]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mfd/ucb1x00-ts.c
Merge remote branch 'wireless-next/master' into ath6kl-next
[mirror_ubuntu-bionic-kernel.git] / drivers / mfd / ucb1x00-ts.c
1 /*
2 * Touchscreen driver for UCB1x00-based touchscreens
3 *
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * 21-Jan-2002 <jco@ict.es> :
12 *
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
19 */
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/sched.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/string.h>
28 #include <linux/input.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/slab.h>
32 #include <linux/kthread.h>
33 #include <linux/mfd/ucb1x00.h>
34
35 #include <mach/dma.h>
36 #include <mach/collie.h>
37 #include <asm/mach-types.h>
38
39
40
41 struct ucb1x00_ts {
42 struct input_dev *idev;
43 struct ucb1x00 *ucb;
44
45 wait_queue_head_t irq_wait;
46 struct task_struct *rtask;
47 u16 x_res;
48 u16 y_res;
49
50 unsigned int adcsync:1;
51 };
52
53 static int adcsync;
54
55 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
56 {
57 struct input_dev *idev = ts->idev;
58
59 input_report_abs(idev, ABS_X, x);
60 input_report_abs(idev, ABS_Y, y);
61 input_report_abs(idev, ABS_PRESSURE, pressure);
62 input_report_key(idev, BTN_TOUCH, 1);
63 input_sync(idev);
64 }
65
66 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
67 {
68 struct input_dev *idev = ts->idev;
69
70 input_report_abs(idev, ABS_PRESSURE, 0);
71 input_report_key(idev, BTN_TOUCH, 0);
72 input_sync(idev);
73 }
74
75 /*
76 * Switch to interrupt mode.
77 */
78 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
79 {
80 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
81 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
82 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
83 UCB_TS_CR_MODE_INT);
84 }
85
86 /*
87 * Switch to pressure mode, and read pressure. We don't need to wait
88 * here, since both plates are being driven.
89 */
90 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
91 {
92 if (machine_is_collie()) {
93 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
94 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
95 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
96 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
97
98 udelay(55);
99
100 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
101 } else {
102 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
103 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
104 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
105 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
106
107 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
108 }
109 }
110
111 /*
112 * Switch to X position mode and measure Y plate. We switch the plate
113 * configuration in pressure mode, then switch to position mode. This
114 * gives a faster response time. Even so, we need to wait about 55us
115 * for things to stabilise.
116 */
117 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
118 {
119 if (machine_is_collie())
120 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
121 else {
122 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
123 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
124 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
125 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
126 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
127 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 }
129 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
130 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
131 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
132
133 udelay(55);
134
135 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
136 }
137
138 /*
139 * Switch to Y position mode and measure X plate. We switch the plate
140 * configuration in pressure mode, then switch to position mode. This
141 * gives a faster response time. Even so, we need to wait about 55us
142 * for things to stabilise.
143 */
144 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
145 {
146 if (machine_is_collie())
147 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
148 else {
149 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
150 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
151 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
152 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
153 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
154 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
155 }
156
157 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
158 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
159 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
160
161 udelay(55);
162
163 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
164 }
165
166 /*
167 * Switch to X plate resistance mode. Set MX to ground, PX to
168 * supply. Measure current.
169 */
170 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
171 {
172 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
173 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
174 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
175 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
176 }
177
178 /*
179 * Switch to Y plate resistance mode. Set MY to ground, PY to
180 * supply. Measure current.
181 */
182 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
183 {
184 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
185 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
186 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
187 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
188 }
189
190 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
191 {
192 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
193
194 if (machine_is_collie())
195 return (!(val & (UCB_TS_CR_TSPX_LOW)));
196 else
197 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
198 }
199
200 /*
201 * This is a RT kernel thread that handles the ADC accesses
202 * (mainly so we can use semaphores in the UCB1200 core code
203 * to serialise accesses to the ADC).
204 */
205 static int ucb1x00_thread(void *_ts)
206 {
207 struct ucb1x00_ts *ts = _ts;
208 DECLARE_WAITQUEUE(wait, current);
209 bool frozen, ignore = false;
210 int valid = 0;
211
212 set_freezable();
213 add_wait_queue(&ts->irq_wait, &wait);
214 while (!kthread_freezable_should_stop(&frozen)) {
215 unsigned int x, y, p;
216 signed long timeout;
217
218 if (frozen)
219 ignore = true;
220
221 ucb1x00_adc_enable(ts->ucb);
222
223 x = ucb1x00_ts_read_xpos(ts);
224 y = ucb1x00_ts_read_ypos(ts);
225 p = ucb1x00_ts_read_pressure(ts);
226
227 /*
228 * Switch back to interrupt mode.
229 */
230 ucb1x00_ts_mode_int(ts);
231 ucb1x00_adc_disable(ts->ucb);
232
233 msleep(10);
234
235 ucb1x00_enable(ts->ucb);
236
237
238 if (ucb1x00_ts_pen_down(ts)) {
239 set_current_state(TASK_INTERRUPTIBLE);
240
241 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
242 ucb1x00_disable(ts->ucb);
243
244 /*
245 * If we spat out a valid sample set last time,
246 * spit out a "pen off" sample here.
247 */
248 if (valid) {
249 ucb1x00_ts_event_release(ts);
250 valid = 0;
251 }
252
253 timeout = MAX_SCHEDULE_TIMEOUT;
254 } else {
255 ucb1x00_disable(ts->ucb);
256
257 /*
258 * Filtering is policy. Policy belongs in user
259 * space. We therefore leave it to user space
260 * to do any filtering they please.
261 */
262 if (!ignore) {
263 ucb1x00_ts_evt_add(ts, p, x, y);
264 valid = 1;
265 }
266
267 set_current_state(TASK_INTERRUPTIBLE);
268 timeout = HZ / 100;
269 }
270
271 schedule_timeout(timeout);
272 }
273
274 remove_wait_queue(&ts->irq_wait, &wait);
275
276 ts->rtask = NULL;
277 return 0;
278 }
279
280 /*
281 * We only detect touch screen _touches_ with this interrupt
282 * handler, and even then we just schedule our task.
283 */
284 static void ucb1x00_ts_irq(int idx, void *id)
285 {
286 struct ucb1x00_ts *ts = id;
287
288 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
289 wake_up(&ts->irq_wait);
290 }
291
292 static int ucb1x00_ts_open(struct input_dev *idev)
293 {
294 struct ucb1x00_ts *ts = input_get_drvdata(idev);
295 int ret = 0;
296
297 BUG_ON(ts->rtask);
298
299 init_waitqueue_head(&ts->irq_wait);
300 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
301 if (ret < 0)
302 goto out;
303
304 /*
305 * If we do this at all, we should allow the user to
306 * measure and read the X and Y resistance at any time.
307 */
308 ucb1x00_adc_enable(ts->ucb);
309 ts->x_res = ucb1x00_ts_read_xres(ts);
310 ts->y_res = ucb1x00_ts_read_yres(ts);
311 ucb1x00_adc_disable(ts->ucb);
312
313 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
314 if (!IS_ERR(ts->rtask)) {
315 ret = 0;
316 } else {
317 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
318 ts->rtask = NULL;
319 ret = -EFAULT;
320 }
321
322 out:
323 return ret;
324 }
325
326 /*
327 * Release touchscreen resources. Disable IRQs.
328 */
329 static void ucb1x00_ts_close(struct input_dev *idev)
330 {
331 struct ucb1x00_ts *ts = input_get_drvdata(idev);
332
333 if (ts->rtask)
334 kthread_stop(ts->rtask);
335
336 ucb1x00_enable(ts->ucb);
337 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
338 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
339 ucb1x00_disable(ts->ucb);
340 }
341
342
343 /*
344 * Initialisation.
345 */
346 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
347 {
348 struct ucb1x00_ts *ts;
349 struct input_dev *idev;
350 int err;
351
352 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
353 idev = input_allocate_device();
354 if (!ts || !idev) {
355 err = -ENOMEM;
356 goto fail;
357 }
358
359 ts->ucb = dev->ucb;
360 ts->idev = idev;
361 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
362
363 idev->name = "Touchscreen panel";
364 idev->id.product = ts->ucb->id;
365 idev->open = ucb1x00_ts_open;
366 idev->close = ucb1x00_ts_close;
367
368 idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
369 idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
370
371 input_set_drvdata(idev, ts);
372
373 ucb1x00_adc_enable(ts->ucb);
374 ts->x_res = ucb1x00_ts_read_xres(ts);
375 ts->y_res = ucb1x00_ts_read_yres(ts);
376 ucb1x00_adc_disable(ts->ucb);
377
378 input_set_abs_params(idev, ABS_X, 0, ts->x_res, 0, 0);
379 input_set_abs_params(idev, ABS_Y, 0, ts->y_res, 0, 0);
380 input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
381
382 err = input_register_device(idev);
383 if (err)
384 goto fail;
385
386 dev->priv = ts;
387
388 return 0;
389
390 fail:
391 input_free_device(idev);
392 kfree(ts);
393 return err;
394 }
395
396 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
397 {
398 struct ucb1x00_ts *ts = dev->priv;
399
400 input_unregister_device(ts->idev);
401 kfree(ts);
402 }
403
404 static struct ucb1x00_driver ucb1x00_ts_driver = {
405 .add = ucb1x00_ts_add,
406 .remove = ucb1x00_ts_remove,
407 };
408
409 static int __init ucb1x00_ts_init(void)
410 {
411 return ucb1x00_register_driver(&ucb1x00_ts_driver);
412 }
413
414 static void __exit ucb1x00_ts_exit(void)
415 {
416 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
417 }
418
419 module_param(adcsync, int, 0444);
420 module_init(ucb1x00_ts_init);
421 module_exit(ucb1x00_ts_exit);
422
423 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
424 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
425 MODULE_LICENSE("GPL");