]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/misc/mei/hw-me.c
Merge git://git.infradead.org/users/eparis/audit
[mirror_ubuntu-artful-kernel.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hw-me.h"
24
25 #include "hbm.h"
26
27
28 /**
29 * mei_me_reg_read - Reads 32bit data from the mei device
30 *
31 * @dev: the device structure
32 * @offset: offset from which to read the data
33 *
34 * returns register value (u32)
35 */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 unsigned long offset)
38 {
39 return ioread32(hw->mem_addr + offset);
40 }
41
42
43 /**
44 * mei_me_reg_write - Writes 32bit data to the mei device
45 *
46 * @dev: the device structure
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
49 */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 unsigned long offset, u32 value)
52 {
53 iowrite32(value, hw->mem_addr + offset);
54 }
55
56 /**
57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58 * read window register
59 *
60 * @dev: the device structure
61 *
62 * returns ME_CB_RW register value (u32)
63 */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70 *
71 * @dev: the device structure
72 *
73 * returns ME_CSR_HA register value (u32)
74 */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79
80 /**
81 * mei_hcsr_read - Reads 32bit data from the host CSR
82 *
83 * @dev: the device structure
84 *
85 * returns H_CSR register value (u32)
86 */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 return mei_me_reg_read(hw, H_CSR);
90 }
91
92 /**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
94 * and ignores the H_IS bit for it is write-one-to-zero.
95 *
96 * @dev: the device structure
97 */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 hcsr &= ~H_IS;
101 mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103
104
105 /**
106 * mei_me_hw_config - configure hw dependent settings
107 *
108 * @dev: mei device
109 */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 /* Doesn't change in runtime */
114 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117 * mei_clear_interrupts - clear and stop interrupts
118 *
119 * @dev: the device structure
120 */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 struct mei_me_hw *hw = to_me_hw(dev);
124 u32 hcsr = mei_hcsr_read(hw);
125 if ((hcsr & H_IS) == H_IS)
126 mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129 * mei_me_intr_enable - enables mei device interrupts
130 *
131 * @dev: the device structure
132 */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 struct mei_me_hw *hw = to_me_hw(dev);
136 u32 hcsr = mei_hcsr_read(hw);
137 hcsr |= H_IE;
138 mei_hcsr_set(hw, hcsr);
139 }
140
141 /**
142 * mei_disable_interrupts - disables mei device interrupts
143 *
144 * @dev: the device structure
145 */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 struct mei_me_hw *hw = to_me_hw(dev);
149 u32 hcsr = mei_hcsr_read(hw);
150 hcsr &= ~H_IE;
151 mei_hcsr_set(hw, hcsr);
152 }
153
154 /**
155 * mei_me_hw_reset_release - release device from the reset
156 *
157 * @dev: the device structure
158 */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 struct mei_me_hw *hw = to_me_hw(dev);
162 u32 hcsr = mei_hcsr_read(hw);
163
164 hcsr |= H_IG;
165 hcsr &= ~H_RST;
166 mei_hcsr_set(hw, hcsr);
167 }
168 /**
169 * mei_me_hw_reset - resets fw via mei csr register.
170 *
171 * @dev: the device structure
172 * @intr_enable: if interrupt should be enabled after reset.
173 */
174 static void mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 struct mei_me_hw *hw = to_me_hw(dev);
177 u32 hcsr = mei_hcsr_read(hw);
178
179 dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
180
181 hcsr |= (H_RST | H_IG);
182
183 if (intr_enable)
184 hcsr |= H_IE;
185 else
186 hcsr |= ~H_IE;
187
188 mei_hcsr_set(hw, hcsr);
189
190 if (dev->dev_state == MEI_DEV_POWER_DOWN)
191 mei_me_hw_reset_release(dev);
192
193 dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
194 }
195
196 /**
197 * mei_me_host_set_ready - enable device
198 *
199 * @dev - mei device
200 * returns bool
201 */
202
203 static void mei_me_host_set_ready(struct mei_device *dev)
204 {
205 struct mei_me_hw *hw = to_me_hw(dev);
206 hw->host_hw_state |= H_IE | H_IG | H_RDY;
207 mei_hcsr_set(hw, hw->host_hw_state);
208 }
209 /**
210 * mei_me_host_is_ready - check whether the host has turned ready
211 *
212 * @dev - mei device
213 * returns bool
214 */
215 static bool mei_me_host_is_ready(struct mei_device *dev)
216 {
217 struct mei_me_hw *hw = to_me_hw(dev);
218 hw->host_hw_state = mei_hcsr_read(hw);
219 return (hw->host_hw_state & H_RDY) == H_RDY;
220 }
221
222 /**
223 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
224 *
225 * @dev - mei device
226 * returns bool
227 */
228 static bool mei_me_hw_is_ready(struct mei_device *dev)
229 {
230 struct mei_me_hw *hw = to_me_hw(dev);
231 hw->me_hw_state = mei_me_mecsr_read(hw);
232 return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
233 }
234
235 static int mei_me_hw_ready_wait(struct mei_device *dev)
236 {
237 int err;
238 if (mei_me_hw_is_ready(dev))
239 return 0;
240
241 mutex_unlock(&dev->device_lock);
242 err = wait_event_interruptible_timeout(dev->wait_hw_ready,
243 dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT);
244 mutex_lock(&dev->device_lock);
245 if (!err && !dev->recvd_hw_ready) {
246 dev_err(&dev->pdev->dev,
247 "wait hw ready failed. status = 0x%x\n", err);
248 return -ETIMEDOUT;
249 }
250
251 dev->recvd_hw_ready = false;
252 return 0;
253 }
254
255 static int mei_me_hw_start(struct mei_device *dev)
256 {
257 int ret = mei_me_hw_ready_wait(dev);
258 if (ret)
259 return ret;
260 dev_dbg(&dev->pdev->dev, "hw is ready\n");
261
262 mei_me_host_set_ready(dev);
263 return ret;
264 }
265
266
267 /**
268 * mei_hbuf_filled_slots - gets number of device filled buffer slots
269 *
270 * @dev: the device structure
271 *
272 * returns number of filled slots
273 */
274 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
275 {
276 struct mei_me_hw *hw = to_me_hw(dev);
277 char read_ptr, write_ptr;
278
279 hw->host_hw_state = mei_hcsr_read(hw);
280
281 read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
282 write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
283
284 return (unsigned char) (write_ptr - read_ptr);
285 }
286
287 /**
288 * mei_me_hbuf_is_empty - checks if host buffer is empty.
289 *
290 * @dev: the device structure
291 *
292 * returns true if empty, false - otherwise.
293 */
294 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
295 {
296 return mei_hbuf_filled_slots(dev) == 0;
297 }
298
299 /**
300 * mei_me_hbuf_empty_slots - counts write empty slots.
301 *
302 * @dev: the device structure
303 *
304 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
305 */
306 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
307 {
308 unsigned char filled_slots, empty_slots;
309
310 filled_slots = mei_hbuf_filled_slots(dev);
311 empty_slots = dev->hbuf_depth - filled_slots;
312
313 /* check for overflow */
314 if (filled_slots > dev->hbuf_depth)
315 return -EOVERFLOW;
316
317 return empty_slots;
318 }
319
320 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
321 {
322 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
323 }
324
325
326 /**
327 * mei_write_message - writes a message to mei device.
328 *
329 * @dev: the device structure
330 * @header: mei HECI header of message
331 * @buf: message payload will be written
332 *
333 * This function returns -EIO if write has failed
334 */
335 static int mei_me_write_message(struct mei_device *dev,
336 struct mei_msg_hdr *header,
337 unsigned char *buf)
338 {
339 struct mei_me_hw *hw = to_me_hw(dev);
340 unsigned long rem;
341 unsigned long length = header->length;
342 u32 *reg_buf = (u32 *)buf;
343 u32 hcsr;
344 u32 dw_cnt;
345 int i;
346 int empty_slots;
347
348 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
349
350 empty_slots = mei_hbuf_empty_slots(dev);
351 dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
352
353 dw_cnt = mei_data2slots(length);
354 if (empty_slots < 0 || dw_cnt > empty_slots)
355 return -EIO;
356
357 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
358
359 for (i = 0; i < length / 4; i++)
360 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
361
362 rem = length & 0x3;
363 if (rem > 0) {
364 u32 reg = 0;
365 memcpy(&reg, &buf[length - rem], rem);
366 mei_me_reg_write(hw, H_CB_WW, reg);
367 }
368
369 hcsr = mei_hcsr_read(hw) | H_IG;
370 mei_hcsr_set(hw, hcsr);
371 if (!mei_me_hw_is_ready(dev))
372 return -EIO;
373
374 return 0;
375 }
376
377 /**
378 * mei_me_count_full_read_slots - counts read full slots.
379 *
380 * @dev: the device structure
381 *
382 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
383 */
384 static int mei_me_count_full_read_slots(struct mei_device *dev)
385 {
386 struct mei_me_hw *hw = to_me_hw(dev);
387 char read_ptr, write_ptr;
388 unsigned char buffer_depth, filled_slots;
389
390 hw->me_hw_state = mei_me_mecsr_read(hw);
391 buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
392 read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
393 write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
394 filled_slots = (unsigned char) (write_ptr - read_ptr);
395
396 /* check for overflow */
397 if (filled_slots > buffer_depth)
398 return -EOVERFLOW;
399
400 dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
401 return (int)filled_slots;
402 }
403
404 /**
405 * mei_me_read_slots - reads a message from mei device.
406 *
407 * @dev: the device structure
408 * @buffer: message buffer will be written
409 * @buffer_length: message size will be read
410 */
411 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
412 unsigned long buffer_length)
413 {
414 struct mei_me_hw *hw = to_me_hw(dev);
415 u32 *reg_buf = (u32 *)buffer;
416 u32 hcsr;
417
418 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
419 *reg_buf++ = mei_me_mecbrw_read(dev);
420
421 if (buffer_length > 0) {
422 u32 reg = mei_me_mecbrw_read(dev);
423 memcpy(reg_buf, &reg, buffer_length);
424 }
425
426 hcsr = mei_hcsr_read(hw) | H_IG;
427 mei_hcsr_set(hw, hcsr);
428 return 0;
429 }
430
431 /**
432 * mei_me_irq_quick_handler - The ISR of the MEI device
433 *
434 * @irq: The irq number
435 * @dev_id: pointer to the device structure
436 *
437 * returns irqreturn_t
438 */
439
440 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
441 {
442 struct mei_device *dev = (struct mei_device *) dev_id;
443 struct mei_me_hw *hw = to_me_hw(dev);
444 u32 csr_reg = mei_hcsr_read(hw);
445
446 if ((csr_reg & H_IS) != H_IS)
447 return IRQ_NONE;
448
449 /* clear H_IS bit in H_CSR */
450 mei_me_reg_write(hw, H_CSR, csr_reg);
451
452 return IRQ_WAKE_THREAD;
453 }
454
455 /**
456 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
457 * processing.
458 *
459 * @irq: The irq number
460 * @dev_id: pointer to the device structure
461 *
462 * returns irqreturn_t
463 *
464 */
465 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
466 {
467 struct mei_device *dev = (struct mei_device *) dev_id;
468 struct mei_cl_cb complete_list;
469 s32 slots;
470 int rets;
471
472 dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
473 /* initialize our complete list */
474 mutex_lock(&dev->device_lock);
475 mei_io_list_init(&complete_list);
476
477 /* Ack the interrupt here
478 * In case of MSI we don't go through the quick handler */
479 if (pci_dev_msi_enabled(dev->pdev))
480 mei_clear_interrupts(dev);
481
482 /* check if ME wants a reset */
483 if (!mei_hw_is_ready(dev) &&
484 dev->dev_state != MEI_DEV_RESETTING &&
485 dev->dev_state != MEI_DEV_INITIALIZING) {
486 dev_dbg(&dev->pdev->dev, "FW not ready.\n");
487 mei_reset(dev, 1);
488 mutex_unlock(&dev->device_lock);
489 return IRQ_HANDLED;
490 }
491
492 /* check if we need to start the dev */
493 if (!mei_host_is_ready(dev)) {
494 if (mei_hw_is_ready(dev)) {
495 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
496
497 dev->recvd_hw_ready = true;
498 wake_up_interruptible(&dev->wait_hw_ready);
499
500 mutex_unlock(&dev->device_lock);
501 return IRQ_HANDLED;
502 } else {
503 dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
504 mei_me_hw_reset_release(dev);
505 mutex_unlock(&dev->device_lock);
506 return IRQ_HANDLED;
507 }
508 }
509 /* check slots available for reading */
510 slots = mei_count_full_read_slots(dev);
511 while (slots > 0) {
512 /* we have urgent data to send so break the read */
513 if (dev->wr_ext_msg.hdr.length)
514 break;
515 dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
516 dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
517 rets = mei_irq_read_handler(dev, &complete_list, &slots);
518 if (rets)
519 goto end;
520 }
521 rets = mei_irq_write_handler(dev, &complete_list);
522 end:
523 dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
524 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
525
526 mutex_unlock(&dev->device_lock);
527
528 mei_irq_compl_handler(dev, &complete_list);
529
530 return IRQ_HANDLED;
531 }
532 static const struct mei_hw_ops mei_me_hw_ops = {
533
534 .host_is_ready = mei_me_host_is_ready,
535
536 .hw_is_ready = mei_me_hw_is_ready,
537 .hw_reset = mei_me_hw_reset,
538 .hw_config = mei_me_hw_config,
539 .hw_start = mei_me_hw_start,
540
541 .intr_clear = mei_me_intr_clear,
542 .intr_enable = mei_me_intr_enable,
543 .intr_disable = mei_me_intr_disable,
544
545 .hbuf_free_slots = mei_me_hbuf_empty_slots,
546 .hbuf_is_ready = mei_me_hbuf_is_empty,
547 .hbuf_max_len = mei_me_hbuf_max_len,
548
549 .write = mei_me_write_message,
550
551 .rdbuf_full_slots = mei_me_count_full_read_slots,
552 .read_hdr = mei_me_mecbrw_read,
553 .read = mei_me_read_slots
554 };
555
556 /**
557 * mei_me_dev_init - allocates and initializes the mei device structure
558 *
559 * @pdev: The pci device structure
560 *
561 * returns The mei_device_device pointer on success, NULL on failure.
562 */
563 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
564 {
565 struct mei_device *dev;
566
567 dev = kzalloc(sizeof(struct mei_device) +
568 sizeof(struct mei_me_hw), GFP_KERNEL);
569 if (!dev)
570 return NULL;
571
572 mei_device_init(dev);
573
574 dev->ops = &mei_me_hw_ops;
575
576 dev->pdev = pdev;
577 return dev;
578 }
579