]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/misc/habanalabs/hw_queue.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / misc / habanalabs / hw_queue.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14 *
15 * @ptr: the current pi/ci value
16 * @val: the amount to add
17 *
18 * Add val to ptr. It can go until twice the queue length.
19 */
20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 ptr += val;
23 ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 return ptr;
25 }
26
27 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
28 {
29 int delta = (q->pi - q->ci);
30
31 if (delta >= 0)
32 return (queue_len - delta);
33 else
34 return (abs(delta) - queue_len);
35 }
36
37 void hl_int_hw_queue_update_ci(struct hl_cs *cs)
38 {
39 struct hl_device *hdev = cs->ctx->hdev;
40 struct hl_hw_queue *q;
41 int i;
42
43 hdev->asic_funcs->hw_queues_lock(hdev);
44
45 if (hdev->disabled)
46 goto out;
47
48 q = &hdev->kernel_queues[0];
49 for (i = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
50 if (q->queue_type == QUEUE_TYPE_INT) {
51 q->ci += cs->jobs_in_queue_cnt[i];
52 q->ci &= ((q->int_queue_len << 1) - 1);
53 }
54 }
55
56 out:
57 hdev->asic_funcs->hw_queues_unlock(hdev);
58 }
59
60 /*
61 * ext_queue_submit_bd - Submit a buffer descriptor to an external queue
62 *
63 * @hdev: pointer to habanalabs device structure
64 * @q: pointer to habanalabs queue structure
65 * @ctl: BD's control word
66 * @len: BD's length
67 * @ptr: BD's pointer
68 *
69 * This function assumes there is enough space on the queue to submit a new
70 * BD to it. It initializes the next BD and calls the device specific
71 * function to set the pi (and doorbell)
72 *
73 * This function must be called when the scheduler mutex is taken
74 *
75 */
76 static void ext_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
77 u32 ctl, u32 len, u64 ptr)
78 {
79 struct hl_bd *bd;
80
81 bd = (struct hl_bd *) (uintptr_t) q->kernel_address;
82 bd += hl_pi_2_offset(q->pi);
83 bd->ctl = __cpu_to_le32(ctl);
84 bd->len = __cpu_to_le32(len);
85 bd->ptr = __cpu_to_le64(ptr + hdev->asic_prop.host_phys_base_address);
86
87 q->pi = hl_queue_inc_ptr(q->pi);
88 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
89 }
90
91 /*
92 * ext_queue_sanity_checks - perform some sanity checks on external queue
93 *
94 * @hdev : pointer to hl_device structure
95 * @q : pointer to hl_hw_queue structure
96 * @num_of_entries : how many entries to check for space
97 * @reserve_cq_entry : whether to reserve an entry in the cq
98 *
99 * H/W queues spinlock should be taken before calling this function
100 *
101 * Perform the following:
102 * - Make sure we have enough space in the h/w queue
103 * - Make sure we have enough space in the completion queue
104 * - Reserve space in the completion queue (needs to be reversed if there
105 * is a failure down the road before the actual submission of work). Only
106 * do this action if reserve_cq_entry is true
107 *
108 */
109 static int ext_queue_sanity_checks(struct hl_device *hdev,
110 struct hl_hw_queue *q, int num_of_entries,
111 bool reserve_cq_entry)
112 {
113 atomic_t *free_slots =
114 &hdev->completion_queue[q->hw_queue_id].free_slots_cnt;
115 int free_slots_cnt;
116
117 /* Check we have enough space in the queue */
118 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
119
120 if (free_slots_cnt < num_of_entries) {
121 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
122 q->hw_queue_id, num_of_entries);
123 return -EAGAIN;
124 }
125
126 if (reserve_cq_entry) {
127 /*
128 * Check we have enough space in the completion queue
129 * Add -1 to counter (decrement) unless counter was already 0
130 * In that case, CQ is full so we can't submit a new CB because
131 * we won't get ack on its completion
132 * atomic_add_unless will return 0 if counter was already 0
133 */
134 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
135 dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
136 num_of_entries, q->hw_queue_id);
137 atomic_add(num_of_entries, free_slots);
138 return -EAGAIN;
139 }
140 }
141
142 return 0;
143 }
144
145 /*
146 * int_queue_sanity_checks - perform some sanity checks on internal queue
147 *
148 * @hdev : pointer to hl_device structure
149 * @q : pointer to hl_hw_queue structure
150 * @num_of_entries : how many entries to check for space
151 *
152 * H/W queues spinlock should be taken before calling this function
153 *
154 * Perform the following:
155 * - Make sure we have enough space in the h/w queue
156 *
157 */
158 static int int_queue_sanity_checks(struct hl_device *hdev,
159 struct hl_hw_queue *q,
160 int num_of_entries)
161 {
162 int free_slots_cnt;
163
164 /* Check we have enough space in the queue */
165 free_slots_cnt = queue_free_slots(q, q->int_queue_len);
166
167 if (free_slots_cnt < num_of_entries) {
168 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
169 q->hw_queue_id, num_of_entries);
170 return -EAGAIN;
171 }
172
173 return 0;
174 }
175
176 /*
177 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
178 *
179 * @hdev: pointer to hl_device structure
180 * @hw_queue_id: Queue's type
181 * @cb_size: size of CB
182 * @cb_ptr: pointer to CB location
183 *
184 * This function sends a single CB, that must NOT generate a completion entry
185 *
186 */
187 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
188 u32 cb_size, u64 cb_ptr)
189 {
190 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
191 int rc;
192
193 /*
194 * The CPU queue is a synchronous queue with an effective depth of
195 * a single entry (although it is allocated with room for multiple
196 * entries). Therefore, there is a different lock, called
197 * send_cpu_message_lock, that serializes accesses to the CPU queue.
198 * As a result, we don't need to lock the access to the entire H/W
199 * queues module when submitting a JOB to the CPU queue
200 */
201 if (q->queue_type != QUEUE_TYPE_CPU)
202 hdev->asic_funcs->hw_queues_lock(hdev);
203
204 if (hdev->disabled) {
205 rc = -EPERM;
206 goto out;
207 }
208
209 rc = ext_queue_sanity_checks(hdev, q, 1, false);
210 if (rc)
211 goto out;
212
213 ext_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
214
215 out:
216 if (q->queue_type != QUEUE_TYPE_CPU)
217 hdev->asic_funcs->hw_queues_unlock(hdev);
218
219 return rc;
220 }
221
222 /*
223 * ext_hw_queue_schedule_job - submit an JOB to an external queue
224 *
225 * @job: pointer to the job that needs to be submitted to the queue
226 *
227 * This function must be called when the scheduler mutex is taken
228 *
229 */
230 static void ext_hw_queue_schedule_job(struct hl_cs_job *job)
231 {
232 struct hl_device *hdev = job->cs->ctx->hdev;
233 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
234 struct hl_cq_entry cq_pkt;
235 struct hl_cq *cq;
236 u64 cq_addr;
237 struct hl_cb *cb;
238 u32 ctl;
239 u32 len;
240 u64 ptr;
241
242 /*
243 * Update the JOB ID inside the BD CTL so the device would know what
244 * to write in the completion queue
245 */
246 ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
247
248 cb = job->patched_cb;
249 len = job->job_cb_size;
250 ptr = cb->bus_address;
251
252 cq_pkt.data = __cpu_to_le32(
253 ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
254 & CQ_ENTRY_SHADOW_INDEX_MASK) |
255 (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
256 (1 << CQ_ENTRY_READY_SHIFT));
257
258 /*
259 * No need to protect pi_offset because scheduling to the
260 * H/W queues is done under the scheduler mutex
261 *
262 * No need to check if CQ is full because it was already
263 * checked in hl_queue_sanity_checks
264 */
265 cq = &hdev->completion_queue[q->hw_queue_id];
266 cq_addr = cq->bus_address +
267 hdev->asic_prop.host_phys_base_address;
268 cq_addr += cq->pi * sizeof(struct hl_cq_entry);
269
270 hdev->asic_funcs->add_end_of_cb_packets(cb->kernel_address, len,
271 cq_addr,
272 __le32_to_cpu(cq_pkt.data),
273 q->hw_queue_id);
274
275 q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
276
277 cq->pi = hl_cq_inc_ptr(cq->pi);
278
279 ext_queue_submit_bd(hdev, q, ctl, len, ptr);
280 }
281
282 /*
283 * int_hw_queue_schedule_job - submit an JOB to an internal queue
284 *
285 * @job: pointer to the job that needs to be submitted to the queue
286 *
287 * This function must be called when the scheduler mutex is taken
288 *
289 */
290 static void int_hw_queue_schedule_job(struct hl_cs_job *job)
291 {
292 struct hl_device *hdev = job->cs->ctx->hdev;
293 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
294 struct hl_bd bd;
295 u64 *pi, *pbd = (u64 *) &bd;
296
297 bd.ctl = 0;
298 bd.len = __cpu_to_le32(job->job_cb_size);
299 bd.ptr = __cpu_to_le64((u64) (uintptr_t) job->user_cb);
300
301 pi = (u64 *) (uintptr_t) (q->kernel_address +
302 ((q->pi & (q->int_queue_len - 1)) * sizeof(bd)));
303
304 pi[0] = pbd[0];
305 pi[1] = pbd[1];
306
307 q->pi++;
308 q->pi &= ((q->int_queue_len << 1) - 1);
309
310 /* Flush PQ entry write. Relevant only for specific ASICs */
311 hdev->asic_funcs->flush_pq_write(hdev, pi, pbd[0]);
312
313 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
314 }
315
316 /*
317 * hl_hw_queue_schedule_cs - schedule a command submission
318 *
319 * @job : pointer to the CS
320 *
321 */
322 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
323 {
324 struct hl_device *hdev = cs->ctx->hdev;
325 struct hl_cs_job *job, *tmp;
326 struct hl_hw_queue *q;
327 int rc = 0, i, cq_cnt;
328
329 hdev->asic_funcs->hw_queues_lock(hdev);
330
331 if (hl_device_disabled_or_in_reset(hdev)) {
332 dev_err(hdev->dev,
333 "device is disabled or in reset, CS rejected!\n");
334 rc = -EPERM;
335 goto out;
336 }
337
338 q = &hdev->kernel_queues[0];
339 /* This loop assumes all external queues are consecutive */
340 for (i = 0, cq_cnt = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
341 if (q->queue_type == QUEUE_TYPE_EXT) {
342 if (cs->jobs_in_queue_cnt[i]) {
343 rc = ext_queue_sanity_checks(hdev, q,
344 cs->jobs_in_queue_cnt[i], true);
345 if (rc)
346 goto unroll_cq_resv;
347 cq_cnt++;
348 }
349 } else if (q->queue_type == QUEUE_TYPE_INT) {
350 if (cs->jobs_in_queue_cnt[i]) {
351 rc = int_queue_sanity_checks(hdev, q,
352 cs->jobs_in_queue_cnt[i]);
353 if (rc)
354 goto unroll_cq_resv;
355 }
356 }
357 }
358
359 spin_lock(&hdev->hw_queues_mirror_lock);
360 list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
361
362 /* Queue TDR if the CS is the first entry and if timeout is wanted */
363 if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
364 (list_first_entry(&hdev->hw_queues_mirror_list,
365 struct hl_cs, mirror_node) == cs)) {
366 cs->tdr_active = true;
367 schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
368 spin_unlock(&hdev->hw_queues_mirror_lock);
369 } else {
370 spin_unlock(&hdev->hw_queues_mirror_lock);
371 }
372
373 atomic_inc(&hdev->cs_active_cnt);
374
375 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
376 if (job->ext_queue)
377 ext_hw_queue_schedule_job(job);
378 else
379 int_hw_queue_schedule_job(job);
380
381 cs->submitted = true;
382
383 goto out;
384
385 unroll_cq_resv:
386 /* This loop assumes all external queues are consecutive */
387 q = &hdev->kernel_queues[0];
388 for (i = 0 ; (i < HL_MAX_QUEUES) && (cq_cnt > 0) ; i++, q++) {
389 if ((q->queue_type == QUEUE_TYPE_EXT) &&
390 (cs->jobs_in_queue_cnt[i])) {
391 atomic_t *free_slots =
392 &hdev->completion_queue[i].free_slots_cnt;
393 atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
394 cq_cnt--;
395 }
396 }
397
398 out:
399 hdev->asic_funcs->hw_queues_unlock(hdev);
400
401 return rc;
402 }
403
404 /*
405 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
406 *
407 * @hdev: pointer to hl_device structure
408 * @hw_queue_id: which queue to increment its ci
409 */
410 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
411 {
412 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
413
414 q->ci = hl_queue_inc_ptr(q->ci);
415 }
416
417 static int ext_and_cpu_hw_queue_init(struct hl_device *hdev,
418 struct hl_hw_queue *q)
419 {
420 void *p;
421 int rc;
422
423 p = hdev->asic_funcs->dma_alloc_coherent(hdev,
424 HL_QUEUE_SIZE_IN_BYTES,
425 &q->bus_address, GFP_KERNEL | __GFP_ZERO);
426 if (!p)
427 return -ENOMEM;
428
429 q->kernel_address = (u64) (uintptr_t) p;
430
431 q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
432 sizeof(*q->shadow_queue),
433 GFP_KERNEL);
434 if (!q->shadow_queue) {
435 dev_err(hdev->dev,
436 "Failed to allocate shadow queue for H/W queue %d\n",
437 q->hw_queue_id);
438 rc = -ENOMEM;
439 goto free_queue;
440 }
441
442 /* Make sure read/write pointers are initialized to start of queue */
443 q->ci = 0;
444 q->pi = 0;
445
446 return 0;
447
448 free_queue:
449 hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
450 (void *) (uintptr_t) q->kernel_address, q->bus_address);
451
452 return rc;
453 }
454
455 static int int_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
456 {
457 void *p;
458
459 p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
460 &q->bus_address, &q->int_queue_len);
461 if (!p) {
462 dev_err(hdev->dev,
463 "Failed to get base address for internal queue %d\n",
464 q->hw_queue_id);
465 return -EFAULT;
466 }
467
468 q->kernel_address = (u64) (uintptr_t) p;
469 q->pi = 0;
470 q->ci = 0;
471
472 return 0;
473 }
474
475 static int cpu_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
476 {
477 return ext_and_cpu_hw_queue_init(hdev, q);
478 }
479
480 static int ext_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
481 {
482 return ext_and_cpu_hw_queue_init(hdev, q);
483 }
484
485 /*
486 * hw_queue_init - main initialization function for H/W queue object
487 *
488 * @hdev: pointer to hl_device device structure
489 * @q: pointer to hl_hw_queue queue structure
490 * @hw_queue_id: The id of the H/W queue
491 *
492 * Allocate dma-able memory for the queue and initialize fields
493 * Returns 0 on success
494 */
495 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
496 u32 hw_queue_id)
497 {
498 int rc;
499
500 BUILD_BUG_ON(HL_QUEUE_SIZE_IN_BYTES > HL_PAGE_SIZE);
501
502 q->hw_queue_id = hw_queue_id;
503
504 switch (q->queue_type) {
505 case QUEUE_TYPE_EXT:
506 rc = ext_hw_queue_init(hdev, q);
507 break;
508
509 case QUEUE_TYPE_INT:
510 rc = int_hw_queue_init(hdev, q);
511 break;
512
513 case QUEUE_TYPE_CPU:
514 rc = cpu_hw_queue_init(hdev, q);
515 break;
516
517 case QUEUE_TYPE_NA:
518 q->valid = 0;
519 return 0;
520
521 default:
522 dev_crit(hdev->dev, "wrong queue type %d during init\n",
523 q->queue_type);
524 rc = -EINVAL;
525 break;
526 }
527
528 if (rc)
529 return rc;
530
531 q->valid = 1;
532
533 return 0;
534 }
535
536 /*
537 * hw_queue_fini - destroy queue
538 *
539 * @hdev: pointer to hl_device device structure
540 * @q: pointer to hl_hw_queue queue structure
541 *
542 * Free the queue memory
543 */
544 static void hw_queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
545 {
546 if (!q->valid)
547 return;
548
549 /*
550 * If we arrived here, there are no jobs waiting on this queue
551 * so we can safely remove it.
552 * This is because this function can only called when:
553 * 1. Either a context is deleted, which only can occur if all its
554 * jobs were finished
555 * 2. A context wasn't able to be created due to failure or timeout,
556 * which means there are no jobs on the queue yet
557 *
558 * The only exception are the queues of the kernel context, but
559 * if they are being destroyed, it means that the entire module is
560 * being removed. If the module is removed, it means there is no open
561 * user context. It also means that if a job was submitted by
562 * the kernel driver (e.g. context creation), the job itself was
563 * released by the kernel driver when a timeout occurred on its
564 * Completion. Thus, we don't need to release it again.
565 */
566
567 if (q->queue_type == QUEUE_TYPE_INT)
568 return;
569
570 kfree(q->shadow_queue);
571
572 hdev->asic_funcs->dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES,
573 (void *) (uintptr_t) q->kernel_address, q->bus_address);
574 }
575
576 int hl_hw_queues_create(struct hl_device *hdev)
577 {
578 struct asic_fixed_properties *asic = &hdev->asic_prop;
579 struct hl_hw_queue *q;
580 int i, rc, q_ready_cnt;
581
582 hdev->kernel_queues = kcalloc(HL_MAX_QUEUES,
583 sizeof(*hdev->kernel_queues), GFP_KERNEL);
584
585 if (!hdev->kernel_queues) {
586 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
587 return -ENOMEM;
588 }
589
590 /* Initialize the H/W queues */
591 for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
592 i < HL_MAX_QUEUES ; i++, q_ready_cnt++, q++) {
593
594 q->queue_type = asic->hw_queues_props[i].type;
595 rc = hw_queue_init(hdev, q, i);
596 if (rc) {
597 dev_err(hdev->dev,
598 "failed to initialize queue %d\n", i);
599 goto release_queues;
600 }
601 }
602
603 return 0;
604
605 release_queues:
606 for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
607 hw_queue_fini(hdev, q);
608
609 kfree(hdev->kernel_queues);
610
611 return rc;
612 }
613
614 void hl_hw_queues_destroy(struct hl_device *hdev)
615 {
616 struct hl_hw_queue *q;
617 int i;
618
619 for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++)
620 hw_queue_fini(hdev, q);
621
622 kfree(hdev->kernel_queues);
623 }
624
625 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
626 {
627 struct hl_hw_queue *q;
628 int i;
629
630 for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) {
631 if ((!q->valid) ||
632 ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
633 continue;
634 q->pi = q->ci = 0;
635 }
636 }