]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/misc/mei/hw-me.c
Merge tag 'char-misc-5.2-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / misc / mei / hw-me.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2018, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7 #include <linux/pci.h>
8
9 #include <linux/kthread.h>
10 #include <linux/interrupt.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13
14 #include "mei_dev.h"
15 #include "hbm.h"
16
17 #include "hw-me.h"
18 #include "hw-me-regs.h"
19
20 #include "mei-trace.h"
21
22 /**
23 * mei_me_reg_read - Reads 32bit data from the mei device
24 *
25 * @hw: the me hardware structure
26 * @offset: offset from which to read the data
27 *
28 * Return: register value (u32)
29 */
30 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
31 unsigned long offset)
32 {
33 return ioread32(hw->mem_addr + offset);
34 }
35
36
37 /**
38 * mei_me_reg_write - Writes 32bit data to the mei device
39 *
40 * @hw: the me hardware structure
41 * @offset: offset from which to write the data
42 * @value: register value to write (u32)
43 */
44 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
45 unsigned long offset, u32 value)
46 {
47 iowrite32(value, hw->mem_addr + offset);
48 }
49
50 /**
51 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
52 * read window register
53 *
54 * @dev: the device structure
55 *
56 * Return: ME_CB_RW register value (u32)
57 */
58 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
59 {
60 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
61 }
62
63 /**
64 * mei_me_hcbww_write - write 32bit data to the host circular buffer
65 *
66 * @dev: the device structure
67 * @data: 32bit data to be written to the host circular buffer
68 */
69 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
70 {
71 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
72 }
73
74 /**
75 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
76 *
77 * @dev: the device structure
78 *
79 * Return: ME_CSR_HA register value (u32)
80 */
81 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
82 {
83 u32 reg;
84
85 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
86 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
87
88 return reg;
89 }
90
91 /**
92 * mei_hcsr_read - Reads 32bit data from the host CSR
93 *
94 * @dev: the device structure
95 *
96 * Return: H_CSR register value (u32)
97 */
98 static inline u32 mei_hcsr_read(const struct mei_device *dev)
99 {
100 u32 reg;
101
102 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
103 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
104
105 return reg;
106 }
107
108 /**
109 * mei_hcsr_write - writes H_CSR register to the mei device
110 *
111 * @dev: the device structure
112 * @reg: new register value
113 */
114 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
115 {
116 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
117 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
118 }
119
120 /**
121 * mei_hcsr_set - writes H_CSR register to the mei device,
122 * and ignores the H_IS bit for it is write-one-to-zero.
123 *
124 * @dev: the device structure
125 * @reg: new register value
126 */
127 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
128 {
129 reg &= ~H_CSR_IS_MASK;
130 mei_hcsr_write(dev, reg);
131 }
132
133 /**
134 * mei_hcsr_set_hig - set host interrupt (set H_IG)
135 *
136 * @dev: the device structure
137 */
138 static inline void mei_hcsr_set_hig(struct mei_device *dev)
139 {
140 u32 hcsr;
141
142 hcsr = mei_hcsr_read(dev) | H_IG;
143 mei_hcsr_set(dev, hcsr);
144 }
145
146 /**
147 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
148 *
149 * @dev: the device structure
150 *
151 * Return: H_D0I3C register value (u32)
152 */
153 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
154 {
155 u32 reg;
156
157 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
158 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
159
160 return reg;
161 }
162
163 /**
164 * mei_me_d0i3c_write - writes H_D0I3C register to device
165 *
166 * @dev: the device structure
167 * @reg: new register value
168 */
169 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
170 {
171 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
172 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
173 }
174
175 /**
176 * mei_me_fw_status - read fw status register from pci config space
177 *
178 * @dev: mei device
179 * @fw_status: fw status register values
180 *
181 * Return: 0 on success, error otherwise
182 */
183 static int mei_me_fw_status(struct mei_device *dev,
184 struct mei_fw_status *fw_status)
185 {
186 struct pci_dev *pdev = to_pci_dev(dev->dev);
187 struct mei_me_hw *hw = to_me_hw(dev);
188 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
189 int ret;
190 int i;
191
192 if (!fw_status)
193 return -EINVAL;
194
195 fw_status->count = fw_src->count;
196 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
197 ret = pci_read_config_dword(pdev, fw_src->status[i],
198 &fw_status->status[i]);
199 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
200 fw_src->status[i],
201 fw_status->status[i]);
202 if (ret)
203 return ret;
204 }
205
206 return 0;
207 }
208
209 /**
210 * mei_me_hw_config - configure hw dependent settings
211 *
212 * @dev: mei device
213 */
214 static void mei_me_hw_config(struct mei_device *dev)
215 {
216 struct pci_dev *pdev = to_pci_dev(dev->dev);
217 struct mei_me_hw *hw = to_me_hw(dev);
218 u32 hcsr, reg;
219
220 /* Doesn't change in runtime */
221 hcsr = mei_hcsr_read(dev);
222 hw->hbuf_depth = (hcsr & H_CBD) >> 24;
223
224 reg = 0;
225 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
226 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
227 hw->d0i3_supported =
228 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
229
230 hw->pg_state = MEI_PG_OFF;
231 if (hw->d0i3_supported) {
232 reg = mei_me_d0i3c_read(dev);
233 if (reg & H_D0I3C_I3)
234 hw->pg_state = MEI_PG_ON;
235 }
236 }
237
238 /**
239 * mei_me_pg_state - translate internal pg state
240 * to the mei power gating state
241 *
242 * @dev: mei device
243 *
244 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
245 */
246 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
247 {
248 struct mei_me_hw *hw = to_me_hw(dev);
249
250 return hw->pg_state;
251 }
252
253 static inline u32 me_intr_src(u32 hcsr)
254 {
255 return hcsr & H_CSR_IS_MASK;
256 }
257
258 /**
259 * me_intr_disable - disables mei device interrupts
260 * using supplied hcsr register value.
261 *
262 * @dev: the device structure
263 * @hcsr: supplied hcsr register value
264 */
265 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
266 {
267 hcsr &= ~H_CSR_IE_MASK;
268 mei_hcsr_set(dev, hcsr);
269 }
270
271 /**
272 * mei_me_intr_clear - clear and stop interrupts
273 *
274 * @dev: the device structure
275 * @hcsr: supplied hcsr register value
276 */
277 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
278 {
279 if (me_intr_src(hcsr))
280 mei_hcsr_write(dev, hcsr);
281 }
282
283 /**
284 * mei_me_intr_clear - clear and stop interrupts
285 *
286 * @dev: the device structure
287 */
288 static void mei_me_intr_clear(struct mei_device *dev)
289 {
290 u32 hcsr = mei_hcsr_read(dev);
291
292 me_intr_clear(dev, hcsr);
293 }
294 /**
295 * mei_me_intr_enable - enables mei device interrupts
296 *
297 * @dev: the device structure
298 */
299 static void mei_me_intr_enable(struct mei_device *dev)
300 {
301 u32 hcsr = mei_hcsr_read(dev);
302
303 hcsr |= H_CSR_IE_MASK;
304 mei_hcsr_set(dev, hcsr);
305 }
306
307 /**
308 * mei_me_intr_disable - disables mei device interrupts
309 *
310 * @dev: the device structure
311 */
312 static void mei_me_intr_disable(struct mei_device *dev)
313 {
314 u32 hcsr = mei_hcsr_read(dev);
315
316 me_intr_disable(dev, hcsr);
317 }
318
319 /**
320 * mei_me_synchronize_irq - wait for pending IRQ handlers
321 *
322 * @dev: the device structure
323 */
324 static void mei_me_synchronize_irq(struct mei_device *dev)
325 {
326 struct pci_dev *pdev = to_pci_dev(dev->dev);
327
328 synchronize_irq(pdev->irq);
329 }
330
331 /**
332 * mei_me_hw_reset_release - release device from the reset
333 *
334 * @dev: the device structure
335 */
336 static void mei_me_hw_reset_release(struct mei_device *dev)
337 {
338 u32 hcsr = mei_hcsr_read(dev);
339
340 hcsr |= H_IG;
341 hcsr &= ~H_RST;
342 mei_hcsr_set(dev, hcsr);
343 }
344
345 /**
346 * mei_me_host_set_ready - enable device
347 *
348 * @dev: mei device
349 */
350 static void mei_me_host_set_ready(struct mei_device *dev)
351 {
352 u32 hcsr = mei_hcsr_read(dev);
353
354 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
355 mei_hcsr_set(dev, hcsr);
356 }
357
358 /**
359 * mei_me_host_is_ready - check whether the host has turned ready
360 *
361 * @dev: mei device
362 * Return: bool
363 */
364 static bool mei_me_host_is_ready(struct mei_device *dev)
365 {
366 u32 hcsr = mei_hcsr_read(dev);
367
368 return (hcsr & H_RDY) == H_RDY;
369 }
370
371 /**
372 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
373 *
374 * @dev: mei device
375 * Return: bool
376 */
377 static bool mei_me_hw_is_ready(struct mei_device *dev)
378 {
379 u32 mecsr = mei_me_mecsr_read(dev);
380
381 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
382 }
383
384 /**
385 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
386 *
387 * @dev: mei device
388 * Return: bool
389 */
390 static bool mei_me_hw_is_resetting(struct mei_device *dev)
391 {
392 u32 mecsr = mei_me_mecsr_read(dev);
393
394 return (mecsr & ME_RST_HRA) == ME_RST_HRA;
395 }
396
397 /**
398 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
399 * or timeout is reached
400 *
401 * @dev: mei device
402 * Return: 0 on success, error otherwise
403 */
404 static int mei_me_hw_ready_wait(struct mei_device *dev)
405 {
406 mutex_unlock(&dev->device_lock);
407 wait_event_timeout(dev->wait_hw_ready,
408 dev->recvd_hw_ready,
409 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
410 mutex_lock(&dev->device_lock);
411 if (!dev->recvd_hw_ready) {
412 dev_err(dev->dev, "wait hw ready failed\n");
413 return -ETIME;
414 }
415
416 mei_me_hw_reset_release(dev);
417 dev->recvd_hw_ready = false;
418 return 0;
419 }
420
421 /**
422 * mei_me_hw_start - hw start routine
423 *
424 * @dev: mei device
425 * Return: 0 on success, error otherwise
426 */
427 static int mei_me_hw_start(struct mei_device *dev)
428 {
429 int ret = mei_me_hw_ready_wait(dev);
430
431 if (ret)
432 return ret;
433 dev_dbg(dev->dev, "hw is ready\n");
434
435 mei_me_host_set_ready(dev);
436 return ret;
437 }
438
439
440 /**
441 * mei_hbuf_filled_slots - gets number of device filled buffer slots
442 *
443 * @dev: the device structure
444 *
445 * Return: number of filled slots
446 */
447 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
448 {
449 u32 hcsr;
450 char read_ptr, write_ptr;
451
452 hcsr = mei_hcsr_read(dev);
453
454 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
455 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
456
457 return (unsigned char) (write_ptr - read_ptr);
458 }
459
460 /**
461 * mei_me_hbuf_is_empty - checks if host buffer is empty.
462 *
463 * @dev: the device structure
464 *
465 * Return: true if empty, false - otherwise.
466 */
467 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
468 {
469 return mei_hbuf_filled_slots(dev) == 0;
470 }
471
472 /**
473 * mei_me_hbuf_empty_slots - counts write empty slots.
474 *
475 * @dev: the device structure
476 *
477 * Return: -EOVERFLOW if overflow, otherwise empty slots count
478 */
479 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
480 {
481 struct mei_me_hw *hw = to_me_hw(dev);
482 unsigned char filled_slots, empty_slots;
483
484 filled_slots = mei_hbuf_filled_slots(dev);
485 empty_slots = hw->hbuf_depth - filled_slots;
486
487 /* check for overflow */
488 if (filled_slots > hw->hbuf_depth)
489 return -EOVERFLOW;
490
491 return empty_slots;
492 }
493
494 /**
495 * mei_me_hbuf_depth - returns depth of the hw buffer.
496 *
497 * @dev: the device structure
498 *
499 * Return: size of hw buffer in slots
500 */
501 static u32 mei_me_hbuf_depth(const struct mei_device *dev)
502 {
503 struct mei_me_hw *hw = to_me_hw(dev);
504
505 return hw->hbuf_depth;
506 }
507
508 /**
509 * mei_me_hbuf_write - writes a message to host hw buffer.
510 *
511 * @dev: the device structure
512 * @hdr: header of message
513 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
514 * @data: payload
515 * @data_len: payload length in bytes
516 *
517 * Return: 0 if success, < 0 - otherwise.
518 */
519 static int mei_me_hbuf_write(struct mei_device *dev,
520 const void *hdr, size_t hdr_len,
521 const void *data, size_t data_len)
522 {
523 unsigned long rem;
524 unsigned long i;
525 const u32 *reg_buf;
526 u32 dw_cnt;
527 int empty_slots;
528
529 if (WARN_ON(!hdr || !data || hdr_len & 0x3))
530 return -EINVAL;
531
532 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
533
534 empty_slots = mei_hbuf_empty_slots(dev);
535 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
536
537 if (empty_slots < 0)
538 return -EOVERFLOW;
539
540 dw_cnt = mei_data2slots(hdr_len + data_len);
541 if (dw_cnt > (u32)empty_slots)
542 return -EMSGSIZE;
543
544 reg_buf = hdr;
545 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
546 mei_me_hcbww_write(dev, reg_buf[i]);
547
548 reg_buf = data;
549 for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
550 mei_me_hcbww_write(dev, reg_buf[i]);
551
552 rem = data_len & 0x3;
553 if (rem > 0) {
554 u32 reg = 0;
555
556 memcpy(&reg, (const u8 *)data + data_len - rem, rem);
557 mei_me_hcbww_write(dev, reg);
558 }
559
560 mei_hcsr_set_hig(dev);
561 if (!mei_me_hw_is_ready(dev))
562 return -EIO;
563
564 return 0;
565 }
566
567 /**
568 * mei_me_count_full_read_slots - counts read full slots.
569 *
570 * @dev: the device structure
571 *
572 * Return: -EOVERFLOW if overflow, otherwise filled slots count
573 */
574 static int mei_me_count_full_read_slots(struct mei_device *dev)
575 {
576 u32 me_csr;
577 char read_ptr, write_ptr;
578 unsigned char buffer_depth, filled_slots;
579
580 me_csr = mei_me_mecsr_read(dev);
581 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
582 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
583 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
584 filled_slots = (unsigned char) (write_ptr - read_ptr);
585
586 /* check for overflow */
587 if (filled_slots > buffer_depth)
588 return -EOVERFLOW;
589
590 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
591 return (int)filled_slots;
592 }
593
594 /**
595 * mei_me_read_slots - reads a message from mei device.
596 *
597 * @dev: the device structure
598 * @buffer: message buffer will be written
599 * @buffer_length: message size will be read
600 *
601 * Return: always 0
602 */
603 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
604 unsigned long buffer_length)
605 {
606 u32 *reg_buf = (u32 *)buffer;
607
608 for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
609 *reg_buf++ = mei_me_mecbrw_read(dev);
610
611 if (buffer_length > 0) {
612 u32 reg = mei_me_mecbrw_read(dev);
613
614 memcpy(reg_buf, &reg, buffer_length);
615 }
616
617 mei_hcsr_set_hig(dev);
618 return 0;
619 }
620
621 /**
622 * mei_me_pg_set - write pg enter register
623 *
624 * @dev: the device structure
625 */
626 static void mei_me_pg_set(struct mei_device *dev)
627 {
628 struct mei_me_hw *hw = to_me_hw(dev);
629 u32 reg;
630
631 reg = mei_me_reg_read(hw, H_HPG_CSR);
632 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
633
634 reg |= H_HPG_CSR_PGI;
635
636 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
637 mei_me_reg_write(hw, H_HPG_CSR, reg);
638 }
639
640 /**
641 * mei_me_pg_unset - write pg exit register
642 *
643 * @dev: the device structure
644 */
645 static void mei_me_pg_unset(struct mei_device *dev)
646 {
647 struct mei_me_hw *hw = to_me_hw(dev);
648 u32 reg;
649
650 reg = mei_me_reg_read(hw, H_HPG_CSR);
651 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
652
653 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
654
655 reg |= H_HPG_CSR_PGIHEXR;
656
657 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
658 mei_me_reg_write(hw, H_HPG_CSR, reg);
659 }
660
661 /**
662 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
663 *
664 * @dev: the device structure
665 *
666 * Return: 0 on success an error code otherwise
667 */
668 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
669 {
670 struct mei_me_hw *hw = to_me_hw(dev);
671 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
672 int ret;
673
674 dev->pg_event = MEI_PG_EVENT_WAIT;
675
676 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
677 if (ret)
678 return ret;
679
680 mutex_unlock(&dev->device_lock);
681 wait_event_timeout(dev->wait_pg,
682 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
683 mutex_lock(&dev->device_lock);
684
685 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
686 mei_me_pg_set(dev);
687 ret = 0;
688 } else {
689 ret = -ETIME;
690 }
691
692 dev->pg_event = MEI_PG_EVENT_IDLE;
693 hw->pg_state = MEI_PG_ON;
694
695 return ret;
696 }
697
698 /**
699 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
700 *
701 * @dev: the device structure
702 *
703 * Return: 0 on success an error code otherwise
704 */
705 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
706 {
707 struct mei_me_hw *hw = to_me_hw(dev);
708 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
709 int ret;
710
711 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
712 goto reply;
713
714 dev->pg_event = MEI_PG_EVENT_WAIT;
715
716 mei_me_pg_unset(dev);
717
718 mutex_unlock(&dev->device_lock);
719 wait_event_timeout(dev->wait_pg,
720 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
721 mutex_lock(&dev->device_lock);
722
723 reply:
724 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
725 ret = -ETIME;
726 goto out;
727 }
728
729 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
730 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
731 if (ret)
732 return ret;
733
734 mutex_unlock(&dev->device_lock);
735 wait_event_timeout(dev->wait_pg,
736 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
737 mutex_lock(&dev->device_lock);
738
739 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
740 ret = 0;
741 else
742 ret = -ETIME;
743
744 out:
745 dev->pg_event = MEI_PG_EVENT_IDLE;
746 hw->pg_state = MEI_PG_OFF;
747
748 return ret;
749 }
750
751 /**
752 * mei_me_pg_in_transition - is device now in pg transition
753 *
754 * @dev: the device structure
755 *
756 * Return: true if in pg transition, false otherwise
757 */
758 static bool mei_me_pg_in_transition(struct mei_device *dev)
759 {
760 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
761 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
762 }
763
764 /**
765 * mei_me_pg_is_enabled - detect if PG is supported by HW
766 *
767 * @dev: the device structure
768 *
769 * Return: true is pg supported, false otherwise
770 */
771 static bool mei_me_pg_is_enabled(struct mei_device *dev)
772 {
773 struct mei_me_hw *hw = to_me_hw(dev);
774 u32 reg = mei_me_mecsr_read(dev);
775
776 if (hw->d0i3_supported)
777 return true;
778
779 if ((reg & ME_PGIC_HRA) == 0)
780 goto notsupported;
781
782 if (!dev->hbm_f_pg_supported)
783 goto notsupported;
784
785 return true;
786
787 notsupported:
788 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
789 hw->d0i3_supported,
790 !!(reg & ME_PGIC_HRA),
791 dev->version.major_version,
792 dev->version.minor_version,
793 HBM_MAJOR_VERSION_PGI,
794 HBM_MINOR_VERSION_PGI);
795
796 return false;
797 }
798
799 /**
800 * mei_me_d0i3_set - write d0i3 register bit on mei device.
801 *
802 * @dev: the device structure
803 * @intr: ask for interrupt
804 *
805 * Return: D0I3C register value
806 */
807 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
808 {
809 u32 reg = mei_me_d0i3c_read(dev);
810
811 reg |= H_D0I3C_I3;
812 if (intr)
813 reg |= H_D0I3C_IR;
814 else
815 reg &= ~H_D0I3C_IR;
816 mei_me_d0i3c_write(dev, reg);
817 /* read it to ensure HW consistency */
818 reg = mei_me_d0i3c_read(dev);
819 return reg;
820 }
821
822 /**
823 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
824 *
825 * @dev: the device structure
826 *
827 * Return: D0I3C register value
828 */
829 static u32 mei_me_d0i3_unset(struct mei_device *dev)
830 {
831 u32 reg = mei_me_d0i3c_read(dev);
832
833 reg &= ~H_D0I3C_I3;
834 reg |= H_D0I3C_IR;
835 mei_me_d0i3c_write(dev, reg);
836 /* read it to ensure HW consistency */
837 reg = mei_me_d0i3c_read(dev);
838 return reg;
839 }
840
841 /**
842 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
843 *
844 * @dev: the device structure
845 *
846 * Return: 0 on success an error code otherwise
847 */
848 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
849 {
850 struct mei_me_hw *hw = to_me_hw(dev);
851 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
852 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
853 int ret;
854 u32 reg;
855
856 reg = mei_me_d0i3c_read(dev);
857 if (reg & H_D0I3C_I3) {
858 /* we are in d0i3, nothing to do */
859 dev_dbg(dev->dev, "d0i3 set not needed\n");
860 ret = 0;
861 goto on;
862 }
863
864 /* PGI entry procedure */
865 dev->pg_event = MEI_PG_EVENT_WAIT;
866
867 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
868 if (ret)
869 /* FIXME: should we reset here? */
870 goto out;
871
872 mutex_unlock(&dev->device_lock);
873 wait_event_timeout(dev->wait_pg,
874 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
875 mutex_lock(&dev->device_lock);
876
877 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
878 ret = -ETIME;
879 goto out;
880 }
881 /* end PGI entry procedure */
882
883 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
884
885 reg = mei_me_d0i3_set(dev, true);
886 if (!(reg & H_D0I3C_CIP)) {
887 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
888 ret = 0;
889 goto on;
890 }
891
892 mutex_unlock(&dev->device_lock);
893 wait_event_timeout(dev->wait_pg,
894 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
895 mutex_lock(&dev->device_lock);
896
897 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
898 reg = mei_me_d0i3c_read(dev);
899 if (!(reg & H_D0I3C_I3)) {
900 ret = -ETIME;
901 goto out;
902 }
903 }
904
905 ret = 0;
906 on:
907 hw->pg_state = MEI_PG_ON;
908 out:
909 dev->pg_event = MEI_PG_EVENT_IDLE;
910 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
911 return ret;
912 }
913
914 /**
915 * mei_me_d0i3_enter - perform d0i3 entry procedure
916 * no hbm PG handshake
917 * no waiting for confirmation; runs with interrupts
918 * disabled
919 *
920 * @dev: the device structure
921 *
922 * Return: 0 on success an error code otherwise
923 */
924 static int mei_me_d0i3_enter(struct mei_device *dev)
925 {
926 struct mei_me_hw *hw = to_me_hw(dev);
927 u32 reg;
928
929 reg = mei_me_d0i3c_read(dev);
930 if (reg & H_D0I3C_I3) {
931 /* we are in d0i3, nothing to do */
932 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
933 goto on;
934 }
935
936 mei_me_d0i3_set(dev, false);
937 on:
938 hw->pg_state = MEI_PG_ON;
939 dev->pg_event = MEI_PG_EVENT_IDLE;
940 dev_dbg(dev->dev, "d0i3 enter\n");
941 return 0;
942 }
943
944 /**
945 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
946 *
947 * @dev: the device structure
948 *
949 * Return: 0 on success an error code otherwise
950 */
951 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
952 {
953 struct mei_me_hw *hw = to_me_hw(dev);
954 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
955 int ret;
956 u32 reg;
957
958 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
959
960 reg = mei_me_d0i3c_read(dev);
961 if (!(reg & H_D0I3C_I3)) {
962 /* we are not in d0i3, nothing to do */
963 dev_dbg(dev->dev, "d0i3 exit not needed\n");
964 ret = 0;
965 goto off;
966 }
967
968 reg = mei_me_d0i3_unset(dev);
969 if (!(reg & H_D0I3C_CIP)) {
970 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
971 ret = 0;
972 goto off;
973 }
974
975 mutex_unlock(&dev->device_lock);
976 wait_event_timeout(dev->wait_pg,
977 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
978 mutex_lock(&dev->device_lock);
979
980 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
981 reg = mei_me_d0i3c_read(dev);
982 if (reg & H_D0I3C_I3) {
983 ret = -ETIME;
984 goto out;
985 }
986 }
987
988 ret = 0;
989 off:
990 hw->pg_state = MEI_PG_OFF;
991 out:
992 dev->pg_event = MEI_PG_EVENT_IDLE;
993
994 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
995 return ret;
996 }
997
998 /**
999 * mei_me_pg_legacy_intr - perform legacy pg processing
1000 * in interrupt thread handler
1001 *
1002 * @dev: the device structure
1003 */
1004 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005 {
1006 struct mei_me_hw *hw = to_me_hw(dev);
1007
1008 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009 return;
1010
1011 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012 hw->pg_state = MEI_PG_OFF;
1013 if (waitqueue_active(&dev->wait_pg))
1014 wake_up(&dev->wait_pg);
1015 }
1016
1017 /**
1018 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019 *
1020 * @dev: the device structure
1021 * @intr_source: interrupt source
1022 */
1023 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024 {
1025 struct mei_me_hw *hw = to_me_hw(dev);
1026
1027 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028 (intr_source & H_D0I3C_IS)) {
1029 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030 if (hw->pg_state == MEI_PG_ON) {
1031 hw->pg_state = MEI_PG_OFF;
1032 if (dev->hbm_state != MEI_HBM_IDLE) {
1033 /*
1034 * force H_RDY because it could be
1035 * wiped off during PG
1036 */
1037 dev_dbg(dev->dev, "d0i3 set host ready\n");
1038 mei_me_host_set_ready(dev);
1039 }
1040 } else {
1041 hw->pg_state = MEI_PG_ON;
1042 }
1043
1044 wake_up(&dev->wait_pg);
1045 }
1046
1047 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048 /*
1049 * HW sent some data and we are in D0i3, so
1050 * we got here because of HW initiated exit from D0i3.
1051 * Start runtime pm resume sequence to exit low power state.
1052 */
1053 dev_dbg(dev->dev, "d0i3 want resume\n");
1054 mei_hbm_pg_resume(dev);
1055 }
1056 }
1057
1058 /**
1059 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060 *
1061 * @dev: the device structure
1062 * @intr_source: interrupt source
1063 */
1064 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065 {
1066 struct mei_me_hw *hw = to_me_hw(dev);
1067
1068 if (hw->d0i3_supported)
1069 mei_me_d0i3_intr(dev, intr_source);
1070 else
1071 mei_me_pg_legacy_intr(dev);
1072 }
1073
1074 /**
1075 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076 *
1077 * @dev: the device structure
1078 *
1079 * Return: 0 on success an error code otherwise
1080 */
1081 int mei_me_pg_enter_sync(struct mei_device *dev)
1082 {
1083 struct mei_me_hw *hw = to_me_hw(dev);
1084
1085 if (hw->d0i3_supported)
1086 return mei_me_d0i3_enter_sync(dev);
1087 else
1088 return mei_me_pg_legacy_enter_sync(dev);
1089 }
1090
1091 /**
1092 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093 *
1094 * @dev: the device structure
1095 *
1096 * Return: 0 on success an error code otherwise
1097 */
1098 int mei_me_pg_exit_sync(struct mei_device *dev)
1099 {
1100 struct mei_me_hw *hw = to_me_hw(dev);
1101
1102 if (hw->d0i3_supported)
1103 return mei_me_d0i3_exit_sync(dev);
1104 else
1105 return mei_me_pg_legacy_exit_sync(dev);
1106 }
1107
1108 /**
1109 * mei_me_hw_reset - resets fw via mei csr register.
1110 *
1111 * @dev: the device structure
1112 * @intr_enable: if interrupt should be enabled after reset.
1113 *
1114 * Return: 0 on success an error code otherwise
1115 */
1116 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117 {
1118 struct mei_me_hw *hw = to_me_hw(dev);
1119 int ret;
1120 u32 hcsr;
1121
1122 if (intr_enable) {
1123 mei_me_intr_enable(dev);
1124 if (hw->d0i3_supported) {
1125 ret = mei_me_d0i3_exit_sync(dev);
1126 if (ret)
1127 return ret;
1128 }
1129 }
1130
1131 pm_runtime_set_active(dev->dev);
1132
1133 hcsr = mei_hcsr_read(dev);
1134 /* H_RST may be found lit before reset is started,
1135 * for example if preceding reset flow hasn't completed.
1136 * In that case asserting H_RST will be ignored, therefore
1137 * we need to clean H_RST bit to start a successful reset sequence.
1138 */
1139 if ((hcsr & H_RST) == H_RST) {
1140 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141 hcsr &= ~H_RST;
1142 mei_hcsr_set(dev, hcsr);
1143 hcsr = mei_hcsr_read(dev);
1144 }
1145
1146 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147
1148 if (!intr_enable)
1149 hcsr &= ~H_CSR_IE_MASK;
1150
1151 dev->recvd_hw_ready = false;
1152 mei_hcsr_write(dev, hcsr);
1153
1154 /*
1155 * Host reads the H_CSR once to ensure that the
1156 * posted write to H_CSR completes.
1157 */
1158 hcsr = mei_hcsr_read(dev);
1159
1160 if ((hcsr & H_RST) == 0)
1161 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162
1163 if ((hcsr & H_RDY) == H_RDY)
1164 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165
1166 if (!intr_enable) {
1167 mei_me_hw_reset_release(dev);
1168 if (hw->d0i3_supported) {
1169 ret = mei_me_d0i3_enter(dev);
1170 if (ret)
1171 return ret;
1172 }
1173 }
1174 return 0;
1175 }
1176
1177 /**
1178 * mei_me_irq_quick_handler - The ISR of the MEI device
1179 *
1180 * @irq: The irq number
1181 * @dev_id: pointer to the device structure
1182 *
1183 * Return: irqreturn_t
1184 */
1185 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186 {
1187 struct mei_device *dev = (struct mei_device *)dev_id;
1188 u32 hcsr;
1189
1190 hcsr = mei_hcsr_read(dev);
1191 if (!me_intr_src(hcsr))
1192 return IRQ_NONE;
1193
1194 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195
1196 /* disable interrupts on device */
1197 me_intr_disable(dev, hcsr);
1198 return IRQ_WAKE_THREAD;
1199 }
1200
1201 /**
1202 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203 * processing.
1204 *
1205 * @irq: The irq number
1206 * @dev_id: pointer to the device structure
1207 *
1208 * Return: irqreturn_t
1209 *
1210 */
1211 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212 {
1213 struct mei_device *dev = (struct mei_device *) dev_id;
1214 struct list_head cmpl_list;
1215 s32 slots;
1216 u32 hcsr;
1217 int rets = 0;
1218
1219 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220 /* initialize our complete list */
1221 mutex_lock(&dev->device_lock);
1222
1223 hcsr = mei_hcsr_read(dev);
1224 me_intr_clear(dev, hcsr);
1225
1226 INIT_LIST_HEAD(&cmpl_list);
1227
1228 /* check if ME wants a reset */
1229 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230 dev_warn(dev->dev, "FW not ready: resetting.\n");
1231 schedule_work(&dev->reset_work);
1232 goto end;
1233 }
1234
1235 if (mei_me_hw_is_resetting(dev))
1236 mei_hcsr_set_hig(dev);
1237
1238 mei_me_pg_intr(dev, me_intr_src(hcsr));
1239
1240 /* check if we need to start the dev */
1241 if (!mei_host_is_ready(dev)) {
1242 if (mei_hw_is_ready(dev)) {
1243 dev_dbg(dev->dev, "we need to start the dev.\n");
1244 dev->recvd_hw_ready = true;
1245 wake_up(&dev->wait_hw_ready);
1246 } else {
1247 dev_dbg(dev->dev, "Spurious Interrupt\n");
1248 }
1249 goto end;
1250 }
1251 /* check slots available for reading */
1252 slots = mei_count_full_read_slots(dev);
1253 while (slots > 0) {
1254 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256 /* There is a race between ME write and interrupt delivery:
1257 * Not all data is always available immediately after the
1258 * interrupt, so try to read again on the next interrupt.
1259 */
1260 if (rets == -ENODATA)
1261 break;
1262
1263 if (rets &&
1264 (dev->dev_state != MEI_DEV_RESETTING &&
1265 dev->dev_state != MEI_DEV_POWER_DOWN)) {
1266 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1267 rets);
1268 schedule_work(&dev->reset_work);
1269 goto end;
1270 }
1271 }
1272
1273 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1274
1275 /*
1276 * During PG handshake only allowed write is the replay to the
1277 * PG exit message, so block calling write function
1278 * if the pg event is in PG handshake
1279 */
1280 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1281 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1282 rets = mei_irq_write_handler(dev, &cmpl_list);
1283 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1284 }
1285
1286 mei_irq_compl_handler(dev, &cmpl_list);
1287
1288 end:
1289 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1290 mei_me_intr_enable(dev);
1291 mutex_unlock(&dev->device_lock);
1292 return IRQ_HANDLED;
1293 }
1294
1295 static const struct mei_hw_ops mei_me_hw_ops = {
1296
1297 .fw_status = mei_me_fw_status,
1298 .pg_state = mei_me_pg_state,
1299
1300 .host_is_ready = mei_me_host_is_ready,
1301
1302 .hw_is_ready = mei_me_hw_is_ready,
1303 .hw_reset = mei_me_hw_reset,
1304 .hw_config = mei_me_hw_config,
1305 .hw_start = mei_me_hw_start,
1306
1307 .pg_in_transition = mei_me_pg_in_transition,
1308 .pg_is_enabled = mei_me_pg_is_enabled,
1309
1310 .intr_clear = mei_me_intr_clear,
1311 .intr_enable = mei_me_intr_enable,
1312 .intr_disable = mei_me_intr_disable,
1313 .synchronize_irq = mei_me_synchronize_irq,
1314
1315 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1316 .hbuf_is_ready = mei_me_hbuf_is_empty,
1317 .hbuf_depth = mei_me_hbuf_depth,
1318
1319 .write = mei_me_hbuf_write,
1320
1321 .rdbuf_full_slots = mei_me_count_full_read_slots,
1322 .read_hdr = mei_me_mecbrw_read,
1323 .read = mei_me_read_slots
1324 };
1325
1326 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1327 {
1328 u32 reg;
1329
1330 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1331 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1332 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1333 return (reg & 0x600) == 0x200;
1334 }
1335
1336 #define MEI_CFG_FW_NM \
1337 .quirk_probe = mei_me_fw_type_nm
1338
1339 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1340 {
1341 u32 reg;
1342 unsigned int devfn;
1343
1344 /*
1345 * Read ME FW Status register to check for SPS Firmware
1346 * The SPS FW is only signaled in pci function 0
1347 */
1348 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1349 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1350 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1351 /* if bits [19:16] = 15, running SPS Firmware */
1352 return (reg & 0xf0000) == 0xf0000;
1353 }
1354
1355 #define MEI_CFG_FW_SPS \
1356 .quirk_probe = mei_me_fw_type_sps
1357
1358
1359 #define MEI_CFG_ICH_HFS \
1360 .fw_status.count = 0
1361
1362 #define MEI_CFG_ICH10_HFS \
1363 .fw_status.count = 1, \
1364 .fw_status.status[0] = PCI_CFG_HFS_1
1365
1366 #define MEI_CFG_PCH_HFS \
1367 .fw_status.count = 2, \
1368 .fw_status.status[0] = PCI_CFG_HFS_1, \
1369 .fw_status.status[1] = PCI_CFG_HFS_2
1370
1371 #define MEI_CFG_PCH8_HFS \
1372 .fw_status.count = 6, \
1373 .fw_status.status[0] = PCI_CFG_HFS_1, \
1374 .fw_status.status[1] = PCI_CFG_HFS_2, \
1375 .fw_status.status[2] = PCI_CFG_HFS_3, \
1376 .fw_status.status[3] = PCI_CFG_HFS_4, \
1377 .fw_status.status[4] = PCI_CFG_HFS_5, \
1378 .fw_status.status[5] = PCI_CFG_HFS_6
1379
1380 #define MEI_CFG_DMA_128 \
1381 .dma_size[DMA_DSCR_HOST] = SZ_128K, \
1382 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1383 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1384
1385 /* ICH Legacy devices */
1386 static const struct mei_cfg mei_me_ich_cfg = {
1387 MEI_CFG_ICH_HFS,
1388 };
1389
1390 /* ICH devices */
1391 static const struct mei_cfg mei_me_ich10_cfg = {
1392 MEI_CFG_ICH10_HFS,
1393 };
1394
1395 /* PCH devices */
1396 static const struct mei_cfg mei_me_pch_cfg = {
1397 MEI_CFG_PCH_HFS,
1398 };
1399
1400 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1401 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1402 MEI_CFG_PCH_HFS,
1403 MEI_CFG_FW_NM,
1404 };
1405
1406 /* PCH8 Lynx Point and newer devices */
1407 static const struct mei_cfg mei_me_pch8_cfg = {
1408 MEI_CFG_PCH8_HFS,
1409 };
1410
1411 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1412 static const struct mei_cfg mei_me_pch8_sps_cfg = {
1413 MEI_CFG_PCH8_HFS,
1414 MEI_CFG_FW_SPS,
1415 };
1416
1417 /* Cannon Lake and newer devices */
1418 static const struct mei_cfg mei_me_pch12_cfg = {
1419 MEI_CFG_PCH8_HFS,
1420 MEI_CFG_DMA_128,
1421 };
1422
1423 /*
1424 * mei_cfg_list - A list of platform platform specific configurations.
1425 * Note: has to be synchronized with enum mei_cfg_idx.
1426 */
1427 static const struct mei_cfg *const mei_cfg_list[] = {
1428 [MEI_ME_UNDEF_CFG] = NULL,
1429 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1430 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1431 [MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1432 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1433 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1434 [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1435 [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1436 };
1437
1438 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1439 {
1440 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1441
1442 if (idx >= MEI_ME_NUM_CFG)
1443 return NULL;
1444
1445 return mei_cfg_list[idx];
1446 };
1447
1448 /**
1449 * mei_me_dev_init - allocates and initializes the mei device structure
1450 *
1451 * @pdev: The pci device structure
1452 * @cfg: per device generation config
1453 *
1454 * Return: The mei_device pointer on success, NULL on failure.
1455 */
1456 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1457 const struct mei_cfg *cfg)
1458 {
1459 struct mei_device *dev;
1460 struct mei_me_hw *hw;
1461 int i;
1462
1463 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1464 sizeof(struct mei_me_hw), GFP_KERNEL);
1465 if (!dev)
1466 return NULL;
1467
1468 hw = to_me_hw(dev);
1469
1470 for (i = 0; i < DMA_DSCR_NUM; i++)
1471 dev->dr_dscr[i].size = cfg->dma_size[i];
1472
1473 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1474 hw->cfg = cfg;
1475
1476 return dev;
1477 }
1478