_prcmu_get_ape_opp - get the current APE OPP
1161 *
1162 * Returns: the current APE OPP
1163 */
1164 int db8500_prcmu_get_ape_opp(void)
1165 {
1166 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1167 }
1168
1169 /**
1170 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1171 * @enable: true to request the higher voltage, false to drop a request.
1172 *
1173 * Calls to this function to enable and disable requests must be balanced.
1174 */
1175 int prcmu_request_ape_opp_100_voltage(bool enable)
1176 {
1177 int r = 0;
1178 u8 header;
1179 static unsigned int requests;
1180
1181 mutex_lock(&mb1_transfer.lock);
1182
1183 if (enable) {
1184 if (0 != requests++)
1185 goto unlock_and_return;
1186 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1187 } else {
1188 if (requests == 0) {
1189 r = -EIO;
1190 goto unlock_and_return;
1191 } else if (1 != requests--) {
1192 goto unlock_and_return;
1193 }
1194 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1195 }
1196
1197 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1198 cpu_relax();
1199
1200 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1201
1202 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1203 wait_for_completion(&mb1_transfer.work);
1204
1205 if ((mb1_transfer.ack.header != header) ||
1206 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1207 r = -EIO;
1208
1209 unlock_and_return:
1210 mutex_unlock(&mb1_transfer.lock);
1211
1212 return r;
1213 }
1214
1215 /**
1216 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1217 *
1218 * This function releases the power state requirements of a USB wakeup.
1219 */
1220 int prcmu_release_usb_wakeup_state(void)
1221 {
1222 int r = 0;
1223
1224 mutex_lock(&mb1_transfer.lock);
1225
1226 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1227 cpu_relax();
1228
1229 writeb(MB1H_RELEASE_USB_WAKEUP,
1230 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1231
1232 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1233 wait_for_completion(&mb1_transfer.work);
1234
1235 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1236 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1237 r = -EIO;
1238
1239 mutex_unlock(&mb1_transfer.lock);
1240
1241 return r;
1242 }
1243
1244 static int request_pll(u8 clock, bool enable)
1245 {
1246 int r = 0;
1247
1248 if (clock == PRCMU_PLLSOC0)
1249 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1250 else if (clock == PRCMU_PLLSOC1)
1251 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1252 else
1253 return -EINVAL;
1254
1255 mutex_lock(&mb1_transfer.lock);
1256
1257 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1258 cpu_relax();
1259
1260 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1261 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1262
1263 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1264 wait_for_completion(&mb1_transfer.work);
1265
1266 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1267 r = -EIO;
1268
1269 mutex_unlock(&mb1_transfer.lock);
1270
1271 return r;
1272 }
1273
1274 /**
1275 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1276 * @epod_id: The EPOD to set
1277 * @epod_state: The new EPOD state
1278 *
1279 * This function sets the state of a EPOD (power domain). It may not be called
1280 * from interrupt context.
1281 */
1282 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1283 {
1284 int r = 0;
1285 bool ram_retention = false;
1286 int i;
1287
1288 /* check argument */
1289 BUG_ON(epod_id >= NUM_EPOD_ID);
1290
1291 /* set flag if retention is possible */
1292 switch (epod_id) {
1293 case EPOD_ID_SVAMMDSP:
1294 case EPOD_ID_SIAMMDSP:
1295 case EPOD_ID_ESRAM12:
1296 case EPOD_ID_ESRAM34:
1297 ram_retention = true;
1298 break;
1299 }
1300
1301 /* check argument */
1302 BUG_ON(epod_state > EPOD_STATE_ON);
1303 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1304
1305 /* get lock */
1306 mutex_lock(&mb2_transfer.lock);
1307
1308 /* wait for mailbox */
1309 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1310 cpu_relax();
1311
1312 /* fill in mailbox */
1313 for (i = 0; i < NUM_EPOD_ID; i++)
1314 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1315 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1316
1317 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1318
1319 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1320
1321 /*
1322 * The current firmware version does not handle errors correctly,
1323 * and we cannot recover if there is an error.
1324 * This is expected to change when the firmware is updated.
1325 */
1326 if (!wait_for_completion_timeout(&mb2_transfer.work,
1327 msecs_to_jiffies(20000))) {
1328 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1329 __func__);
1330 r = -EIO;
1331 goto unlock_and_return;
1332 }
1333
1334 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1335 r = -EIO;
1336
1337 unlock_and_return:
1338 mutex_unlock(&mb2_transfer.lock);
1339 return r;
1340 }
1341
1342 /**
1343 * prcmu_configure_auto_pm - Configure autonomous power management.
1344 * @sleep: Configuration for ApSleep.
1345 * @idle: Configuration for ApIdle.
1346 */
1347 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1348 struct prcmu_auto_pm_config *idle)
1349 {
1350 u32 sleep_cfg;
1351 u32 idle_cfg;
1352 unsigned long flags;
1353
1354 BUG_ON((sleep == NULL) || (idle == NULL));
1355
1356 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1357 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1359 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1361 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1362
1363 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1364 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1365 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1366 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1367 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1368 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1369
1370 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1371
1372 /*
1373 * The autonomous power management configuration is done through
1374 * fields in mailbox 2, but these fields are only used as shared
1375 * variables - i.e. there is no need to send a message.
1376 */
1377 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1378 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1379
1380 mb2_transfer.auto_pm_enabled =
1381 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1385
1386 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1387 }
1388 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1389
1390 bool prcmu_is_auto_pm_enabled(void)
1391 {
1392 return mb2_transfer.auto_pm_enabled;
1393 }
1394
1395 static int request_sysclk(bool enable)
1396 {
1397 int r;
1398 unsigned long flags;
1399
1400 r = 0;
1401
1402 mutex_lock(&mb3_transfer.sysclk_lock);
1403
1404 spin_lock_irqsave(&mb3_transfer.lock, flags);
1405
1406 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1407 cpu_relax();
1408
1409 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1410
1411 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1412 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1413
1414 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1415
1416 /*
1417 * The firmware only sends an ACK if we want to enable the
1418 * SysClk, and it succeeds.
1419 */
1420 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1421 msecs_to_jiffies(20000))) {
1422 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1423 __func__);
1424 r = -EIO;
1425 }
1426
1427 mutex_unlock(&mb3_transfer.sysclk_lock);
1428
1429 return r;
1430 }
1431
1432 static int request_timclk(bool enable)
1433 {
1434 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1435
1436 if (!enable)
1437 val |= PRCM_TCR_STOP_TIMERS;
1438 writel(val, PRCM_TCR);
1439
1440 return 0;
1441 }
1442
1443 static int request_clock(u8 clock, bool enable)
1444 {
1445 u32 val;
1446 unsigned long flags;
1447
1448 spin_lock_irqsave(&clk_mgt_lock, flags);
1449
1450 /* Grab the HW semaphore. */
1451 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1452 cpu_relax();
1453
1454 val = readl(clk_mgt[clock].reg);
1455 if (enable) {
1456 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1457 } else {
1458 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1459 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1460 }
1461 writel(val, clk_mgt[clock].reg);
1462
1463 /* Release the HW semaphore. */
1464 writel(0, PRCM_SEM);
1465
1466 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1467
1468 return 0;
1469 }
1470
1471 static int request_sga_clock(u8 clock, bool enable)
1472 {
1473 u32 val;
1474 int ret;
1475
1476 if (enable) {
1477 val = readl(PRCM_CGATING_BYPASS);
1478 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1479 }
1480
1481 ret = request_clock(clock, enable);
1482
1483 if (!ret && !enable) {
1484 val = readl(PRCM_CGATING_BYPASS);
1485 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1486 }
1487
1488 return ret;
1489 }
1490
1491 static inline bool plldsi_locked(void)
1492 {
1493 return (readl(PRCM_PLLDSI_LOCKP) &
1494 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1495 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1496 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1498 }
1499
1500 static int request_plldsi(bool enable)
1501 {
1502 int r = 0;
1503 u32 val;
1504
1505 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1506 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1507 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1508
1509 val = readl(PRCM_PLLDSI_ENABLE);
1510 if (enable)
1511 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1512 else
1513 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514 writel(val, PRCM_PLLDSI_ENABLE);
1515
1516 if (enable) {
1517 unsigned int i;
1518 bool locked = plldsi_locked();
1519
1520 for (i = 10; !locked && (i > 0); --i) {
1521 udelay(100);
1522 locked = plldsi_locked();
1523 }
1524 if (locked) {
1525 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1526 PRCM_APE_RESETN_SET);
1527 } else {
1528 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1529 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1530 PRCM_MMIP_LS_CLAMP_SET);
1531 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1532 writel(val, PRCM_PLLDSI_ENABLE);
1533 r = -EAGAIN;
1534 }
1535 } else {
1536 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1537 }
1538 return r;
1539 }
1540
1541 static int request_dsiclk(u8 n, bool enable)
1542 {
1543 u32 val;
1544
1545 val = readl(PRCM_DSI_PLLOUT_SEL);
1546 val &= ~dsiclk[n].divsel_mask;
1547 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1548 dsiclk[n].divsel_shift);
1549 writel(val, PRCM_DSI_PLLOUT_SEL);
1550 return 0;
1551 }
1552
1553 static int request_dsiescclk(u8 n, bool enable)
1554 {
1555 u32 val;
1556
1557 val = readl(PRCM_DSITVCLK_DIV);
1558 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1559 writel(val, PRCM_DSITVCLK_DIV);
1560 return 0;
1561 }
1562
1563 /**
1564 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1565 * @clock: The clock for which the request is made.
1566 * @enable: Whether the clock should be enabled (true) or disabled (false).
1567 *
1568 * This function should only be used by the clock implementation.
1569 * Do not use it from any other place!
1570 */
1571 int db8500_prcmu_request_clock(u8 clock, bool enable)
1572 {
1573 if (clock == PRCMU_SGACLK)
1574 return request_sga_clock(clock, enable);
1575 else if (clock < PRCMU_NUM_REG_CLOCKS)
1576 return request_clock(clock, enable);
1577 else if (clock == PRCMU_TIMCLK)
1578 return request_timclk(enable);
1579 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1580 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1581 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1582 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1583 else if (clock == PRCMU_PLLDSI)
1584 return request_plldsi(enable);
1585 else if (clock == PRCMU_SYSCLK)
1586 return request_sysclk(enable);
1587 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1588 return request_pll(clock, enable);
1589 else
1590 return -EINVAL;
1591 }
1592
1593 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1594 int branch)
1595 {
1596 u64 rate;
1597 u32 val;
1598 u32 d;
1599 u32 div = 1;
1600
1601 val = readl(reg);
1602
1603 rate = src_rate;
1604 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1605
1606 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1607 if (d > 1)
1608 div *= d;
1609
1610 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1611 if (d > 1)
1612 div *= d;
1613
1614 if (val & PRCM_PLL_FREQ_SELDIV2)
1615 div *= 2;
1616
1617 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1618 (val & PRCM_PLL_FREQ_DIV2EN) &&
1619 ((reg == PRCM_PLLSOC0_FREQ) ||
1620 (reg == PRCM_PLLARM_FREQ) ||
1621 (reg == PRCM_PLLDDR_FREQ))))
1622 div *= 2;
1623
1624 (void)do_div(rate, div);
1625
1626 return (unsigned long)rate;
1627 }
1628
1629 #define ROOT_CLOCK_RATE 38400000
1630
1631 static unsigned long clock_rate(u8 clock)
1632 {
1633 u32 val;
1634 u32 pllsw;
1635 unsigned long rate = ROOT_CLOCK_RATE;
1636
1637 val = readl(clk_mgt[clock].reg);
1638
1639 if (val & PRCM_CLK_MGT_CLK38) {
1640 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1641 rate /= 2;
1642 return rate;
1643 }
1644
1645 val |= clk_mgt[clock].pllsw;
1646 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1647
1648 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1649 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1650 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1651 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1652 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1653 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1654 else
1655 return 0;
1656
1657 if ((clock == PRCMU_SGACLK) &&
1658 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1659 u64 r = (rate * 10);
1660
1661 (void)do_div(r, 25);
1662 return (unsigned long)r;
1663 }
1664 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1665 if (val)
1666 return rate / val;
1667 else
1668 return 0;
1669 }
1670 static unsigned long latest_armss_rate;
1671 static unsigned long armss_rate(void)
1672 {
1673 return latest_armss_rate;
1674 }
1675
1676 static void compute_armss_rate(void)
1677 {
1678 u32 r;
1679 unsigned long rate;
1680
1681 r = readl(PRCM_ARM_CHGCLKREQ);
1682
1683 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1684 /* External ARMCLKFIX clock */
1685
1686 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1687
1688 /* Check PRCM_ARM_CHGCLKREQ divider */
1689 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1690 rate /= 2;
1691
1692 /* Check PRCM_ARMCLKFIX_MGT divider */
1693 r = readl(PRCM_ARMCLKFIX_MGT);
1694 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1695 rate /= r;
1696
1697 } else {/* ARM PLL */
1698 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1699 }
1700
1701 latest_armss_rate = rate;
1702 }
1703
1704 static unsigned long dsiclk_rate(u8 n)
1705 {
1706 u32 divsel;
1707 u32 div = 1;
1708
1709 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1710 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1711
1712 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1713 divsel = dsiclk[n].divsel;
1714
1715 switch (divsel) {
1716 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1717 div *= 2;
1718 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1719 div *= 2;
1720 case PRCM_DSI_PLLOUT_SEL_PHI:
1721 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1722 PLL_RAW) / div;
1723 default:
1724 return 0;
1725 }
1726 }
1727
1728 static unsigned long dsiescclk_rate(u8 n)
1729 {
1730 u32 div;
1731
1732 div = readl(PRCM_DSITVCLK_DIV);
1733 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1734 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1735 }
1736
1737 unsigned long prcmu_clock_rate(u8 clock)
1738 {
1739 if (clock < PRCMU_NUM_REG_CLOCKS)
1740 return clock_rate(clock);
1741 else if (clock == PRCMU_TIMCLK)
1742 return ROOT_CLOCK_RATE / 16;
1743 else if (clock == PRCMU_SYSCLK)
1744 return ROOT_CLOCK_RATE;
1745 else if (clock == PRCMU_PLLSOC0)
1746 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 else if (clock == PRCMU_PLLSOC1)
1748 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749 else if (clock == PRCMU_ARMSS)
1750 return armss_rate();
1751 else if (clock == PRCMU_PLLDDR)
1752 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1753 else if (clock == PRCMU_PLLDSI)
1754 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1755 PLL_RAW);
1756 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1757 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1758 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1759 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1760 else
1761 return 0;
1762 }
1763
1764 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1765 {
1766 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1767 return ROOT_CLOCK_RATE;
1768 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1769 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1770 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1771 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1772 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1773 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1774 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1775 else
1776 return 0;
1777 }
1778
1779 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1780 {
1781 u32 div;
1782
1783 div = (src_rate / rate);
1784 if (div == 0)
1785 return 1;
1786 if (rate < (src_rate / div))
1787 div++;
1788 return div;
1789 }
1790
1791 static long round_clock_rate(u8 clock, unsigned long rate)
1792 {
1793 u32 val;
1794 u32 div;
1795 unsigned long src_rate;
1796 long rounded_rate;
1797
1798 val = readl(clk_mgt[clock].reg);
1799 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1800 clk_mgt[clock].branch);
1801 div = clock_divider(src_rate, rate);
1802 if (val & PRCM_CLK_MGT_CLK38) {
1803 if (clk_mgt[clock].clk38div) {
1804 if (div > 2)
1805 div = 2;
1806 } else {
1807 div = 1;
1808 }
1809 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1810 u64 r = (src_rate * 10);
1811
1812 (void)do_div(r, 25);
1813 if (r <= rate)
1814 return (unsigned long)r;
1815 }
1816 rounded_rate = (src_rate / min(div, (u32)31));
1817
1818 return rounded_rate;
1819 }
1820
1821 #define MIN_PLL_VCO_RATE 600000000ULL
1822 #define MAX_PLL_VCO_RATE 1680640000ULL
1823
1824 static long round_plldsi_rate(unsigned long rate)
1825 {
1826 long rounded_rate = 0;
1827 unsigned long src_rate;
1828 unsigned long rem;
1829 u32 r;
1830
1831 src_rate = clock_rate(PRCMU_HDMICLK);
1832 rem = rate;
1833
1834 for (r = 7; (rem > 0) && (r > 0); r--) {
1835 u64 d;
1836
1837 d = (r * rate);
1838 (void)do_div(d, src_rate);
1839 if (d < 6)
1840 d = 6;
1841 else if (d > 255)
1842 d = 255;
1843 d *= src_rate;
1844 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1845 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1846 continue;
1847 (void)do_div(d, r);
1848 if (rate < d) {
1849 if (rounded_rate == 0)
1850 rounded_rate = (long)d;
1851 break;
1852 }
1853 if ((rate - d) < rem) {
1854 rem = (rate - d);
1855 rounded_rate = (long)d;
1856 }
1857 }
1858 return rounded_rate;
1859 }
1860
1861 static long round_dsiclk_rate(unsigned long rate)
1862 {
1863 u32 div;
1864 unsigned long src_rate;
1865 long rounded_rate;
1866
1867 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1868 PLL_RAW);
1869 div = clock_divider(src_rate, rate);
1870 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1871
1872 return rounded_rate;
1873 }
1874
1875 static long round_dsiescclk_rate(unsigned long rate)
1876 {
1877 u32 div;
1878 unsigned long src_rate;
1879 long rounded_rate;
1880
1881 src_rate = clock_rate(PRCMU_TVCLK);
1882 div = clock_divider(src_rate, rate);
1883 rounded_rate = (src_rate / min(div, (u32)255));
1884
1885 return rounded_rate;
1886 }
1887
1888 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1889 {
1890 if (clock < PRCMU_NUM_REG_CLOCKS)
1891 return round_clock_rate(clock, rate);
1892 else if (clock == PRCMU_PLLDSI)
1893 return round_plldsi_rate(rate);
1894 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1895 return round_dsiclk_rate(rate);
1896 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1897 return round_dsiescclk_rate(rate);
1898 else
1899 return (long)prcmu_clock_rate(clock);
1900 }
1901
1902 static void set_clock_rate(u8 clock, unsigned long rate)
1903 {
1904 u32 val;
1905 u32 div;
1906 unsigned long src_rate;
1907 unsigned long flags;
1908
1909 spin_lock_irqsave(&clk_mgt_lock, flags);
1910
1911 /* Grab the HW semaphore. */
1912 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1913 cpu_relax();
1914
1915 val = readl(clk_mgt[clock].reg);
1916 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1917 clk_mgt[clock].branch);
1918 div = clock_divider(src_rate, rate);
1919 if (val & PRCM_CLK_MGT_CLK38) {
1920 if (clk_mgt[clock].clk38div) {
1921 if (div > 1)
1922 val |= PRCM_CLK_MGT_CLK38DIV;
1923 else
1924 val &= ~PRCM_CLK_MGT_CLK38DIV;
1925 }
1926 } else if (clock == PRCMU_SGACLK) {
1927 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1928 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1929 if (div == 3) {
1930 u64 r = (src_rate * 10);
1931
1932 (void)do_div(r, 25);
1933 if (r <= rate) {
1934 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1935 div = 0;
1936 }
1937 }
1938 val |= min(div, (u32)31);
1939 } else {
1940 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1941 val |= min(div, (u32)31);
1942 }
1943 writel(val, clk_mgt[clock].reg);
1944
1945 /* Release the HW semaphore. */
1946 writel(0, PRCM_SEM);
1947
1948 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1949 }
1950
1951 static int set_plldsi_rate(unsigned long rate)
1952 {
1953 unsigned long src_rate;
1954 unsigned long rem;
1955 u32 pll_freq = 0;
1956 u32 r;
1957
1958 src_rate = clock_rate(PRCMU_HDMICLK);
1959 rem = rate;
1960
1961 for (r = 7; (rem > 0) && (r > 0); r--) {
1962 u64 d;
1963 u64 hwrate;
1964
1965 d = (r * rate);
1966 (void)do_div(d, src_rate);
1967 if (d < 6)
1968 d = 6;
1969 else if (d > 255)
1970 d = 255;
1971 hwrate = (d * src_rate);
1972 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1973 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1974 continue;
1975 (void)do_div(hwrate, r);
1976 if (rate < hwrate) {
1977 if (pll_freq == 0)
1978 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1979 (r << PRCM_PLL_FREQ_R_SHIFT));
1980 break;
1981 }
1982 if ((rate - hwrate) < rem) {
1983 rem = (rate - hwrate);
1984 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1985 (r << PRCM_PLL_FREQ_R_SHIFT));
1986 }
1987 }
1988 if (pll_freq == 0)
1989 return -EINVAL;
1990
1991 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1992 writel(pll_freq, PRCM_PLLDSI_FREQ);
1993
1994 return 0;
1995 }
1996
1997 static void set_dsiclk_rate(u8 n, unsigned long rate)
1998 {
1999 u32 val;
2000 u32 div;
2001
2002 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2003 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2004
2005 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2006 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2007 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2008
2009 val = readl(PRCM_DSI_PLLOUT_SEL);
2010 val &= ~dsiclk[n].divsel_mask;
2011 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2012 writel(val, PRCM_DSI_PLLOUT_SEL);
2013 }
2014
2015 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2016 {
2017 u32 val;
2018 u32 div;
2019
2020 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2021 val = readl(PRCM_DSITVCLK_DIV);
2022 val &= ~dsiescclk[n].div_mask;
2023 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2024 writel(val, PRCM_DSITVCLK_DIV);
2025 }
2026
2027 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2028 {
2029 if (clock < PRCMU_NUM_REG_CLOCKS)
2030 set_clock_rate(clock, rate);
2031 else if (clock == PRCMU_PLLDSI)
2032 return set_plldsi_rate(rate);
2033 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2034 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2035 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2036 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2037 return 0;
2038 }
2039
2040 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2041 {
2042 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2043 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2044 return -EINVAL;
2045
2046 mutex_lock(&mb4_transfer.lock);
2047
2048 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2049 cpu_relax();
2050
2051 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2052 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2053 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2054 writeb(DDR_PWR_STATE_ON,
2055 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2056 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2057
2058 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2059 wait_for_completion(&mb4_transfer.work);
2060
2061 mutex_unlock(&mb4_transfer.lock);
2062
2063 return 0;
2064 }
2065
2066 int db8500_prcmu_config_hotdog(u8 threshold)
2067 {
2068 mutex_lock(&mb4_transfer.lock);
2069
2070 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2071 cpu_relax();
2072
2073 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2074 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2075
2076 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2077 wait_for_completion(&mb4_transfer.work);
2078
2079 mutex_unlock(&mb4_transfer.lock);
2080
2081 return 0;
2082 }
2083
2084 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2085 {
2086 mutex_lock(&mb4_transfer.lock);
2087
2088 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089 cpu_relax();
2090
2091 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2092 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2093 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2094 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2095 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2096
2097 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2098 wait_for_completion(&mb4_transfer.work);
2099
2100 mutex_unlock(&mb4_transfer.lock);
2101
2102 return 0;
2103 }
2104
2105 static int config_hot_period(u16 val)
2106 {
2107 mutex_lock(&mb4_transfer.lock);
2108
2109 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2110 cpu_relax();
2111
2112 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2113 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2114
2115 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2116 wait_for_completion(&mb4_transfer.work);
2117
2118 mutex_unlock(&mb4_transfer.lock);
2119
2120 return 0;
2121 }
2122
2123 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2124 {
2125 if (cycles32k == 0xFFFF)
2126 return -EINVAL;
2127
2128 return config_hot_period(cycles32k);
2129 }
2130
2131 int db8500_prcmu_stop_temp_sense(void)
2132 {
2133 return config_hot_period(0xFFFF);
2134 }
2135
2136 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2137 {
2138
2139 mutex_lock(&mb4_transfer.lock);
2140
2141 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2142 cpu_relax();
2143
2144 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2145 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2146 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2147 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2148
2149 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2150
2151 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2152 wait_for_completion(&mb4_transfer.work);
2153
2154 mutex_unlock(&mb4_transfer.lock);
2155
2156 return 0;
2157
2158 }
2159
2160 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2161 {
2162 BUG_ON(num == 0 || num > 0xf);
2163 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2164 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2165 A9WDOG_AUTO_OFF_DIS);
2166 }
2167
2168 int db8500_prcmu_enable_a9wdog(u8 id)
2169 {
2170 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2171 }
2172
2173 int db8500_prcmu_disable_a9wdog(u8 id)
2174 {
2175 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2176 }
2177
2178 int db8500_prcmu_kick_a9wdog(u8 id)
2179 {
2180 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2181 }
2182
2183 /*
2184 * timeout is 28 bit, in ms.
2185 */
2186 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2187 {
2188 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2189 (id & A9WDOG_ID_MASK) |
2190 /*
2191 * Put the lowest 28 bits of timeout at
2192 * offset 4. Four first bits are used for id.
2193 */
2194 (u8)((timeout << 4) & 0xf0),
2195 (u8)((timeout >> 4) & 0xff),
2196 (u8)((timeout >> 12) & 0xff),
2197 (u8)((timeout >> 20) & 0xff));
2198 }
2199
2200 /**
2201 * prcmu_abb_read() - Read register value(s) from the ABB.
2202 * @slave: The I2C slave address.
2203 * @reg: The (start) register address.
2204 * @value: The read out value(s).
2205 * @size: The number of registers to read.
2206 *
2207 * Reads register value(s) from the ABB.
2208 * @size has to be 1 for the current firmware version.
2209 */
2210 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2211 {
2212 int r;
2213
2214 if (size != 1)
2215 return -EINVAL;
2216
2217 mutex_lock(&mb5_transfer.lock);
2218
2219 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2220 cpu_relax();
2221
2222 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2223 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2224 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2225 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2226 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2227
2228 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2229
2230 if (!wait_for_completion_timeout(&mb5_transfer.work,
2231 msecs_to_jiffies(20000))) {
2232 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2233 __func__);
2234 r = -EIO;
2235 } else {
2236 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2237 }
2238
2239 if (!r)
2240 *value = mb5_transfer.ack.value;
2241
2242 mutex_unlock(&mb5_transfer.lock);
2243
2244 return r;
2245 }
2246
2247 /**
2248 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2249 * @slave: The I2C slave address.
2250 * @reg: The (start) register address.
2251 * @value: The value(s) to write.
2252 * @mask: The mask(s) to use.
2253 * @size: The number of registers to write.
2254 *
2255 * Writes masked register value(s) to the ABB.
2256 * For each @value, only the bits set to 1 in the corresponding @mask
2257 * will be written. The other bits are not changed.
2258 * @size has to be 1 for the current firmware version.
2259 */
2260 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2261 {
2262 int r;
2263
2264 if (size != 1)
2265 return -EINVAL;
2266
2267 mutex_lock(&mb5_transfer.lock);
2268
2269 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2270 cpu_relax();
2271
2272 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2273 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2274 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2275 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2276 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2277
2278 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2279
2280 if (!wait_for_completion_timeout(&mb5_transfer.work,
2281 msecs_to_jiffies(20000))) {
2282 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2283 __func__);
2284 r = -EIO;
2285 } else {
2286 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2287 }
2288
2289 mutex_unlock(&mb5_transfer.lock);
2290
2291 return r;
2292 }
2293
2294 /**
2295 * prcmu_abb_write() - Write register value(s) to the ABB.
2296 * @slave: The I2C slave address.
2297 * @reg: The (start) register address.
2298 * @value: The value(s) to write.
2299 * @size: The number of registers to write.
2300 *
2301 * Writes register value(s) to the ABB.
2302 * @size has to be 1 for the current firmware version.
2303 */
2304 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2305 {
2306 u8 mask = ~0;
2307
2308 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2309 }
2310
2311 /**
2312 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2313 */
2314 int prcmu_ac_wake_req(void)
2315 {
2316 u32 val;
2317 int ret = 0;
2318
2319 mutex_lock(&mb0_transfer.ac_wake_lock);
2320
2321 val = readl(PRCM_HOSTACCESS_REQ);
2322 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2323 goto unlock_and_return;
2324
2325 atomic_set(&ac_wake_req_state, 1);
2326
2327 /*
2328 * Force Modem Wake-up before hostaccess_req ping-pong.
2329 * It prevents Modem to enter in Sleep while acking the hostaccess
2330 * request. The 31us delay has been calculated by HWI.
2331 */
2332 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2333 writel(val, PRCM_HOSTACCESS_REQ);
2334
2335 udelay(31);
2336
2337 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2338 writel(val, PRCM_HOSTACCESS_REQ);
2339
2340 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2341 msecs_to_jiffies(5000))) {
2342 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2343 db8500_prcmu_debug_dump(__func__, true, true);
2344 #endif
2345 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2346 __func__);
2347 ret = -EFAULT;
2348 }
2349
2350 unlock_and_return:
2351 mutex_unlock(&mb0_transfer.ac_wake_lock);
2352 return ret;
2353 }
2354
2355 /**
2356 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2357 */
2358 void prcmu_ac_sleep_req()
2359 {
2360 u32 val;
2361
2362 mutex_lock(&mb0_transfer.ac_wake_lock);
2363
2364 val = readl(PRCM_HOSTACCESS_REQ);
2365 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2366 goto unlock_and_return;
2367
2368 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2369 PRCM_HOSTACCESS_REQ);
2370
2371 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2372 msecs_to_jiffies(5000))) {
2373 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2374 __func__);
2375 }
2376
2377 atomic_set(&ac_wake_req_state, 0);
2378
2379 unlock_and_return:
2380 mutex_unlock(&mb0_transfer.ac_wake_lock);
2381 }
2382
2383 bool db8500_prcmu_is_ac_wake_requested(void)
2384 {
2385 return (atomic_read(&ac_wake_req_state) != 0);
2386 }
2387
2388 /**
2389 * db8500_prcmu_system_reset - System reset
2390 *
2391 * Saves the reset reason code and then sets the APE_SOFTRST register which
2392 * fires interrupt to fw
2393 */
2394 void db8500_prcmu_system_reset(u16 reset_code)
2395 {
2396 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2397 writel(1, PRCM_APE_SOFTRST);
2398 }
2399
2400 /**
2401 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2402 *
2403 * Retrieves the reset reason code stored by prcmu_system_reset() before
2404 * last restart.
2405 */
2406 u16 db8500_prcmu_get_reset_code(void)
2407 {
2408 return readw(tcdm_base + PRCM_SW_RST_REASON);
2409 }
2410
2411 /**
2412 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2413 */
2414 void db8500_prcmu_modem_reset(void)
2415 {
2416 mutex_lock(&mb1_transfer.lock);
2417
2418 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2419 cpu_relax();
2420
2421 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2422 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2423 wait_for_completion(&mb1_transfer.work);
2424
2425 /*
2426 * No need to check return from PRCMU as modem should go in reset state
2427 * This state is already managed by upper layer
2428 */
2429
2430 mutex_unlock(&mb1_transfer.lock);
2431 }
2432
2433 static void ack_dbb_wakeup(void)
2434 {
2435 unsigned long flags;
2436
2437 spin_lock_irqsave(&mb0_transfer.lock, flags);
2438
2439 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2440 cpu_relax();
2441
2442 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2443 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2444
2445 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2446 }
2447
2448 static inline void print_unknown_header_warning(u8 n, u8 header)
2449 {
2450 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2451 header, n);
2452 }
2453
2454 static bool read_mailbox_0(void)
2455 {
2456 bool r;
2457 u32 ev;
2458 unsigned int n;
2459 u8 header;
2460
2461 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2462 switch (header) {
2463 case MB0H_WAKEUP_EXE:
2464 case MB0H_WAKEUP_SLEEP:
2465 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2466 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2467 else
2468 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2469
2470 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2471 complete(&mb0_transfer.ac_wake_work);
2472 if (ev & WAKEUP_BIT_SYSCLK_OK)
2473 complete(&mb3_transfer.sysclk_work);
2474
2475 ev &= mb0_transfer.req.dbb_irqs;
2476
2477 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2478 if (ev & prcmu_irq_bit[n])
2479 generic_handle_irq(IRQ_PRCMU_BASE + n);
2480 }
2481 r = true;
2482 break;
2483 default:
2484 print_unknown_header_warning(0, header);
2485 r = false;
2486 break;
2487 }
2488 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2489 return r;
2490 }
2491
2492 static bool read_mailbox_1(void)
2493 {
2494 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2495 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2496 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2497 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2498 PRCM_ACK_MB1_CURRENT_APE_OPP);
2499 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2500 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2501 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2502 complete(&mb1_transfer.work);
2503 return false;
2504 }
2505
2506 static bool read_mailbox_2(void)
2507 {
2508 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2509 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2510 complete(&mb2_transfer.work);
2511 return false;
2512 }
2513
2514 static bool read_mailbox_3(void)
2515 {
2516 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2517 return false;
2518 }
2519
2520 static bool read_mailbox_4(void)
2521 {
2522 u8 header;
2523 bool do_complete = true;
2524
2525 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2526 switch (header) {
2527 case MB4H_MEM_ST:
2528 case MB4H_HOTDOG:
2529 case MB4H_HOTMON:
2530 case MB4H_HOT_PERIOD:
2531 case MB4H_A9WDOG_CONF:
2532 case MB4H_A9WDOG_EN:
2533 case MB4H_A9WDOG_DIS:
2534 case MB4H_A9WDOG_LOAD:
2535 case MB4H_A9WDOG_KICK:
2536 break;
2537 default:
2538 print_unknown_header_warning(4, header);
2539 do_complete = false;
2540 break;
2541 }
2542
2543 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2544
2545 if (do_complete)
2546 complete(&mb4_transfer.work);
2547
2548 return false;
2549 }
2550
2551 static bool read_mailbox_5(void)
2552 {
2553 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2554 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2555 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2556 complete(&mb5_transfer.work);
2557 return false;
2558 }
2559
2560 static bool read_mailbox_6(void)
2561 {
2562 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2563 return false;
2564 }
2565
2566 static bool read_mailbox_7(void)
2567 {
2568 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2569 return false;
2570 }
2571
2572 static bool (* const read_mailbox[NUM_MB])(void) = {
2573 read_mailbox_0,
2574 read_mailbox_1,
2575 read_mailbox_2,
2576 read_mailbox_3,
2577 read_mailbox_4,
2578 read_mailbox_5,
2579 read_mailbox_6,
2580 read_mailbox_7
2581 };
2582
2583 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2584 {
2585 u32 bits;
2586 u8 n;
2587 irqreturn_t r;
2588
2589 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2590 if (unlikely(!bits))
2591 return IRQ_NONE;
2592
2593 r = IRQ_HANDLED;
2594 for (n = 0; bits; n++) {
2595 if (bits & MBOX_BIT(n)) {
2596 bits -= MBOX_BIT(n);
2597 if (read_mailbox[n]())
2598 r = IRQ_WAKE_THREAD;
2599 }
2600 }
2601 return r;
2602 }
2603
2604 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2605 {
2606 ack_dbb_wakeup();
2607 return IRQ_HANDLED;
2608 }
2609
2610 static void prcmu_mask_work(struct work_struct *work)
2611 {
2612 unsigned long flags;
2613
2614 spin_lock_irqsave(&mb0_transfer.lock, flags);
2615
2616 config_wakeups();
2617
2618 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2619 }
2620
2621 static void prcmu_irq_mask(struct irq_data *d)
2622 {
2623 unsigned long flags;
2624
2625 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2626
2627 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2628
2629 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2630
2631 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2632 schedule_work(&mb0_transfer.mask_work);
2633 }
2634
2635 static void prcmu_irq_unmask(struct irq_data *d)
2636 {
2637 unsigned long flags;
2638
2639 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2640
2641 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2642
2643 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2644
2645 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2646 schedule_work(&mb0_transfer.mask_work);
2647 }
2648
2649 static void noop(struct irq_data *d)
2650 {
2651 }
2652
2653 static struct irq_chip prcmu_irq_chip = {
2654 .name = "prcmu",
2655 .irq_disable = prcmu_irq_mask,
2656 .irq_ack = noop,
2657 .irq_mask = prcmu_irq_mask,
2658 .irq_unmask = prcmu_irq_unmask,
2659 };
2660
2661 static char *fw_project_name(u8 project)
2662 {
2663 switch (project) {
2664 case PRCMU_FW_PROJECT_U8500:
2665 return "U8500";
2666 case PRCMU_FW_PROJECT_U8500_C2:
2667 return "U8500 C2";
2668 case PRCMU_FW_PROJECT_U9500:
2669 return "U9500";
2670 case PRCMU_FW_PROJECT_U9500_C2:
2671 return "U9500 C2";
2672 case PRCMU_FW_PROJECT_U8520:
2673 return "U8520";
2674 case PRCMU_FW_PROJECT_U8420:
2675 return "U8420";
2676 default:
2677 return "Unknown";
2678 }
2679 }
2680
2681 void __init db8500_prcmu_early_init(void)
2682 {
2683 unsigned int i;
2684 if (cpu_is_u8500v2()) {
2685 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2686
2687 if (tcpm_base != NULL) {
2688 u32 version;
2689 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2690 fw_info.version.project = version & 0xFF;
2691 fw_info.version.api_version = (version >> 8) & 0xFF;
2692 fw_info.version.func_version = (version >> 16) & 0xFF;
2693 fw_info.version.errata = (version >> 24) & 0xFF;
2694 fw_info.valid = true;
2695 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2696 fw_project_name(fw_info.version.project),
2697 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2698 (version >> 24) & 0xFF);
2699 iounmap(tcpm_base);
2700 }
2701
2702 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2703 } else {
2704 pr_err("prcmu: Unsupported chip version\n");
2705 BUG();
2706 }
2707
2708 spin_lock_init(&mb0_transfer.lock);
2709 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2710 mutex_init(&mb0_transfer.ac_wake_lock);
2711 init_completion(&mb0_transfer.ac_wake_work);
2712 mutex_init(&mb1_transfer.lock);
2713 init_completion(&mb1_transfer.work);
2714 mb1_transfer.ape_opp = APE_NO_CHANGE;
2715 mutex_init(&mb2_transfer.lock);
2716 init_completion(&mb2_transfer.work);
2717 spin_lock_init(&mb2_transfer.auto_pm_lock);
2718 spin_lock_init(&mb3_transfer.lock);
2719 mutex_init(&mb3_transfer.sysclk_lock);
2720 init_completion(&mb3_transfer.sysclk_work);
2721 mutex_init(&mb4_transfer.lock);
2722 init_completion(&mb4_transfer.work);
2723 mutex_init(&mb5_transfer.lock);
2724 init_completion(&mb5_transfer.work);
2725
2726 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2727
2728 /* Initalize irqs. */
2729 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2730 unsigned int irq;
2731
2732 irq = IRQ_PRCMU_BASE + i;
2733 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2734 handle_simple_irq);
2735 set_irq_flags(irq, IRQF_VALID);
2736 }
2737 compute_armss_rate();
2738 }
2739
2740 static void __init init_prcm_registers(void)
2741 {
2742 u32 val;
2743
2744 val = readl(PRCM_A9PL_FORCE_CLKEN);
2745 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2746 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2747 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2748 }
2749
2750 /*
2751 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2752 */
2753 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2754 REGULATOR_SUPPLY("v-ape", NULL),
2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2759 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2760 /* "v-mmc" changed to "vcore" in the mainline kernel */
2761 REGULATOR_SUPPLY("vcore", "sdi0"),
2762 REGULATOR_SUPPLY("vcore", "sdi1"),
2763 REGULATOR_SUPPLY("vcore", "sdi2"),
2764 REGULATOR_SUPPLY("vcore", "sdi3"),
2765 REGULATOR_SUPPLY("vcore", "sdi4"),
2766 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2767 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2768 /* "v-uart" changed to "vcore" in the mainline kernel */
2769 REGULATOR_SUPPLY("vcore", "uart0"),
2770 REGULATOR_SUPPLY("vcore", "uart1"),
2771 REGULATOR_SUPPLY("vcore", "uart2"),
2772 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2773 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2774 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2775 };
2776
2777 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2778 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2779 /* AV8100 regulator */
2780 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2781 };
2782
2783 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2784 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2785 REGULATOR_SUPPLY("vsupply", "mcde"),
2786 };
2787
2788 /* SVA MMDSP regulator switch */
2789 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2790 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2791 };
2792
2793 /* SVA pipe regulator switch */
2794 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2795 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2796 };
2797
2798 /* SIA MMDSP regulator switch */
2799 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2800 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2801 };
2802
2803 /* SIA pipe regulator switch */
2804 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2805 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2806 };
2807
2808 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2809 REGULATOR_SUPPLY("v-mali", NULL),
2810 };
2811
2812 /* ESRAM1 and 2 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2814 REGULATOR_SUPPLY("esram12", "cm_control"),
2815 };
2816
2817 /* ESRAM3 and 4 regulator switch */
2818 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2819 REGULATOR_SUPPLY("v-esram34", "mcde"),
2820 REGULATOR_SUPPLY("esram34", "cm_control"),
2821 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2822 };
2823
2824 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2825 [DB8500_REGULATOR_VAPE] = {
2826 .constraints = {
2827 .name = "db8500-vape",
2828 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2829 .always_on = true,
2830 },
2831 .consumer_supplies = db8500_vape_consumers,
2832 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2833 },
2834 [DB8500_REGULATOR_VARM] = {
2835 .constraints = {
2836 .name = "db8500-varm",
2837 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2838 },
2839 },
2840 [DB8500_REGULATOR_VMODEM] = {
2841 .constraints = {
2842 .name = "db8500-vmodem",
2843 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2844 },
2845 },
2846 [DB8500_REGULATOR_VPLL] = {
2847 .constraints = {
2848 .name = "db8500-vpll",
2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 },
2851 },
2852 [DB8500_REGULATOR_VSMPS1] = {
2853 .constraints = {
2854 .name = "db8500-vsmps1",
2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 },
2857 },
2858 [DB8500_REGULATOR_VSMPS2] = {
2859 .constraints = {
2860 .name = "db8500-vsmps2",
2861 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2862 },
2863 .consumer_supplies = db8500_vsmps2_consumers,
2864 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2865 },
2866 [DB8500_REGULATOR_VSMPS3] = {
2867 .constraints = {
2868 .name = "db8500-vsmps3",
2869 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2870 },
2871 },
2872 [DB8500_REGULATOR_VRF1] = {
2873 .constraints = {
2874 .name = "db8500-vrf1",
2875 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2876 },
2877 },
2878 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2879 /* dependency to u8500-vape is handled outside regulator framework */
2880 .constraints = {
2881 .name = "db8500-sva-mmdsp",
2882 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 },
2884 .consumer_supplies = db8500_svammdsp_consumers,
2885 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2886 },
2887 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2888 .constraints = {
2889 /* "ret" means "retention" */
2890 .name = "db8500-sva-mmdsp-ret",
2891 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2892 },
2893 },
2894 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2895 /* dependency to u8500-vape is handled outside regulator framework */
2896 .constraints = {
2897 .name = "db8500-sva-pipe",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 },
2900 .consumer_supplies = db8500_svapipe_consumers,
2901 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2902 },
2903 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2904 /* dependency to u8500-vape is handled outside regulator framework */
2905 .constraints = {
2906 .name = "db8500-sia-mmdsp",
2907 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2908 },
2909 .consumer_supplies = db8500_siammdsp_consumers,
2910 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2911 },
2912 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2913 .constraints = {
2914 .name = "db8500-sia-mmdsp-ret",
2915 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2916 },
2917 },
2918 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2919 /* dependency to u8500-vape is handled outside regulator framework */
2920 .constraints = {
2921 .name = "db8500-sia-pipe",
2922 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2923 },
2924 .consumer_supplies = db8500_siapipe_consumers,
2925 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2926 },
2927 [DB8500_REGULATOR_SWITCH_SGA] = {
2928 .supply_regulator = "db8500-vape",
2929 .constraints = {
2930 .name = "db8500-sga",
2931 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2932 },
2933 .consumer_supplies = db8500_sga_consumers,
2934 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2935
2936 },
2937 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2938 .supply_regulator = "db8500-vape",
2939 .constraints = {
2940 .name = "db8500-b2r2-mcde",
2941 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942 },
2943 .consumer_supplies = db8500_b2r2_mcde_consumers,
2944 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2945 },
2946 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2947 /*
2948 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2949 * no need to hold Vape
2950 */
2951 .constraints = {
2952 .name = "db8500-esram12",
2953 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2954 },
2955 .consumer_supplies = db8500_esram12_consumers,
2956 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2957 },
2958 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2959 .constraints = {
2960 .name = "db8500-esram12-ret",
2961 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2962 },
2963 },
2964 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2965 /*
2966 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2967 * no need to hold Vape
2968 */
2969 .constraints = {
2970 .name = "db8500-esram34",
2971 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972 },
2973 .consumer_supplies = db8500_esram34_consumers,
2974 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2975 },
2976 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2977 .constraints = {
2978 .name = "db8500-esram34-ret",
2979 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 },
2981 },
2982 };
2983
2984 static struct resource ab8500_resources[] = {
2985 [0] = {
2986 .start = IRQ_DB8500_AB8500,
2987 .end = IRQ_DB8500_AB8500,
2988 .flags = IORESOURCE_IRQ
2989 }
2990 };
2991
2992 static struct mfd_cell db8500_prcmu_devs[] = {
2993 {
2994 .name = "db8500-prcmu-regulators",
2995 .of_compatible = "stericsson,db8500-prcmu-regulator",
2996 .platform_data = &db8500_regulators,
2997 .pdata_size = sizeof(db8500_regulators),
2998 },
2999 {
3000 .name = "cpufreq-u8500",
3001 .of_compatible = "stericsson,cpufreq-u8500",
3002 },
3003 {
3004 .name = "ab8500-core",
3005 .of_compatible = "stericsson,ab8500",
3006 .num_resources = ARRAY_SIZE(ab8500_resources),
3007 .resources = ab8500_resources,
3008 .id = AB8500_VERSION_AB8500,
3009 },
3010 };
3011
3012 /**
3013 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3014 *
3015 */
3016 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3017 {
3018 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3019 struct device_node *np = pdev->dev.of_node;
3020 int irq = 0, err = 0, i;
3021
3022 if (ux500_is_svp())
3023 return -ENODEV;
3024
3025 init_prcm_registers();
3026
3027 /* Clean up the mailbox interrupts after pre-kernel code. */
3028 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3029
3030 if (np)
3031 irq = platform_get_irq(pdev, 0);
3032
3033 if (!np || irq <= 0)
3034 irq = IRQ_DB8500_PRCMU1;
3035
3036 err = request_threaded_irq(irq, prcmu_irq_handler,
3037 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3038 if (err < 0) {
3039 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3040 err = -EBUSY;
3041 goto no_irq_return;
3042 }
3043
3044 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3045 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3046 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3047 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3048 }
3049 }
3050
3051 if (cpu_is_u8500v20_or_later())
3052 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3053
3054 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3055 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3056 if (err) {
3057 pr_err("prcmu: Failed to add subdevices\n");
3058 return err;
3059 }
3060
3061 pr_info("DB8500 PRCMU initialized\n");
3062
3063 no_irq_return:
3064 return err;
3065 }
3066 static const struct of_device_id db8500_prcmu_match[] = {
3067 { .compatible = "stericsson,db8500-prcmu"},
3068 { },
3069 };
3070
3071 static struct platform_driver db8500_prcmu_driver = {
3072 .driver = {
3073 .name = "db8500-prcmu",
3074 .owner = THIS_MODULE,
3075 .of_match_table = db8500_prcmu_match,
3076 },
3077 .probe = db8500_prcmu_probe,
3078 };
3079
3080 static int __init db8500_prcmu_init(void)
3081 {
3082 return platform_driver_register(&db8500_prcmu_driver);
3083 }
3084
3085 core_initcall(db8500_prcmu_init);
3086
3087 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3088 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3089 MODULE_LICENSE("GPL v2");