]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/misc/mic/scif/scif_dma.c
misc: mic/scif: use list_next_entry instead of list_entry_next
[mirror_ubuntu-artful-kernel.git] / drivers / misc / mic / scif / scif_dma.c
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
3 *
4 * Copyright(c) 2015 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * Intel SCIF driver.
16 *
17 */
18 #include "scif_main.h"
19 #include "scif_map.h"
20
21 /*
22 * struct scif_dma_comp_cb - SCIF DMA completion callback
23 *
24 * @dma_completion_func: DMA completion callback
25 * @cb_cookie: DMA completion callback cookie
26 * @temp_buf: Temporary buffer
27 * @temp_buf_to_free: Temporary buffer to be freed
28 * @is_cache: Is a kmem_cache allocated buffer
29 * @dst_offset: Destination registration offset
30 * @dst_window: Destination registration window
31 * @len: Length of the temp buffer
32 * @temp_phys: DMA address of the temp buffer
33 * @sdev: The SCIF device
34 * @header_padding: padding for cache line alignment
35 */
36 struct scif_dma_comp_cb {
37 void (*dma_completion_func)(void *cookie);
38 void *cb_cookie;
39 u8 *temp_buf;
40 u8 *temp_buf_to_free;
41 bool is_cache;
42 s64 dst_offset;
43 struct scif_window *dst_window;
44 size_t len;
45 dma_addr_t temp_phys;
46 struct scif_dev *sdev;
47 int header_padding;
48 };
49
50 /**
51 * struct scif_copy_work - Work for DMA copy
52 *
53 * @src_offset: Starting source offset
54 * @dst_offset: Starting destination offset
55 * @src_window: Starting src registered window
56 * @dst_window: Starting dst registered window
57 * @loopback: true if this is a loopback DMA transfer
58 * @len: Length of the transfer
59 * @comp_cb: DMA copy completion callback
60 * @remote_dev: The remote SCIF peer device
61 * @fence_type: polling or interrupt based
62 * @ordered: is this a tail byte ordered DMA transfer
63 */
64 struct scif_copy_work {
65 s64 src_offset;
66 s64 dst_offset;
67 struct scif_window *src_window;
68 struct scif_window *dst_window;
69 int loopback;
70 size_t len;
71 struct scif_dma_comp_cb *comp_cb;
72 struct scif_dev *remote_dev;
73 int fence_type;
74 bool ordered;
75 };
76
77 /**
78 * scif_reserve_dma_chan:
79 * @ep: Endpoint Descriptor.
80 *
81 * This routine reserves a DMA channel for a particular
82 * endpoint. All DMA transfers for an endpoint are always
83 * programmed on the same DMA channel.
84 */
85 int scif_reserve_dma_chan(struct scif_endpt *ep)
86 {
87 int err = 0;
88 struct scif_dev *scifdev;
89 struct scif_hw_dev *sdev;
90 struct dma_chan *chan;
91
92 /* Loopback DMAs are not supported on the management node */
93 if (!scif_info.nodeid && scifdev_self(ep->remote_dev))
94 return 0;
95 if (scif_info.nodeid)
96 scifdev = &scif_dev[0];
97 else
98 scifdev = ep->remote_dev;
99 sdev = scifdev->sdev;
100 if (!sdev->num_dma_ch)
101 return -ENODEV;
102 chan = sdev->dma_ch[scifdev->dma_ch_idx];
103 scifdev->dma_ch_idx = (scifdev->dma_ch_idx + 1) % sdev->num_dma_ch;
104 mutex_lock(&ep->rma_info.rma_lock);
105 ep->rma_info.dma_chan = chan;
106 mutex_unlock(&ep->rma_info.rma_lock);
107 return err;
108 }
109
110 #ifdef CONFIG_MMU_NOTIFIER
111 /**
112 * scif_rma_destroy_tcw:
113 *
114 * This routine destroys temporary cached windows
115 */
116 static
117 void __scif_rma_destroy_tcw(struct scif_mmu_notif *mmn,
118 struct scif_endpt *ep,
119 u64 start, u64 len)
120 {
121 struct list_head *item, *tmp;
122 struct scif_window *window;
123 u64 start_va, end_va;
124 u64 end = start + len;
125
126 if (end <= start)
127 return;
128
129 list_for_each_safe(item, tmp, &mmn->tc_reg_list) {
130 window = list_entry(item, struct scif_window, list);
131 ep = (struct scif_endpt *)window->ep;
132 if (!len)
133 break;
134 start_va = window->va_for_temp;
135 end_va = start_va + (window->nr_pages << PAGE_SHIFT);
136 if (start < start_va && end <= start_va)
137 break;
138 if (start >= end_va)
139 continue;
140 __scif_rma_destroy_tcw_helper(window);
141 }
142 }
143
144 static void scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len)
145 {
146 struct scif_endpt *ep = mmn->ep;
147
148 spin_lock(&ep->rma_info.tc_lock);
149 __scif_rma_destroy_tcw(mmn, ep, start, len);
150 spin_unlock(&ep->rma_info.tc_lock);
151 }
152
153 static void scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
154 {
155 struct list_head *item, *tmp;
156 struct scif_mmu_notif *mmn;
157
158 list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
159 mmn = list_entry(item, struct scif_mmu_notif, list);
160 scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
161 }
162 }
163
164 static void __scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
165 {
166 struct list_head *item, *tmp;
167 struct scif_mmu_notif *mmn;
168
169 spin_lock(&ep->rma_info.tc_lock);
170 list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
171 mmn = list_entry(item, struct scif_mmu_notif, list);
172 __scif_rma_destroy_tcw(mmn, ep, 0, ULONG_MAX);
173 }
174 spin_unlock(&ep->rma_info.tc_lock);
175 }
176
177 static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
178 {
179 if ((cur_bytes >> PAGE_SHIFT) > scif_info.rma_tc_limit)
180 return false;
181 if ((atomic_read(&ep->rma_info.tcw_total_pages)
182 + (cur_bytes >> PAGE_SHIFT)) >
183 scif_info.rma_tc_limit) {
184 dev_info(scif_info.mdev.this_device,
185 "%s %d total=%d, current=%zu reached max\n",
186 __func__, __LINE__,
187 atomic_read(&ep->rma_info.tcw_total_pages),
188 (1 + (cur_bytes >> PAGE_SHIFT)));
189 scif_rma_destroy_tcw_invalid();
190 __scif_rma_destroy_tcw_ep(ep);
191 }
192 return true;
193 }
194
195 static void scif_mmu_notifier_release(struct mmu_notifier *mn,
196 struct mm_struct *mm)
197 {
198 struct scif_mmu_notif *mmn;
199
200 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
201 scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
202 schedule_work(&scif_info.misc_work);
203 }
204
205 static void scif_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
206 struct mm_struct *mm,
207 unsigned long address)
208 {
209 struct scif_mmu_notif *mmn;
210
211 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
212 scif_rma_destroy_tcw(mmn, address, PAGE_SIZE);
213 }
214
215 static void scif_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
216 struct mm_struct *mm,
217 unsigned long start,
218 unsigned long end)
219 {
220 struct scif_mmu_notif *mmn;
221
222 mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
223 scif_rma_destroy_tcw(mmn, start, end - start);
224 }
225
226 static void scif_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
227 struct mm_struct *mm,
228 unsigned long start,
229 unsigned long end)
230 {
231 /*
232 * Nothing to do here, everything needed was done in
233 * invalidate_range_start.
234 */
235 }
236
237 static const struct mmu_notifier_ops scif_mmu_notifier_ops = {
238 .release = scif_mmu_notifier_release,
239 .clear_flush_young = NULL,
240 .invalidate_page = scif_mmu_notifier_invalidate_page,
241 .invalidate_range_start = scif_mmu_notifier_invalidate_range_start,
242 .invalidate_range_end = scif_mmu_notifier_invalidate_range_end};
243
244 static void scif_ep_unregister_mmu_notifier(struct scif_endpt *ep)
245 {
246 struct scif_endpt_rma_info *rma = &ep->rma_info;
247 struct scif_mmu_notif *mmn = NULL;
248 struct list_head *item, *tmp;
249
250 mutex_lock(&ep->rma_info.mmn_lock);
251 list_for_each_safe(item, tmp, &rma->mmn_list) {
252 mmn = list_entry(item, struct scif_mmu_notif, list);
253 mmu_notifier_unregister(&mmn->ep_mmu_notifier, mmn->mm);
254 list_del(item);
255 kfree(mmn);
256 }
257 mutex_unlock(&ep->rma_info.mmn_lock);
258 }
259
260 static void scif_init_mmu_notifier(struct scif_mmu_notif *mmn,
261 struct mm_struct *mm, struct scif_endpt *ep)
262 {
263 mmn->ep = ep;
264 mmn->mm = mm;
265 mmn->ep_mmu_notifier.ops = &scif_mmu_notifier_ops;
266 INIT_LIST_HEAD(&mmn->list);
267 INIT_LIST_HEAD(&mmn->tc_reg_list);
268 }
269
270 static struct scif_mmu_notif *
271 scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma)
272 {
273 struct scif_mmu_notif *mmn;
274 struct list_head *item;
275
276 list_for_each(item, &rma->mmn_list) {
277 mmn = list_entry(item, struct scif_mmu_notif, list);
278 if (mmn->mm == mm)
279 return mmn;
280 }
281 return NULL;
282 }
283
284 static struct scif_mmu_notif *
285 scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
286 {
287 struct scif_mmu_notif *mmn
288 = kzalloc(sizeof(*mmn), GFP_KERNEL);
289
290 if (!mmn)
291 return ERR_PTR(ENOMEM);
292
293 scif_init_mmu_notifier(mmn, current->mm, ep);
294 if (mmu_notifier_register(&mmn->ep_mmu_notifier,
295 current->mm)) {
296 kfree(mmn);
297 return ERR_PTR(EBUSY);
298 }
299 list_add(&mmn->list, &ep->rma_info.mmn_list);
300 return mmn;
301 }
302
303 /*
304 * Called from the misc thread to destroy temporary cached windows and
305 * unregister the MMU notifier for the SCIF endpoint.
306 */
307 void scif_mmu_notif_handler(struct work_struct *work)
308 {
309 struct list_head *pos, *tmpq;
310 struct scif_endpt *ep;
311 restart:
312 scif_rma_destroy_tcw_invalid();
313 spin_lock(&scif_info.rmalock);
314 list_for_each_safe(pos, tmpq, &scif_info.mmu_notif_cleanup) {
315 ep = list_entry(pos, struct scif_endpt, mmu_list);
316 list_del(&ep->mmu_list);
317 spin_unlock(&scif_info.rmalock);
318 scif_rma_destroy_tcw_ep(ep);
319 scif_ep_unregister_mmu_notifier(ep);
320 goto restart;
321 }
322 spin_unlock(&scif_info.rmalock);
323 }
324
325 static bool scif_is_set_reg_cache(int flags)
326 {
327 return !!(flags & SCIF_RMA_USECACHE);
328 }
329 #else
330 static struct scif_mmu_notif *
331 scif_find_mmu_notifier(struct mm_struct *mm,
332 struct scif_endpt_rma_info *rma)
333 {
334 return NULL;
335 }
336
337 static struct scif_mmu_notif *
338 scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
339 {
340 return NULL;
341 }
342
343 void scif_mmu_notif_handler(struct work_struct *work)
344 {
345 }
346
347 static bool scif_is_set_reg_cache(int flags)
348 {
349 return false;
350 }
351
352 static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
353 {
354 return false;
355 }
356 #endif
357
358 /**
359 * scif_register_temp:
360 * @epd: End Point Descriptor.
361 * @addr: virtual address to/from which to copy
362 * @len: length of range to copy
363 * @out_offset: computed offset returned by reference.
364 * @out_window: allocated registered window returned by reference.
365 *
366 * Create a temporary registered window. The peer will not know about this
367 * window. This API is used for scif_vreadfrom()/scif_vwriteto() API's.
368 */
369 static int
370 scif_register_temp(scif_epd_t epd, unsigned long addr, size_t len, int prot,
371 off_t *out_offset, struct scif_window **out_window)
372 {
373 struct scif_endpt *ep = (struct scif_endpt *)epd;
374 int err;
375 scif_pinned_pages_t pinned_pages;
376 size_t aligned_len;
377
378 aligned_len = ALIGN(len, PAGE_SIZE);
379
380 err = __scif_pin_pages((void *)(addr & PAGE_MASK),
381 aligned_len, &prot, 0, &pinned_pages);
382 if (err)
383 return err;
384
385 pinned_pages->prot = prot;
386
387 /* Compute the offset for this registration */
388 err = scif_get_window_offset(ep, 0, 0,
389 aligned_len >> PAGE_SHIFT,
390 (s64 *)out_offset);
391 if (err)
392 goto error_unpin;
393
394 /* Allocate and prepare self registration window */
395 *out_window = scif_create_window(ep, aligned_len >> PAGE_SHIFT,
396 *out_offset, true);
397 if (!*out_window) {
398 scif_free_window_offset(ep, NULL, *out_offset);
399 err = -ENOMEM;
400 goto error_unpin;
401 }
402
403 (*out_window)->pinned_pages = pinned_pages;
404 (*out_window)->nr_pages = pinned_pages->nr_pages;
405 (*out_window)->prot = pinned_pages->prot;
406
407 (*out_window)->va_for_temp = addr & PAGE_MASK;
408 err = scif_map_window(ep->remote_dev, *out_window);
409 if (err) {
410 /* Something went wrong! Rollback */
411 scif_destroy_window(ep, *out_window);
412 *out_window = NULL;
413 } else {
414 *out_offset |= (addr - (*out_window)->va_for_temp);
415 }
416 return err;
417 error_unpin:
418 if (err)
419 dev_err(&ep->remote_dev->sdev->dev,
420 "%s %d err %d\n", __func__, __LINE__, err);
421 scif_unpin_pages(pinned_pages);
422 return err;
423 }
424
425 #define SCIF_DMA_TO (3 * HZ)
426
427 /*
428 * scif_sync_dma - Program a DMA without an interrupt descriptor
429 *
430 * @dev - The address of the pointer to the device instance used
431 * for DMA registration.
432 * @chan - DMA channel to be used.
433 * @sync_wait: Wait for DMA to complete?
434 *
435 * Return 0 on success and -errno on error.
436 */
437 static int scif_sync_dma(struct scif_hw_dev *sdev, struct dma_chan *chan,
438 bool sync_wait)
439 {
440 int err = 0;
441 struct dma_async_tx_descriptor *tx = NULL;
442 enum dma_ctrl_flags flags = DMA_PREP_FENCE;
443 dma_cookie_t cookie;
444 struct dma_device *ddev;
445
446 if (!chan) {
447 err = -EIO;
448 dev_err(&sdev->dev, "%s %d err %d\n",
449 __func__, __LINE__, err);
450 return err;
451 }
452 ddev = chan->device;
453
454 tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
455 if (!tx) {
456 err = -ENOMEM;
457 dev_err(&sdev->dev, "%s %d err %d\n",
458 __func__, __LINE__, err);
459 goto release;
460 }
461 cookie = tx->tx_submit(tx);
462
463 if (dma_submit_error(cookie)) {
464 err = -ENOMEM;
465 dev_err(&sdev->dev, "%s %d err %d\n",
466 __func__, __LINE__, err);
467 goto release;
468 }
469 if (!sync_wait) {
470 dma_async_issue_pending(chan);
471 } else {
472 if (dma_sync_wait(chan, cookie) == DMA_COMPLETE) {
473 err = 0;
474 } else {
475 err = -EIO;
476 dev_err(&sdev->dev, "%s %d err %d\n",
477 __func__, __LINE__, err);
478 }
479 }
480 release:
481 return err;
482 }
483
484 static void scif_dma_callback(void *arg)
485 {
486 struct completion *done = (struct completion *)arg;
487
488 complete(done);
489 }
490
491 #define SCIF_DMA_SYNC_WAIT true
492 #define SCIF_DMA_POLL BIT(0)
493 #define SCIF_DMA_INTR BIT(1)
494
495 /*
496 * scif_async_dma - Program a DMA with an interrupt descriptor
497 *
498 * @dev - The address of the pointer to the device instance used
499 * for DMA registration.
500 * @chan - DMA channel to be used.
501 * Return 0 on success and -errno on error.
502 */
503 static int scif_async_dma(struct scif_hw_dev *sdev, struct dma_chan *chan)
504 {
505 int err = 0;
506 struct dma_device *ddev;
507 struct dma_async_tx_descriptor *tx = NULL;
508 enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
509 DECLARE_COMPLETION_ONSTACK(done_wait);
510 dma_cookie_t cookie;
511 enum dma_status status;
512
513 if (!chan) {
514 err = -EIO;
515 dev_err(&sdev->dev, "%s %d err %d\n",
516 __func__, __LINE__, err);
517 return err;
518 }
519 ddev = chan->device;
520
521 tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
522 if (!tx) {
523 err = -ENOMEM;
524 dev_err(&sdev->dev, "%s %d err %d\n",
525 __func__, __LINE__, err);
526 goto release;
527 }
528 reinit_completion(&done_wait);
529 tx->callback = scif_dma_callback;
530 tx->callback_param = &done_wait;
531 cookie = tx->tx_submit(tx);
532
533 if (dma_submit_error(cookie)) {
534 err = -ENOMEM;
535 dev_err(&sdev->dev, "%s %d err %d\n",
536 __func__, __LINE__, err);
537 goto release;
538 }
539 dma_async_issue_pending(chan);
540
541 err = wait_for_completion_timeout(&done_wait, SCIF_DMA_TO);
542 if (!err) {
543 err = -EIO;
544 dev_err(&sdev->dev, "%s %d err %d\n",
545 __func__, __LINE__, err);
546 goto release;
547 }
548 err = 0;
549 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
550 if (status != DMA_COMPLETE) {
551 err = -EIO;
552 dev_err(&sdev->dev, "%s %d err %d\n",
553 __func__, __LINE__, err);
554 goto release;
555 }
556 release:
557 return err;
558 }
559
560 /*
561 * scif_drain_dma_poll - Drain all outstanding DMA operations for a particular
562 * DMA channel via polling.
563 *
564 * @sdev - The SCIF device
565 * @chan - DMA channel
566 * Return 0 on success and -errno on error.
567 */
568 static int scif_drain_dma_poll(struct scif_hw_dev *sdev, struct dma_chan *chan)
569 {
570 if (!chan)
571 return -EINVAL;
572 return scif_sync_dma(sdev, chan, SCIF_DMA_SYNC_WAIT);
573 }
574
575 /*
576 * scif_drain_dma_intr - Drain all outstanding DMA operations for a particular
577 * DMA channel via interrupt based blocking wait.
578 *
579 * @sdev - The SCIF device
580 * @chan - DMA channel
581 * Return 0 on success and -errno on error.
582 */
583 int scif_drain_dma_intr(struct scif_hw_dev *sdev, struct dma_chan *chan)
584 {
585 if (!chan)
586 return -EINVAL;
587 return scif_async_dma(sdev, chan);
588 }
589
590 /**
591 * scif_rma_destroy_windows:
592 *
593 * This routine destroys all windows queued for cleanup
594 */
595 void scif_rma_destroy_windows(void)
596 {
597 struct list_head *item, *tmp;
598 struct scif_window *window;
599 struct scif_endpt *ep;
600 struct dma_chan *chan;
601
602 might_sleep();
603 restart:
604 spin_lock(&scif_info.rmalock);
605 list_for_each_safe(item, tmp, &scif_info.rma) {
606 window = list_entry(item, struct scif_window,
607 list);
608 ep = (struct scif_endpt *)window->ep;
609 chan = ep->rma_info.dma_chan;
610
611 list_del_init(&window->list);
612 spin_unlock(&scif_info.rmalock);
613 if (!chan || !scifdev_alive(ep) ||
614 !scif_drain_dma_intr(ep->remote_dev->sdev,
615 ep->rma_info.dma_chan))
616 /* Remove window from global list */
617 window->unreg_state = OP_COMPLETED;
618 else
619 dev_warn(&ep->remote_dev->sdev->dev,
620 "DMA engine hung?\n");
621 if (window->unreg_state == OP_COMPLETED) {
622 if (window->type == SCIF_WINDOW_SELF)
623 scif_destroy_window(ep, window);
624 else
625 scif_destroy_remote_window(window);
626 atomic_dec(&ep->rma_info.tw_refcount);
627 }
628 goto restart;
629 }
630 spin_unlock(&scif_info.rmalock);
631 }
632
633 /**
634 * scif_rma_destroy_tcw:
635 *
636 * This routine destroys temporary cached registered windows
637 * which have been queued for cleanup.
638 */
639 void scif_rma_destroy_tcw_invalid(void)
640 {
641 struct list_head *item, *tmp;
642 struct scif_window *window;
643 struct scif_endpt *ep;
644 struct dma_chan *chan;
645
646 might_sleep();
647 restart:
648 spin_lock(&scif_info.rmalock);
649 list_for_each_safe(item, tmp, &scif_info.rma_tc) {
650 window = list_entry(item, struct scif_window, list);
651 ep = (struct scif_endpt *)window->ep;
652 chan = ep->rma_info.dma_chan;
653 list_del_init(&window->list);
654 spin_unlock(&scif_info.rmalock);
655 mutex_lock(&ep->rma_info.rma_lock);
656 if (!chan || !scifdev_alive(ep) ||
657 !scif_drain_dma_intr(ep->remote_dev->sdev,
658 ep->rma_info.dma_chan)) {
659 atomic_sub(window->nr_pages,
660 &ep->rma_info.tcw_total_pages);
661 scif_destroy_window(ep, window);
662 atomic_dec(&ep->rma_info.tcw_refcount);
663 } else {
664 dev_warn(&ep->remote_dev->sdev->dev,
665 "DMA engine hung?\n");
666 }
667 mutex_unlock(&ep->rma_info.rma_lock);
668 goto restart;
669 }
670 spin_unlock(&scif_info.rmalock);
671 }
672
673 static inline
674 void *_get_local_va(off_t off, struct scif_window *window, size_t len)
675 {
676 int page_nr = (off - window->offset) >> PAGE_SHIFT;
677 off_t page_off = off & ~PAGE_MASK;
678 void *va = NULL;
679
680 if (window->type == SCIF_WINDOW_SELF) {
681 struct page **pages = window->pinned_pages->pages;
682
683 va = page_address(pages[page_nr]) + page_off;
684 }
685 return va;
686 }
687
688 static inline
689 void *ioremap_remote(off_t off, struct scif_window *window,
690 size_t len, struct scif_dev *dev,
691 struct scif_window_iter *iter)
692 {
693 dma_addr_t phys = scif_off_to_dma_addr(window, off, NULL, iter);
694
695 /*
696 * If the DMA address is not card relative then we need the DMA
697 * addresses to be an offset into the bar. The aperture base was already
698 * added so subtract it here since scif_ioremap is going to add it again
699 */
700 if (!scifdev_self(dev) && window->type == SCIF_WINDOW_PEER &&
701 dev->sdev->aper && !dev->sdev->card_rel_da)
702 phys = phys - dev->sdev->aper->pa;
703 return scif_ioremap(phys, len, dev);
704 }
705
706 static inline void
707 iounmap_remote(void *virt, size_t size, struct scif_copy_work *work)
708 {
709 scif_iounmap(virt, size, work->remote_dev);
710 }
711
712 /*
713 * Takes care of ordering issue caused by
714 * 1. Hardware: Only in the case of cpu copy from mgmt node to card
715 * because of WC memory.
716 * 2. Software: If memcpy reorders copy instructions for optimization.
717 * This could happen at both mgmt node and card.
718 */
719 static inline void
720 scif_ordered_memcpy_toio(char *dst, const char *src, size_t count)
721 {
722 if (!count)
723 return;
724
725 memcpy_toio((void __iomem __force *)dst, src, --count);
726 /* Order the last byte with the previous stores */
727 wmb();
728 *(dst + count) = *(src + count);
729 }
730
731 static inline void scif_unaligned_cpy_toio(char *dst, const char *src,
732 size_t count, bool ordered)
733 {
734 if (ordered)
735 scif_ordered_memcpy_toio(dst, src, count);
736 else
737 memcpy_toio((void __iomem __force *)dst, src, count);
738 }
739
740 static inline
741 void scif_ordered_memcpy_fromio(char *dst, const char *src, size_t count)
742 {
743 if (!count)
744 return;
745
746 memcpy_fromio(dst, (void __iomem __force *)src, --count);
747 /* Order the last byte with the previous loads */
748 rmb();
749 *(dst + count) = *(src + count);
750 }
751
752 static inline void scif_unaligned_cpy_fromio(char *dst, const char *src,
753 size_t count, bool ordered)
754 {
755 if (ordered)
756 scif_ordered_memcpy_fromio(dst, src, count);
757 else
758 memcpy_fromio(dst, (void __iomem __force *)src, count);
759 }
760
761 #define SCIF_RMA_ERROR_CODE (~(dma_addr_t)0x0)
762
763 /*
764 * scif_off_to_dma_addr:
765 * Obtain the dma_addr given the window and the offset.
766 * @window: Registered window.
767 * @off: Window offset.
768 * @nr_bytes: Return the number of contiguous bytes till next DMA addr index.
769 * @index: Return the index of the dma_addr array found.
770 * @start_off: start offset of index of the dma addr array found.
771 * The nr_bytes provides the callee an estimate of the maximum possible
772 * DMA xfer possible while the index/start_off provide faster lookups
773 * for the next iteration.
774 */
775 dma_addr_t scif_off_to_dma_addr(struct scif_window *window, s64 off,
776 size_t *nr_bytes, struct scif_window_iter *iter)
777 {
778 int i, page_nr;
779 s64 start, end;
780 off_t page_off;
781
782 if (window->nr_pages == window->nr_contig_chunks) {
783 page_nr = (off - window->offset) >> PAGE_SHIFT;
784 page_off = off & ~PAGE_MASK;
785
786 if (nr_bytes)
787 *nr_bytes = PAGE_SIZE - page_off;
788 return window->dma_addr[page_nr] | page_off;
789 }
790 if (iter) {
791 i = iter->index;
792 start = iter->offset;
793 } else {
794 i = 0;
795 start = window->offset;
796 }
797 for (; i < window->nr_contig_chunks; i++) {
798 end = start + (window->num_pages[i] << PAGE_SHIFT);
799 if (off >= start && off < end) {
800 if (iter) {
801 iter->index = i;
802 iter->offset = start;
803 }
804 if (nr_bytes)
805 *nr_bytes = end - off;
806 return (window->dma_addr[i] + (off - start));
807 }
808 start += (window->num_pages[i] << PAGE_SHIFT);
809 }
810 dev_err(scif_info.mdev.this_device,
811 "%s %d BUG. Addr not found? window %p off 0x%llx\n",
812 __func__, __LINE__, window, off);
813 return SCIF_RMA_ERROR_CODE;
814 }
815
816 /*
817 * Copy between rma window and temporary buffer
818 */
819 static void scif_rma_local_cpu_copy(s64 offset, struct scif_window *window,
820 u8 *temp, size_t rem_len, bool to_temp)
821 {
822 void *window_virt;
823 size_t loop_len;
824 int offset_in_page;
825 s64 end_offset;
826
827 offset_in_page = offset & ~PAGE_MASK;
828 loop_len = PAGE_SIZE - offset_in_page;
829
830 if (rem_len < loop_len)
831 loop_len = rem_len;
832
833 window_virt = _get_local_va(offset, window, loop_len);
834 if (!window_virt)
835 return;
836 if (to_temp)
837 memcpy(temp, window_virt, loop_len);
838 else
839 memcpy(window_virt, temp, loop_len);
840
841 offset += loop_len;
842 temp += loop_len;
843 rem_len -= loop_len;
844
845 end_offset = window->offset +
846 (window->nr_pages << PAGE_SHIFT);
847 while (rem_len) {
848 if (offset == end_offset) {
849 window = list_next_entry(window, list);
850 end_offset = window->offset +
851 (window->nr_pages << PAGE_SHIFT);
852 }
853 loop_len = min(PAGE_SIZE, rem_len);
854 window_virt = _get_local_va(offset, window, loop_len);
855 if (!window_virt)
856 return;
857 if (to_temp)
858 memcpy(temp, window_virt, loop_len);
859 else
860 memcpy(window_virt, temp, loop_len);
861 offset += loop_len;
862 temp += loop_len;
863 rem_len -= loop_len;
864 }
865 }
866
867 /**
868 * scif_rma_completion_cb:
869 * @data: RMA cookie
870 *
871 * RMA interrupt completion callback.
872 */
873 static void scif_rma_completion_cb(void *data)
874 {
875 struct scif_dma_comp_cb *comp_cb = data;
876
877 /* Free DMA Completion CB. */
878 if (comp_cb->dst_window)
879 scif_rma_local_cpu_copy(comp_cb->dst_offset,
880 comp_cb->dst_window,
881 comp_cb->temp_buf +
882 comp_cb->header_padding,
883 comp_cb->len, false);
884 scif_unmap_single(comp_cb->temp_phys, comp_cb->sdev,
885 SCIF_KMEM_UNALIGNED_BUF_SIZE);
886 if (comp_cb->is_cache)
887 kmem_cache_free(unaligned_cache,
888 comp_cb->temp_buf_to_free);
889 else
890 kfree(comp_cb->temp_buf_to_free);
891 }
892
893 /* Copies between temporary buffer and offsets provided in work */
894 static int
895 scif_rma_list_dma_copy_unaligned(struct scif_copy_work *work,
896 u8 *temp, struct dma_chan *chan,
897 bool src_local)
898 {
899 struct scif_dma_comp_cb *comp_cb = work->comp_cb;
900 dma_addr_t window_dma_addr, temp_dma_addr;
901 dma_addr_t temp_phys = comp_cb->temp_phys;
902 size_t loop_len, nr_contig_bytes = 0, remaining_len = work->len;
903 int offset_in_ca, ret = 0;
904 s64 end_offset, offset;
905 struct scif_window *window;
906 void *window_virt_addr;
907 size_t tail_len;
908 struct dma_async_tx_descriptor *tx;
909 struct dma_device *dev = chan->device;
910 dma_cookie_t cookie;
911
912 if (src_local) {
913 offset = work->dst_offset;
914 window = work->dst_window;
915 } else {
916 offset = work->src_offset;
917 window = work->src_window;
918 }
919
920 offset_in_ca = offset & (L1_CACHE_BYTES - 1);
921 if (offset_in_ca) {
922 loop_len = L1_CACHE_BYTES - offset_in_ca;
923 loop_len = min(loop_len, remaining_len);
924 window_virt_addr = ioremap_remote(offset, window,
925 loop_len,
926 work->remote_dev,
927 NULL);
928 if (!window_virt_addr)
929 return -ENOMEM;
930 if (src_local)
931 scif_unaligned_cpy_toio(window_virt_addr, temp,
932 loop_len,
933 work->ordered &&
934 !(remaining_len - loop_len));
935 else
936 scif_unaligned_cpy_fromio(temp, window_virt_addr,
937 loop_len, work->ordered &&
938 !(remaining_len - loop_len));
939 iounmap_remote(window_virt_addr, loop_len, work);
940
941 offset += loop_len;
942 temp += loop_len;
943 temp_phys += loop_len;
944 remaining_len -= loop_len;
945 }
946
947 offset_in_ca = offset & ~PAGE_MASK;
948 end_offset = window->offset +
949 (window->nr_pages << PAGE_SHIFT);
950
951 tail_len = remaining_len & (L1_CACHE_BYTES - 1);
952 remaining_len -= tail_len;
953 while (remaining_len) {
954 if (offset == end_offset) {
955 window = list_next_entry(window, list);
956 end_offset = window->offset +
957 (window->nr_pages << PAGE_SHIFT);
958 }
959 if (scif_is_mgmt_node())
960 temp_dma_addr = temp_phys;
961 else
962 /* Fix if we ever enable IOMMU on the card */
963 temp_dma_addr = (dma_addr_t)virt_to_phys(temp);
964 window_dma_addr = scif_off_to_dma_addr(window, offset,
965 &nr_contig_bytes,
966 NULL);
967 loop_len = min(nr_contig_bytes, remaining_len);
968 if (src_local) {
969 if (work->ordered && !tail_len &&
970 !(remaining_len - loop_len) &&
971 loop_len != L1_CACHE_BYTES) {
972 /*
973 * Break up the last chunk of the transfer into
974 * two steps. if there is no tail to guarantee
975 * DMA ordering. SCIF_DMA_POLLING inserts
976 * a status update descriptor in step 1 which
977 * acts as a double sided synchronization fence
978 * for the DMA engine to ensure that the last
979 * cache line in step 2 is updated last.
980 */
981 /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
982 tx =
983 dev->device_prep_dma_memcpy(chan,
984 window_dma_addr,
985 temp_dma_addr,
986 loop_len -
987 L1_CACHE_BYTES,
988 DMA_PREP_FENCE);
989 if (!tx) {
990 ret = -ENOMEM;
991 goto err;
992 }
993 cookie = tx->tx_submit(tx);
994 if (dma_submit_error(cookie)) {
995 ret = -ENOMEM;
996 goto err;
997 }
998 dma_async_issue_pending(chan);
999 offset += (loop_len - L1_CACHE_BYTES);
1000 temp_dma_addr += (loop_len - L1_CACHE_BYTES);
1001 window_dma_addr += (loop_len - L1_CACHE_BYTES);
1002 remaining_len -= (loop_len - L1_CACHE_BYTES);
1003 loop_len = remaining_len;
1004
1005 /* Step 2) DMA: L1_CACHE_BYTES */
1006 tx =
1007 dev->device_prep_dma_memcpy(chan,
1008 window_dma_addr,
1009 temp_dma_addr,
1010 loop_len, 0);
1011 if (!tx) {
1012 ret = -ENOMEM;
1013 goto err;
1014 }
1015 cookie = tx->tx_submit(tx);
1016 if (dma_submit_error(cookie)) {
1017 ret = -ENOMEM;
1018 goto err;
1019 }
1020 dma_async_issue_pending(chan);
1021 } else {
1022 tx =
1023 dev->device_prep_dma_memcpy(chan,
1024 window_dma_addr,
1025 temp_dma_addr,
1026 loop_len, 0);
1027 if (!tx) {
1028 ret = -ENOMEM;
1029 goto err;
1030 }
1031 cookie = tx->tx_submit(tx);
1032 if (dma_submit_error(cookie)) {
1033 ret = -ENOMEM;
1034 goto err;
1035 }
1036 dma_async_issue_pending(chan);
1037 }
1038 } else {
1039 tx = dev->device_prep_dma_memcpy(chan, temp_dma_addr,
1040 window_dma_addr, loop_len, 0);
1041 if (!tx) {
1042 ret = -ENOMEM;
1043 goto err;
1044 }
1045 cookie = tx->tx_submit(tx);
1046 if (dma_submit_error(cookie)) {
1047 ret = -ENOMEM;
1048 goto err;
1049 }
1050 dma_async_issue_pending(chan);
1051 }
1052 if (ret < 0)
1053 goto err;
1054 offset += loop_len;
1055 temp += loop_len;
1056 temp_phys += loop_len;
1057 remaining_len -= loop_len;
1058 offset_in_ca = 0;
1059 }
1060 if (tail_len) {
1061 if (offset == end_offset) {
1062 window = list_next_entry(window, list);
1063 end_offset = window->offset +
1064 (window->nr_pages << PAGE_SHIFT);
1065 }
1066 window_virt_addr = ioremap_remote(offset, window, tail_len,
1067 work->remote_dev,
1068 NULL);
1069 if (!window_virt_addr)
1070 return -ENOMEM;
1071 /*
1072 * The CPU copy for the tail bytes must be initiated only once
1073 * previous DMA transfers for this endpoint have completed
1074 * to guarantee ordering.
1075 */
1076 if (work->ordered) {
1077 struct scif_dev *rdev = work->remote_dev;
1078
1079 ret = scif_drain_dma_intr(rdev->sdev, chan);
1080 if (ret)
1081 return ret;
1082 }
1083 if (src_local)
1084 scif_unaligned_cpy_toio(window_virt_addr, temp,
1085 tail_len, work->ordered);
1086 else
1087 scif_unaligned_cpy_fromio(temp, window_virt_addr,
1088 tail_len, work->ordered);
1089 iounmap_remote(window_virt_addr, tail_len, work);
1090 }
1091 tx = dev->device_prep_dma_memcpy(chan, 0, 0, 0, DMA_PREP_INTERRUPT);
1092 if (!tx) {
1093 ret = -ENOMEM;
1094 return ret;
1095 }
1096 tx->callback = &scif_rma_completion_cb;
1097 tx->callback_param = comp_cb;
1098 cookie = tx->tx_submit(tx);
1099
1100 if (dma_submit_error(cookie)) {
1101 ret = -ENOMEM;
1102 return ret;
1103 }
1104 dma_async_issue_pending(chan);
1105 return 0;
1106 err:
1107 dev_err(scif_info.mdev.this_device,
1108 "%s %d Desc Prog Failed ret %d\n",
1109 __func__, __LINE__, ret);
1110 return ret;
1111 }
1112
1113 /*
1114 * _scif_rma_list_dma_copy_aligned:
1115 *
1116 * Traverse all the windows and perform DMA copy.
1117 */
1118 static int _scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1119 struct dma_chan *chan)
1120 {
1121 dma_addr_t src_dma_addr, dst_dma_addr;
1122 size_t loop_len, remaining_len, src_contig_bytes = 0;
1123 size_t dst_contig_bytes = 0;
1124 struct scif_window_iter src_win_iter;
1125 struct scif_window_iter dst_win_iter;
1126 s64 end_src_offset, end_dst_offset;
1127 struct scif_window *src_window = work->src_window;
1128 struct scif_window *dst_window = work->dst_window;
1129 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1130 int ret = 0;
1131 struct dma_async_tx_descriptor *tx;
1132 struct dma_device *dev = chan->device;
1133 dma_cookie_t cookie;
1134
1135 remaining_len = work->len;
1136
1137 scif_init_window_iter(src_window, &src_win_iter);
1138 scif_init_window_iter(dst_window, &dst_win_iter);
1139 end_src_offset = src_window->offset +
1140 (src_window->nr_pages << PAGE_SHIFT);
1141 end_dst_offset = dst_window->offset +
1142 (dst_window->nr_pages << PAGE_SHIFT);
1143 while (remaining_len) {
1144 if (src_offset == end_src_offset) {
1145 src_window = list_next_entry(src_window, list);
1146 end_src_offset = src_window->offset +
1147 (src_window->nr_pages << PAGE_SHIFT);
1148 scif_init_window_iter(src_window, &src_win_iter);
1149 }
1150 if (dst_offset == end_dst_offset) {
1151 dst_window = list_next_entry(dst_window, list);
1152 end_dst_offset = dst_window->offset +
1153 (dst_window->nr_pages << PAGE_SHIFT);
1154 scif_init_window_iter(dst_window, &dst_win_iter);
1155 }
1156
1157 /* compute dma addresses for transfer */
1158 src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1159 &src_contig_bytes,
1160 &src_win_iter);
1161 dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1162 &dst_contig_bytes,
1163 &dst_win_iter);
1164 loop_len = min(src_contig_bytes, dst_contig_bytes);
1165 loop_len = min(loop_len, remaining_len);
1166 if (work->ordered && !(remaining_len - loop_len)) {
1167 /*
1168 * Break up the last chunk of the transfer into two
1169 * steps to ensure that the last byte in step 2 is
1170 * updated last.
1171 */
1172 /* Step 1) DMA: Body Length - 1 */
1173 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1174 src_dma_addr,
1175 loop_len - 1,
1176 DMA_PREP_FENCE);
1177 if (!tx) {
1178 ret = -ENOMEM;
1179 goto err;
1180 }
1181 cookie = tx->tx_submit(tx);
1182 if (dma_submit_error(cookie)) {
1183 ret = -ENOMEM;
1184 goto err;
1185 }
1186 src_offset += (loop_len - 1);
1187 dst_offset += (loop_len - 1);
1188 src_dma_addr += (loop_len - 1);
1189 dst_dma_addr += (loop_len - 1);
1190 remaining_len -= (loop_len - 1);
1191 loop_len = remaining_len;
1192
1193 /* Step 2) DMA: 1 BYTES */
1194 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1195 src_dma_addr, loop_len, 0);
1196 if (!tx) {
1197 ret = -ENOMEM;
1198 goto err;
1199 }
1200 cookie = tx->tx_submit(tx);
1201 if (dma_submit_error(cookie)) {
1202 ret = -ENOMEM;
1203 goto err;
1204 }
1205 dma_async_issue_pending(chan);
1206 } else {
1207 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1208 src_dma_addr, loop_len, 0);
1209 if (!tx) {
1210 ret = -ENOMEM;
1211 goto err;
1212 }
1213 cookie = tx->tx_submit(tx);
1214 if (dma_submit_error(cookie)) {
1215 ret = -ENOMEM;
1216 goto err;
1217 }
1218 }
1219 src_offset += loop_len;
1220 dst_offset += loop_len;
1221 remaining_len -= loop_len;
1222 }
1223 return ret;
1224 err:
1225 dev_err(scif_info.mdev.this_device,
1226 "%s %d Desc Prog Failed ret %d\n",
1227 __func__, __LINE__, ret);
1228 return ret;
1229 }
1230
1231 /*
1232 * scif_rma_list_dma_copy_aligned:
1233 *
1234 * Traverse all the windows and perform DMA copy.
1235 */
1236 static int scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1237 struct dma_chan *chan)
1238 {
1239 dma_addr_t src_dma_addr, dst_dma_addr;
1240 size_t loop_len, remaining_len, tail_len, src_contig_bytes = 0;
1241 size_t dst_contig_bytes = 0;
1242 int src_cache_off;
1243 s64 end_src_offset, end_dst_offset;
1244 struct scif_window_iter src_win_iter;
1245 struct scif_window_iter dst_win_iter;
1246 void *src_virt, *dst_virt;
1247 struct scif_window *src_window = work->src_window;
1248 struct scif_window *dst_window = work->dst_window;
1249 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1250 int ret = 0;
1251 struct dma_async_tx_descriptor *tx;
1252 struct dma_device *dev = chan->device;
1253 dma_cookie_t cookie;
1254
1255 remaining_len = work->len;
1256 scif_init_window_iter(src_window, &src_win_iter);
1257 scif_init_window_iter(dst_window, &dst_win_iter);
1258
1259 src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1260 if (src_cache_off != 0) {
1261 /* Head */
1262 loop_len = L1_CACHE_BYTES - src_cache_off;
1263 loop_len = min(loop_len, remaining_len);
1264 src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1265 dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1266 if (src_window->type == SCIF_WINDOW_SELF)
1267 src_virt = _get_local_va(src_offset, src_window,
1268 loop_len);
1269 else
1270 src_virt = ioremap_remote(src_offset, src_window,
1271 loop_len,
1272 work->remote_dev, NULL);
1273 if (!src_virt)
1274 return -ENOMEM;
1275 if (dst_window->type == SCIF_WINDOW_SELF)
1276 dst_virt = _get_local_va(dst_offset, dst_window,
1277 loop_len);
1278 else
1279 dst_virt = ioremap_remote(dst_offset, dst_window,
1280 loop_len,
1281 work->remote_dev, NULL);
1282 if (!dst_virt) {
1283 if (src_window->type != SCIF_WINDOW_SELF)
1284 iounmap_remote(src_virt, loop_len, work);
1285 return -ENOMEM;
1286 }
1287 if (src_window->type == SCIF_WINDOW_SELF)
1288 scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1289 remaining_len == loop_len ?
1290 work->ordered : false);
1291 else
1292 scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len,
1293 remaining_len == loop_len ?
1294 work->ordered : false);
1295 if (src_window->type != SCIF_WINDOW_SELF)
1296 iounmap_remote(src_virt, loop_len, work);
1297 if (dst_window->type != SCIF_WINDOW_SELF)
1298 iounmap_remote(dst_virt, loop_len, work);
1299 src_offset += loop_len;
1300 dst_offset += loop_len;
1301 remaining_len -= loop_len;
1302 }
1303
1304 end_src_offset = src_window->offset +
1305 (src_window->nr_pages << PAGE_SHIFT);
1306 end_dst_offset = dst_window->offset +
1307 (dst_window->nr_pages << PAGE_SHIFT);
1308 tail_len = remaining_len & (L1_CACHE_BYTES - 1);
1309 remaining_len -= tail_len;
1310 while (remaining_len) {
1311 if (src_offset == end_src_offset) {
1312 src_window = list_next_entry(src_window, list);
1313 end_src_offset = src_window->offset +
1314 (src_window->nr_pages << PAGE_SHIFT);
1315 scif_init_window_iter(src_window, &src_win_iter);
1316 }
1317 if (dst_offset == end_dst_offset) {
1318 dst_window = list_next_entry(dst_window, list);
1319 end_dst_offset = dst_window->offset +
1320 (dst_window->nr_pages << PAGE_SHIFT);
1321 scif_init_window_iter(dst_window, &dst_win_iter);
1322 }
1323
1324 /* compute dma addresses for transfer */
1325 src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1326 &src_contig_bytes,
1327 &src_win_iter);
1328 dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1329 &dst_contig_bytes,
1330 &dst_win_iter);
1331 loop_len = min(src_contig_bytes, dst_contig_bytes);
1332 loop_len = min(loop_len, remaining_len);
1333 if (work->ordered && !tail_len &&
1334 !(remaining_len - loop_len)) {
1335 /*
1336 * Break up the last chunk of the transfer into two
1337 * steps. if there is no tail to gurantee DMA ordering.
1338 * Passing SCIF_DMA_POLLING inserts a status update
1339 * descriptor in step 1 which acts as a double sided
1340 * synchronization fence for the DMA engine to ensure
1341 * that the last cache line in step 2 is updated last.
1342 */
1343 /* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
1344 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1345 src_dma_addr,
1346 loop_len -
1347 L1_CACHE_BYTES,
1348 DMA_PREP_FENCE);
1349 if (!tx) {
1350 ret = -ENOMEM;
1351 goto err;
1352 }
1353 cookie = tx->tx_submit(tx);
1354 if (dma_submit_error(cookie)) {
1355 ret = -ENOMEM;
1356 goto err;
1357 }
1358 dma_async_issue_pending(chan);
1359 src_offset += (loop_len - L1_CACHE_BYTES);
1360 dst_offset += (loop_len - L1_CACHE_BYTES);
1361 src_dma_addr += (loop_len - L1_CACHE_BYTES);
1362 dst_dma_addr += (loop_len - L1_CACHE_BYTES);
1363 remaining_len -= (loop_len - L1_CACHE_BYTES);
1364 loop_len = remaining_len;
1365
1366 /* Step 2) DMA: L1_CACHE_BYTES */
1367 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1368 src_dma_addr,
1369 loop_len, 0);
1370 if (!tx) {
1371 ret = -ENOMEM;
1372 goto err;
1373 }
1374 cookie = tx->tx_submit(tx);
1375 if (dma_submit_error(cookie)) {
1376 ret = -ENOMEM;
1377 goto err;
1378 }
1379 dma_async_issue_pending(chan);
1380 } else {
1381 tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1382 src_dma_addr,
1383 loop_len, 0);
1384 if (!tx) {
1385 ret = -ENOMEM;
1386 goto err;
1387 }
1388 cookie = tx->tx_submit(tx);
1389 if (dma_submit_error(cookie)) {
1390 ret = -ENOMEM;
1391 goto err;
1392 }
1393 dma_async_issue_pending(chan);
1394 }
1395 src_offset += loop_len;
1396 dst_offset += loop_len;
1397 remaining_len -= loop_len;
1398 }
1399 remaining_len = tail_len;
1400 if (remaining_len) {
1401 loop_len = remaining_len;
1402 if (src_offset == end_src_offset)
1403 src_window = list_next_entry(src_window, list);
1404 if (dst_offset == end_dst_offset)
1405 dst_window = list_next_entry(dst_window, list);
1406
1407 src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1408 dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1409 /*
1410 * The CPU copy for the tail bytes must be initiated only once
1411 * previous DMA transfers for this endpoint have completed to
1412 * guarantee ordering.
1413 */
1414 if (work->ordered) {
1415 struct scif_dev *rdev = work->remote_dev;
1416
1417 ret = scif_drain_dma_poll(rdev->sdev, chan);
1418 if (ret)
1419 return ret;
1420 }
1421 if (src_window->type == SCIF_WINDOW_SELF)
1422 src_virt = _get_local_va(src_offset, src_window,
1423 loop_len);
1424 else
1425 src_virt = ioremap_remote(src_offset, src_window,
1426 loop_len,
1427 work->remote_dev, NULL);
1428 if (!src_virt)
1429 return -ENOMEM;
1430
1431 if (dst_window->type == SCIF_WINDOW_SELF)
1432 dst_virt = _get_local_va(dst_offset, dst_window,
1433 loop_len);
1434 else
1435 dst_virt = ioremap_remote(dst_offset, dst_window,
1436 loop_len,
1437 work->remote_dev, NULL);
1438 if (!dst_virt) {
1439 if (src_window->type != SCIF_WINDOW_SELF)
1440 iounmap_remote(src_virt, loop_len, work);
1441 return -ENOMEM;
1442 }
1443
1444 if (src_window->type == SCIF_WINDOW_SELF)
1445 scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1446 work->ordered);
1447 else
1448 scif_unaligned_cpy_fromio(dst_virt, src_virt,
1449 loop_len, work->ordered);
1450 if (src_window->type != SCIF_WINDOW_SELF)
1451 iounmap_remote(src_virt, loop_len, work);
1452
1453 if (dst_window->type != SCIF_WINDOW_SELF)
1454 iounmap_remote(dst_virt, loop_len, work);
1455 remaining_len -= loop_len;
1456 }
1457 return ret;
1458 err:
1459 dev_err(scif_info.mdev.this_device,
1460 "%s %d Desc Prog Failed ret %d\n",
1461 __func__, __LINE__, ret);
1462 return ret;
1463 }
1464
1465 /*
1466 * scif_rma_list_cpu_copy:
1467 *
1468 * Traverse all the windows and perform CPU copy.
1469 */
1470 static int scif_rma_list_cpu_copy(struct scif_copy_work *work)
1471 {
1472 void *src_virt, *dst_virt;
1473 size_t loop_len, remaining_len;
1474 int src_page_off, dst_page_off;
1475 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1476 struct scif_window *src_window = work->src_window;
1477 struct scif_window *dst_window = work->dst_window;
1478 s64 end_src_offset, end_dst_offset;
1479 int ret = 0;
1480 struct scif_window_iter src_win_iter;
1481 struct scif_window_iter dst_win_iter;
1482
1483 remaining_len = work->len;
1484
1485 scif_init_window_iter(src_window, &src_win_iter);
1486 scif_init_window_iter(dst_window, &dst_win_iter);
1487 while (remaining_len) {
1488 src_page_off = src_offset & ~PAGE_MASK;
1489 dst_page_off = dst_offset & ~PAGE_MASK;
1490 loop_len = min(PAGE_SIZE -
1491 max(src_page_off, dst_page_off),
1492 remaining_len);
1493
1494 if (src_window->type == SCIF_WINDOW_SELF)
1495 src_virt = _get_local_va(src_offset, src_window,
1496 loop_len);
1497 else
1498 src_virt = ioremap_remote(src_offset, src_window,
1499 loop_len,
1500 work->remote_dev,
1501 &src_win_iter);
1502 if (!src_virt) {
1503 ret = -ENOMEM;
1504 goto error;
1505 }
1506
1507 if (dst_window->type == SCIF_WINDOW_SELF)
1508 dst_virt = _get_local_va(dst_offset, dst_window,
1509 loop_len);
1510 else
1511 dst_virt = ioremap_remote(dst_offset, dst_window,
1512 loop_len,
1513 work->remote_dev,
1514 &dst_win_iter);
1515 if (!dst_virt) {
1516 if (src_window->type == SCIF_WINDOW_PEER)
1517 iounmap_remote(src_virt, loop_len, work);
1518 ret = -ENOMEM;
1519 goto error;
1520 }
1521
1522 if (work->loopback) {
1523 memcpy(dst_virt, src_virt, loop_len);
1524 } else {
1525 if (src_window->type == SCIF_WINDOW_SELF)
1526 memcpy_toio((void __iomem __force *)dst_virt,
1527 src_virt, loop_len);
1528 else
1529 memcpy_fromio(dst_virt,
1530 (void __iomem __force *)src_virt,
1531 loop_len);
1532 }
1533 if (src_window->type == SCIF_WINDOW_PEER)
1534 iounmap_remote(src_virt, loop_len, work);
1535
1536 if (dst_window->type == SCIF_WINDOW_PEER)
1537 iounmap_remote(dst_virt, loop_len, work);
1538
1539 src_offset += loop_len;
1540 dst_offset += loop_len;
1541 remaining_len -= loop_len;
1542 if (remaining_len) {
1543 end_src_offset = src_window->offset +
1544 (src_window->nr_pages << PAGE_SHIFT);
1545 end_dst_offset = dst_window->offset +
1546 (dst_window->nr_pages << PAGE_SHIFT);
1547 if (src_offset == end_src_offset) {
1548 src_window = list_next_entry(src_window, list);
1549 scif_init_window_iter(src_window,
1550 &src_win_iter);
1551 }
1552 if (dst_offset == end_dst_offset) {
1553 dst_window = list_next_entry(dst_window, list);
1554 scif_init_window_iter(dst_window,
1555 &dst_win_iter);
1556 }
1557 }
1558 }
1559 error:
1560 return ret;
1561 }
1562
1563 static int scif_rma_list_dma_copy_wrapper(struct scif_endpt *epd,
1564 struct scif_copy_work *work,
1565 struct dma_chan *chan, off_t loffset)
1566 {
1567 int src_cache_off, dst_cache_off;
1568 s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1569 u8 *temp = NULL;
1570 bool src_local = true, dst_local = false;
1571 struct scif_dma_comp_cb *comp_cb;
1572 dma_addr_t src_dma_addr, dst_dma_addr;
1573 int err;
1574
1575 if (is_dma_copy_aligned(chan->device, 1, 1, 1))
1576 return _scif_rma_list_dma_copy_aligned(work, chan);
1577
1578 src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1579 dst_cache_off = dst_offset & (L1_CACHE_BYTES - 1);
1580
1581 if (dst_cache_off == src_cache_off)
1582 return scif_rma_list_dma_copy_aligned(work, chan);
1583
1584 if (work->loopback)
1585 return scif_rma_list_cpu_copy(work);
1586 src_dma_addr = __scif_off_to_dma_addr(work->src_window, src_offset);
1587 dst_dma_addr = __scif_off_to_dma_addr(work->dst_window, dst_offset);
1588 src_local = work->src_window->type == SCIF_WINDOW_SELF;
1589 dst_local = work->dst_window->type == SCIF_WINDOW_SELF;
1590
1591 dst_local = dst_local;
1592 /* Allocate dma_completion cb */
1593 comp_cb = kzalloc(sizeof(*comp_cb), GFP_KERNEL);
1594 if (!comp_cb)
1595 goto error;
1596
1597 work->comp_cb = comp_cb;
1598 comp_cb->cb_cookie = comp_cb;
1599 comp_cb->dma_completion_func = &scif_rma_completion_cb;
1600
1601 if (work->len + (L1_CACHE_BYTES << 1) < SCIF_KMEM_UNALIGNED_BUF_SIZE) {
1602 comp_cb->is_cache = false;
1603 /* Allocate padding bytes to align to a cache line */
1604 temp = kmalloc(work->len + (L1_CACHE_BYTES << 1),
1605 GFP_KERNEL);
1606 if (!temp)
1607 goto free_comp_cb;
1608 comp_cb->temp_buf_to_free = temp;
1609 /* kmalloc(..) does not guarantee cache line alignment */
1610 if (!IS_ALIGNED((u64)temp, L1_CACHE_BYTES))
1611 temp = PTR_ALIGN(temp, L1_CACHE_BYTES);
1612 } else {
1613 comp_cb->is_cache = true;
1614 temp = kmem_cache_alloc(unaligned_cache, GFP_KERNEL);
1615 if (!temp)
1616 goto free_comp_cb;
1617 comp_cb->temp_buf_to_free = temp;
1618 }
1619
1620 if (src_local) {
1621 temp += dst_cache_off;
1622 scif_rma_local_cpu_copy(work->src_offset, work->src_window,
1623 temp, work->len, true);
1624 } else {
1625 comp_cb->dst_window = work->dst_window;
1626 comp_cb->dst_offset = work->dst_offset;
1627 work->src_offset = work->src_offset - src_cache_off;
1628 comp_cb->len = work->len;
1629 work->len = ALIGN(work->len + src_cache_off, L1_CACHE_BYTES);
1630 comp_cb->header_padding = src_cache_off;
1631 }
1632 comp_cb->temp_buf = temp;
1633
1634 err = scif_map_single(&comp_cb->temp_phys, temp,
1635 work->remote_dev, SCIF_KMEM_UNALIGNED_BUF_SIZE);
1636 if (err)
1637 goto free_temp_buf;
1638 comp_cb->sdev = work->remote_dev;
1639 if (scif_rma_list_dma_copy_unaligned(work, temp, chan, src_local) < 0)
1640 goto free_temp_buf;
1641 if (!src_local)
1642 work->fence_type = SCIF_DMA_INTR;
1643 return 0;
1644 free_temp_buf:
1645 if (comp_cb->is_cache)
1646 kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free);
1647 else
1648 kfree(comp_cb->temp_buf_to_free);
1649 free_comp_cb:
1650 kfree(comp_cb);
1651 error:
1652 return -ENOMEM;
1653 }
1654
1655 /**
1656 * scif_rma_copy:
1657 * @epd: end point descriptor.
1658 * @loffset: offset in local registered address space to/from which to copy
1659 * @addr: user virtual address to/from which to copy
1660 * @len: length of range to copy
1661 * @roffset: offset in remote registered address space to/from which to copy
1662 * @flags: flags
1663 * @dir: LOCAL->REMOTE or vice versa.
1664 * @last_chunk: true if this is the last chunk of a larger transfer
1665 *
1666 * Validate parameters, check if src/dst registered ranges requested for copy
1667 * are valid and initiate either CPU or DMA copy.
1668 */
1669 static int scif_rma_copy(scif_epd_t epd, off_t loffset, unsigned long addr,
1670 size_t len, off_t roffset, int flags,
1671 enum scif_rma_dir dir, bool last_chunk)
1672 {
1673 struct scif_endpt *ep = (struct scif_endpt *)epd;
1674 struct scif_rma_req remote_req;
1675 struct scif_rma_req req;
1676 struct scif_window *local_window = NULL;
1677 struct scif_window *remote_window = NULL;
1678 struct scif_copy_work copy_work;
1679 bool loopback;
1680 int err = 0;
1681 struct dma_chan *chan;
1682 struct scif_mmu_notif *mmn = NULL;
1683 bool cache = false;
1684 struct device *spdev;
1685
1686 err = scif_verify_epd(ep);
1687 if (err)
1688 return err;
1689
1690 if (flags && !(flags & (SCIF_RMA_USECPU | SCIF_RMA_USECACHE |
1691 SCIF_RMA_SYNC | SCIF_RMA_ORDERED)))
1692 return -EINVAL;
1693
1694 loopback = scifdev_self(ep->remote_dev) ? true : false;
1695 copy_work.fence_type = ((flags & SCIF_RMA_SYNC) && last_chunk) ?
1696 SCIF_DMA_POLL : 0;
1697 copy_work.ordered = !!((flags & SCIF_RMA_ORDERED) && last_chunk);
1698
1699 /* Use CPU for Mgmt node <-> Mgmt node copies */
1700 if (loopback && scif_is_mgmt_node()) {
1701 flags |= SCIF_RMA_USECPU;
1702 copy_work.fence_type = 0x0;
1703 }
1704
1705 cache = scif_is_set_reg_cache(flags);
1706
1707 remote_req.out_window = &remote_window;
1708 remote_req.offset = roffset;
1709 remote_req.nr_bytes = len;
1710 /*
1711 * If transfer is from local to remote then the remote window
1712 * must be writeable and vice versa.
1713 */
1714 remote_req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_WRITE : VM_READ;
1715 remote_req.type = SCIF_WINDOW_PARTIAL;
1716 remote_req.head = &ep->rma_info.remote_reg_list;
1717
1718 spdev = scif_get_peer_dev(ep->remote_dev);
1719 if (IS_ERR(spdev)) {
1720 err = PTR_ERR(spdev);
1721 return err;
1722 }
1723
1724 if (addr && cache) {
1725 mutex_lock(&ep->rma_info.mmn_lock);
1726 mmn = scif_find_mmu_notifier(current->mm, &ep->rma_info);
1727 if (!mmn)
1728 scif_add_mmu_notifier(current->mm, ep);
1729 mutex_unlock(&ep->rma_info.mmn_lock);
1730 if (IS_ERR(mmn)) {
1731 scif_put_peer_dev(spdev);
1732 return PTR_ERR(mmn);
1733 }
1734 cache = cache && !scif_rma_tc_can_cache(ep, len);
1735 }
1736 mutex_lock(&ep->rma_info.rma_lock);
1737 if (addr) {
1738 req.out_window = &local_window;
1739 req.nr_bytes = ALIGN(len + (addr & ~PAGE_MASK),
1740 PAGE_SIZE);
1741 req.va_for_temp = addr & PAGE_MASK;
1742 req.prot = (dir == SCIF_LOCAL_TO_REMOTE ?
1743 VM_READ : VM_WRITE | VM_READ);
1744 /* Does a valid local window exist? */
1745 if (mmn) {
1746 spin_lock(&ep->rma_info.tc_lock);
1747 req.head = &mmn->tc_reg_list;
1748 err = scif_query_tcw(ep, &req);
1749 spin_unlock(&ep->rma_info.tc_lock);
1750 }
1751 if (!mmn || err) {
1752 err = scif_register_temp(epd, req.va_for_temp,
1753 req.nr_bytes, req.prot,
1754 &loffset, &local_window);
1755 if (err) {
1756 mutex_unlock(&ep->rma_info.rma_lock);
1757 goto error;
1758 }
1759 if (!cache)
1760 goto skip_cache;
1761 atomic_inc(&ep->rma_info.tcw_refcount);
1762 atomic_add_return(local_window->nr_pages,
1763 &ep->rma_info.tcw_total_pages);
1764 if (mmn) {
1765 spin_lock(&ep->rma_info.tc_lock);
1766 scif_insert_tcw(local_window,
1767 &mmn->tc_reg_list);
1768 spin_unlock(&ep->rma_info.tc_lock);
1769 }
1770 }
1771 skip_cache:
1772 loffset = local_window->offset +
1773 (addr - local_window->va_for_temp);
1774 } else {
1775 req.out_window = &local_window;
1776 req.offset = loffset;
1777 /*
1778 * If transfer is from local to remote then the self window
1779 * must be readable and vice versa.
1780 */
1781 req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE;
1782 req.nr_bytes = len;
1783 req.type = SCIF_WINDOW_PARTIAL;
1784 req.head = &ep->rma_info.reg_list;
1785 /* Does a valid local window exist? */
1786 err = scif_query_window(&req);
1787 if (err) {
1788 mutex_unlock(&ep->rma_info.rma_lock);
1789 goto error;
1790 }
1791 }
1792
1793 /* Does a valid remote window exist? */
1794 err = scif_query_window(&remote_req);
1795 if (err) {
1796 mutex_unlock(&ep->rma_info.rma_lock);
1797 goto error;
1798 }
1799
1800 /*
1801 * Prepare copy_work for submitting work to the DMA kernel thread
1802 * or CPU copy routine.
1803 */
1804 copy_work.len = len;
1805 copy_work.loopback = loopback;
1806 copy_work.remote_dev = ep->remote_dev;
1807 if (dir == SCIF_LOCAL_TO_REMOTE) {
1808 copy_work.src_offset = loffset;
1809 copy_work.src_window = local_window;
1810 copy_work.dst_offset = roffset;
1811 copy_work.dst_window = remote_window;
1812 } else {
1813 copy_work.src_offset = roffset;
1814 copy_work.src_window = remote_window;
1815 copy_work.dst_offset = loffset;
1816 copy_work.dst_window = local_window;
1817 }
1818
1819 if (flags & SCIF_RMA_USECPU) {
1820 scif_rma_list_cpu_copy(&copy_work);
1821 } else {
1822 chan = ep->rma_info.dma_chan;
1823 err = scif_rma_list_dma_copy_wrapper(epd, &copy_work,
1824 chan, loffset);
1825 }
1826 if (addr && !cache)
1827 atomic_inc(&ep->rma_info.tw_refcount);
1828
1829 mutex_unlock(&ep->rma_info.rma_lock);
1830
1831 if (last_chunk) {
1832 struct scif_dev *rdev = ep->remote_dev;
1833
1834 if (copy_work.fence_type == SCIF_DMA_POLL)
1835 err = scif_drain_dma_poll(rdev->sdev,
1836 ep->rma_info.dma_chan);
1837 else if (copy_work.fence_type == SCIF_DMA_INTR)
1838 err = scif_drain_dma_intr(rdev->sdev,
1839 ep->rma_info.dma_chan);
1840 }
1841
1842 if (addr && !cache)
1843 scif_queue_for_cleanup(local_window, &scif_info.rma);
1844 scif_put_peer_dev(spdev);
1845 return err;
1846 error:
1847 if (err) {
1848 if (addr && local_window && !cache)
1849 scif_destroy_window(ep, local_window);
1850 dev_err(scif_info.mdev.this_device,
1851 "%s %d err %d len 0x%lx\n",
1852 __func__, __LINE__, err, len);
1853 }
1854 scif_put_peer_dev(spdev);
1855 return err;
1856 }
1857
1858 int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len,
1859 off_t roffset, int flags)
1860 {
1861 int err;
1862
1863 dev_dbg(scif_info.mdev.this_device,
1864 "SCIFAPI readfrom: ep %p loffset 0x%lx len 0x%lx offset 0x%lx flags 0x%x\n",
1865 epd, loffset, len, roffset, flags);
1866 if (scif_unaligned(loffset, roffset)) {
1867 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1868 err = scif_rma_copy(epd, loffset, 0x0,
1869 SCIF_MAX_UNALIGNED_BUF_SIZE,
1870 roffset, flags,
1871 SCIF_REMOTE_TO_LOCAL, false);
1872 if (err)
1873 goto readfrom_err;
1874 loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1875 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1876 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1877 }
1878 }
1879 err = scif_rma_copy(epd, loffset, 0x0, len,
1880 roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1881 readfrom_err:
1882 return err;
1883 }
1884 EXPORT_SYMBOL_GPL(scif_readfrom);
1885
1886 int scif_writeto(scif_epd_t epd, off_t loffset, size_t len,
1887 off_t roffset, int flags)
1888 {
1889 int err;
1890
1891 dev_dbg(scif_info.mdev.this_device,
1892 "SCIFAPI writeto: ep %p loffset 0x%lx len 0x%lx roffset 0x%lx flags 0x%x\n",
1893 epd, loffset, len, roffset, flags);
1894 if (scif_unaligned(loffset, roffset)) {
1895 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1896 err = scif_rma_copy(epd, loffset, 0x0,
1897 SCIF_MAX_UNALIGNED_BUF_SIZE,
1898 roffset, flags,
1899 SCIF_LOCAL_TO_REMOTE, false);
1900 if (err)
1901 goto writeto_err;
1902 loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1903 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1904 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1905 }
1906 }
1907 err = scif_rma_copy(epd, loffset, 0x0, len,
1908 roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1909 writeto_err:
1910 return err;
1911 }
1912 EXPORT_SYMBOL_GPL(scif_writeto);
1913
1914 int scif_vreadfrom(scif_epd_t epd, void *addr, size_t len,
1915 off_t roffset, int flags)
1916 {
1917 int err;
1918
1919 dev_dbg(scif_info.mdev.this_device,
1920 "SCIFAPI vreadfrom: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1921 epd, addr, len, roffset, flags);
1922 if (scif_unaligned((off_t __force)addr, roffset)) {
1923 if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1924 flags &= ~SCIF_RMA_USECACHE;
1925
1926 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1927 err = scif_rma_copy(epd, 0, (u64)addr,
1928 SCIF_MAX_UNALIGNED_BUF_SIZE,
1929 roffset, flags,
1930 SCIF_REMOTE_TO_LOCAL, false);
1931 if (err)
1932 goto vreadfrom_err;
1933 addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1934 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1935 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1936 }
1937 }
1938 err = scif_rma_copy(epd, 0, (u64)addr, len,
1939 roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1940 vreadfrom_err:
1941 return err;
1942 }
1943 EXPORT_SYMBOL_GPL(scif_vreadfrom);
1944
1945 int scif_vwriteto(scif_epd_t epd, void *addr, size_t len,
1946 off_t roffset, int flags)
1947 {
1948 int err;
1949
1950 dev_dbg(scif_info.mdev.this_device,
1951 "SCIFAPI vwriteto: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1952 epd, addr, len, roffset, flags);
1953 if (scif_unaligned((off_t __force)addr, roffset)) {
1954 if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1955 flags &= ~SCIF_RMA_USECACHE;
1956
1957 while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1958 err = scif_rma_copy(epd, 0, (u64)addr,
1959 SCIF_MAX_UNALIGNED_BUF_SIZE,
1960 roffset, flags,
1961 SCIF_LOCAL_TO_REMOTE, false);
1962 if (err)
1963 goto vwriteto_err;
1964 addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1965 roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1966 len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1967 }
1968 }
1969 err = scif_rma_copy(epd, 0, (u64)addr, len,
1970 roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1971 vwriteto_err:
1972 return err;
1973 }
1974 EXPORT_SYMBOL_GPL(scif_vwriteto);