]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/misc/sgi-gru/grufault.c
mm: convert generic code to 5-level paging
[mirror_ubuntu-bionic-kernel.git] / drivers / misc / sgi-gru / grufault.c
1 /*
2 * SN Platform GRU Driver
3 *
4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES
5 *
6 * This file contains code that handles TLB misses within the GRU.
7 * These misses are reported either via interrupts or user polling of
8 * the user CB.
9 *
10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <linux/prefetch.h>
37 #include <asm/pgtable.h>
38 #include "gru.h"
39 #include "grutables.h"
40 #include "grulib.h"
41 #include "gru_instructions.h"
42 #include <asm/uv/uv_hub.h>
43
44 /* Return codes for vtop functions */
45 #define VTOP_SUCCESS 0
46 #define VTOP_INVALID -1
47 #define VTOP_RETRY -2
48
49
50 /*
51 * Test if a physical address is a valid GRU GSEG address
52 */
53 static inline int is_gru_paddr(unsigned long paddr)
54 {
55 return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56 }
57
58 /*
59 * Find the vma of a GRU segment. Caller must hold mmap_sem.
60 */
61 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62 {
63 struct vm_area_struct *vma;
64
65 vma = find_vma(current->mm, vaddr);
66 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67 return vma;
68 return NULL;
69 }
70
71 /*
72 * Find and lock the gts that contains the specified user vaddr.
73 *
74 * Returns:
75 * - *gts with the mmap_sem locked for read and the GTS locked.
76 * - NULL if vaddr invalid OR is not a valid GSEG vaddr.
77 */
78
79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80 {
81 struct mm_struct *mm = current->mm;
82 struct vm_area_struct *vma;
83 struct gru_thread_state *gts = NULL;
84
85 down_read(&mm->mmap_sem);
86 vma = gru_find_vma(vaddr);
87 if (vma)
88 gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89 if (gts)
90 mutex_lock(&gts->ts_ctxlock);
91 else
92 up_read(&mm->mmap_sem);
93 return gts;
94 }
95
96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97 {
98 struct mm_struct *mm = current->mm;
99 struct vm_area_struct *vma;
100 struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101
102 down_write(&mm->mmap_sem);
103 vma = gru_find_vma(vaddr);
104 if (!vma)
105 goto err;
106
107 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108 if (IS_ERR(gts))
109 goto err;
110 mutex_lock(&gts->ts_ctxlock);
111 downgrade_write(&mm->mmap_sem);
112 return gts;
113
114 err:
115 up_write(&mm->mmap_sem);
116 return gts;
117 }
118
119 /*
120 * Unlock a GTS that was previously locked with gru_find_lock_gts().
121 */
122 static void gru_unlock_gts(struct gru_thread_state *gts)
123 {
124 mutex_unlock(&gts->ts_ctxlock);
125 up_read(&current->mm->mmap_sem);
126 }
127
128 /*
129 * Set a CB.istatus to active using a user virtual address. This must be done
130 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131 * If the line is evicted, the status may be lost. The in-cache update
132 * is necessary to prevent the user from seeing a stale cb.istatus that will
133 * change as soon as the TFH restart is complete. Races may cause an
134 * occasional failure to clear the cb.istatus, but that is ok.
135 */
136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137 {
138 if (cbk) {
139 cbk->istatus = CBS_ACTIVE;
140 }
141 }
142
143 /*
144 * Read & clear a TFM
145 *
146 * The GRU has an array of fault maps. A map is private to a cpu
147 * Only one cpu will be accessing a cpu's fault map.
148 *
149 * This function scans the cpu-private fault map & clears all bits that
150 * are set. The function returns a bitmap that indicates the bits that
151 * were cleared. Note that sense the maps may be updated asynchronously by
152 * the GRU, atomic operations must be used to clear bits.
153 */
154 static void get_clear_fault_map(struct gru_state *gru,
155 struct gru_tlb_fault_map *imap,
156 struct gru_tlb_fault_map *dmap)
157 {
158 unsigned long i, k;
159 struct gru_tlb_fault_map *tfm;
160
161 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162 prefetchw(tfm); /* Helps on hardware, required for emulator */
163 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164 k = tfm->fault_bits[i];
165 if (k)
166 k = xchg(&tfm->fault_bits[i], 0UL);
167 imap->fault_bits[i] = k;
168 k = tfm->done_bits[i];
169 if (k)
170 k = xchg(&tfm->done_bits[i], 0UL);
171 dmap->fault_bits[i] = k;
172 }
173
174 /*
175 * Not functionally required but helps performance. (Required
176 * on emulator)
177 */
178 gru_flush_cache(tfm);
179 }
180
181 /*
182 * Atomic (interrupt context) & non-atomic (user context) functions to
183 * convert a vaddr into a physical address. The size of the page
184 * is returned in pageshift.
185 * returns:
186 * 0 - successful
187 * < 0 - error code
188 * 1 - (atomic only) try again in non-atomic context
189 */
190 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191 unsigned long vaddr, int write,
192 unsigned long *paddr, int *pageshift)
193 {
194 struct page *page;
195
196 #ifdef CONFIG_HUGETLB_PAGE
197 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198 #else
199 *pageshift = PAGE_SHIFT;
200 #endif
201 if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
202 return -EFAULT;
203 *paddr = page_to_phys(page);
204 put_page(page);
205 return 0;
206 }
207
208 /*
209 * atomic_pte_lookup
210 *
211 * Convert a user virtual address to a physical address
212 * Only supports Intel large pages (2MB only) on x86_64.
213 * ZZZ - hugepage support is incomplete
214 *
215 * NOTE: mmap_sem is already held on entry to this function. This
216 * guarantees existence of the page tables.
217 */
218 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
219 int write, unsigned long *paddr, int *pageshift)
220 {
221 pgd_t *pgdp;
222 p4d_t *p4dp;
223 pud_t *pudp;
224 pmd_t *pmdp;
225 pte_t pte;
226
227 pgdp = pgd_offset(vma->vm_mm, vaddr);
228 if (unlikely(pgd_none(*pgdp)))
229 goto err;
230
231 p4dp = p4d_offset(pgdp, vaddr);
232 if (unlikely(p4d_none(*p4dp)))
233 goto err;
234
235 pudp = pud_offset(p4dp, vaddr);
236 if (unlikely(pud_none(*pudp)))
237 goto err;
238
239 pmdp = pmd_offset(pudp, vaddr);
240 if (unlikely(pmd_none(*pmdp)))
241 goto err;
242 #ifdef CONFIG_X86_64
243 if (unlikely(pmd_large(*pmdp)))
244 pte = *(pte_t *) pmdp;
245 else
246 #endif
247 pte = *pte_offset_kernel(pmdp, vaddr);
248
249 if (unlikely(!pte_present(pte) ||
250 (write && (!pte_write(pte) || !pte_dirty(pte)))))
251 return 1;
252
253 *paddr = pte_pfn(pte) << PAGE_SHIFT;
254 #ifdef CONFIG_HUGETLB_PAGE
255 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
256 #else
257 *pageshift = PAGE_SHIFT;
258 #endif
259 return 0;
260
261 err:
262 return 1;
263 }
264
265 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
266 int write, int atomic, unsigned long *gpa, int *pageshift)
267 {
268 struct mm_struct *mm = gts->ts_mm;
269 struct vm_area_struct *vma;
270 unsigned long paddr;
271 int ret, ps;
272
273 vma = find_vma(mm, vaddr);
274 if (!vma)
275 goto inval;
276
277 /*
278 * Atomic lookup is faster & usually works even if called in non-atomic
279 * context.
280 */
281 rmb(); /* Must/check ms_range_active before loading PTEs */
282 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
283 if (ret) {
284 if (atomic)
285 goto upm;
286 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
287 goto inval;
288 }
289 if (is_gru_paddr(paddr))
290 goto inval;
291 paddr = paddr & ~((1UL << ps) - 1);
292 *gpa = uv_soc_phys_ram_to_gpa(paddr);
293 *pageshift = ps;
294 return VTOP_SUCCESS;
295
296 inval:
297 return VTOP_INVALID;
298 upm:
299 return VTOP_RETRY;
300 }
301
302
303 /*
304 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
305 * CBE cacheline so that the line will be written back to home agent.
306 * Otherwise the line may be silently dropped. This has no impact
307 * except on performance.
308 */
309 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
310 {
311 if (unlikely(cbe)) {
312 cbe->cbrexecstatus = 0; /* make CL dirty */
313 gru_flush_cache(cbe);
314 }
315 }
316
317 /*
318 * Preload the TLB with entries that may be required. Currently, preloading
319 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to
320 * the end of the bcopy tranfer, whichever is smaller.
321 */
322 static void gru_preload_tlb(struct gru_state *gru,
323 struct gru_thread_state *gts, int atomic,
324 unsigned long fault_vaddr, int asid, int write,
325 unsigned char tlb_preload_count,
326 struct gru_tlb_fault_handle *tfh,
327 struct gru_control_block_extended *cbe)
328 {
329 unsigned long vaddr = 0, gpa;
330 int ret, pageshift;
331
332 if (cbe->opccpy != OP_BCOPY)
333 return;
334
335 if (fault_vaddr == cbe->cbe_baddr0)
336 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
337 else if (fault_vaddr == cbe->cbe_baddr1)
338 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
339
340 fault_vaddr &= PAGE_MASK;
341 vaddr &= PAGE_MASK;
342 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
343
344 while (vaddr > fault_vaddr) {
345 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
346 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
347 GRU_PAGESIZE(pageshift)))
348 return;
349 gru_dbg(grudev,
350 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
351 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
352 vaddr, asid, write, pageshift, gpa);
353 vaddr -= PAGE_SIZE;
354 STAT(tlb_preload_page);
355 }
356 }
357
358 /*
359 * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
360 * Input:
361 * cb Address of user CBR. Null if not running in user context
362 * Return:
363 * 0 = dropin, exception, or switch to UPM successful
364 * 1 = range invalidate active
365 * < 0 = error code
366 *
367 */
368 static int gru_try_dropin(struct gru_state *gru,
369 struct gru_thread_state *gts,
370 struct gru_tlb_fault_handle *tfh,
371 struct gru_instruction_bits *cbk)
372 {
373 struct gru_control_block_extended *cbe = NULL;
374 unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
375 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
376 unsigned long gpa = 0, vaddr = 0;
377
378 /*
379 * NOTE: The GRU contains magic hardware that eliminates races between
380 * TLB invalidates and TLB dropins. If an invalidate occurs
381 * in the window between reading the TFH and the subsequent TLB dropin,
382 * the dropin is ignored. This eliminates the need for additional locks.
383 */
384
385 /*
386 * Prefetch the CBE if doing TLB preloading
387 */
388 if (unlikely(tlb_preload_count)) {
389 cbe = gru_tfh_to_cbe(tfh);
390 prefetchw(cbe);
391 }
392
393 /*
394 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
395 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
396 * is a transient state.
397 */
398 if (tfh->status != TFHSTATUS_EXCEPTION) {
399 gru_flush_cache(tfh);
400 sync_core();
401 if (tfh->status != TFHSTATUS_EXCEPTION)
402 goto failnoexception;
403 STAT(tfh_stale_on_fault);
404 }
405 if (tfh->state == TFHSTATE_IDLE)
406 goto failidle;
407 if (tfh->state == TFHSTATE_MISS_FMM && cbk)
408 goto failfmm;
409
410 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
411 vaddr = tfh->missvaddr;
412 asid = tfh->missasid;
413 indexway = tfh->indexway;
414 if (asid == 0)
415 goto failnoasid;
416
417 rmb(); /* TFH must be cache resident before reading ms_range_active */
418
419 /*
420 * TFH is cache resident - at least briefly. Fail the dropin
421 * if a range invalidate is active.
422 */
423 if (atomic_read(&gts->ts_gms->ms_range_active))
424 goto failactive;
425
426 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
427 if (ret == VTOP_INVALID)
428 goto failinval;
429 if (ret == VTOP_RETRY)
430 goto failupm;
431
432 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
433 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
434 if (atomic || !gru_update_cch(gts)) {
435 gts->ts_force_cch_reload = 1;
436 goto failupm;
437 }
438 }
439
440 if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
441 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
442 gru_flush_cache_cbe(cbe);
443 }
444
445 gru_cb_set_istatus_active(cbk);
446 gts->ustats.tlbdropin++;
447 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
448 GRU_PAGESIZE(pageshift));
449 gru_dbg(grudev,
450 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
451 " rw %d, ps %d, gpa 0x%lx\n",
452 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
453 indexway, write, pageshift, gpa);
454 STAT(tlb_dropin);
455 return 0;
456
457 failnoasid:
458 /* No asid (delayed unload). */
459 STAT(tlb_dropin_fail_no_asid);
460 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
461 if (!cbk)
462 tfh_user_polling_mode(tfh);
463 else
464 gru_flush_cache(tfh);
465 gru_flush_cache_cbe(cbe);
466 return -EAGAIN;
467
468 failupm:
469 /* Atomic failure switch CBR to UPM */
470 tfh_user_polling_mode(tfh);
471 gru_flush_cache_cbe(cbe);
472 STAT(tlb_dropin_fail_upm);
473 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
474 return 1;
475
476 failfmm:
477 /* FMM state on UPM call */
478 gru_flush_cache(tfh);
479 gru_flush_cache_cbe(cbe);
480 STAT(tlb_dropin_fail_fmm);
481 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
482 return 0;
483
484 failnoexception:
485 /* TFH status did not show exception pending */
486 gru_flush_cache(tfh);
487 gru_flush_cache_cbe(cbe);
488 if (cbk)
489 gru_flush_cache(cbk);
490 STAT(tlb_dropin_fail_no_exception);
491 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
492 tfh, tfh->status, tfh->state);
493 return 0;
494
495 failidle:
496 /* TFH state was idle - no miss pending */
497 gru_flush_cache(tfh);
498 gru_flush_cache_cbe(cbe);
499 if (cbk)
500 gru_flush_cache(cbk);
501 STAT(tlb_dropin_fail_idle);
502 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
503 return 0;
504
505 failinval:
506 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
507 tfh_exception(tfh);
508 gru_flush_cache_cbe(cbe);
509 STAT(tlb_dropin_fail_invalid);
510 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
511 return -EFAULT;
512
513 failactive:
514 /* Range invalidate active. Switch to UPM iff atomic */
515 if (!cbk)
516 tfh_user_polling_mode(tfh);
517 else
518 gru_flush_cache(tfh);
519 gru_flush_cache_cbe(cbe);
520 STAT(tlb_dropin_fail_range_active);
521 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
522 tfh, vaddr);
523 return 1;
524 }
525
526 /*
527 * Process an external interrupt from the GRU. This interrupt is
528 * caused by a TLB miss.
529 * Note that this is the interrupt handler that is registered with linux
530 * interrupt handlers.
531 */
532 static irqreturn_t gru_intr(int chiplet, int blade)
533 {
534 struct gru_state *gru;
535 struct gru_tlb_fault_map imap, dmap;
536 struct gru_thread_state *gts;
537 struct gru_tlb_fault_handle *tfh = NULL;
538 struct completion *cmp;
539 int cbrnum, ctxnum;
540
541 STAT(intr);
542
543 gru = &gru_base[blade]->bs_grus[chiplet];
544 if (!gru) {
545 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
546 raw_smp_processor_id(), chiplet);
547 return IRQ_NONE;
548 }
549 get_clear_fault_map(gru, &imap, &dmap);
550 gru_dbg(grudev,
551 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
552 smp_processor_id(), chiplet, gru->gs_gid,
553 imap.fault_bits[0], imap.fault_bits[1],
554 dmap.fault_bits[0], dmap.fault_bits[1]);
555
556 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
557 STAT(intr_cbr);
558 cmp = gru->gs_blade->bs_async_wq;
559 if (cmp)
560 complete(cmp);
561 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
562 gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
563 }
564
565 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
566 STAT(intr_tfh);
567 tfh = get_tfh_by_index(gru, cbrnum);
568 prefetchw(tfh); /* Helps on hdw, required for emulator */
569
570 /*
571 * When hardware sets a bit in the faultmap, it implicitly
572 * locks the GRU context so that it cannot be unloaded.
573 * The gts cannot change until a TFH start/writestart command
574 * is issued.
575 */
576 ctxnum = tfh->ctxnum;
577 gts = gru->gs_gts[ctxnum];
578
579 /* Spurious interrupts can cause this. Ignore. */
580 if (!gts) {
581 STAT(intr_spurious);
582 continue;
583 }
584
585 /*
586 * This is running in interrupt context. Trylock the mmap_sem.
587 * If it fails, retry the fault in user context.
588 */
589 gts->ustats.fmm_tlbmiss++;
590 if (!gts->ts_force_cch_reload &&
591 down_read_trylock(&gts->ts_mm->mmap_sem)) {
592 gru_try_dropin(gru, gts, tfh, NULL);
593 up_read(&gts->ts_mm->mmap_sem);
594 } else {
595 tfh_user_polling_mode(tfh);
596 STAT(intr_mm_lock_failed);
597 }
598 }
599 return IRQ_HANDLED;
600 }
601
602 irqreturn_t gru0_intr(int irq, void *dev_id)
603 {
604 return gru_intr(0, uv_numa_blade_id());
605 }
606
607 irqreturn_t gru1_intr(int irq, void *dev_id)
608 {
609 return gru_intr(1, uv_numa_blade_id());
610 }
611
612 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
613 {
614 int blade;
615
616 for_each_possible_blade(blade) {
617 if (uv_blade_nr_possible_cpus(blade))
618 continue;
619 gru_intr(0, blade);
620 gru_intr(1, blade);
621 }
622 return IRQ_HANDLED;
623 }
624
625
626 static int gru_user_dropin(struct gru_thread_state *gts,
627 struct gru_tlb_fault_handle *tfh,
628 void *cb)
629 {
630 struct gru_mm_struct *gms = gts->ts_gms;
631 int ret;
632
633 gts->ustats.upm_tlbmiss++;
634 while (1) {
635 wait_event(gms->ms_wait_queue,
636 atomic_read(&gms->ms_range_active) == 0);
637 prefetchw(tfh); /* Helps on hdw, required for emulator */
638 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
639 if (ret <= 0)
640 return ret;
641 STAT(call_os_wait_queue);
642 }
643 }
644
645 /*
646 * This interface is called as a result of a user detecting a "call OS" bit
647 * in a user CB. Normally means that a TLB fault has occurred.
648 * cb - user virtual address of the CB
649 */
650 int gru_handle_user_call_os(unsigned long cb)
651 {
652 struct gru_tlb_fault_handle *tfh;
653 struct gru_thread_state *gts;
654 void *cbk;
655 int ucbnum, cbrnum, ret = -EINVAL;
656
657 STAT(call_os);
658
659 /* sanity check the cb pointer */
660 ucbnum = get_cb_number((void *)cb);
661 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
662 return -EINVAL;
663
664 gts = gru_find_lock_gts(cb);
665 if (!gts)
666 return -EINVAL;
667 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
668
669 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
670 goto exit;
671
672 gru_check_context_placement(gts);
673
674 /*
675 * CCH may contain stale data if ts_force_cch_reload is set.
676 */
677 if (gts->ts_gru && gts->ts_force_cch_reload) {
678 gts->ts_force_cch_reload = 0;
679 gru_update_cch(gts);
680 }
681
682 ret = -EAGAIN;
683 cbrnum = thread_cbr_number(gts, ucbnum);
684 if (gts->ts_gru) {
685 tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
686 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
687 gts->ts_ctxnum, ucbnum);
688 ret = gru_user_dropin(gts, tfh, cbk);
689 }
690 exit:
691 gru_unlock_gts(gts);
692 return ret;
693 }
694
695 /*
696 * Fetch the exception detail information for a CB that terminated with
697 * an exception.
698 */
699 int gru_get_exception_detail(unsigned long arg)
700 {
701 struct control_block_extended_exc_detail excdet;
702 struct gru_control_block_extended *cbe;
703 struct gru_thread_state *gts;
704 int ucbnum, cbrnum, ret;
705
706 STAT(user_exception);
707 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
708 return -EFAULT;
709
710 gts = gru_find_lock_gts(excdet.cb);
711 if (!gts)
712 return -EINVAL;
713
714 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
715 ucbnum = get_cb_number((void *)excdet.cb);
716 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
717 ret = -EINVAL;
718 } else if (gts->ts_gru) {
719 cbrnum = thread_cbr_number(gts, ucbnum);
720 cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
721 gru_flush_cache(cbe); /* CBE not coherent */
722 sync_core(); /* make sure we are have current data */
723 excdet.opc = cbe->opccpy;
724 excdet.exopc = cbe->exopccpy;
725 excdet.ecause = cbe->ecause;
726 excdet.exceptdet0 = cbe->idef1upd;
727 excdet.exceptdet1 = cbe->idef3upd;
728 excdet.cbrstate = cbe->cbrstate;
729 excdet.cbrexecstatus = cbe->cbrexecstatus;
730 gru_flush_cache_cbe(cbe);
731 ret = 0;
732 } else {
733 ret = -EAGAIN;
734 }
735 gru_unlock_gts(gts);
736
737 gru_dbg(grudev,
738 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
739 "exdet0 0x%lx, exdet1 0x%x\n",
740 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
741 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
742 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
743 ret = -EFAULT;
744 return ret;
745 }
746
747 /*
748 * User request to unload a context. Content is saved for possible reload.
749 */
750 static int gru_unload_all_contexts(void)
751 {
752 struct gru_thread_state *gts;
753 struct gru_state *gru;
754 int gid, ctxnum;
755
756 if (!capable(CAP_SYS_ADMIN))
757 return -EPERM;
758 foreach_gid(gid) {
759 gru = GID_TO_GRU(gid);
760 spin_lock(&gru->gs_lock);
761 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
762 gts = gru->gs_gts[ctxnum];
763 if (gts && mutex_trylock(&gts->ts_ctxlock)) {
764 spin_unlock(&gru->gs_lock);
765 gru_unload_context(gts, 1);
766 mutex_unlock(&gts->ts_ctxlock);
767 spin_lock(&gru->gs_lock);
768 }
769 }
770 spin_unlock(&gru->gs_lock);
771 }
772 return 0;
773 }
774
775 int gru_user_unload_context(unsigned long arg)
776 {
777 struct gru_thread_state *gts;
778 struct gru_unload_context_req req;
779
780 STAT(user_unload_context);
781 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
782 return -EFAULT;
783
784 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
785
786 if (!req.gseg)
787 return gru_unload_all_contexts();
788
789 gts = gru_find_lock_gts(req.gseg);
790 if (!gts)
791 return -EINVAL;
792
793 if (gts->ts_gru)
794 gru_unload_context(gts, 1);
795 gru_unlock_gts(gts);
796
797 return 0;
798 }
799
800 /*
801 * User request to flush a range of virtual addresses from the GRU TLB
802 * (Mainly for testing).
803 */
804 int gru_user_flush_tlb(unsigned long arg)
805 {
806 struct gru_thread_state *gts;
807 struct gru_flush_tlb_req req;
808 struct gru_mm_struct *gms;
809
810 STAT(user_flush_tlb);
811 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
812 return -EFAULT;
813
814 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
815 req.vaddr, req.len);
816
817 gts = gru_find_lock_gts(req.gseg);
818 if (!gts)
819 return -EINVAL;
820
821 gms = gts->ts_gms;
822 gru_unlock_gts(gts);
823 gru_flush_tlb_range(gms, req.vaddr, req.len);
824
825 return 0;
826 }
827
828 /*
829 * Fetch GSEG statisticss
830 */
831 long gru_get_gseg_statistics(unsigned long arg)
832 {
833 struct gru_thread_state *gts;
834 struct gru_get_gseg_statistics_req req;
835
836 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
837 return -EFAULT;
838
839 /*
840 * The library creates arrays of contexts for threaded programs.
841 * If no gts exists in the array, the context has never been used & all
842 * statistics are implicitly 0.
843 */
844 gts = gru_find_lock_gts(req.gseg);
845 if (gts) {
846 memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
847 gru_unlock_gts(gts);
848 } else {
849 memset(&req.stats, 0, sizeof(gts->ustats));
850 }
851
852 if (copy_to_user((void __user *)arg, &req, sizeof(req)))
853 return -EFAULT;
854
855 return 0;
856 }
857
858 /*
859 * Register the current task as the user of the GSEG slice.
860 * Needed for TLB fault interrupt targeting.
861 */
862 int gru_set_context_option(unsigned long arg)
863 {
864 struct gru_thread_state *gts;
865 struct gru_set_context_option_req req;
866 int ret = 0;
867
868 STAT(set_context_option);
869 if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
870 return -EFAULT;
871 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
872
873 gts = gru_find_lock_gts(req.gseg);
874 if (!gts) {
875 gts = gru_alloc_locked_gts(req.gseg);
876 if (IS_ERR(gts))
877 return PTR_ERR(gts);
878 }
879
880 switch (req.op) {
881 case sco_blade_chiplet:
882 /* Select blade/chiplet for GRU context */
883 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
884 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
885 (req.val1 >= 0 && !gru_base[req.val1])) {
886 ret = -EINVAL;
887 } else {
888 gts->ts_user_blade_id = req.val1;
889 gts->ts_user_chiplet_id = req.val0;
890 gru_check_context_placement(gts);
891 }
892 break;
893 case sco_gseg_owner:
894 /* Register the current task as the GSEG owner */
895 gts->ts_tgid_owner = current->tgid;
896 break;
897 case sco_cch_req_slice:
898 /* Set the CCH slice option */
899 gts->ts_cch_req_slice = req.val1 & 3;
900 break;
901 default:
902 ret = -EINVAL;
903 }
904 gru_unlock_gts(gts);
905
906 return ret;
907 }