]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/misc/eeprom/at24.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / misc / eeprom / at24.c
1 /*
2 * at24.c - handle most I2C EEPROMs
3 *
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/mutex.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/property.h>
24 #include <linux/acpi.h>
25 #include <linux/i2c.h>
26 #include <linux/nvmem-provider.h>
27 #include <linux/platform_data/at24.h>
28 #include <linux/pm_runtime.h>
29
30 /*
31 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
32 * Differences between different vendor product lines (like Atmel AT24C or
33 * MicroChip 24LC, etc) won't much matter for typical read/write access.
34 * There are also I2C RAM chips, likewise interchangeable. One example
35 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
36 *
37 * However, misconfiguration can lose data. "Set 16-bit memory address"
38 * to a part with 8-bit addressing will overwrite data. Writing with too
39 * big a page size also loses data. And it's not safe to assume that the
40 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
41 * uses 0x51, for just one example.
42 *
43 * Accordingly, explicit board-specific configuration data should be used
44 * in almost all cases. (One partial exception is an SMBus used to access
45 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
46 *
47 * So this driver uses "new style" I2C driver binding, expecting to be
48 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
49 * similar kernel-resident tables; or, configuration data coming from
50 * a bootloader.
51 *
52 * Other than binding model, current differences from "eeprom" driver are
53 * that this one handles write access and isn't restricted to 24c02 devices.
54 * It also handles larger devices (32 kbit and up) with two-byte addresses,
55 * which won't work on pure SMBus systems.
56 */
57
58 struct at24_data {
59 struct at24_platform_data chip;
60 int use_smbus;
61 int use_smbus_write;
62
63 ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
64 ssize_t (*write_func)(struct at24_data *,
65 const char *, unsigned int, size_t);
66
67 /*
68 * Lock protects against activities from other Linux tasks,
69 * but not from changes by other I2C masters.
70 */
71 struct mutex lock;
72
73 u8 *writebuf;
74 unsigned write_max;
75 unsigned num_addresses;
76
77 struct nvmem_config nvmem_config;
78 struct nvmem_device *nvmem;
79
80 /*
81 * Some chips tie up multiple I2C addresses; dummy devices reserve
82 * them for us, and we'll use them with SMBus calls.
83 */
84 struct i2c_client *client[];
85 };
86
87 /*
88 * This parameter is to help this driver avoid blocking other drivers out
89 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
90 * clock, one 256 byte read takes about 1/43 second which is excessive;
91 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
92 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
93 *
94 * This value is forced to be a power of two so that writes align on pages.
95 */
96 static unsigned io_limit = 128;
97 module_param(io_limit, uint, 0);
98 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
99
100 /*
101 * Specs often allow 5 msec for a page write, sometimes 20 msec;
102 * it's important to recover from write timeouts.
103 */
104 static unsigned write_timeout = 25;
105 module_param(write_timeout, uint, 0);
106 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
107
108 #define AT24_SIZE_BYTELEN 5
109 #define AT24_SIZE_FLAGS 8
110
111 #define AT24_BITMASK(x) (BIT(x) - 1)
112
113 /* create non-zero magic value for given eeprom parameters */
114 #define AT24_DEVICE_MAGIC(_len, _flags) \
115 ((1 << AT24_SIZE_FLAGS | (_flags)) \
116 << AT24_SIZE_BYTELEN | ilog2(_len))
117
118 /*
119 * Both reads and writes fail if the previous write didn't complete yet. This
120 * macro loops a few times waiting at least long enough for one entire page
121 * write to work while making sure that at least one iteration is run before
122 * checking the break condition.
123 *
124 * It takes two parameters: a variable in which the future timeout in jiffies
125 * will be stored and a temporary variable holding the time of the last
126 * iteration of processing the request. Both should be unsigned integers
127 * holding at least 32 bits.
128 */
129 #define loop_until_timeout(tout, op_time) \
130 for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
131 op_time ? time_before(op_time, tout) : true; \
132 usleep_range(1000, 1500), op_time = jiffies)
133
134 static const struct i2c_device_id at24_ids[] = {
135 /* needs 8 addresses as A0-A2 are ignored */
136 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
137 /* old variants can't be handled with this generic entry! */
138 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
139 { "24cs01", AT24_DEVICE_MAGIC(16,
140 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
141 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
142 { "24cs02", AT24_DEVICE_MAGIC(16,
143 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
144 { "24mac402", AT24_DEVICE_MAGIC(48 / 8,
145 AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146 { "24mac602", AT24_DEVICE_MAGIC(64 / 8,
147 AT24_FLAG_MAC | AT24_FLAG_READONLY) },
148 /* spd is a 24c02 in memory DIMMs */
149 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
150 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
151 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
152 { "24cs04", AT24_DEVICE_MAGIC(16,
153 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
154 /* 24rf08 quirk is handled at i2c-core */
155 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
156 { "24cs08", AT24_DEVICE_MAGIC(16,
157 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
158 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
159 { "24cs16", AT24_DEVICE_MAGIC(16,
160 AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
161 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
162 { "24cs32", AT24_DEVICE_MAGIC(16,
163 AT24_FLAG_ADDR16 |
164 AT24_FLAG_SERIAL |
165 AT24_FLAG_READONLY) },
166 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
167 { "24cs64", AT24_DEVICE_MAGIC(16,
168 AT24_FLAG_ADDR16 |
169 AT24_FLAG_SERIAL |
170 AT24_FLAG_READONLY) },
171 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
172 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
173 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
174 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
175 { "at24", 0 },
176 { /* END OF LIST */ }
177 };
178 MODULE_DEVICE_TABLE(i2c, at24_ids);
179
180 static const struct of_device_id at24_of_match[] = {
181 {
182 .compatible = "atmel,24c00",
183 .data = (void *)AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR)
184 },
185 {
186 .compatible = "atmel,24c01",
187 .data = (void *)AT24_DEVICE_MAGIC(1024 / 8, 0)
188 },
189 {
190 .compatible = "atmel,24c02",
191 .data = (void *)AT24_DEVICE_MAGIC(2048 / 8, 0)
192 },
193 {
194 .compatible = "atmel,spd",
195 .data = (void *)AT24_DEVICE_MAGIC(2048 / 8,
196 AT24_FLAG_READONLY | AT24_FLAG_IRUGO)
197 },
198 {
199 .compatible = "atmel,24c04",
200 .data = (void *)AT24_DEVICE_MAGIC(4096 / 8, 0)
201 },
202 {
203 .compatible = "atmel,24c08",
204 .data = (void *)AT24_DEVICE_MAGIC(8192 / 8, 0)
205 },
206 {
207 .compatible = "atmel,24c16",
208 .data = (void *)AT24_DEVICE_MAGIC(16384 / 8, 0)
209 },
210 {
211 .compatible = "atmel,24c32",
212 .data = (void *)AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16)
213 },
214 {
215 .compatible = "atmel,24c64",
216 .data = (void *)AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16)
217 },
218 {
219 .compatible = "atmel,24c128",
220 .data = (void *)AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16)
221 },
222 {
223 .compatible = "atmel,24c256",
224 .data = (void *)AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16)
225 },
226 {
227 .compatible = "atmel,24c512",
228 .data = (void *)AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16)
229 },
230 {
231 .compatible = "atmel,24c1024",
232 .data = (void *)AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16)
233 },
234 { },
235 };
236 MODULE_DEVICE_TABLE(of, at24_of_match);
237
238 static const struct acpi_device_id at24_acpi_ids[] = {
239 { "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
240 { }
241 };
242 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
243
244 /*-------------------------------------------------------------------------*/
245
246 /*
247 * This routine supports chips which consume multiple I2C addresses. It
248 * computes the addressing information to be used for a given r/w request.
249 * Assumes that sanity checks for offset happened at sysfs-layer.
250 *
251 * Slave address and byte offset derive from the offset. Always
252 * set the byte address; on a multi-master board, another master
253 * may have changed the chip's "current" address pointer.
254 *
255 * REVISIT some multi-address chips don't rollover page reads to
256 * the next slave address, so we may need to truncate the count.
257 * Those chips might need another quirk flag.
258 *
259 * If the real hardware used four adjacent 24c02 chips and that
260 * were misconfigured as one 24c08, that would be a similar effect:
261 * one "eeprom" file not four, but larger reads would fail when
262 * they crossed certain pages.
263 */
264 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
265 unsigned int *offset)
266 {
267 unsigned i;
268
269 if (at24->chip.flags & AT24_FLAG_ADDR16) {
270 i = *offset >> 16;
271 *offset &= 0xffff;
272 } else {
273 i = *offset >> 8;
274 *offset &= 0xff;
275 }
276
277 return at24->client[i];
278 }
279
280 static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
281 unsigned int offset, size_t count)
282 {
283 unsigned long timeout, read_time;
284 struct i2c_client *client;
285 int status;
286
287 client = at24_translate_offset(at24, &offset);
288
289 if (count > io_limit)
290 count = io_limit;
291
292 /* Smaller eeproms can work given some SMBus extension calls */
293 if (count > I2C_SMBUS_BLOCK_MAX)
294 count = I2C_SMBUS_BLOCK_MAX;
295
296 loop_until_timeout(timeout, read_time) {
297 status = i2c_smbus_read_i2c_block_data_or_emulated(client,
298 offset,
299 count, buf);
300
301 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
302 count, offset, status, jiffies);
303
304 if (status == count)
305 return count;
306 }
307
308 return -ETIMEDOUT;
309 }
310
311 static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
312 unsigned int offset, size_t count)
313 {
314 unsigned long timeout, read_time;
315 struct i2c_client *client;
316 struct i2c_msg msg[2];
317 int status, i;
318 u8 msgbuf[2];
319
320 memset(msg, 0, sizeof(msg));
321 client = at24_translate_offset(at24, &offset);
322
323 if (count > io_limit)
324 count = io_limit;
325
326 /*
327 * When we have a better choice than SMBus calls, use a combined I2C
328 * message. Write address; then read up to io_limit data bytes. Note
329 * that read page rollover helps us here (unlike writes). msgbuf is
330 * u8 and will cast to our needs.
331 */
332 i = 0;
333 if (at24->chip.flags & AT24_FLAG_ADDR16)
334 msgbuf[i++] = offset >> 8;
335 msgbuf[i++] = offset;
336
337 msg[0].addr = client->addr;
338 msg[0].buf = msgbuf;
339 msg[0].len = i;
340
341 msg[1].addr = client->addr;
342 msg[1].flags = I2C_M_RD;
343 msg[1].buf = buf;
344 msg[1].len = count;
345
346 loop_until_timeout(timeout, read_time) {
347 status = i2c_transfer(client->adapter, msg, 2);
348 if (status == 2)
349 status = count;
350
351 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
352 count, offset, status, jiffies);
353
354 if (status == count)
355 return count;
356 }
357
358 return -ETIMEDOUT;
359 }
360
361 static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
362 unsigned int offset, size_t count)
363 {
364 unsigned long timeout, read_time;
365 struct i2c_client *client;
366 struct i2c_msg msg[2];
367 u8 addrbuf[2];
368 int status;
369
370 client = at24_translate_offset(at24, &offset);
371
372 memset(msg, 0, sizeof(msg));
373 msg[0].addr = client->addr;
374 msg[0].buf = addrbuf;
375
376 /*
377 * The address pointer of the device is shared between the regular
378 * EEPROM array and the serial number block. The dummy write (part of
379 * the sequential read protocol) ensures the address pointer is reset
380 * to the desired position.
381 */
382 if (at24->chip.flags & AT24_FLAG_ADDR16) {
383 /*
384 * For 16 bit address pointers, the word address must contain
385 * a '10' sequence in bits 11 and 10 regardless of the
386 * intended position of the address pointer.
387 */
388 addrbuf[0] = 0x08;
389 addrbuf[1] = offset;
390 msg[0].len = 2;
391 } else {
392 /*
393 * Otherwise the word address must begin with a '10' sequence,
394 * regardless of the intended address.
395 */
396 addrbuf[0] = 0x80 + offset;
397 msg[0].len = 1;
398 }
399
400 msg[1].addr = client->addr;
401 msg[1].flags = I2C_M_RD;
402 msg[1].buf = buf;
403 msg[1].len = count;
404
405 loop_until_timeout(timeout, read_time) {
406 status = i2c_transfer(client->adapter, msg, 2);
407 if (status == 2)
408 return count;
409 }
410
411 return -ETIMEDOUT;
412 }
413
414 static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
415 unsigned int offset, size_t count)
416 {
417 unsigned long timeout, read_time;
418 struct i2c_client *client;
419 struct i2c_msg msg[2];
420 u8 addrbuf[2];
421 int status;
422
423 client = at24_translate_offset(at24, &offset);
424
425 memset(msg, 0, sizeof(msg));
426 msg[0].addr = client->addr;
427 msg[0].buf = addrbuf;
428 addrbuf[0] = 0x90 + offset;
429 msg[0].len = 1;
430 msg[1].addr = client->addr;
431 msg[1].flags = I2C_M_RD;
432 msg[1].buf = buf;
433 msg[1].len = count;
434
435 loop_until_timeout(timeout, read_time) {
436 status = i2c_transfer(client->adapter, msg, 2);
437 if (status == 2)
438 return count;
439 }
440
441 return -ETIMEDOUT;
442 }
443
444 /*
445 * Note that if the hardware write-protect pin is pulled high, the whole
446 * chip is normally write protected. But there are plenty of product
447 * variants here, including OTP fuses and partial chip protect.
448 *
449 * We only use page mode writes; the alternative is sloooow. These routines
450 * write at most one page.
451 */
452
453 static size_t at24_adjust_write_count(struct at24_data *at24,
454 unsigned int offset, size_t count)
455 {
456 unsigned next_page;
457
458 /* write_max is at most a page */
459 if (count > at24->write_max)
460 count = at24->write_max;
461
462 /* Never roll over backwards, to the start of this page */
463 next_page = roundup(offset + 1, at24->chip.page_size);
464 if (offset + count > next_page)
465 count = next_page - offset;
466
467 return count;
468 }
469
470 static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
471 const char *buf,
472 unsigned int offset, size_t count)
473 {
474 unsigned long timeout, write_time;
475 struct i2c_client *client;
476 ssize_t status = 0;
477
478 client = at24_translate_offset(at24, &offset);
479 count = at24_adjust_write_count(at24, offset, count);
480
481 loop_until_timeout(timeout, write_time) {
482 status = i2c_smbus_write_i2c_block_data(client,
483 offset, count, buf);
484 if (status == 0)
485 status = count;
486
487 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
488 count, offset, status, jiffies);
489
490 if (status == count)
491 return count;
492 }
493
494 return -ETIMEDOUT;
495 }
496
497 static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
498 const char *buf,
499 unsigned int offset, size_t count)
500 {
501 unsigned long timeout, write_time;
502 struct i2c_client *client;
503 ssize_t status = 0;
504
505 client = at24_translate_offset(at24, &offset);
506
507 loop_until_timeout(timeout, write_time) {
508 status = i2c_smbus_write_byte_data(client, offset, buf[0]);
509 if (status == 0)
510 status = count;
511
512 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
513 count, offset, status, jiffies);
514
515 if (status == count)
516 return count;
517 }
518
519 return -ETIMEDOUT;
520 }
521
522 static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
523 unsigned int offset, size_t count)
524 {
525 unsigned long timeout, write_time;
526 struct i2c_client *client;
527 struct i2c_msg msg;
528 ssize_t status = 0;
529 int i = 0;
530
531 client = at24_translate_offset(at24, &offset);
532 count = at24_adjust_write_count(at24, offset, count);
533
534 msg.addr = client->addr;
535 msg.flags = 0;
536
537 /* msg.buf is u8 and casts will mask the values */
538 msg.buf = at24->writebuf;
539 if (at24->chip.flags & AT24_FLAG_ADDR16)
540 msg.buf[i++] = offset >> 8;
541
542 msg.buf[i++] = offset;
543 memcpy(&msg.buf[i], buf, count);
544 msg.len = i + count;
545
546 loop_until_timeout(timeout, write_time) {
547 status = i2c_transfer(client->adapter, &msg, 1);
548 if (status == 1)
549 status = count;
550
551 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
552 count, offset, status, jiffies);
553
554 if (status == count)
555 return count;
556 }
557
558 return -ETIMEDOUT;
559 }
560
561 static int at24_read(void *priv, unsigned int off, void *val, size_t count)
562 {
563 struct at24_data *at24 = priv;
564 struct i2c_client *client;
565 char *buf = val;
566 int ret;
567
568 if (unlikely(!count))
569 return count;
570
571 client = at24_translate_offset(at24, &off);
572
573 ret = pm_runtime_get_sync(&client->dev);
574 if (ret < 0) {
575 pm_runtime_put_noidle(&client->dev);
576 return ret;
577 }
578
579 /*
580 * Read data from chip, protecting against concurrent updates
581 * from this host, but not from other I2C masters.
582 */
583 mutex_lock(&at24->lock);
584
585 while (count) {
586 int status;
587
588 status = at24->read_func(at24, buf, off, count);
589 if (status < 0) {
590 mutex_unlock(&at24->lock);
591 pm_runtime_put(&client->dev);
592 return status;
593 }
594 buf += status;
595 off += status;
596 count -= status;
597 }
598
599 mutex_unlock(&at24->lock);
600
601 pm_runtime_put(&client->dev);
602
603 return 0;
604 }
605
606 static int at24_write(void *priv, unsigned int off, void *val, size_t count)
607 {
608 struct at24_data *at24 = priv;
609 struct i2c_client *client;
610 char *buf = val;
611 int ret;
612
613 if (unlikely(!count))
614 return -EINVAL;
615
616 client = at24_translate_offset(at24, &off);
617
618 ret = pm_runtime_get_sync(&client->dev);
619 if (ret < 0) {
620 pm_runtime_put_noidle(&client->dev);
621 return ret;
622 }
623
624 /*
625 * Write data to chip, protecting against concurrent updates
626 * from this host, but not from other I2C masters.
627 */
628 mutex_lock(&at24->lock);
629
630 while (count) {
631 int status;
632
633 status = at24->write_func(at24, buf, off, count);
634 if (status < 0) {
635 mutex_unlock(&at24->lock);
636 pm_runtime_put(&client->dev);
637 return status;
638 }
639 buf += status;
640 off += status;
641 count -= status;
642 }
643
644 mutex_unlock(&at24->lock);
645
646 pm_runtime_put(&client->dev);
647
648 return 0;
649 }
650
651 static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
652 {
653 int err;
654 u32 val;
655
656 if (device_property_present(dev, "read-only"))
657 chip->flags |= AT24_FLAG_READONLY;
658
659 err = device_property_read_u32(dev, "size", &val);
660 if (!err)
661 chip->byte_len = val;
662
663 err = device_property_read_u32(dev, "pagesize", &val);
664 if (!err) {
665 chip->page_size = val;
666 } else {
667 /*
668 * This is slow, but we can't know all eeproms, so we better
669 * play safe. Specifying custom eeprom-types via platform_data
670 * is recommended anyhow.
671 */
672 chip->page_size = 1;
673 }
674 }
675
676 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
677 {
678 struct at24_platform_data chip;
679 kernel_ulong_t magic = 0;
680 bool writable;
681 int use_smbus = 0;
682 int use_smbus_write = 0;
683 struct at24_data *at24;
684 int err;
685 unsigned i, num_addresses;
686 u8 test_byte;
687
688 if (client->dev.platform_data) {
689 chip = *(struct at24_platform_data *)client->dev.platform_data;
690 } else {
691 /*
692 * The I2C core allows OF nodes compatibles to match against the
693 * I2C device ID table as a fallback, so check not only if an OF
694 * node is present but also if it matches an OF device ID entry.
695 */
696 if (client->dev.of_node &&
697 of_match_device(at24_of_match, &client->dev)) {
698 magic = (kernel_ulong_t)
699 of_device_get_match_data(&client->dev);
700 } else if (id) {
701 magic = id->driver_data;
702 } else {
703 const struct acpi_device_id *aid;
704
705 aid = acpi_match_device(at24_acpi_ids, &client->dev);
706 if (aid)
707 magic = aid->driver_data;
708 }
709 if (!magic)
710 return -ENODEV;
711
712 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
713 magic >>= AT24_SIZE_BYTELEN;
714 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
715
716 at24_get_pdata(&client->dev, &chip);
717
718 chip.setup = NULL;
719 chip.context = NULL;
720 }
721
722 if (!is_power_of_2(chip.byte_len))
723 dev_warn(&client->dev,
724 "byte_len looks suspicious (no power of 2)!\n");
725 if (!chip.page_size) {
726 dev_err(&client->dev, "page_size must not be 0!\n");
727 return -EINVAL;
728 }
729 if (!is_power_of_2(chip.page_size))
730 dev_warn(&client->dev,
731 "page_size looks suspicious (no power of 2)!\n");
732
733 /* Use I2C operations unless we're stuck with SMBus extensions. */
734 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
735 if (chip.flags & AT24_FLAG_ADDR16)
736 return -EPFNOSUPPORT;
737
738 if (i2c_check_functionality(client->adapter,
739 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
740 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
741 } else if (i2c_check_functionality(client->adapter,
742 I2C_FUNC_SMBUS_READ_WORD_DATA)) {
743 use_smbus = I2C_SMBUS_WORD_DATA;
744 } else if (i2c_check_functionality(client->adapter,
745 I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
746 use_smbus = I2C_SMBUS_BYTE_DATA;
747 } else {
748 return -EPFNOSUPPORT;
749 }
750
751 if (i2c_check_functionality(client->adapter,
752 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
753 use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
754 } else if (i2c_check_functionality(client->adapter,
755 I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
756 use_smbus_write = I2C_SMBUS_BYTE_DATA;
757 chip.page_size = 1;
758 }
759 }
760
761 if (chip.flags & AT24_FLAG_TAKE8ADDR)
762 num_addresses = 8;
763 else
764 num_addresses = DIV_ROUND_UP(chip.byte_len,
765 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
766
767 at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
768 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
769 if (!at24)
770 return -ENOMEM;
771
772 mutex_init(&at24->lock);
773 at24->use_smbus = use_smbus;
774 at24->use_smbus_write = use_smbus_write;
775 at24->chip = chip;
776 at24->num_addresses = num_addresses;
777
778 if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
779 dev_err(&client->dev,
780 "invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
781 return -EINVAL;
782 }
783
784 if (chip.flags & AT24_FLAG_SERIAL) {
785 at24->read_func = at24_eeprom_read_serial;
786 } else if (chip.flags & AT24_FLAG_MAC) {
787 at24->read_func = at24_eeprom_read_mac;
788 } else {
789 at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
790 : at24_eeprom_read_i2c;
791 }
792
793 if (at24->use_smbus) {
794 if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
795 at24->write_func = at24_eeprom_write_smbus_block;
796 else
797 at24->write_func = at24_eeprom_write_smbus_byte;
798 } else {
799 at24->write_func = at24_eeprom_write_i2c;
800 }
801
802 writable = !(chip.flags & AT24_FLAG_READONLY);
803 if (writable) {
804 if (!use_smbus || use_smbus_write) {
805
806 unsigned write_max = chip.page_size;
807
808 if (write_max > io_limit)
809 write_max = io_limit;
810 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
811 write_max = I2C_SMBUS_BLOCK_MAX;
812 at24->write_max = write_max;
813
814 /* buffer (data + address at the beginning) */
815 at24->writebuf = devm_kzalloc(&client->dev,
816 write_max + 2, GFP_KERNEL);
817 if (!at24->writebuf)
818 return -ENOMEM;
819 } else {
820 dev_warn(&client->dev,
821 "cannot write due to controller restrictions.");
822 }
823 }
824
825 at24->client[0] = client;
826
827 /* use dummy devices for multiple-address chips */
828 for (i = 1; i < num_addresses; i++) {
829 at24->client[i] = i2c_new_dummy(client->adapter,
830 client->addr + i);
831 if (!at24->client[i]) {
832 dev_err(&client->dev, "address 0x%02x unavailable\n",
833 client->addr + i);
834 err = -EADDRINUSE;
835 goto err_clients;
836 }
837 }
838
839 i2c_set_clientdata(client, at24);
840
841 /* enable runtime pm */
842 pm_runtime_set_active(&client->dev);
843 pm_runtime_enable(&client->dev);
844
845 /*
846 * Perform a one-byte test read to verify that the
847 * chip is functional.
848 */
849 err = at24_read(at24, 0, &test_byte, 1);
850 pm_runtime_idle(&client->dev);
851 if (err) {
852 err = -ENODEV;
853 goto err_clients;
854 }
855
856 at24->nvmem_config.name = dev_name(&client->dev);
857 at24->nvmem_config.dev = &client->dev;
858 at24->nvmem_config.read_only = !writable;
859 at24->nvmem_config.root_only = true;
860 at24->nvmem_config.owner = THIS_MODULE;
861 at24->nvmem_config.compat = true;
862 at24->nvmem_config.base_dev = &client->dev;
863 at24->nvmem_config.reg_read = at24_read;
864 at24->nvmem_config.reg_write = at24_write;
865 at24->nvmem_config.priv = at24;
866 at24->nvmem_config.stride = 4;
867 at24->nvmem_config.word_size = 1;
868 at24->nvmem_config.size = chip.byte_len;
869
870 at24->nvmem = nvmem_register(&at24->nvmem_config);
871
872 if (IS_ERR(at24->nvmem)) {
873 err = PTR_ERR(at24->nvmem);
874 goto err_clients;
875 }
876
877 dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
878 chip.byte_len, client->name,
879 writable ? "writable" : "read-only", at24->write_max);
880 if (use_smbus == I2C_SMBUS_WORD_DATA ||
881 use_smbus == I2C_SMBUS_BYTE_DATA) {
882 dev_notice(&client->dev, "Falling back to %s reads, "
883 "performance will suffer\n", use_smbus ==
884 I2C_SMBUS_WORD_DATA ? "word" : "byte");
885 }
886
887 /* export data to kernel code */
888 if (chip.setup)
889 chip.setup(at24->nvmem, chip.context);
890
891 return 0;
892
893 err_clients:
894 for (i = 1; i < num_addresses; i++)
895 if (at24->client[i])
896 i2c_unregister_device(at24->client[i]);
897
898 pm_runtime_disable(&client->dev);
899
900 return err;
901 }
902
903 static int at24_remove(struct i2c_client *client)
904 {
905 struct at24_data *at24;
906 int i;
907
908 at24 = i2c_get_clientdata(client);
909
910 nvmem_unregister(at24->nvmem);
911
912 for (i = 1; i < at24->num_addresses; i++)
913 i2c_unregister_device(at24->client[i]);
914
915 pm_runtime_disable(&client->dev);
916 pm_runtime_set_suspended(&client->dev);
917
918 return 0;
919 }
920
921 /*-------------------------------------------------------------------------*/
922
923 static struct i2c_driver at24_driver = {
924 .driver = {
925 .name = "at24",
926 .of_match_table = at24_of_match,
927 .acpi_match_table = ACPI_PTR(at24_acpi_ids),
928 },
929 .probe = at24_probe,
930 .remove = at24_remove,
931 .id_table = at24_ids,
932 };
933
934 static int __init at24_init(void)
935 {
936 if (!io_limit) {
937 pr_err("at24: io_limit must not be 0!\n");
938 return -EINVAL;
939 }
940
941 io_limit = rounddown_pow_of_two(io_limit);
942 return i2c_add_driver(&at24_driver);
943 }
944 module_init(at24_init);
945
946 static void __exit at24_exit(void)
947 {
948 i2c_del_driver(&at24_driver);
949 }
950 module_exit(at24_exit);
951
952 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
953 MODULE_AUTHOR("David Brownell and Wolfram Sang");
954 MODULE_LICENSE("GPL");