]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/misc/sgi-gru/grufault.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / misc / sgi-gru / grufault.c
1 /*
2 * SN Platform GRU Driver
3 *
4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES
5 *
6 * This file contains code that handles TLB misses within the GRU.
7 * These misses are reported either via interrupts or user polling of
8 * the user CB.
9 *
10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <linux/prefetch.h>
37 #include <asm/pgtable.h>
38 #include "gru.h"
39 #include "grutables.h"
40 #include "grulib.h"
41 #include "gru_instructions.h"
42 #include <asm/uv/uv_hub.h>
43
44 /* Return codes for vtop functions */
45 #define VTOP_SUCCESS 0
46 #define VTOP_INVALID -1
47 #define VTOP_RETRY -2
48
49
50 /*
51 * Test if a physical address is a valid GRU GSEG address
52 */
53 static inline int is_gru_paddr(unsigned long paddr)
54 {
55 return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56 }
57
58 /*
59 * Find the vma of a GRU segment. Caller must hold mmap_sem.
60 */
61 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62 {
63 struct vm_area_struct *vma;
64
65 vma = find_vma(current->mm, vaddr);
66 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67 return vma;
68 return NULL;
69 }
70
71 /*
72 * Find and lock the gts that contains the specified user vaddr.
73 *
74 * Returns:
75 * - *gts with the mmap_sem locked for read and the GTS locked.
76 * - NULL if vaddr invalid OR is not a valid GSEG vaddr.
77 */
78
79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80 {
81 struct mm_struct *mm = current->mm;
82 struct vm_area_struct *vma;
83 struct gru_thread_state *gts = NULL;
84
85 down_read(&mm->mmap_sem);
86 vma = gru_find_vma(vaddr);
87 if (vma)
88 gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89 if (gts)
90 mutex_lock(&gts->ts_ctxlock);
91 else
92 up_read(&mm->mmap_sem);
93 return gts;
94 }
95
96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97 {
98 struct mm_struct *mm = current->mm;
99 struct vm_area_struct *vma;
100 struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101
102 down_write(&mm->mmap_sem);
103 vma = gru_find_vma(vaddr);
104 if (!vma)
105 goto err;
106
107 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108 if (IS_ERR(gts))
109 goto err;
110 mutex_lock(&gts->ts_ctxlock);
111 downgrade_write(&mm->mmap_sem);
112 return gts;
113
114 err:
115 up_write(&mm->mmap_sem);
116 return gts;
117 }
118
119 /*
120 * Unlock a GTS that was previously locked with gru_find_lock_gts().
121 */
122 static void gru_unlock_gts(struct gru_thread_state *gts)
123 {
124 mutex_unlock(&gts->ts_ctxlock);
125 up_read(&current->mm->mmap_sem);
126 }
127
128 /*
129 * Set a CB.istatus to active using a user virtual address. This must be done
130 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131 * If the line is evicted, the status may be lost. The in-cache update
132 * is necessary to prevent the user from seeing a stale cb.istatus that will
133 * change as soon as the TFH restart is complete. Races may cause an
134 * occasional failure to clear the cb.istatus, but that is ok.
135 */
136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137 {
138 if (cbk) {
139 cbk->istatus = CBS_ACTIVE;
140 }
141 }
142
143 /*
144 * Read & clear a TFM
145 *
146 * The GRU has an array of fault maps. A map is private to a cpu
147 * Only one cpu will be accessing a cpu's fault map.
148 *
149 * This function scans the cpu-private fault map & clears all bits that
150 * are set. The function returns a bitmap that indicates the bits that
151 * were cleared. Note that sense the maps may be updated asynchronously by
152 * the GRU, atomic operations must be used to clear bits.
153 */
154 static void get_clear_fault_map(struct gru_state *gru,
155 struct gru_tlb_fault_map *imap,
156 struct gru_tlb_fault_map *dmap)
157 {
158 unsigned long i, k;
159 struct gru_tlb_fault_map *tfm;
160
161 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162 prefetchw(tfm); /* Helps on hardware, required for emulator */
163 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164 k = tfm->fault_bits[i];
165 if (k)
166 k = xchg(&tfm->fault_bits[i], 0UL);
167 imap->fault_bits[i] = k;
168 k = tfm->done_bits[i];
169 if (k)
170 k = xchg(&tfm->done_bits[i], 0UL);
171 dmap->fault_bits[i] = k;
172 }
173
174 /*
175 * Not functionally required but helps performance. (Required
176 * on emulator)
177 */
178 gru_flush_cache(tfm);
179 }
180
181 /*
182 * Atomic (interrupt context) & non-atomic (user context) functions to
183 * convert a vaddr into a physical address. The size of the page
184 * is returned in pageshift.
185 * returns:
186 * 0 - successful
187 * < 0 - error code
188 * 1 - (atomic only) try again in non-atomic context
189 */
190 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191 unsigned long vaddr, int write,
192 unsigned long *paddr, int *pageshift)
193 {
194 struct page *page;
195
196 #ifdef CONFIG_HUGETLB_PAGE
197 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198 #else
199 *pageshift = PAGE_SHIFT;
200 #endif
201 if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
202 return -EFAULT;
203 *paddr = page_to_phys(page);
204 put_page(page);
205 return 0;
206 }
207
208 /*
209 * atomic_pte_lookup
210 *
211 * Convert a user virtual address to a physical address
212 * Only supports Intel large pages (2MB only) on x86_64.
213 * ZZZ - hugepage support is incomplete
214 *
215 * NOTE: mmap_sem is already held on entry to this function. This
216 * guarantees existence of the page tables.
217 */
218 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
219 int write, unsigned long *paddr, int *pageshift)
220 {
221 pgd_t *pgdp;
222 pmd_t *pmdp;
223 pud_t *pudp;
224 pte_t pte;
225
226 pgdp = pgd_offset(vma->vm_mm, vaddr);
227 if (unlikely(pgd_none(*pgdp)))
228 goto err;
229
230 pudp = pud_offset(pgdp, vaddr);
231 if (unlikely(pud_none(*pudp)))
232 goto err;
233
234 pmdp = pmd_offset(pudp, vaddr);
235 if (unlikely(pmd_none(*pmdp)))
236 goto err;
237 #ifdef CONFIG_X86_64
238 if (unlikely(pmd_large(*pmdp)))
239 pte = *(pte_t *) pmdp;
240 else
241 #endif
242 pte = *pte_offset_kernel(pmdp, vaddr);
243
244 if (unlikely(!pte_present(pte) ||
245 (write && (!pte_write(pte) || !pte_dirty(pte)))))
246 return 1;
247
248 *paddr = pte_pfn(pte) << PAGE_SHIFT;
249 #ifdef CONFIG_HUGETLB_PAGE
250 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
251 #else
252 *pageshift = PAGE_SHIFT;
253 #endif
254 return 0;
255
256 err:
257 return 1;
258 }
259
260 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
261 int write, int atomic, unsigned long *gpa, int *pageshift)
262 {
263 struct mm_struct *mm = gts->ts_mm;
264 struct vm_area_struct *vma;
265 unsigned long paddr;
266 int ret, ps;
267
268 vma = find_vma(mm, vaddr);
269 if (!vma)
270 goto inval;
271
272 /*
273 * Atomic lookup is faster & usually works even if called in non-atomic
274 * context.
275 */
276 rmb(); /* Must/check ms_range_active before loading PTEs */
277 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
278 if (ret) {
279 if (atomic)
280 goto upm;
281 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
282 goto inval;
283 }
284 if (is_gru_paddr(paddr))
285 goto inval;
286 paddr = paddr & ~((1UL << ps) - 1);
287 *gpa = uv_soc_phys_ram_to_gpa(paddr);
288 *pageshift = ps;
289 return VTOP_SUCCESS;
290
291 inval:
292 return VTOP_INVALID;
293 upm:
294 return VTOP_RETRY;
295 }
296
297
298 /*
299 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
300 * CBE cacheline so that the line will be written back to home agent.
301 * Otherwise the line may be silently dropped. This has no impact
302 * except on performance.
303 */
304 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
305 {
306 if (unlikely(cbe)) {
307 cbe->cbrexecstatus = 0; /* make CL dirty */
308 gru_flush_cache(cbe);
309 }
310 }
311
312 /*
313 * Preload the TLB with entries that may be required. Currently, preloading
314 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
315 * the end of the bcopy tranfer, whichever is smaller.
316 */
317 static void gru_preload_tlb(struct gru_state *gru,
318 struct gru_thread_state *gts, int atomic,
319 unsigned long fault_vaddr, int asid, int write,
320 unsigned char tlb_preload_count,
321 struct gru_tlb_fault_handle *tfh,
322 struct gru_control_block_extended *cbe)
323 {
324 unsigned long vaddr = 0, gpa;
325 int ret, pageshift;
326
327 if (cbe->opccpy != OP_BCOPY)
328 return;
329
330 if (fault_vaddr == cbe->cbe_baddr0)
331 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
332 else if (fault_vaddr == cbe->cbe_baddr1)
333 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
334
335 fault_vaddr &= PAGE_MASK;
336 vaddr &= PAGE_MASK;
337 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
338
339 while (vaddr > fault_vaddr) {
340 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
341 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
342 GRU_PAGESIZE(pageshift)))
343 return;
344 gru_dbg(grudev,
345 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
346 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
347 vaddr, asid, write, pageshift, gpa);
348 vaddr -= PAGE_SIZE;
349 STAT(tlb_preload_page);
350 }
351 }
352
353 /*
354 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
355 * Input:
356 * cb Address of user CBR. Null if not running in user context
357 * Return:
358 * 0 = dropin, exception, or switch to UPM successful
359 * 1 = range invalidate active
360 * < 0 = error code
361 *
362 */
363 static int gru_try_dropin(struct gru_state *gru,
364 struct gru_thread_state *gts,
365 struct gru_tlb_fault_handle *tfh,
366 struct gru_instruction_bits *cbk)
367 {
368 struct gru_control_block_extended *cbe = NULL;
369 unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
370 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
371 unsigned long gpa = 0, vaddr = 0;
372
373 /*
374 * NOTE: The GRU contains magic hardware that eliminates races between
375 * TLB invalidates and TLB dropins. If an invalidate occurs
376 * in the window between reading the TFH and the subsequent TLB dropin,
377 * the dropin is ignored. This eliminates the need for additional locks.
378 */
379
380 /*
381 * Prefetch the CBE if doing TLB preloading
382 */
383 if (unlikely(tlb_preload_count)) {
384 cbe = gru_tfh_to_cbe(tfh);
385 prefetchw(cbe);
386 }
387
388 /*
389 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
390 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
391 * is a transient state.
392 */
393 if (tfh->status != TFHSTATUS_EXCEPTION) {
394 gru_flush_cache(tfh);
395 sync_core();
396 if (tfh->status != TFHSTATUS_EXCEPTION)
397 goto failnoexception;
398 STAT(tfh_stale_on_fault);
399 }
400 if (tfh->state == TFHSTATE_IDLE)
401 goto failidle;
402 if (tfh->state == TFHSTATE_MISS_FMM && cbk)
403 goto failfmm;
404
405 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
406 vaddr = tfh->missvaddr;
407 asid = tfh->missasid;
408 indexway = tfh->indexway;
409 if (asid == 0)
410 goto failnoasid;
411
412 rmb(); /* TFH must be cache resident before reading ms_range_active */
413
414 /*
415 * TFH is cache resident - at least briefly. Fail the dropin
416 * if a range invalidate is active.
417 */
418 if (atomic_read(&gts->ts_gms->ms_range_active))
419 goto failactive;
420
421 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
422 if (ret == VTOP_INVALID)
423 goto failinval;
424 if (ret == VTOP_RETRY)
425 goto failupm;
426
427 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
428 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
429 if (atomic || !gru_update_cch(gts)) {
430 gts->ts_force_cch_reload = 1;
431 goto failupm;
432 }
433 }
434
435 if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
436 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
437 gru_flush_cache_cbe(cbe);
438 }
439
440 gru_cb_set_istatus_active(cbk);
441 gts->ustats.tlbdropin++;
442 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
443 GRU_PAGESIZE(pageshift));
444 gru_dbg(grudev,
445 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
446 " rw %d, ps %d, gpa 0x%lx\n",
447 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
448 indexway, write, pageshift, gpa);
449 STAT(tlb_dropin);
450 return 0;
451
452 failnoasid:
453 /* No asid (delayed unload). */
454 STAT(tlb_dropin_fail_no_asid);
455 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
456 if (!cbk)
457 tfh_user_polling_mode(tfh);
458 else
459 gru_flush_cache(tfh);
460 gru_flush_cache_cbe(cbe);
461 return -EAGAIN;
462
463 failupm:
464 /* Atomic failure switch CBR to UPM */
465 tfh_user_polling_mode(tfh);
466 gru_flush_cache_cbe(cbe);
467 STAT(tlb_dropin_fail_upm);
468 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
469 return 1;
470
471 failfmm:
472 /* FMM state on UPM call */
473 gru_flush_cache(tfh);
474 gru_flush_cache_cbe(cbe);
475 STAT(tlb_dropin_fail_fmm);
476 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
477 return 0;
478
479 failnoexception:
480 /* TFH status did not show exception pending */
481 gru_flush_cache(tfh);
482 gru_flush_cache_cbe(cbe);
483 if (cbk)
484 gru_flush_cache(cbk);
485 STAT(tlb_dropin_fail_no_exception);
486 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
487 tfh, tfh->status, tfh->state);
488 return 0;
489
490 failidle:
491 /* TFH state was idle - no miss pending */
492 gru_flush_cache(tfh);
493 gru_flush_cache_cbe(cbe);
494 if (cbk)
495 gru_flush_cache(cbk);
496 STAT(tlb_dropin_fail_idle);
497 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
498 return 0;
499
500 failinval:
501 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
502 tfh_exception(tfh);
503 gru_flush_cache_cbe(cbe);
504 STAT(tlb_dropin_fail_invalid);
505 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
506 return -EFAULT;
507
508 failactive:
509 /* Range invalidate active. Switch to UPM iff atomic */
510 if (!cbk)
511 tfh_user_polling_mode(tfh);
512 else
513 gru_flush_cache(tfh);
514 gru_flush_cache_cbe(cbe);
515 STAT(tlb_dropin_fail_range_active);
516 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
517 tfh, vaddr);
518 return 1;
519 }
520
521 /*
522 * Process an external interrupt from the GRU. This interrupt is
523 * caused by a TLB miss.
524 * Note that this is the interrupt handler that is registered with linux
525 * interrupt handlers.
526 */
527 static irqreturn_t gru_intr(int chiplet, int blade)
528 {
529 struct gru_state *gru;
530 struct gru_tlb_fault_map imap, dmap;
531 struct gru_thread_state *gts;
532 struct gru_tlb_fault_handle *tfh = NULL;
533 struct completion *cmp;
534 int cbrnum, ctxnum;
535
536 STAT(intr);
537
538 gru = &gru_base[blade]->bs_grus[chiplet];
539 if (!gru) {
540 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
541 raw_smp_processor_id(), chiplet);
542 return IRQ_NONE;
543 }
544 get_clear_fault_map(gru, &imap, &dmap);
545 gru_dbg(grudev,
546 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
547 smp_processor_id(), chiplet, gru->gs_gid,
548 imap.fault_bits[0], imap.fault_bits[1],
549 dmap.fault_bits[0], dmap.fault_bits[1]);
550
551 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
552 STAT(intr_cbr);
553 cmp = gru->gs_blade->bs_async_wq;
554 if (cmp)
555 complete(cmp);
556 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
557 gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
558 }
559
560 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
561 STAT(intr_tfh);
562 tfh = get_tfh_by_index(gru, cbrnum);
563 prefetchw(tfh); /* Helps on hdw, required for emulator */
564
565 /*
566 * When hardware sets a bit in the faultmap, it implicitly
567 * locks the GRU context so that it cannot be unloaded.
568 * The gts cannot change until a TFH start/writestart command
569 * is issued.
570 */
571 ctxnum = tfh->ctxnum;
572 gts = gru->gs_gts[ctxnum];
573
574 /* Spurious interrupts can cause this. Ignore. */
575 if (!gts) {
576 STAT(intr_spurious);
577 continue;
578 }
579
580 /*
581 * This is running in interrupt context. Trylock the mmap_sem.
582 * If it fails, retry the fault in user context.
583 */
584 gts->ustats.fmm_tlbmiss++;
585 if (!gts->ts_force_cch_reload &&
586 down_read_trylock(&gts->ts_mm->mmap_sem)) {
587 gru_try_dropin(gru, gts, tfh, NULL);
588 up_read(&gts->ts_mm->mmap_sem);
589 } else {
590 tfh_user_polling_mode(tfh);
591 STAT(intr_mm_lock_failed);
592 }
593 }
594 return IRQ_HANDLED;
595 }
596
597 irqreturn_t gru0_intr(int irq, void *dev_id)
598 {
599 return gru_intr(0, uv_numa_blade_id());
600 }
601
602 irqreturn_t gru1_intr(int irq, void *dev_id)
603 {
604 return gru_intr(1, uv_numa_blade_id());
605 }
606
607 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
608 {
609 int blade;
610
611 for_each_possible_blade(blade) {
612 if (uv_blade_nr_possible_cpus(blade))
613 continue;
614 gru_intr(0, blade);
615 gru_intr(1, blade);
616 }
617 return IRQ_HANDLED;
618 }
619
620
621 static int gru_user_dropin(struct gru_thread_state *gts,
622 struct gru_tlb_fault_handle *tfh,
623 void *cb)
624 {
625 struct gru_mm_struct *gms = gts->ts_gms;
626 int ret;
627
628 gts->ustats.upm_tlbmiss++;
629 while (1) {
630 wait_event(gms->ms_wait_queue,
631 atomic_read(&gms->ms_range_active) == 0);
632 prefetchw(tfh); /* Helps on hdw, required for emulator */
633 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
634 if (ret <= 0)
635 return ret;
636 STAT(call_os_wait_queue);
637 }
638 }
639
640 /*
641 * This interface is called as a result of a user detecting a "call OS" bit
642 * in a user CB. Normally means that a TLB fault has occurred.
643 * cb - user virtual address of the CB
644 */
645 int gru_handle_user_call_os(unsigned long cb)
646 {
647 struct gru_tlb_fault_handle *tfh;
648 struct gru_thread_state *gts;
649 void *cbk;
650 int ucbnum, cbrnum, ret = -EINVAL;
651
652 STAT(call_os);
653
654 /* sanity check the cb pointer */
655 ucbnum = get_cb_number((void *)cb);
656 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
657 return -EINVAL;
658
659 gts = gru_find_lock_gts(cb);
660 if (!gts)
661 return -EINVAL;
662 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
663
664 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
665 goto exit;
666
667 gru_check_context_placement(gts);
668
669 /*
670 * CCH may contain stale data if ts_force_cch_reload is set.
671 */
672 if (gts->ts_gru && gts->ts_force_cch_reload) {
673 gts->ts_force_cch_reload = 0;
674 gru_update_cch(gts);
675 }
676
677 ret = -EAGAIN;
678 cbrnum = thread_cbr_number(gts, ucbnum);
679 if (gts->ts_gru) {
680 tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
681 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
682 gts->ts_ctxnum, ucbnum);
683 ret = gru_user_dropin(gts, tfh, cbk);
684 }
685 exit:
686 gru_unlock_gts(gts);
687 return ret;
688 }
689
690 /*
691 * Fetch the exception detail information for a CB that terminated with
692 * an exception.
693 */
694 int gru_get_exception_detail(unsigned long arg)
695 {
696 struct control_block_extended_exc_detail excdet;
697 struct gru_control_block_extended *cbe;
698 struct gru_thread_state *gts;
699 int ucbnum, cbrnum, ret;
700
701 STAT(user_exception);
702 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
703 return -EFAULT;
704
705 gts = gru_find_lock_gts(excdet.cb);
706 if (!gts)
707 return -EINVAL;
708
709 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
710 ucbnum = get_cb_number((void *)excdet.cb);
711 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
712 ret = -EINVAL;
713 } else if (gts->ts_gru) {
714 cbrnum = thread_cbr_number(gts, ucbnum);
715 cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
716 gru_flush_cache(cbe); /* CBE not coherent */
717 sync_core(); /* make sure we are have current data */
718 excdet.opc = cbe->opccpy;
719 excdet.exopc = cbe->exopccpy;
720 excdet.ecause = cbe->ecause;
721 excdet.exceptdet0 = cbe->idef1upd;
722 excdet.exceptdet1 = cbe->idef3upd;
723 excdet.cbrstate = cbe->cbrstate;
724 excdet.cbrexecstatus = cbe->cbrexecstatus;
725 gru_flush_cache_cbe(cbe);
726 ret = 0;
727 } else {
728 ret = -EAGAIN;
729 }
730 gru_unlock_gts(gts);
731
732 gru_dbg(grudev,
733 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
734 "exdet0 0x%lx, exdet1 0x%x\n",
735 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
736 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
737 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
738 ret = -EFAULT;
739 return ret;
740 }
741
742 /*
743 * User request to unload a context. Content is saved for possible reload.
744 */
745 static int gru_unload_all_contexts(void)
746 {
747 struct gru_thread_state *gts;
748 struct gru_state *gru;
749 int gid, ctxnum;
750
751 if (!capable(CAP_SYS_ADMIN))
752 return -EPERM;
753 foreach_gid(gid) {
754 gru = GID_TO_GRU(gid);
755 spin_lock(&gru->gs_lock);
756 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
757 gts = gru->gs_gts[ctxnum];
758 if (gts && mutex_trylock(&gts->ts_ctxlock)) {
759 spin_unlock(&gru->gs_lock);
760 gru_unload_context(gts, 1);
761 mutex_unlock(&gts->ts_ctxlock);
762 spin_lock(&gru->gs_lock);
763 }
764 }
765 spin_unlock(&gru->gs_lock);
766 }
767 return 0;
768 }
769
770 int gru_user_unload_context(unsigned long arg)
771 {
772 struct gru_thread_state *gts;
773 struct gru_unload_context_req req;
774
775 STAT(user_unload_context);
776 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
777 return -EFAULT;
778
779 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
780
781 if (!req.gseg)
782 return gru_unload_all_contexts();
783
784 gts = gru_find_lock_gts(req.gseg);
785 if (!gts)
786 return -EINVAL;
787
788 if (gts->ts_gru)
789 gru_unload_context(gts, 1);
790 gru_unlock_gts(gts);
791
792 return 0;
793 }
794
795 /*
796 * User request to flush a range of virtual addresses from the GRU TLB
797 * (Mainly for testing).
798 */
799 int gru_user_flush_tlb(unsigned long arg)
800 {
801 struct gru_thread_state *gts;
802 struct gru_flush_tlb_req req;
803 struct gru_mm_struct *gms;
804
805 STAT(user_flush_tlb);
806 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
807 return -EFAULT;
808
809 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
810 req.vaddr, req.len);
811
812 gts = gru_find_lock_gts(req.gseg);
813 if (!gts)
814 return -EINVAL;
815
816 gms = gts->ts_gms;
817 gru_unlock_gts(gts);
818 gru_flush_tlb_range(gms, req.vaddr, req.len);
819
820 return 0;
821 }
822
823 /*
824 * Fetch GSEG statisticss
825 */
826 long gru_get_gseg_statistics(unsigned long arg)
827 {
828 struct gru_thread_state *gts;
829 struct gru_get_gseg_statistics_req req;
830
831 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
832 return -EFAULT;
833
834 /*
835 * The library creates arrays of contexts for threaded programs.
836 * If no gts exists in the array, the context has never been used & all
837 * statistics are implicitly 0.
838 */
839 gts = gru_find_lock_gts(req.gseg);
840 if (gts) {
841 memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
842 gru_unlock_gts(gts);
843 } else {
844 memset(&req.stats, 0, sizeof(gts->ustats));
845 }
846
847 if (copy_to_user((void __user *)arg, &req, sizeof(req)))
848 return -EFAULT;
849
850 return 0;
851 }
852
853 /*
854 * Register the current task as the user of the GSEG slice.
855 * Needed for TLB fault interrupt targeting.
856 */
857 int gru_set_context_option(unsigned long arg)
858 {
859 struct gru_thread_state *gts;
860 struct gru_set_context_option_req req;
861 int ret = 0;
862
863 STAT(set_context_option);
864 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
865 return -EFAULT;
866 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
867
868 gts = gru_find_lock_gts(req.gseg);
869 if (!gts) {
870 gts = gru_alloc_locked_gts(req.gseg);
871 if (IS_ERR(gts))
872 return PTR_ERR(gts);
873 }
874
875 switch (req.op) {
876 case sco_blade_chiplet:
877 /* Select blade/chiplet for GRU context */
878 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
879 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
880 (req.val1 >= 0 && !gru_base[req.val1])) {
881 ret = -EINVAL;
882 } else {
883 gts->ts_user_blade_id = req.val1;
884 gts->ts_user_chiplet_id = req.val0;
885 gru_check_context_placement(gts);
886 }
887 break;
888 case sco_gseg_owner:
889 /* Register the current task as the GSEG owner */
890 gts->ts_tgid_owner = current->tgid;
891 break;
892 case sco_cch_req_slice:
893 /* Set the CCH slice option */
894 gts->ts_cch_req_slice = req.val1 & 3;
895 break;
896 default:
897 ret = -EINVAL;
898 }
899 gru_unlock_gts(gts);
900
901 return ret;
902 }