]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/misc/panel.c
netfilter: conntrack: refine gc worker heuristics, redux
[mirror_ubuntu-artful-kernel.git] / drivers / misc / panel.c
1 /*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39 #include <linux/module.h>
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66
67 #define PANEL_VERSION "0.9.5"
68
69 #define LCD_MAXBYTES 256 /* max burst write */
70
71 #define KEYPAD_BUFFER 64
72
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ / 50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133 /* LCD commands */
134 #define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
135
136 #define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
137 #define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
138
139 #define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
140 #define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
141 #define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
142 #define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
143
144 #define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
145 #define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
146 #define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
147
148 #define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
149 #define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
150 #define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
151 #define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
152
153 #define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
154
155 #define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
156
157 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
158 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
159
160 #define NOT_SET -1
161
162 /* macros to simplify use of the parallel port */
163 #define r_ctr(x) (parport_read_control((x)->port))
164 #define r_dtr(x) (parport_read_data((x)->port))
165 #define r_str(x) (parport_read_status((x)->port))
166 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
167 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
168
169 /* this defines which bits are to be used and which ones to be ignored */
170 /* logical or of the output bits involved in the scan matrix */
171 static __u8 scan_mask_o;
172 /* logical or of the input bits involved in the scan matrix */
173 static __u8 scan_mask_i;
174
175 enum input_type {
176 INPUT_TYPE_STD,
177 INPUT_TYPE_KBD,
178 };
179
180 enum input_state {
181 INPUT_ST_LOW,
182 INPUT_ST_RISING,
183 INPUT_ST_HIGH,
184 INPUT_ST_FALLING,
185 };
186
187 struct logical_input {
188 struct list_head list;
189 __u64 mask;
190 __u64 value;
191 enum input_type type;
192 enum input_state state;
193 __u8 rise_time, fall_time;
194 __u8 rise_timer, fall_timer, high_timer;
195
196 union {
197 struct { /* valid when type == INPUT_TYPE_STD */
198 void (*press_fct)(int);
199 void (*release_fct)(int);
200 int press_data;
201 int release_data;
202 } std;
203 struct { /* valid when type == INPUT_TYPE_KBD */
204 /* strings can be non null-terminated */
205 char press_str[sizeof(void *) + sizeof(int)];
206 char repeat_str[sizeof(void *) + sizeof(int)];
207 char release_str[sizeof(void *) + sizeof(int)];
208 } kbd;
209 } u;
210 };
211
212 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
213
214 /* physical contacts history
215 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
216 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
217 * corresponds to the ground.
218 * Within each group, bits are stored in the same order as read on the port :
219 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
220 * So, each __u64 is represented like this :
221 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
222 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
223 */
224
225 /* what has just been read from the I/O ports */
226 static __u64 phys_read;
227 /* previous phys_read */
228 static __u64 phys_read_prev;
229 /* stabilized phys_read (phys_read|phys_read_prev) */
230 static __u64 phys_curr;
231 /* previous phys_curr */
232 static __u64 phys_prev;
233 /* 0 means that at least one logical signal needs be computed */
234 static char inputs_stable;
235
236 /* these variables are specific to the keypad */
237 static struct {
238 bool enabled;
239 } keypad;
240
241 static char keypad_buffer[KEYPAD_BUFFER];
242 static int keypad_buflen;
243 static int keypad_start;
244 static char keypressed;
245 static wait_queue_head_t keypad_read_wait;
246
247 /* lcd-specific variables */
248 static struct {
249 bool enabled;
250 bool initialized;
251 bool must_clear;
252
253 int height;
254 int width;
255 int bwidth;
256 int hwidth;
257 int charset;
258 int proto;
259 int light_tempo;
260
261 /* TODO: use union here? */
262 struct {
263 int e;
264 int rs;
265 int rw;
266 int cl;
267 int da;
268 int bl;
269 } pins;
270
271 /* contains the LCD config state */
272 unsigned long int flags;
273
274 /* Contains the LCD X and Y offset */
275 struct {
276 unsigned long int x;
277 unsigned long int y;
278 } addr;
279
280 /* Current escape sequence and it's length or -1 if outside */
281 struct {
282 char buf[LCD_ESCAPE_LEN + 1];
283 int len;
284 } esc_seq;
285 } lcd;
286
287 /* Needed only for init */
288 static int selected_lcd_type = NOT_SET;
289
290 /*
291 * Bit masks to convert LCD signals to parallel port outputs.
292 * _d_ are values for data port, _c_ are for control port.
293 * [0] = signal OFF, [1] = signal ON, [2] = mask
294 */
295 #define BIT_CLR 0
296 #define BIT_SET 1
297 #define BIT_MSK 2
298 #define BIT_STATES 3
299 /*
300 * one entry for each bit on the LCD
301 */
302 #define LCD_BIT_E 0
303 #define LCD_BIT_RS 1
304 #define LCD_BIT_RW 2
305 #define LCD_BIT_BL 3
306 #define LCD_BIT_CL 4
307 #define LCD_BIT_DA 5
308 #define LCD_BITS 6
309
310 /*
311 * each bit can be either connected to a DATA or CTRL port
312 */
313 #define LCD_PORT_C 0
314 #define LCD_PORT_D 1
315 #define LCD_PORTS 2
316
317 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
318
319 /*
320 * LCD protocols
321 */
322 #define LCD_PROTO_PARALLEL 0
323 #define LCD_PROTO_SERIAL 1
324 #define LCD_PROTO_TI_DA8XX_LCD 2
325
326 /*
327 * LCD character sets
328 */
329 #define LCD_CHARSET_NORMAL 0
330 #define LCD_CHARSET_KS0074 1
331
332 /*
333 * LCD types
334 */
335 #define LCD_TYPE_NONE 0
336 #define LCD_TYPE_CUSTOM 1
337 #define LCD_TYPE_OLD 2
338 #define LCD_TYPE_KS0074 3
339 #define LCD_TYPE_HANTRONIX 4
340 #define LCD_TYPE_NEXCOM 5
341
342 /*
343 * keypad types
344 */
345 #define KEYPAD_TYPE_NONE 0
346 #define KEYPAD_TYPE_OLD 1
347 #define KEYPAD_TYPE_NEW 2
348 #define KEYPAD_TYPE_NEXCOM 3
349
350 /*
351 * panel profiles
352 */
353 #define PANEL_PROFILE_CUSTOM 0
354 #define PANEL_PROFILE_OLD 1
355 #define PANEL_PROFILE_NEW 2
356 #define PANEL_PROFILE_HANTRONIX 3
357 #define PANEL_PROFILE_NEXCOM 4
358 #define PANEL_PROFILE_LARGE 5
359
360 /*
361 * Construct custom config from the kernel's configuration
362 */
363 #define DEFAULT_PARPORT 0
364 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
365 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
366 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD
367 #define DEFAULT_LCD_HEIGHT 2
368 #define DEFAULT_LCD_WIDTH 40
369 #define DEFAULT_LCD_BWIDTH 40
370 #define DEFAULT_LCD_HWIDTH 64
371 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
372 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
373
374 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
375 #define DEFAULT_LCD_PIN_RS PIN_SELECP
376 #define DEFAULT_LCD_PIN_RW PIN_INITP
377 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
378 #define DEFAULT_LCD_PIN_SDA PIN_D0
379 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
380
381 #ifdef CONFIG_PANEL_PARPORT
382 #undef DEFAULT_PARPORT
383 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
384 #endif
385
386 #ifdef CONFIG_PANEL_PROFILE
387 #undef DEFAULT_PROFILE
388 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
389 #endif
390
391 #if DEFAULT_PROFILE == 0 /* custom */
392 #ifdef CONFIG_PANEL_KEYPAD
393 #undef DEFAULT_KEYPAD_TYPE
394 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
395 #endif
396
397 #ifdef CONFIG_PANEL_LCD
398 #undef DEFAULT_LCD_TYPE
399 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
400 #endif
401
402 #ifdef CONFIG_PANEL_LCD_HEIGHT
403 #undef DEFAULT_LCD_HEIGHT
404 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
405 #endif
406
407 #ifdef CONFIG_PANEL_LCD_WIDTH
408 #undef DEFAULT_LCD_WIDTH
409 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
410 #endif
411
412 #ifdef CONFIG_PANEL_LCD_BWIDTH
413 #undef DEFAULT_LCD_BWIDTH
414 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
415 #endif
416
417 #ifdef CONFIG_PANEL_LCD_HWIDTH
418 #undef DEFAULT_LCD_HWIDTH
419 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
420 #endif
421
422 #ifdef CONFIG_PANEL_LCD_CHARSET
423 #undef DEFAULT_LCD_CHARSET
424 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
425 #endif
426
427 #ifdef CONFIG_PANEL_LCD_PROTO
428 #undef DEFAULT_LCD_PROTO
429 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
430 #endif
431
432 #ifdef CONFIG_PANEL_LCD_PIN_E
433 #undef DEFAULT_LCD_PIN_E
434 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
435 #endif
436
437 #ifdef CONFIG_PANEL_LCD_PIN_RS
438 #undef DEFAULT_LCD_PIN_RS
439 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
440 #endif
441
442 #ifdef CONFIG_PANEL_LCD_PIN_RW
443 #undef DEFAULT_LCD_PIN_RW
444 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
445 #endif
446
447 #ifdef CONFIG_PANEL_LCD_PIN_SCL
448 #undef DEFAULT_LCD_PIN_SCL
449 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
450 #endif
451
452 #ifdef CONFIG_PANEL_LCD_PIN_SDA
453 #undef DEFAULT_LCD_PIN_SDA
454 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
455 #endif
456
457 #ifdef CONFIG_PANEL_LCD_PIN_BL
458 #undef DEFAULT_LCD_PIN_BL
459 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
460 #endif
461
462 #endif /* DEFAULT_PROFILE == 0 */
463
464 /* global variables */
465
466 /* Device single-open policy control */
467 static atomic_t lcd_available = ATOMIC_INIT(1);
468 static atomic_t keypad_available = ATOMIC_INIT(1);
469
470 static struct pardevice *pprt;
471
472 static int keypad_initialized;
473
474 static void (*lcd_write_cmd)(int);
475 static void (*lcd_write_data)(int);
476 static void (*lcd_clear_fast)(void);
477
478 static DEFINE_SPINLOCK(pprt_lock);
479 static struct timer_list scan_timer;
480
481 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
482
483 static int parport = DEFAULT_PARPORT;
484 module_param(parport, int, 0000);
485 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
486
487 static int profile = DEFAULT_PROFILE;
488 module_param(profile, int, 0000);
489 MODULE_PARM_DESC(profile,
490 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
491 "4=16x2 nexcom; default=40x2, old kp");
492
493 static int keypad_type = NOT_SET;
494 module_param(keypad_type, int, 0000);
495 MODULE_PARM_DESC(keypad_type,
496 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
497
498 static int lcd_type = NOT_SET;
499 module_param(lcd_type, int, 0000);
500 MODULE_PARM_DESC(lcd_type,
501 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
502
503 static int lcd_height = NOT_SET;
504 module_param(lcd_height, int, 0000);
505 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
506
507 static int lcd_width = NOT_SET;
508 module_param(lcd_width, int, 0000);
509 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
510
511 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
512 module_param(lcd_bwidth, int, 0000);
513 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
514
515 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
516 module_param(lcd_hwidth, int, 0000);
517 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
518
519 static int lcd_charset = NOT_SET;
520 module_param(lcd_charset, int, 0000);
521 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
522
523 static int lcd_proto = NOT_SET;
524 module_param(lcd_proto, int, 0000);
525 MODULE_PARM_DESC(lcd_proto,
526 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
527
528 /*
529 * These are the parallel port pins the LCD control signals are connected to.
530 * Set this to 0 if the signal is not used. Set it to its opposite value
531 * (negative) if the signal is negated. -MAXINT is used to indicate that the
532 * pin has not been explicitly specified.
533 *
534 * WARNING! no check will be performed about collisions with keypad !
535 */
536
537 static int lcd_e_pin = PIN_NOT_SET;
538 module_param(lcd_e_pin, int, 0000);
539 MODULE_PARM_DESC(lcd_e_pin,
540 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
541
542 static int lcd_rs_pin = PIN_NOT_SET;
543 module_param(lcd_rs_pin, int, 0000);
544 MODULE_PARM_DESC(lcd_rs_pin,
545 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
546
547 static int lcd_rw_pin = PIN_NOT_SET;
548 module_param(lcd_rw_pin, int, 0000);
549 MODULE_PARM_DESC(lcd_rw_pin,
550 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
551
552 static int lcd_cl_pin = PIN_NOT_SET;
553 module_param(lcd_cl_pin, int, 0000);
554 MODULE_PARM_DESC(lcd_cl_pin,
555 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
556
557 static int lcd_da_pin = PIN_NOT_SET;
558 module_param(lcd_da_pin, int, 0000);
559 MODULE_PARM_DESC(lcd_da_pin,
560 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
561
562 static int lcd_bl_pin = PIN_NOT_SET;
563 module_param(lcd_bl_pin, int, 0000);
564 MODULE_PARM_DESC(lcd_bl_pin,
565 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
566
567 /* Deprecated module parameters - consider not using them anymore */
568
569 static int lcd_enabled = NOT_SET;
570 module_param(lcd_enabled, int, 0000);
571 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
572
573 static int keypad_enabled = NOT_SET;
574 module_param(keypad_enabled, int, 0000);
575 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
576
577 static const unsigned char *lcd_char_conv;
578
579 /* for some LCD drivers (ks0074) we need a charset conversion table. */
580 static const unsigned char lcd_char_conv_ks0074[256] = {
581 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
582 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
583 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
584 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
585 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
586 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
587 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
588 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
589 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
590 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
591 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
592 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
593 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
594 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
595 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
596 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
597 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
598 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
599 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
600 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
601 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
602 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
603 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
604 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
605 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
606 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
607 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
608 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
609 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
610 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
611 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
612 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
613 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
614 };
615
616 static const char old_keypad_profile[][4][9] = {
617 {"S0", "Left\n", "Left\n", ""},
618 {"S1", "Down\n", "Down\n", ""},
619 {"S2", "Up\n", "Up\n", ""},
620 {"S3", "Right\n", "Right\n", ""},
621 {"S4", "Esc\n", "Esc\n", ""},
622 {"S5", "Ret\n", "Ret\n", ""},
623 {"", "", "", ""}
624 };
625
626 /* signals, press, repeat, release */
627 static const char new_keypad_profile[][4][9] = {
628 {"S0", "Left\n", "Left\n", ""},
629 {"S1", "Down\n", "Down\n", ""},
630 {"S2", "Up\n", "Up\n", ""},
631 {"S3", "Right\n", "Right\n", ""},
632 {"S4s5", "", "Esc\n", "Esc\n"},
633 {"s4S5", "", "Ret\n", "Ret\n"},
634 {"S4S5", "Help\n", "", ""},
635 /* add new signals above this line */
636 {"", "", "", ""}
637 };
638
639 /* signals, press, repeat, release */
640 static const char nexcom_keypad_profile[][4][9] = {
641 {"a-p-e-", "Down\n", "Down\n", ""},
642 {"a-p-E-", "Ret\n", "Ret\n", ""},
643 {"a-P-E-", "Esc\n", "Esc\n", ""},
644 {"a-P-e-", "Up\n", "Up\n", ""},
645 /* add new signals above this line */
646 {"", "", "", ""}
647 };
648
649 static const char (*keypad_profile)[4][9] = old_keypad_profile;
650
651 static DECLARE_BITMAP(bits, LCD_BITS);
652
653 static void lcd_get_bits(unsigned int port, int *val)
654 {
655 unsigned int bit, state;
656
657 for (bit = 0; bit < LCD_BITS; bit++) {
658 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
659 *val &= lcd_bits[port][bit][BIT_MSK];
660 *val |= lcd_bits[port][bit][state];
661 }
662 }
663
664 static void init_scan_timer(void);
665
666 /* sets data port bits according to current signals values */
667 static int set_data_bits(void)
668 {
669 int val;
670
671 val = r_dtr(pprt);
672 lcd_get_bits(LCD_PORT_D, &val);
673 w_dtr(pprt, val);
674 return val;
675 }
676
677 /* sets ctrl port bits according to current signals values */
678 static int set_ctrl_bits(void)
679 {
680 int val;
681
682 val = r_ctr(pprt);
683 lcd_get_bits(LCD_PORT_C, &val);
684 w_ctr(pprt, val);
685 return val;
686 }
687
688 /* sets ctrl & data port bits according to current signals values */
689 static void panel_set_bits(void)
690 {
691 set_data_bits();
692 set_ctrl_bits();
693 }
694
695 /*
696 * Converts a parallel port pin (from -25 to 25) to data and control ports
697 * masks, and data and control port bits. The signal will be considered
698 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
699 *
700 * Result will be used this way :
701 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
702 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
703 */
704 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
705 {
706 int d_bit, c_bit, inv;
707
708 d_val[0] = 0;
709 c_val[0] = 0;
710 d_val[1] = 0;
711 c_val[1] = 0;
712 d_val[2] = 0xFF;
713 c_val[2] = 0xFF;
714
715 if (pin == 0)
716 return;
717
718 inv = (pin < 0);
719 if (inv)
720 pin = -pin;
721
722 d_bit = 0;
723 c_bit = 0;
724
725 switch (pin) {
726 case PIN_STROBE: /* strobe, inverted */
727 c_bit = PNL_PSTROBE;
728 inv = !inv;
729 break;
730 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
731 d_bit = 1 << (pin - 2);
732 break;
733 case PIN_AUTOLF: /* autofeed, inverted */
734 c_bit = PNL_PAUTOLF;
735 inv = !inv;
736 break;
737 case PIN_INITP: /* init, direct */
738 c_bit = PNL_PINITP;
739 break;
740 case PIN_SELECP: /* select_in, inverted */
741 c_bit = PNL_PSELECP;
742 inv = !inv;
743 break;
744 default: /* unknown pin, ignore */
745 break;
746 }
747
748 if (c_bit) {
749 c_val[2] &= ~c_bit;
750 c_val[!inv] = c_bit;
751 } else if (d_bit) {
752 d_val[2] &= ~d_bit;
753 d_val[!inv] = d_bit;
754 }
755 }
756
757 /* sleeps that many milliseconds with a reschedule */
758 static void long_sleep(int ms)
759 {
760 if (in_interrupt())
761 mdelay(ms);
762 else
763 schedule_timeout_interruptible(msecs_to_jiffies(ms));
764 }
765
766 /*
767 * send a serial byte to the LCD panel. The caller is responsible for locking
768 * if needed.
769 */
770 static void lcd_send_serial(int byte)
771 {
772 int bit;
773
774 /*
775 * the data bit is set on D0, and the clock on STROBE.
776 * LCD reads D0 on STROBE's rising edge.
777 */
778 for (bit = 0; bit < 8; bit++) {
779 clear_bit(LCD_BIT_CL, bits); /* CLK low */
780 panel_set_bits();
781 if (byte & 1) {
782 set_bit(LCD_BIT_DA, bits);
783 } else {
784 clear_bit(LCD_BIT_DA, bits);
785 }
786
787 panel_set_bits();
788 udelay(2); /* maintain the data during 2 us before CLK up */
789 set_bit(LCD_BIT_CL, bits); /* CLK high */
790 panel_set_bits();
791 udelay(1); /* maintain the strobe during 1 us */
792 byte >>= 1;
793 }
794 }
795
796 /* turn the backlight on or off */
797 static void lcd_backlight(int on)
798 {
799 if (lcd.pins.bl == PIN_NONE)
800 return;
801
802 /* The backlight is activated by setting the AUTOFEED line to +5V */
803 spin_lock_irq(&pprt_lock);
804 if (on)
805 set_bit(LCD_BIT_BL, bits);
806 else
807 clear_bit(LCD_BIT_BL, bits);
808 panel_set_bits();
809 spin_unlock_irq(&pprt_lock);
810 }
811
812 /* send a command to the LCD panel in serial mode */
813 static void lcd_write_cmd_s(int cmd)
814 {
815 spin_lock_irq(&pprt_lock);
816 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
817 lcd_send_serial(cmd & 0x0F);
818 lcd_send_serial((cmd >> 4) & 0x0F);
819 udelay(40); /* the shortest command takes at least 40 us */
820 spin_unlock_irq(&pprt_lock);
821 }
822
823 /* send data to the LCD panel in serial mode */
824 static void lcd_write_data_s(int data)
825 {
826 spin_lock_irq(&pprt_lock);
827 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
828 lcd_send_serial(data & 0x0F);
829 lcd_send_serial((data >> 4) & 0x0F);
830 udelay(40); /* the shortest data takes at least 40 us */
831 spin_unlock_irq(&pprt_lock);
832 }
833
834 /* send a command to the LCD panel in 8 bits parallel mode */
835 static void lcd_write_cmd_p8(int cmd)
836 {
837 spin_lock_irq(&pprt_lock);
838 /* present the data to the data port */
839 w_dtr(pprt, cmd);
840 udelay(20); /* maintain the data during 20 us before the strobe */
841
842 set_bit(LCD_BIT_E, bits);
843 clear_bit(LCD_BIT_RS, bits);
844 clear_bit(LCD_BIT_RW, bits);
845 set_ctrl_bits();
846
847 udelay(40); /* maintain the strobe during 40 us */
848
849 clear_bit(LCD_BIT_E, bits);
850 set_ctrl_bits();
851
852 udelay(120); /* the shortest command takes at least 120 us */
853 spin_unlock_irq(&pprt_lock);
854 }
855
856 /* send data to the LCD panel in 8 bits parallel mode */
857 static void lcd_write_data_p8(int data)
858 {
859 spin_lock_irq(&pprt_lock);
860 /* present the data to the data port */
861 w_dtr(pprt, data);
862 udelay(20); /* maintain the data during 20 us before the strobe */
863
864 set_bit(LCD_BIT_E, bits);
865 set_bit(LCD_BIT_RS, bits);
866 clear_bit(LCD_BIT_RW, bits);
867 set_ctrl_bits();
868
869 udelay(40); /* maintain the strobe during 40 us */
870
871 clear_bit(LCD_BIT_E, bits);
872 set_ctrl_bits();
873
874 udelay(45); /* the shortest data takes at least 45 us */
875 spin_unlock_irq(&pprt_lock);
876 }
877
878 /* send a command to the TI LCD panel */
879 static void lcd_write_cmd_tilcd(int cmd)
880 {
881 spin_lock_irq(&pprt_lock);
882 /* present the data to the control port */
883 w_ctr(pprt, cmd);
884 udelay(60);
885 spin_unlock_irq(&pprt_lock);
886 }
887
888 /* send data to the TI LCD panel */
889 static void lcd_write_data_tilcd(int data)
890 {
891 spin_lock_irq(&pprt_lock);
892 /* present the data to the data port */
893 w_dtr(pprt, data);
894 udelay(60);
895 spin_unlock_irq(&pprt_lock);
896 }
897
898 static void lcd_gotoxy(void)
899 {
900 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
901 | (lcd.addr.y ? lcd.hwidth : 0)
902 /*
903 * we force the cursor to stay at the end of the
904 * line if it wants to go farther
905 */
906 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
907 (lcd.hwidth - 1) : lcd.bwidth - 1));
908 }
909
910 static void lcd_print(char c)
911 {
912 if (lcd.addr.x < lcd.bwidth) {
913 if (lcd_char_conv)
914 c = lcd_char_conv[(unsigned char)c];
915 lcd_write_data(c);
916 lcd.addr.x++;
917 }
918 /* prevents the cursor from wrapping onto the next line */
919 if (lcd.addr.x == lcd.bwidth)
920 lcd_gotoxy();
921 }
922
923 /* fills the display with spaces and resets X/Y */
924 static void lcd_clear_fast_s(void)
925 {
926 int pos;
927
928 lcd.addr.x = 0;
929 lcd.addr.y = 0;
930 lcd_gotoxy();
931
932 spin_lock_irq(&pprt_lock);
933 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
934 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
935 lcd_send_serial(' ' & 0x0F);
936 lcd_send_serial((' ' >> 4) & 0x0F);
937 /* the shortest data takes at least 40 us */
938 udelay(40);
939 }
940 spin_unlock_irq(&pprt_lock);
941
942 lcd.addr.x = 0;
943 lcd.addr.y = 0;
944 lcd_gotoxy();
945 }
946
947 /* fills the display with spaces and resets X/Y */
948 static void lcd_clear_fast_p8(void)
949 {
950 int pos;
951
952 lcd.addr.x = 0;
953 lcd.addr.y = 0;
954 lcd_gotoxy();
955
956 spin_lock_irq(&pprt_lock);
957 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
958 /* present the data to the data port */
959 w_dtr(pprt, ' ');
960
961 /* maintain the data during 20 us before the strobe */
962 udelay(20);
963
964 set_bit(LCD_BIT_E, bits);
965 set_bit(LCD_BIT_RS, bits);
966 clear_bit(LCD_BIT_RW, bits);
967 set_ctrl_bits();
968
969 /* maintain the strobe during 40 us */
970 udelay(40);
971
972 clear_bit(LCD_BIT_E, bits);
973 set_ctrl_bits();
974
975 /* the shortest data takes at least 45 us */
976 udelay(45);
977 }
978 spin_unlock_irq(&pprt_lock);
979
980 lcd.addr.x = 0;
981 lcd.addr.y = 0;
982 lcd_gotoxy();
983 }
984
985 /* fills the display with spaces and resets X/Y */
986 static void lcd_clear_fast_tilcd(void)
987 {
988 int pos;
989
990 lcd.addr.x = 0;
991 lcd.addr.y = 0;
992 lcd_gotoxy();
993
994 spin_lock_irq(&pprt_lock);
995 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
996 /* present the data to the data port */
997 w_dtr(pprt, ' ');
998 udelay(60);
999 }
1000
1001 spin_unlock_irq(&pprt_lock);
1002
1003 lcd.addr.x = 0;
1004 lcd.addr.y = 0;
1005 lcd_gotoxy();
1006 }
1007
1008 /* clears the display and resets X/Y */
1009 static void lcd_clear_display(void)
1010 {
1011 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1012 lcd.addr.x = 0;
1013 lcd.addr.y = 0;
1014 /* we must wait a few milliseconds (15) */
1015 long_sleep(15);
1016 }
1017
1018 static void lcd_init_display(void)
1019 {
1020 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1021 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1022
1023 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1024
1025 /* 8bits, 1 line, small fonts; let's do it 3 times */
1026 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1027 long_sleep(10);
1028 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1029 long_sleep(10);
1030 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1031 long_sleep(10);
1032
1033 /* set font height and lines number */
1034 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1035 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1036 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1037 );
1038 long_sleep(10);
1039
1040 /* display off, cursor off, blink off */
1041 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1042 long_sleep(10);
1043
1044 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1045 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1046 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1047 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1048 );
1049
1050 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1051
1052 long_sleep(10);
1053
1054 /* entry mode set : increment, cursor shifting */
1055 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1056
1057 lcd_clear_display();
1058 }
1059
1060 /*
1061 * These are the file operation function for user access to /dev/lcd
1062 * This function can also be called from inside the kernel, by
1063 * setting file and ppos to NULL.
1064 *
1065 */
1066
1067 static inline int handle_lcd_special_code(void)
1068 {
1069 /* LCD special codes */
1070
1071 int processed = 0;
1072
1073 char *esc = lcd.esc_seq.buf + 2;
1074 int oldflags = lcd.flags;
1075
1076 /* check for display mode flags */
1077 switch (*esc) {
1078 case 'D': /* Display ON */
1079 lcd.flags |= LCD_FLAG_D;
1080 processed = 1;
1081 break;
1082 case 'd': /* Display OFF */
1083 lcd.flags &= ~LCD_FLAG_D;
1084 processed = 1;
1085 break;
1086 case 'C': /* Cursor ON */
1087 lcd.flags |= LCD_FLAG_C;
1088 processed = 1;
1089 break;
1090 case 'c': /* Cursor OFF */
1091 lcd.flags &= ~LCD_FLAG_C;
1092 processed = 1;
1093 break;
1094 case 'B': /* Blink ON */
1095 lcd.flags |= LCD_FLAG_B;
1096 processed = 1;
1097 break;
1098 case 'b': /* Blink OFF */
1099 lcd.flags &= ~LCD_FLAG_B;
1100 processed = 1;
1101 break;
1102 case '+': /* Back light ON */
1103 lcd.flags |= LCD_FLAG_L;
1104 processed = 1;
1105 break;
1106 case '-': /* Back light OFF */
1107 lcd.flags &= ~LCD_FLAG_L;
1108 processed = 1;
1109 break;
1110 case '*':
1111 /* flash back light using the keypad timer */
1112 if (scan_timer.function) {
1113 if (lcd.light_tempo == 0 &&
1114 ((lcd.flags & LCD_FLAG_L) == 0))
1115 lcd_backlight(1);
1116 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1117 }
1118 processed = 1;
1119 break;
1120 case 'f': /* Small Font */
1121 lcd.flags &= ~LCD_FLAG_F;
1122 processed = 1;
1123 break;
1124 case 'F': /* Large Font */
1125 lcd.flags |= LCD_FLAG_F;
1126 processed = 1;
1127 break;
1128 case 'n': /* One Line */
1129 lcd.flags &= ~LCD_FLAG_N;
1130 processed = 1;
1131 break;
1132 case 'N': /* Two Lines */
1133 lcd.flags |= LCD_FLAG_N;
1134 break;
1135 case 'l': /* Shift Cursor Left */
1136 if (lcd.addr.x > 0) {
1137 /* back one char if not at end of line */
1138 if (lcd.addr.x < lcd.bwidth)
1139 lcd_write_cmd(LCD_CMD_SHIFT);
1140 lcd.addr.x--;
1141 }
1142 processed = 1;
1143 break;
1144 case 'r': /* shift cursor right */
1145 if (lcd.addr.x < lcd.width) {
1146 /* allow the cursor to pass the end of the line */
1147 if (lcd.addr.x < (lcd.bwidth - 1))
1148 lcd_write_cmd(LCD_CMD_SHIFT |
1149 LCD_CMD_SHIFT_RIGHT);
1150 lcd.addr.x++;
1151 }
1152 processed = 1;
1153 break;
1154 case 'L': /* shift display left */
1155 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1156 processed = 1;
1157 break;
1158 case 'R': /* shift display right */
1159 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1160 LCD_CMD_SHIFT_RIGHT);
1161 processed = 1;
1162 break;
1163 case 'k': { /* kill end of line */
1164 int x;
1165
1166 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1167 lcd_write_data(' ');
1168
1169 /* restore cursor position */
1170 lcd_gotoxy();
1171 processed = 1;
1172 break;
1173 }
1174 case 'I': /* reinitialize display */
1175 lcd_init_display();
1176 processed = 1;
1177 break;
1178 case 'G': {
1179 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1180 * and '7', representing the numerical ASCII code of the
1181 * redefined character, and <xx...xx> a sequence of 16
1182 * hex digits representing 8 bytes for each character.
1183 * Most LCDs will only use 5 lower bits of the 7 first
1184 * bytes.
1185 */
1186
1187 unsigned char cgbytes[8];
1188 unsigned char cgaddr;
1189 int cgoffset;
1190 int shift;
1191 char value;
1192 int addr;
1193
1194 if (!strchr(esc, ';'))
1195 break;
1196
1197 esc++;
1198
1199 cgaddr = *(esc++) - '0';
1200 if (cgaddr > 7) {
1201 processed = 1;
1202 break;
1203 }
1204
1205 cgoffset = 0;
1206 shift = 0;
1207 value = 0;
1208 while (*esc && cgoffset < 8) {
1209 shift ^= 4;
1210 if (*esc >= '0' && *esc <= '9') {
1211 value |= (*esc - '0') << shift;
1212 } else if (*esc >= 'A' && *esc <= 'Z') {
1213 value |= (*esc - 'A' + 10) << shift;
1214 } else if (*esc >= 'a' && *esc <= 'z') {
1215 value |= (*esc - 'a' + 10) << shift;
1216 } else {
1217 esc++;
1218 continue;
1219 }
1220
1221 if (shift == 0) {
1222 cgbytes[cgoffset++] = value;
1223 value = 0;
1224 }
1225
1226 esc++;
1227 }
1228
1229 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1230 for (addr = 0; addr < cgoffset; addr++)
1231 lcd_write_data(cgbytes[addr]);
1232
1233 /* ensures that we stop writing to CGRAM */
1234 lcd_gotoxy();
1235 processed = 1;
1236 break;
1237 }
1238 case 'x': /* gotoxy : LxXXX[yYYY]; */
1239 case 'y': /* gotoxy : LyYYY[xXXX]; */
1240 if (!strchr(esc, ';'))
1241 break;
1242
1243 while (*esc) {
1244 if (*esc == 'x') {
1245 esc++;
1246 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1247 break;
1248 } else if (*esc == 'y') {
1249 esc++;
1250 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1251 break;
1252 } else {
1253 break;
1254 }
1255 }
1256
1257 lcd_gotoxy();
1258 processed = 1;
1259 break;
1260 }
1261
1262 /* TODO: This indent party here got ugly, clean it! */
1263 /* Check whether one flag was changed */
1264 if (oldflags != lcd.flags) {
1265 /* check whether one of B,C,D flags were changed */
1266 if ((oldflags ^ lcd.flags) &
1267 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1268 /* set display mode */
1269 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1270 | ((lcd.flags & LCD_FLAG_D)
1271 ? LCD_CMD_DISPLAY_ON : 0)
1272 | ((lcd.flags & LCD_FLAG_C)
1273 ? LCD_CMD_CURSOR_ON : 0)
1274 | ((lcd.flags & LCD_FLAG_B)
1275 ? LCD_CMD_BLINK_ON : 0));
1276 /* check whether one of F,N flags was changed */
1277 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1278 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1279 | LCD_CMD_DATA_LEN_8BITS
1280 | ((lcd.flags & LCD_FLAG_F)
1281 ? LCD_CMD_TWO_LINES : 0)
1282 | ((lcd.flags & LCD_FLAG_N)
1283 ? LCD_CMD_FONT_5X10_DOTS
1284 : 0));
1285 /* check whether L flag was changed */
1286 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1287 if (lcd.flags & (LCD_FLAG_L))
1288 lcd_backlight(1);
1289 else if (lcd.light_tempo == 0)
1290 /*
1291 * switch off the light only when the tempo
1292 * lighting is gone
1293 */
1294 lcd_backlight(0);
1295 }
1296 }
1297
1298 return processed;
1299 }
1300
1301 static void lcd_write_char(char c)
1302 {
1303 /* first, we'll test if we're in escape mode */
1304 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1305 /* yes, let's add this char to the buffer */
1306 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1307 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1308 } else {
1309 /* aborts any previous escape sequence */
1310 lcd.esc_seq.len = -1;
1311
1312 switch (c) {
1313 case LCD_ESCAPE_CHAR:
1314 /* start of an escape sequence */
1315 lcd.esc_seq.len = 0;
1316 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1317 break;
1318 case '\b':
1319 /* go back one char and clear it */
1320 if (lcd.addr.x > 0) {
1321 /*
1322 * check if we're not at the
1323 * end of the line
1324 */
1325 if (lcd.addr.x < lcd.bwidth)
1326 /* back one char */
1327 lcd_write_cmd(LCD_CMD_SHIFT);
1328 lcd.addr.x--;
1329 }
1330 /* replace with a space */
1331 lcd_write_data(' ');
1332 /* back one char again */
1333 lcd_write_cmd(LCD_CMD_SHIFT);
1334 break;
1335 case '\014':
1336 /* quickly clear the display */
1337 lcd_clear_fast();
1338 break;
1339 case '\n':
1340 /*
1341 * flush the remainder of the current line and
1342 * go to the beginning of the next line
1343 */
1344 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1345 lcd_write_data(' ');
1346 lcd.addr.x = 0;
1347 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1348 lcd_gotoxy();
1349 break;
1350 case '\r':
1351 /* go to the beginning of the same line */
1352 lcd.addr.x = 0;
1353 lcd_gotoxy();
1354 break;
1355 case '\t':
1356 /* print a space instead of the tab */
1357 lcd_print(' ');
1358 break;
1359 default:
1360 /* simply print this char */
1361 lcd_print(c);
1362 break;
1363 }
1364 }
1365
1366 /*
1367 * now we'll see if we're in an escape mode and if the current
1368 * escape sequence can be understood.
1369 */
1370 if (lcd.esc_seq.len >= 2) {
1371 int processed = 0;
1372
1373 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1374 /* clear the display */
1375 lcd_clear_fast();
1376 processed = 1;
1377 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1378 /* cursor to home */
1379 lcd.addr.x = 0;
1380 lcd.addr.y = 0;
1381 lcd_gotoxy();
1382 processed = 1;
1383 }
1384 /* codes starting with ^[[L */
1385 else if ((lcd.esc_seq.len >= 3) &&
1386 (lcd.esc_seq.buf[0] == '[') &&
1387 (lcd.esc_seq.buf[1] == 'L')) {
1388 processed = handle_lcd_special_code();
1389 }
1390
1391 /* LCD special escape codes */
1392 /*
1393 * flush the escape sequence if it's been processed
1394 * or if it is getting too long.
1395 */
1396 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1397 lcd.esc_seq.len = -1;
1398 } /* escape codes */
1399 }
1400
1401 static ssize_t lcd_write(struct file *file,
1402 const char __user *buf, size_t count, loff_t *ppos)
1403 {
1404 const char __user *tmp = buf;
1405 char c;
1406
1407 for (; count-- > 0; (*ppos)++, tmp++) {
1408 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1409 /*
1410 * let's be a little nice with other processes
1411 * that need some CPU
1412 */
1413 schedule();
1414
1415 if (get_user(c, tmp))
1416 return -EFAULT;
1417
1418 lcd_write_char(c);
1419 }
1420
1421 return tmp - buf;
1422 }
1423
1424 static int lcd_open(struct inode *inode, struct file *file)
1425 {
1426 if (!atomic_dec_and_test(&lcd_available))
1427 return -EBUSY; /* open only once at a time */
1428
1429 if (file->f_mode & FMODE_READ) /* device is write-only */
1430 return -EPERM;
1431
1432 if (lcd.must_clear) {
1433 lcd_clear_display();
1434 lcd.must_clear = false;
1435 }
1436 return nonseekable_open(inode, file);
1437 }
1438
1439 static int lcd_release(struct inode *inode, struct file *file)
1440 {
1441 atomic_inc(&lcd_available);
1442 return 0;
1443 }
1444
1445 static const struct file_operations lcd_fops = {
1446 .write = lcd_write,
1447 .open = lcd_open,
1448 .release = lcd_release,
1449 .llseek = no_llseek,
1450 };
1451
1452 static struct miscdevice lcd_dev = {
1453 .minor = LCD_MINOR,
1454 .name = "lcd",
1455 .fops = &lcd_fops,
1456 };
1457
1458 /* public function usable from the kernel for any purpose */
1459 static void panel_lcd_print(const char *s)
1460 {
1461 const char *tmp = s;
1462 int count = strlen(s);
1463
1464 if (lcd.enabled && lcd.initialized) {
1465 for (; count-- > 0; tmp++) {
1466 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1467 /*
1468 * let's be a little nice with other processes
1469 * that need some CPU
1470 */
1471 schedule();
1472
1473 lcd_write_char(*tmp);
1474 }
1475 }
1476 }
1477
1478 /* initialize the LCD driver */
1479 static void lcd_init(void)
1480 {
1481 switch (selected_lcd_type) {
1482 case LCD_TYPE_OLD:
1483 /* parallel mode, 8 bits */
1484 lcd.proto = LCD_PROTO_PARALLEL;
1485 lcd.charset = LCD_CHARSET_NORMAL;
1486 lcd.pins.e = PIN_STROBE;
1487 lcd.pins.rs = PIN_AUTOLF;
1488
1489 lcd.width = 40;
1490 lcd.bwidth = 40;
1491 lcd.hwidth = 64;
1492 lcd.height = 2;
1493 break;
1494 case LCD_TYPE_KS0074:
1495 /* serial mode, ks0074 */
1496 lcd.proto = LCD_PROTO_SERIAL;
1497 lcd.charset = LCD_CHARSET_KS0074;
1498 lcd.pins.bl = PIN_AUTOLF;
1499 lcd.pins.cl = PIN_STROBE;
1500 lcd.pins.da = PIN_D0;
1501
1502 lcd.width = 16;
1503 lcd.bwidth = 40;
1504 lcd.hwidth = 16;
1505 lcd.height = 2;
1506 break;
1507 case LCD_TYPE_NEXCOM:
1508 /* parallel mode, 8 bits, generic */
1509 lcd.proto = LCD_PROTO_PARALLEL;
1510 lcd.charset = LCD_CHARSET_NORMAL;
1511 lcd.pins.e = PIN_AUTOLF;
1512 lcd.pins.rs = PIN_SELECP;
1513 lcd.pins.rw = PIN_INITP;
1514
1515 lcd.width = 16;
1516 lcd.bwidth = 40;
1517 lcd.hwidth = 64;
1518 lcd.height = 2;
1519 break;
1520 case LCD_TYPE_CUSTOM:
1521 /* customer-defined */
1522 lcd.proto = DEFAULT_LCD_PROTO;
1523 lcd.charset = DEFAULT_LCD_CHARSET;
1524 /* default geometry will be set later */
1525 break;
1526 case LCD_TYPE_HANTRONIX:
1527 /* parallel mode, 8 bits, hantronix-like */
1528 default:
1529 lcd.proto = LCD_PROTO_PARALLEL;
1530 lcd.charset = LCD_CHARSET_NORMAL;
1531 lcd.pins.e = PIN_STROBE;
1532 lcd.pins.rs = PIN_SELECP;
1533
1534 lcd.width = 16;
1535 lcd.bwidth = 40;
1536 lcd.hwidth = 64;
1537 lcd.height = 2;
1538 break;
1539 }
1540
1541 /* Overwrite with module params set on loading */
1542 if (lcd_height != NOT_SET)
1543 lcd.height = lcd_height;
1544 if (lcd_width != NOT_SET)
1545 lcd.width = lcd_width;
1546 if (lcd_bwidth != NOT_SET)
1547 lcd.bwidth = lcd_bwidth;
1548 if (lcd_hwidth != NOT_SET)
1549 lcd.hwidth = lcd_hwidth;
1550 if (lcd_charset != NOT_SET)
1551 lcd.charset = lcd_charset;
1552 if (lcd_proto != NOT_SET)
1553 lcd.proto = lcd_proto;
1554 if (lcd_e_pin != PIN_NOT_SET)
1555 lcd.pins.e = lcd_e_pin;
1556 if (lcd_rs_pin != PIN_NOT_SET)
1557 lcd.pins.rs = lcd_rs_pin;
1558 if (lcd_rw_pin != PIN_NOT_SET)
1559 lcd.pins.rw = lcd_rw_pin;
1560 if (lcd_cl_pin != PIN_NOT_SET)
1561 lcd.pins.cl = lcd_cl_pin;
1562 if (lcd_da_pin != PIN_NOT_SET)
1563 lcd.pins.da = lcd_da_pin;
1564 if (lcd_bl_pin != PIN_NOT_SET)
1565 lcd.pins.bl = lcd_bl_pin;
1566
1567 /* this is used to catch wrong and default values */
1568 if (lcd.width <= 0)
1569 lcd.width = DEFAULT_LCD_WIDTH;
1570 if (lcd.bwidth <= 0)
1571 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1572 if (lcd.hwidth <= 0)
1573 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1574 if (lcd.height <= 0)
1575 lcd.height = DEFAULT_LCD_HEIGHT;
1576
1577 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1578 lcd_write_cmd = lcd_write_cmd_s;
1579 lcd_write_data = lcd_write_data_s;
1580 lcd_clear_fast = lcd_clear_fast_s;
1581
1582 if (lcd.pins.cl == PIN_NOT_SET)
1583 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1584 if (lcd.pins.da == PIN_NOT_SET)
1585 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1586
1587 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1588 lcd_write_cmd = lcd_write_cmd_p8;
1589 lcd_write_data = lcd_write_data_p8;
1590 lcd_clear_fast = lcd_clear_fast_p8;
1591
1592 if (lcd.pins.e == PIN_NOT_SET)
1593 lcd.pins.e = DEFAULT_LCD_PIN_E;
1594 if (lcd.pins.rs == PIN_NOT_SET)
1595 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1596 if (lcd.pins.rw == PIN_NOT_SET)
1597 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1598 } else {
1599 lcd_write_cmd = lcd_write_cmd_tilcd;
1600 lcd_write_data = lcd_write_data_tilcd;
1601 lcd_clear_fast = lcd_clear_fast_tilcd;
1602 }
1603
1604 if (lcd.pins.bl == PIN_NOT_SET)
1605 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1606
1607 if (lcd.pins.e == PIN_NOT_SET)
1608 lcd.pins.e = PIN_NONE;
1609 if (lcd.pins.rs == PIN_NOT_SET)
1610 lcd.pins.rs = PIN_NONE;
1611 if (lcd.pins.rw == PIN_NOT_SET)
1612 lcd.pins.rw = PIN_NONE;
1613 if (lcd.pins.bl == PIN_NOT_SET)
1614 lcd.pins.bl = PIN_NONE;
1615 if (lcd.pins.cl == PIN_NOT_SET)
1616 lcd.pins.cl = PIN_NONE;
1617 if (lcd.pins.da == PIN_NOT_SET)
1618 lcd.pins.da = PIN_NONE;
1619
1620 if (lcd.charset == NOT_SET)
1621 lcd.charset = DEFAULT_LCD_CHARSET;
1622
1623 if (lcd.charset == LCD_CHARSET_KS0074)
1624 lcd_char_conv = lcd_char_conv_ks0074;
1625 else
1626 lcd_char_conv = NULL;
1627
1628 if (lcd.pins.bl != PIN_NONE)
1629 init_scan_timer();
1630
1631 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1632 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1633 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1634 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1635 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1636 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1637 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1638 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1639 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1640 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1641 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1642 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1643
1644 /*
1645 * before this line, we must NOT send anything to the display.
1646 * Since lcd_init_display() needs to write data, we have to
1647 * enable mark the LCD initialized just before.
1648 */
1649 lcd.initialized = true;
1650 lcd_init_display();
1651
1652 /* display a short message */
1653 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1654 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1655 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1656 #endif
1657 #else
1658 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1659 PANEL_VERSION);
1660 #endif
1661 lcd.addr.x = 0;
1662 lcd.addr.y = 0;
1663 /* clear the display on the next device opening */
1664 lcd.must_clear = true;
1665 lcd_gotoxy();
1666 }
1667
1668 /*
1669 * These are the file operation function for user access to /dev/keypad
1670 */
1671
1672 static ssize_t keypad_read(struct file *file,
1673 char __user *buf, size_t count, loff_t *ppos)
1674 {
1675 unsigned i = *ppos;
1676 char __user *tmp = buf;
1677
1678 if (keypad_buflen == 0) {
1679 if (file->f_flags & O_NONBLOCK)
1680 return -EAGAIN;
1681
1682 if (wait_event_interruptible(keypad_read_wait,
1683 keypad_buflen != 0))
1684 return -EINTR;
1685 }
1686
1687 for (; count-- > 0 && (keypad_buflen > 0);
1688 ++i, ++tmp, --keypad_buflen) {
1689 put_user(keypad_buffer[keypad_start], tmp);
1690 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1691 }
1692 *ppos = i;
1693
1694 return tmp - buf;
1695 }
1696
1697 static int keypad_open(struct inode *inode, struct file *file)
1698 {
1699 if (!atomic_dec_and_test(&keypad_available))
1700 return -EBUSY; /* open only once at a time */
1701
1702 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1703 return -EPERM;
1704
1705 keypad_buflen = 0; /* flush the buffer on opening */
1706 return 0;
1707 }
1708
1709 static int keypad_release(struct inode *inode, struct file *file)
1710 {
1711 atomic_inc(&keypad_available);
1712 return 0;
1713 }
1714
1715 static const struct file_operations keypad_fops = {
1716 .read = keypad_read, /* read */
1717 .open = keypad_open, /* open */
1718 .release = keypad_release, /* close */
1719 .llseek = default_llseek,
1720 };
1721
1722 static struct miscdevice keypad_dev = {
1723 .minor = KEYPAD_MINOR,
1724 .name = "keypad",
1725 .fops = &keypad_fops,
1726 };
1727
1728 static void keypad_send_key(const char *string, int max_len)
1729 {
1730 /* send the key to the device only if a process is attached to it. */
1731 if (!atomic_read(&keypad_available)) {
1732 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1733 keypad_buffer[(keypad_start + keypad_buflen++) %
1734 KEYPAD_BUFFER] = *string++;
1735 }
1736 wake_up_interruptible(&keypad_read_wait);
1737 }
1738 }
1739
1740 /* this function scans all the bits involving at least one logical signal,
1741 * and puts the results in the bitfield "phys_read" (one bit per established
1742 * contact), and sets "phys_read_prev" to "phys_read".
1743 *
1744 * Note: to debounce input signals, we will only consider as switched a signal
1745 * which is stable across 2 measures. Signals which are different between two
1746 * reads will be kept as they previously were in their logical form (phys_prev).
1747 * A signal which has just switched will have a 1 in
1748 * (phys_read ^ phys_read_prev).
1749 */
1750 static void phys_scan_contacts(void)
1751 {
1752 int bit, bitval;
1753 char oldval;
1754 char bitmask;
1755 char gndmask;
1756
1757 phys_prev = phys_curr;
1758 phys_read_prev = phys_read;
1759 phys_read = 0; /* flush all signals */
1760
1761 /* keep track of old value, with all outputs disabled */
1762 oldval = r_dtr(pprt) | scan_mask_o;
1763 /* activate all keyboard outputs (active low) */
1764 w_dtr(pprt, oldval & ~scan_mask_o);
1765
1766 /* will have a 1 for each bit set to gnd */
1767 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1768 /* disable all matrix signals */
1769 w_dtr(pprt, oldval);
1770
1771 /* now that all outputs are cleared, the only active input bits are
1772 * directly connected to the ground
1773 */
1774
1775 /* 1 for each grounded input */
1776 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1777
1778 /* grounded inputs are signals 40-44 */
1779 phys_read |= (__u64)gndmask << 40;
1780
1781 if (bitmask != gndmask) {
1782 /*
1783 * since clearing the outputs changed some inputs, we know
1784 * that some input signals are currently tied to some outputs.
1785 * So we'll scan them.
1786 */
1787 for (bit = 0; bit < 8; bit++) {
1788 bitval = BIT(bit);
1789
1790 if (!(scan_mask_o & bitval)) /* skip unused bits */
1791 continue;
1792
1793 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1794 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1795 phys_read |= (__u64)bitmask << (5 * bit);
1796 }
1797 w_dtr(pprt, oldval); /* disable all outputs */
1798 }
1799 /*
1800 * this is easy: use old bits when they are flapping,
1801 * use new ones when stable
1802 */
1803 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1804 (phys_read & ~(phys_read ^ phys_read_prev));
1805 }
1806
1807 static inline int input_state_high(struct logical_input *input)
1808 {
1809 #if 0
1810 /* FIXME:
1811 * this is an invalid test. It tries to catch
1812 * transitions from single-key to multiple-key, but
1813 * doesn't take into account the contacts polarity.
1814 * The only solution to the problem is to parse keys
1815 * from the most complex to the simplest combinations,
1816 * and mark them as 'caught' once a combination
1817 * matches, then unmatch it for all other ones.
1818 */
1819
1820 /* try to catch dangerous transitions cases :
1821 * someone adds a bit, so this signal was a false
1822 * positive resulting from a transition. We should
1823 * invalidate the signal immediately and not call the
1824 * release function.
1825 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1826 */
1827 if (((phys_prev & input->mask) == input->value) &&
1828 ((phys_curr & input->mask) > input->value)) {
1829 input->state = INPUT_ST_LOW; /* invalidate */
1830 return 1;
1831 }
1832 #endif
1833
1834 if ((phys_curr & input->mask) == input->value) {
1835 if ((input->type == INPUT_TYPE_STD) &&
1836 (input->high_timer == 0)) {
1837 input->high_timer++;
1838 if (input->u.std.press_fct)
1839 input->u.std.press_fct(input->u.std.press_data);
1840 } else if (input->type == INPUT_TYPE_KBD) {
1841 /* will turn on the light */
1842 keypressed = 1;
1843
1844 if (input->high_timer == 0) {
1845 char *press_str = input->u.kbd.press_str;
1846
1847 if (press_str[0]) {
1848 int s = sizeof(input->u.kbd.press_str);
1849
1850 keypad_send_key(press_str, s);
1851 }
1852 }
1853
1854 if (input->u.kbd.repeat_str[0]) {
1855 char *repeat_str = input->u.kbd.repeat_str;
1856
1857 if (input->high_timer >= KEYPAD_REP_START) {
1858 int s = sizeof(input->u.kbd.repeat_str);
1859
1860 input->high_timer -= KEYPAD_REP_DELAY;
1861 keypad_send_key(repeat_str, s);
1862 }
1863 /* we will need to come back here soon */
1864 inputs_stable = 0;
1865 }
1866
1867 if (input->high_timer < 255)
1868 input->high_timer++;
1869 }
1870 return 1;
1871 }
1872
1873 /* else signal falling down. Let's fall through. */
1874 input->state = INPUT_ST_FALLING;
1875 input->fall_timer = 0;
1876
1877 return 0;
1878 }
1879
1880 static inline void input_state_falling(struct logical_input *input)
1881 {
1882 #if 0
1883 /* FIXME !!! same comment as in input_state_high */
1884 if (((phys_prev & input->mask) == input->value) &&
1885 ((phys_curr & input->mask) > input->value)) {
1886 input->state = INPUT_ST_LOW; /* invalidate */
1887 return;
1888 }
1889 #endif
1890
1891 if ((phys_curr & input->mask) == input->value) {
1892 if (input->type == INPUT_TYPE_KBD) {
1893 /* will turn on the light */
1894 keypressed = 1;
1895
1896 if (input->u.kbd.repeat_str[0]) {
1897 char *repeat_str = input->u.kbd.repeat_str;
1898
1899 if (input->high_timer >= KEYPAD_REP_START) {
1900 int s = sizeof(input->u.kbd.repeat_str);
1901
1902 input->high_timer -= KEYPAD_REP_DELAY;
1903 keypad_send_key(repeat_str, s);
1904 }
1905 /* we will need to come back here soon */
1906 inputs_stable = 0;
1907 }
1908
1909 if (input->high_timer < 255)
1910 input->high_timer++;
1911 }
1912 input->state = INPUT_ST_HIGH;
1913 } else if (input->fall_timer >= input->fall_time) {
1914 /* call release event */
1915 if (input->type == INPUT_TYPE_STD) {
1916 void (*release_fct)(int) = input->u.std.release_fct;
1917
1918 if (release_fct)
1919 release_fct(input->u.std.release_data);
1920 } else if (input->type == INPUT_TYPE_KBD) {
1921 char *release_str = input->u.kbd.release_str;
1922
1923 if (release_str[0]) {
1924 int s = sizeof(input->u.kbd.release_str);
1925
1926 keypad_send_key(release_str, s);
1927 }
1928 }
1929
1930 input->state = INPUT_ST_LOW;
1931 } else {
1932 input->fall_timer++;
1933 inputs_stable = 0;
1934 }
1935 }
1936
1937 static void panel_process_inputs(void)
1938 {
1939 struct list_head *item;
1940 struct logical_input *input;
1941
1942 keypressed = 0;
1943 inputs_stable = 1;
1944 list_for_each(item, &logical_inputs) {
1945 input = list_entry(item, struct logical_input, list);
1946
1947 switch (input->state) {
1948 case INPUT_ST_LOW:
1949 if ((phys_curr & input->mask) != input->value)
1950 break;
1951 /* if all needed ones were already set previously,
1952 * this means that this logical signal has been
1953 * activated by the releasing of another combined
1954 * signal, so we don't want to match.
1955 * eg: AB -(release B)-> A -(release A)-> 0 :
1956 * don't match A.
1957 */
1958 if ((phys_prev & input->mask) == input->value)
1959 break;
1960 input->rise_timer = 0;
1961 input->state = INPUT_ST_RISING;
1962 /* no break here, fall through */
1963 case INPUT_ST_RISING:
1964 if ((phys_curr & input->mask) != input->value) {
1965 input->state = INPUT_ST_LOW;
1966 break;
1967 }
1968 if (input->rise_timer < input->rise_time) {
1969 inputs_stable = 0;
1970 input->rise_timer++;
1971 break;
1972 }
1973 input->high_timer = 0;
1974 input->state = INPUT_ST_HIGH;
1975 /* no break here, fall through */
1976 case INPUT_ST_HIGH:
1977 if (input_state_high(input))
1978 break;
1979 /* no break here, fall through */
1980 case INPUT_ST_FALLING:
1981 input_state_falling(input);
1982 }
1983 }
1984 }
1985
1986 static void panel_scan_timer(void)
1987 {
1988 if (keypad.enabled && keypad_initialized) {
1989 if (spin_trylock_irq(&pprt_lock)) {
1990 phys_scan_contacts();
1991
1992 /* no need for the parport anymore */
1993 spin_unlock_irq(&pprt_lock);
1994 }
1995
1996 if (!inputs_stable || phys_curr != phys_prev)
1997 panel_process_inputs();
1998 }
1999
2000 if (lcd.enabled && lcd.initialized) {
2001 if (keypressed) {
2002 if (lcd.light_tempo == 0 &&
2003 ((lcd.flags & LCD_FLAG_L) == 0))
2004 lcd_backlight(1);
2005 lcd.light_tempo = FLASH_LIGHT_TEMPO;
2006 } else if (lcd.light_tempo > 0) {
2007 lcd.light_tempo--;
2008 if (lcd.light_tempo == 0 &&
2009 ((lcd.flags & LCD_FLAG_L) == 0))
2010 lcd_backlight(0);
2011 }
2012 }
2013
2014 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2015 }
2016
2017 static void init_scan_timer(void)
2018 {
2019 if (scan_timer.function)
2020 return; /* already started */
2021
2022 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2023 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2024 add_timer(&scan_timer);
2025 }
2026
2027 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2028 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2029 * corresponding to out and in bits respectively.
2030 * returns 1 if ok, 0 if error (in which case, nothing is written).
2031 */
2032 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
2033 u8 *imask, u8 *omask)
2034 {
2035 const char sigtab[] = "EeSsPpAaBb";
2036 u8 im, om;
2037 __u64 m, v;
2038
2039 om = 0;
2040 im = 0;
2041 m = 0ULL;
2042 v = 0ULL;
2043 while (*name) {
2044 int in, out, bit, neg;
2045 const char *idx;
2046
2047 idx = strchr(sigtab, *name);
2048 if (!idx)
2049 return 0; /* input name not found */
2050
2051 in = idx - sigtab;
2052 neg = (in & 1); /* odd (lower) names are negated */
2053 in >>= 1;
2054 im |= BIT(in);
2055
2056 name++;
2057 if (*name >= '0' && *name <= '7') {
2058 out = *name - '0';
2059 om |= BIT(out);
2060 } else if (*name == '-') {
2061 out = 8;
2062 } else {
2063 return 0; /* unknown bit name */
2064 }
2065
2066 bit = (out * 5) + in;
2067
2068 m |= 1ULL << bit;
2069 if (!neg)
2070 v |= 1ULL << bit;
2071 name++;
2072 }
2073 *mask = m;
2074 *value = v;
2075 if (imask)
2076 *imask |= im;
2077 if (omask)
2078 *omask |= om;
2079 return 1;
2080 }
2081
2082 /* tries to bind a key to the signal name <name>. The key will send the
2083 * strings <press>, <repeat>, <release> for these respective events.
2084 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2085 */
2086 static struct logical_input *panel_bind_key(const char *name, const char *press,
2087 const char *repeat,
2088 const char *release)
2089 {
2090 struct logical_input *key;
2091
2092 key = kzalloc(sizeof(*key), GFP_KERNEL);
2093 if (!key)
2094 return NULL;
2095
2096 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2097 &scan_mask_o)) {
2098 kfree(key);
2099 return NULL;
2100 }
2101
2102 key->type = INPUT_TYPE_KBD;
2103 key->state = INPUT_ST_LOW;
2104 key->rise_time = 1;
2105 key->fall_time = 1;
2106
2107 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2108 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2109 strncpy(key->u.kbd.release_str, release,
2110 sizeof(key->u.kbd.release_str));
2111 list_add(&key->list, &logical_inputs);
2112 return key;
2113 }
2114
2115 #if 0
2116 /* tries to bind a callback function to the signal name <name>. The function
2117 * <press_fct> will be called with the <press_data> arg when the signal is
2118 * activated, and so on for <release_fct>/<release_data>
2119 * Returns the pointer to the new signal if ok, NULL if the signal could not
2120 * be bound.
2121 */
2122 static struct logical_input *panel_bind_callback(char *name,
2123 void (*press_fct)(int),
2124 int press_data,
2125 void (*release_fct)(int),
2126 int release_data)
2127 {
2128 struct logical_input *callback;
2129
2130 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2131 if (!callback)
2132 return NULL;
2133
2134 memset(callback, 0, sizeof(struct logical_input));
2135 if (!input_name2mask(name, &callback->mask, &callback->value,
2136 &scan_mask_i, &scan_mask_o))
2137 return NULL;
2138
2139 callback->type = INPUT_TYPE_STD;
2140 callback->state = INPUT_ST_LOW;
2141 callback->rise_time = 1;
2142 callback->fall_time = 1;
2143 callback->u.std.press_fct = press_fct;
2144 callback->u.std.press_data = press_data;
2145 callback->u.std.release_fct = release_fct;
2146 callback->u.std.release_data = release_data;
2147 list_add(&callback->list, &logical_inputs);
2148 return callback;
2149 }
2150 #endif
2151
2152 static void keypad_init(void)
2153 {
2154 int keynum;
2155
2156 init_waitqueue_head(&keypad_read_wait);
2157 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2158
2159 /* Let's create all known keys */
2160
2161 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2162 panel_bind_key(keypad_profile[keynum][0],
2163 keypad_profile[keynum][1],
2164 keypad_profile[keynum][2],
2165 keypad_profile[keynum][3]);
2166 }
2167
2168 init_scan_timer();
2169 keypad_initialized = 1;
2170 }
2171
2172 /**************************************************/
2173 /* device initialization */
2174 /**************************************************/
2175
2176 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2177 void *unused)
2178 {
2179 if (lcd.enabled && lcd.initialized) {
2180 switch (code) {
2181 case SYS_DOWN:
2182 panel_lcd_print
2183 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2184 break;
2185 case SYS_HALT:
2186 panel_lcd_print
2187 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2188 break;
2189 case SYS_POWER_OFF:
2190 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2191 break;
2192 default:
2193 break;
2194 }
2195 }
2196 return NOTIFY_DONE;
2197 }
2198
2199 static struct notifier_block panel_notifier = {
2200 panel_notify_sys,
2201 NULL,
2202 0
2203 };
2204
2205 static void panel_attach(struct parport *port)
2206 {
2207 struct pardev_cb panel_cb;
2208
2209 if (port->number != parport)
2210 return;
2211
2212 if (pprt) {
2213 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2214 __func__, port->number, parport);
2215 return;
2216 }
2217
2218 memset(&panel_cb, 0, sizeof(panel_cb));
2219 panel_cb.private = &pprt;
2220 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2221
2222 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2223 if (!pprt) {
2224 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2225 __func__, port->number, parport);
2226 return;
2227 }
2228
2229 if (parport_claim(pprt)) {
2230 pr_err("could not claim access to parport%d. Aborting.\n",
2231 parport);
2232 goto err_unreg_device;
2233 }
2234
2235 /* must init LCD first, just in case an IRQ from the keypad is
2236 * generated at keypad init
2237 */
2238 if (lcd.enabled) {
2239 lcd_init();
2240 if (misc_register(&lcd_dev))
2241 goto err_unreg_device;
2242 }
2243
2244 if (keypad.enabled) {
2245 keypad_init();
2246 if (misc_register(&keypad_dev))
2247 goto err_lcd_unreg;
2248 }
2249 register_reboot_notifier(&panel_notifier);
2250 return;
2251
2252 err_lcd_unreg:
2253 if (lcd.enabled)
2254 misc_deregister(&lcd_dev);
2255 err_unreg_device:
2256 parport_unregister_device(pprt);
2257 pprt = NULL;
2258 }
2259
2260 static void panel_detach(struct parport *port)
2261 {
2262 if (port->number != parport)
2263 return;
2264
2265 if (!pprt) {
2266 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2267 __func__, port->number, parport);
2268 return;
2269 }
2270 if (scan_timer.function)
2271 del_timer_sync(&scan_timer);
2272
2273 if (pprt) {
2274 if (keypad.enabled) {
2275 misc_deregister(&keypad_dev);
2276 keypad_initialized = 0;
2277 }
2278
2279 if (lcd.enabled) {
2280 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2281 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2282 misc_deregister(&lcd_dev);
2283 lcd.initialized = false;
2284 }
2285
2286 /* TODO: free all input signals */
2287 parport_release(pprt);
2288 parport_unregister_device(pprt);
2289 pprt = NULL;
2290 unregister_reboot_notifier(&panel_notifier);
2291 }
2292 }
2293
2294 static struct parport_driver panel_driver = {
2295 .name = "panel",
2296 .match_port = panel_attach,
2297 .detach = panel_detach,
2298 .devmodel = true,
2299 };
2300
2301 /* init function */
2302 static int __init panel_init_module(void)
2303 {
2304 int selected_keypad_type = NOT_SET, err;
2305
2306 /* take care of an eventual profile */
2307 switch (profile) {
2308 case PANEL_PROFILE_CUSTOM:
2309 /* custom profile */
2310 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2311 selected_lcd_type = DEFAULT_LCD_TYPE;
2312 break;
2313 case PANEL_PROFILE_OLD:
2314 /* 8 bits, 2*16, old keypad */
2315 selected_keypad_type = KEYPAD_TYPE_OLD;
2316 selected_lcd_type = LCD_TYPE_OLD;
2317
2318 /* TODO: This two are a little hacky, sort it out later */
2319 if (lcd_width == NOT_SET)
2320 lcd_width = 16;
2321 if (lcd_hwidth == NOT_SET)
2322 lcd_hwidth = 16;
2323 break;
2324 case PANEL_PROFILE_NEW:
2325 /* serial, 2*16, new keypad */
2326 selected_keypad_type = KEYPAD_TYPE_NEW;
2327 selected_lcd_type = LCD_TYPE_KS0074;
2328 break;
2329 case PANEL_PROFILE_HANTRONIX:
2330 /* 8 bits, 2*16 hantronix-like, no keypad */
2331 selected_keypad_type = KEYPAD_TYPE_NONE;
2332 selected_lcd_type = LCD_TYPE_HANTRONIX;
2333 break;
2334 case PANEL_PROFILE_NEXCOM:
2335 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2336 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2337 selected_lcd_type = LCD_TYPE_NEXCOM;
2338 break;
2339 case PANEL_PROFILE_LARGE:
2340 /* 8 bits, 2*40, old keypad */
2341 selected_keypad_type = KEYPAD_TYPE_OLD;
2342 selected_lcd_type = LCD_TYPE_OLD;
2343 break;
2344 }
2345
2346 /*
2347 * Overwrite selection with module param values (both keypad and lcd),
2348 * where the deprecated params have lower prio.
2349 */
2350 if (keypad_enabled != NOT_SET)
2351 selected_keypad_type = keypad_enabled;
2352 if (keypad_type != NOT_SET)
2353 selected_keypad_type = keypad_type;
2354
2355 keypad.enabled = (selected_keypad_type > 0);
2356
2357 if (lcd_enabled != NOT_SET)
2358 selected_lcd_type = lcd_enabled;
2359 if (lcd_type != NOT_SET)
2360 selected_lcd_type = lcd_type;
2361
2362 lcd.enabled = (selected_lcd_type > 0);
2363
2364 if (lcd.enabled) {
2365 /*
2366 * Init lcd struct with load-time values to preserve exact
2367 * current functionality (at least for now).
2368 */
2369 lcd.height = lcd_height;
2370 lcd.width = lcd_width;
2371 lcd.bwidth = lcd_bwidth;
2372 lcd.hwidth = lcd_hwidth;
2373 lcd.charset = lcd_charset;
2374 lcd.proto = lcd_proto;
2375 lcd.pins.e = lcd_e_pin;
2376 lcd.pins.rs = lcd_rs_pin;
2377 lcd.pins.rw = lcd_rw_pin;
2378 lcd.pins.cl = lcd_cl_pin;
2379 lcd.pins.da = lcd_da_pin;
2380 lcd.pins.bl = lcd_bl_pin;
2381
2382 /* Leave it for now, just in case */
2383 lcd.esc_seq.len = -1;
2384 }
2385
2386 switch (selected_keypad_type) {
2387 case KEYPAD_TYPE_OLD:
2388 keypad_profile = old_keypad_profile;
2389 break;
2390 case KEYPAD_TYPE_NEW:
2391 keypad_profile = new_keypad_profile;
2392 break;
2393 case KEYPAD_TYPE_NEXCOM:
2394 keypad_profile = nexcom_keypad_profile;
2395 break;
2396 default:
2397 keypad_profile = NULL;
2398 break;
2399 }
2400
2401 if (!lcd.enabled && !keypad.enabled) {
2402 /* no device enabled, let's exit */
2403 pr_err("driver version " PANEL_VERSION " disabled.\n");
2404 return -ENODEV;
2405 }
2406
2407 err = parport_register_driver(&panel_driver);
2408 if (err) {
2409 pr_err("could not register with parport. Aborting.\n");
2410 return err;
2411 }
2412
2413 if (pprt)
2414 pr_info("driver version " PANEL_VERSION
2415 " registered on parport%d (io=0x%lx).\n", parport,
2416 pprt->port->base);
2417 else
2418 pr_info("driver version " PANEL_VERSION
2419 " not yet registered\n");
2420 return 0;
2421 }
2422
2423 static void __exit panel_cleanup_module(void)
2424 {
2425 parport_unregister_driver(&panel_driver);
2426 }
2427
2428 module_init(panel_init_module);
2429 module_exit(panel_cleanup_module);
2430 MODULE_AUTHOR("Willy Tarreau");
2431 MODULE_LICENSE("GPL");
2432
2433 /*
2434 * Local variables:
2435 * c-indent-level: 4
2436 * tab-width: 8
2437 * End:
2438 */