]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/misc/sgi-xp/xpc_main.c
x86/asm/entry: Change all 'user_mode_vm()' calls to 'user_mode()'
[mirror_ubuntu-bionic-kernel.git] / drivers / misc / sgi-xp / xpc_main.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
7 */
8
9 /*
10 * Cross Partition Communication (XPC) support - standard version.
11 *
12 * XPC provides a message passing capability that crosses partition
13 * boundaries. This module is made up of two parts:
14 *
15 * partition This part detects the presence/absence of other
16 * partitions. It provides a heartbeat and monitors
17 * the heartbeats of other partitions.
18 *
19 * channel This part manages the channels and sends/receives
20 * messages across them to/from other partitions.
21 *
22 * There are a couple of additional functions residing in XP, which
23 * provide an interface to XPC for its users.
24 *
25 *
26 * Caveats:
27 *
28 * . Currently on sn2, we have no way to determine which nasid an IRQ
29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30 * followed by an IPI. The amo indicates where data is to be pulled
31 * from, so after the IPI arrives, the remote partition checks the amo
32 * word. The IPI can actually arrive before the amo however, so other
33 * code must periodically check for this case. Also, remote amo
34 * operations do not reliably time out. Thus we do a remote PIO read
35 * solely to know whether the remote partition is down and whether we
36 * should stop sending IPIs to it. This remote PIO read operation is
37 * set up in a special nofault region so SAL knows to ignore (and
38 * cleanup) any errors due to the remote amo write, PIO read, and/or
39 * PIO write operations.
40 *
41 * If/when new hardware solves this IPI problem, we should abandon
42 * the current approach.
43 *
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61
62 struct device_driver xpc_dbg_name = {
63 .name = "xpc"
64 };
65
66 struct device xpc_part_dbg_subname = {
67 .init_name = "", /* set to "part" at xpc_init() time */
68 .driver = &xpc_dbg_name
69 };
70
71 struct device xpc_chan_dbg_subname = {
72 .init_name = "", /* set to "chan" at xpc_init() time */
73 .driver = &xpc_dbg_name
74 };
75
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78
79 static int xpc_kdebug_ignore;
80
81 /* systune related variables for /proc/sys directories */
82
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit; /* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96 {
97 .procname = "hb_interval",
98 .data = &xpc_hb_interval,
99 .maxlen = sizeof(int),
100 .mode = 0644,
101 .proc_handler = proc_dointvec_minmax,
102 .extra1 = &xpc_hb_min_interval,
103 .extra2 = &xpc_hb_max_interval},
104 {
105 .procname = "hb_check_interval",
106 .data = &xpc_hb_check_interval,
107 .maxlen = sizeof(int),
108 .mode = 0644,
109 .proc_handler = proc_dointvec_minmax,
110 .extra1 = &xpc_hb_check_min_interval,
111 .extra2 = &xpc_hb_check_max_interval},
112 {}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115 {
116 .procname = "hb",
117 .mode = 0555,
118 .child = xpc_sys_xpc_hb_dir},
119 {
120 .procname = "disengage_timelimit",
121 .data = &xpc_disengage_timelimit,
122 .maxlen = sizeof(int),
123 .mode = 0644,
124 .proc_handler = proc_dointvec_minmax,
125 .extra1 = &xpc_disengage_min_timelimit,
126 .extra2 = &xpc_disengage_max_timelimit},
127 {}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130 {
131 .procname = "xpc",
132 .mode = 0555,
133 .child = xpc_sys_xpc_dir},
134 {}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161 .notifier_call = xpc_system_reboot,
162 };
163
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166 .notifier_call = xpc_system_die,
167 };
168
169 struct xpc_arch_operations xpc_arch_ops;
170
171 /*
172 * Timer function to enforce the timelimit on the partition disengage.
173 */
174 static void
175 xpc_timeout_partition_disengage(unsigned long data)
176 {
177 struct xpc_partition *part = (struct xpc_partition *)data;
178
179 DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180
181 (void)xpc_partition_disengaged(part);
182
183 DBUG_ON(part->disengage_timeout != 0);
184 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186
187 /*
188 * Timer to produce the heartbeat. The timer structures function is
189 * already set when this is initially called. A tunable is used to
190 * specify when the next timeout should occur.
191 */
192 static void
193 xpc_hb_beater(unsigned long dummy)
194 {
195 xpc_arch_ops.increment_heartbeat();
196
197 if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198 wake_up_interruptible(&xpc_activate_IRQ_wq);
199
200 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201 add_timer(&xpc_hb_timer);
202 }
203
204 static void
205 xpc_start_hb_beater(void)
206 {
207 xpc_arch_ops.heartbeat_init();
208 init_timer(&xpc_hb_timer);
209 xpc_hb_timer.function = xpc_hb_beater;
210 xpc_hb_beater(0);
211 }
212
213 static void
214 xpc_stop_hb_beater(void)
215 {
216 del_timer_sync(&xpc_hb_timer);
217 xpc_arch_ops.heartbeat_exit();
218 }
219
220 /*
221 * At periodic intervals, scan through all active partitions and ensure
222 * their heartbeat is still active. If not, the partition is deactivated.
223 */
224 static void
225 xpc_check_remote_hb(void)
226 {
227 struct xpc_partition *part;
228 short partid;
229 enum xp_retval ret;
230
231 for (partid = 0; partid < xp_max_npartitions; partid++) {
232
233 if (xpc_exiting)
234 break;
235
236 if (partid == xp_partition_id)
237 continue;
238
239 part = &xpc_partitions[partid];
240
241 if (part->act_state == XPC_P_AS_INACTIVE ||
242 part->act_state == XPC_P_AS_DEACTIVATING) {
243 continue;
244 }
245
246 ret = xpc_arch_ops.get_remote_heartbeat(part);
247 if (ret != xpSuccess)
248 XPC_DEACTIVATE_PARTITION(part, ret);
249 }
250 }
251
252 /*
253 * This thread is responsible for nearly all of the partition
254 * activation/deactivation.
255 */
256 static int
257 xpc_hb_checker(void *ignore)
258 {
259 int force_IRQ = 0;
260
261 /* this thread was marked active by xpc_hb_init() */
262
263 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
264
265 /* set our heartbeating to other partitions into motion */
266 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
267 xpc_start_hb_beater();
268
269 while (!xpc_exiting) {
270
271 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
272 "been received\n",
273 (int)(xpc_hb_check_timeout - jiffies),
274 xpc_activate_IRQ_rcvd);
275
276 /* checking of remote heartbeats is skewed by IRQ handling */
277 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
278 xpc_hb_check_timeout = jiffies +
279 (xpc_hb_check_interval * HZ);
280
281 dev_dbg(xpc_part, "checking remote heartbeats\n");
282 xpc_check_remote_hb();
283
284 /*
285 * On sn2 we need to periodically recheck to ensure no
286 * IRQ/amo pairs have been missed.
287 */
288 if (is_shub())
289 force_IRQ = 1;
290 }
291
292 /* check for outstanding IRQs */
293 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
294 force_IRQ = 0;
295 dev_dbg(xpc_part, "processing activate IRQs "
296 "received\n");
297 xpc_arch_ops.process_activate_IRQ_rcvd();
298 }
299
300 /* wait for IRQ or timeout */
301 (void)wait_event_interruptible(xpc_activate_IRQ_wq,
302 (time_is_before_eq_jiffies(
303 xpc_hb_check_timeout) ||
304 xpc_activate_IRQ_rcvd > 0 ||
305 xpc_exiting));
306 }
307
308 xpc_stop_hb_beater();
309
310 dev_dbg(xpc_part, "heartbeat checker is exiting\n");
311
312 /* mark this thread as having exited */
313 complete(&xpc_hb_checker_exited);
314 return 0;
315 }
316
317 /*
318 * This thread will attempt to discover other partitions to activate
319 * based on info provided by SAL. This new thread is short lived and
320 * will exit once discovery is complete.
321 */
322 static int
323 xpc_initiate_discovery(void *ignore)
324 {
325 xpc_discovery();
326
327 dev_dbg(xpc_part, "discovery thread is exiting\n");
328
329 /* mark this thread as having exited */
330 complete(&xpc_discovery_exited);
331 return 0;
332 }
333
334 /*
335 * The first kthread assigned to a newly activated partition is the one
336 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
337 * that kthread until the partition is brought down, at which time that kthread
338 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
339 * that XPC has dismantled all communication infrastructure for the associated
340 * partition.) This kthread becomes the channel manager for that partition.
341 *
342 * Each active partition has a channel manager, who, besides connecting and
343 * disconnecting channels, will ensure that each of the partition's connected
344 * channels has the required number of assigned kthreads to get the work done.
345 */
346 static void
347 xpc_channel_mgr(struct xpc_partition *part)
348 {
349 while (part->act_state != XPC_P_AS_DEACTIVATING ||
350 atomic_read(&part->nchannels_active) > 0 ||
351 !xpc_partition_disengaged(part)) {
352
353 xpc_process_sent_chctl_flags(part);
354
355 /*
356 * Wait until we've been requested to activate kthreads or
357 * all of the channel's message queues have been torn down or
358 * a signal is pending.
359 *
360 * The channel_mgr_requests is set to 1 after being awakened,
361 * This is done to prevent the channel mgr from making one pass
362 * through the loop for each request, since he will
363 * be servicing all the requests in one pass. The reason it's
364 * set to 1 instead of 0 is so that other kthreads will know
365 * that the channel mgr is running and won't bother trying to
366 * wake him up.
367 */
368 atomic_dec(&part->channel_mgr_requests);
369 (void)wait_event_interruptible(part->channel_mgr_wq,
370 (atomic_read(&part->channel_mgr_requests) > 0 ||
371 part->chctl.all_flags != 0 ||
372 (part->act_state == XPC_P_AS_DEACTIVATING &&
373 atomic_read(&part->nchannels_active) == 0 &&
374 xpc_partition_disengaged(part))));
375 atomic_set(&part->channel_mgr_requests, 1);
376 }
377 }
378
379 /*
380 * Guarantee that the kzalloc'd memory is cacheline aligned.
381 */
382 void *
383 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
384 {
385 /* see if kzalloc will give us cachline aligned memory by default */
386 *base = kzalloc(size, flags);
387 if (*base == NULL)
388 return NULL;
389
390 if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
391 return *base;
392
393 kfree(*base);
394
395 /* nope, we'll have to do it ourselves */
396 *base = kzalloc(size + L1_CACHE_BYTES, flags);
397 if (*base == NULL)
398 return NULL;
399
400 return (void *)L1_CACHE_ALIGN((u64)*base);
401 }
402
403 /*
404 * Setup the channel structures necessary to support XPartition Communication
405 * between the specified remote partition and the local one.
406 */
407 static enum xp_retval
408 xpc_setup_ch_structures(struct xpc_partition *part)
409 {
410 enum xp_retval ret;
411 int ch_number;
412 struct xpc_channel *ch;
413 short partid = XPC_PARTID(part);
414
415 /*
416 * Allocate all of the channel structures as a contiguous chunk of
417 * memory.
418 */
419 DBUG_ON(part->channels != NULL);
420 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
421 GFP_KERNEL);
422 if (part->channels == NULL) {
423 dev_err(xpc_chan, "can't get memory for channels\n");
424 return xpNoMemory;
425 }
426
427 /* allocate the remote open and close args */
428
429 part->remote_openclose_args =
430 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
431 GFP_KERNEL, &part->
432 remote_openclose_args_base);
433 if (part->remote_openclose_args == NULL) {
434 dev_err(xpc_chan, "can't get memory for remote connect args\n");
435 ret = xpNoMemory;
436 goto out_1;
437 }
438
439 part->chctl.all_flags = 0;
440 spin_lock_init(&part->chctl_lock);
441
442 atomic_set(&part->channel_mgr_requests, 1);
443 init_waitqueue_head(&part->channel_mgr_wq);
444
445 part->nchannels = XPC_MAX_NCHANNELS;
446
447 atomic_set(&part->nchannels_active, 0);
448 atomic_set(&part->nchannels_engaged, 0);
449
450 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
451 ch = &part->channels[ch_number];
452
453 ch->partid = partid;
454 ch->number = ch_number;
455 ch->flags = XPC_C_DISCONNECTED;
456
457 atomic_set(&ch->kthreads_assigned, 0);
458 atomic_set(&ch->kthreads_idle, 0);
459 atomic_set(&ch->kthreads_active, 0);
460
461 atomic_set(&ch->references, 0);
462 atomic_set(&ch->n_to_notify, 0);
463
464 spin_lock_init(&ch->lock);
465 init_completion(&ch->wdisconnect_wait);
466
467 atomic_set(&ch->n_on_msg_allocate_wq, 0);
468 init_waitqueue_head(&ch->msg_allocate_wq);
469 init_waitqueue_head(&ch->idle_wq);
470 }
471
472 ret = xpc_arch_ops.setup_ch_structures(part);
473 if (ret != xpSuccess)
474 goto out_2;
475
476 /*
477 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
478 * we're declaring that this partition is ready to go.
479 */
480 part->setup_state = XPC_P_SS_SETUP;
481
482 return xpSuccess;
483
484 /* setup of ch structures failed */
485 out_2:
486 kfree(part->remote_openclose_args_base);
487 part->remote_openclose_args = NULL;
488 out_1:
489 kfree(part->channels);
490 part->channels = NULL;
491 return ret;
492 }
493
494 /*
495 * Teardown the channel structures necessary to support XPartition Communication
496 * between the specified remote partition and the local one.
497 */
498 static void
499 xpc_teardown_ch_structures(struct xpc_partition *part)
500 {
501 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
502 DBUG_ON(atomic_read(&part->nchannels_active) != 0);
503
504 /*
505 * Make this partition inaccessible to local processes by marking it
506 * as no longer setup. Then wait before proceeding with the teardown
507 * until all existing references cease.
508 */
509 DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
510 part->setup_state = XPC_P_SS_WTEARDOWN;
511
512 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
513
514 /* now we can begin tearing down the infrastructure */
515
516 xpc_arch_ops.teardown_ch_structures(part);
517
518 kfree(part->remote_openclose_args_base);
519 part->remote_openclose_args = NULL;
520 kfree(part->channels);
521 part->channels = NULL;
522
523 part->setup_state = XPC_P_SS_TORNDOWN;
524 }
525
526 /*
527 * When XPC HB determines that a partition has come up, it will create a new
528 * kthread and that kthread will call this function to attempt to set up the
529 * basic infrastructure used for Cross Partition Communication with the newly
530 * upped partition.
531 *
532 * The kthread that was created by XPC HB and which setup the XPC
533 * infrastructure will remain assigned to the partition becoming the channel
534 * manager for that partition until the partition is deactivating, at which
535 * time the kthread will teardown the XPC infrastructure and then exit.
536 */
537 static int
538 xpc_activating(void *__partid)
539 {
540 short partid = (u64)__partid;
541 struct xpc_partition *part = &xpc_partitions[partid];
542 unsigned long irq_flags;
543
544 DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
545
546 spin_lock_irqsave(&part->act_lock, irq_flags);
547
548 if (part->act_state == XPC_P_AS_DEACTIVATING) {
549 part->act_state = XPC_P_AS_INACTIVE;
550 spin_unlock_irqrestore(&part->act_lock, irq_flags);
551 part->remote_rp_pa = 0;
552 return 0;
553 }
554
555 /* indicate the thread is activating */
556 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
557 part->act_state = XPC_P_AS_ACTIVATING;
558
559 XPC_SET_REASON(part, 0, 0);
560 spin_unlock_irqrestore(&part->act_lock, irq_flags);
561
562 dev_dbg(xpc_part, "activating partition %d\n", partid);
563
564 xpc_arch_ops.allow_hb(partid);
565
566 if (xpc_setup_ch_structures(part) == xpSuccess) {
567 (void)xpc_part_ref(part); /* this will always succeed */
568
569 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
570 xpc_mark_partition_active(part);
571 xpc_channel_mgr(part);
572 /* won't return until partition is deactivating */
573 }
574
575 xpc_part_deref(part);
576 xpc_teardown_ch_structures(part);
577 }
578
579 xpc_arch_ops.disallow_hb(partid);
580 xpc_mark_partition_inactive(part);
581
582 if (part->reason == xpReactivating) {
583 /* interrupting ourselves results in activating partition */
584 xpc_arch_ops.request_partition_reactivation(part);
585 }
586
587 return 0;
588 }
589
590 void
591 xpc_activate_partition(struct xpc_partition *part)
592 {
593 short partid = XPC_PARTID(part);
594 unsigned long irq_flags;
595 struct task_struct *kthread;
596
597 spin_lock_irqsave(&part->act_lock, irq_flags);
598
599 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
600
601 part->act_state = XPC_P_AS_ACTIVATION_REQ;
602 XPC_SET_REASON(part, xpCloneKThread, __LINE__);
603
604 spin_unlock_irqrestore(&part->act_lock, irq_flags);
605
606 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
607 partid);
608 if (IS_ERR(kthread)) {
609 spin_lock_irqsave(&part->act_lock, irq_flags);
610 part->act_state = XPC_P_AS_INACTIVE;
611 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
612 spin_unlock_irqrestore(&part->act_lock, irq_flags);
613 }
614 }
615
616 void
617 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
618 {
619 int idle = atomic_read(&ch->kthreads_idle);
620 int assigned = atomic_read(&ch->kthreads_assigned);
621 int wakeup;
622
623 DBUG_ON(needed <= 0);
624
625 if (idle > 0) {
626 wakeup = (needed > idle) ? idle : needed;
627 needed -= wakeup;
628
629 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
630 "channel=%d\n", wakeup, ch->partid, ch->number);
631
632 /* only wakeup the requested number of kthreads */
633 wake_up_nr(&ch->idle_wq, wakeup);
634 }
635
636 if (needed <= 0)
637 return;
638
639 if (needed + assigned > ch->kthreads_assigned_limit) {
640 needed = ch->kthreads_assigned_limit - assigned;
641 if (needed <= 0)
642 return;
643 }
644
645 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
646 needed, ch->partid, ch->number);
647
648 xpc_create_kthreads(ch, needed, 0);
649 }
650
651 /*
652 * This function is where XPC's kthreads wait for messages to deliver.
653 */
654 static void
655 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
656 {
657 int (*n_of_deliverable_payloads) (struct xpc_channel *) =
658 xpc_arch_ops.n_of_deliverable_payloads;
659
660 do {
661 /* deliver messages to their intended recipients */
662
663 while (n_of_deliverable_payloads(ch) > 0 &&
664 !(ch->flags & XPC_C_DISCONNECTING)) {
665 xpc_deliver_payload(ch);
666 }
667
668 if (atomic_inc_return(&ch->kthreads_idle) >
669 ch->kthreads_idle_limit) {
670 /* too many idle kthreads on this channel */
671 atomic_dec(&ch->kthreads_idle);
672 break;
673 }
674
675 dev_dbg(xpc_chan, "idle kthread calling "
676 "wait_event_interruptible_exclusive()\n");
677
678 (void)wait_event_interruptible_exclusive(ch->idle_wq,
679 (n_of_deliverable_payloads(ch) > 0 ||
680 (ch->flags & XPC_C_DISCONNECTING)));
681
682 atomic_dec(&ch->kthreads_idle);
683
684 } while (!(ch->flags & XPC_C_DISCONNECTING));
685 }
686
687 static int
688 xpc_kthread_start(void *args)
689 {
690 short partid = XPC_UNPACK_ARG1(args);
691 u16 ch_number = XPC_UNPACK_ARG2(args);
692 struct xpc_partition *part = &xpc_partitions[partid];
693 struct xpc_channel *ch;
694 int n_needed;
695 unsigned long irq_flags;
696 int (*n_of_deliverable_payloads) (struct xpc_channel *) =
697 xpc_arch_ops.n_of_deliverable_payloads;
698
699 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
700 partid, ch_number);
701
702 ch = &part->channels[ch_number];
703
704 if (!(ch->flags & XPC_C_DISCONNECTING)) {
705
706 /* let registerer know that connection has been established */
707
708 spin_lock_irqsave(&ch->lock, irq_flags);
709 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
710 ch->flags |= XPC_C_CONNECTEDCALLOUT;
711 spin_unlock_irqrestore(&ch->lock, irq_flags);
712
713 xpc_connected_callout(ch);
714
715 spin_lock_irqsave(&ch->lock, irq_flags);
716 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
717 spin_unlock_irqrestore(&ch->lock, irq_flags);
718
719 /*
720 * It is possible that while the callout was being
721 * made that the remote partition sent some messages.
722 * If that is the case, we may need to activate
723 * additional kthreads to help deliver them. We only
724 * need one less than total #of messages to deliver.
725 */
726 n_needed = n_of_deliverable_payloads(ch) - 1;
727 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
728 xpc_activate_kthreads(ch, n_needed);
729
730 } else {
731 spin_unlock_irqrestore(&ch->lock, irq_flags);
732 }
733
734 xpc_kthread_waitmsgs(part, ch);
735 }
736
737 /* let registerer know that connection is disconnecting */
738
739 spin_lock_irqsave(&ch->lock, irq_flags);
740 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
741 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
742 ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
743 spin_unlock_irqrestore(&ch->lock, irq_flags);
744
745 xpc_disconnect_callout(ch, xpDisconnecting);
746
747 spin_lock_irqsave(&ch->lock, irq_flags);
748 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
749 }
750 spin_unlock_irqrestore(&ch->lock, irq_flags);
751
752 if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
753 atomic_dec_return(&part->nchannels_engaged) == 0) {
754 xpc_arch_ops.indicate_partition_disengaged(part);
755 }
756
757 xpc_msgqueue_deref(ch);
758
759 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
760 partid, ch_number);
761
762 xpc_part_deref(part);
763 return 0;
764 }
765
766 /*
767 * For each partition that XPC has established communications with, there is
768 * a minimum of one kernel thread assigned to perform any operation that
769 * may potentially sleep or block (basically the callouts to the asynchronous
770 * functions registered via xpc_connect()).
771 *
772 * Additional kthreads are created and destroyed by XPC as the workload
773 * demands.
774 *
775 * A kthread is assigned to one of the active channels that exists for a given
776 * partition.
777 */
778 void
779 xpc_create_kthreads(struct xpc_channel *ch, int needed,
780 int ignore_disconnecting)
781 {
782 unsigned long irq_flags;
783 u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
784 struct xpc_partition *part = &xpc_partitions[ch->partid];
785 struct task_struct *kthread;
786 void (*indicate_partition_disengaged) (struct xpc_partition *) =
787 xpc_arch_ops.indicate_partition_disengaged;
788
789 while (needed-- > 0) {
790
791 /*
792 * The following is done on behalf of the newly created
793 * kthread. That kthread is responsible for doing the
794 * counterpart to the following before it exits.
795 */
796 if (ignore_disconnecting) {
797 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
798 /* kthreads assigned had gone to zero */
799 BUG_ON(!(ch->flags &
800 XPC_C_DISCONNECTINGCALLOUT_MADE));
801 break;
802 }
803
804 } else if (ch->flags & XPC_C_DISCONNECTING) {
805 break;
806
807 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
808 atomic_inc_return(&part->nchannels_engaged) == 1) {
809 xpc_arch_ops.indicate_partition_engaged(part);
810 }
811 (void)xpc_part_ref(part);
812 xpc_msgqueue_ref(ch);
813
814 kthread = kthread_run(xpc_kthread_start, (void *)args,
815 "xpc%02dc%d", ch->partid, ch->number);
816 if (IS_ERR(kthread)) {
817 /* the fork failed */
818
819 /*
820 * NOTE: if (ignore_disconnecting &&
821 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
822 * then we'll deadlock if all other kthreads assigned
823 * to this channel are blocked in the channel's
824 * registerer, because the only thing that will unblock
825 * them is the xpDisconnecting callout that this
826 * failed kthread_run() would have made.
827 */
828
829 if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
830 atomic_dec_return(&part->nchannels_engaged) == 0) {
831 indicate_partition_disengaged(part);
832 }
833 xpc_msgqueue_deref(ch);
834 xpc_part_deref(part);
835
836 if (atomic_read(&ch->kthreads_assigned) <
837 ch->kthreads_idle_limit) {
838 /*
839 * Flag this as an error only if we have an
840 * insufficient #of kthreads for the channel
841 * to function.
842 */
843 spin_lock_irqsave(&ch->lock, irq_flags);
844 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
845 &irq_flags);
846 spin_unlock_irqrestore(&ch->lock, irq_flags);
847 }
848 break;
849 }
850 }
851 }
852
853 void
854 xpc_disconnect_wait(int ch_number)
855 {
856 unsigned long irq_flags;
857 short partid;
858 struct xpc_partition *part;
859 struct xpc_channel *ch;
860 int wakeup_channel_mgr;
861
862 /* now wait for all callouts to the caller's function to cease */
863 for (partid = 0; partid < xp_max_npartitions; partid++) {
864 part = &xpc_partitions[partid];
865
866 if (!xpc_part_ref(part))
867 continue;
868
869 ch = &part->channels[ch_number];
870
871 if (!(ch->flags & XPC_C_WDISCONNECT)) {
872 xpc_part_deref(part);
873 continue;
874 }
875
876 wait_for_completion(&ch->wdisconnect_wait);
877
878 spin_lock_irqsave(&ch->lock, irq_flags);
879 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
880 wakeup_channel_mgr = 0;
881
882 if (ch->delayed_chctl_flags) {
883 if (part->act_state != XPC_P_AS_DEACTIVATING) {
884 spin_lock(&part->chctl_lock);
885 part->chctl.flags[ch->number] |=
886 ch->delayed_chctl_flags;
887 spin_unlock(&part->chctl_lock);
888 wakeup_channel_mgr = 1;
889 }
890 ch->delayed_chctl_flags = 0;
891 }
892
893 ch->flags &= ~XPC_C_WDISCONNECT;
894 spin_unlock_irqrestore(&ch->lock, irq_flags);
895
896 if (wakeup_channel_mgr)
897 xpc_wakeup_channel_mgr(part);
898
899 xpc_part_deref(part);
900 }
901 }
902
903 static int
904 xpc_setup_partitions(void)
905 {
906 short partid;
907 struct xpc_partition *part;
908
909 xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
910 xp_max_npartitions, GFP_KERNEL);
911 if (xpc_partitions == NULL) {
912 dev_err(xpc_part, "can't get memory for partition structure\n");
913 return -ENOMEM;
914 }
915
916 /*
917 * The first few fields of each entry of xpc_partitions[] need to
918 * be initialized now so that calls to xpc_connect() and
919 * xpc_disconnect() can be made prior to the activation of any remote
920 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
921 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
922 * PARTITION HAS BEEN ACTIVATED.
923 */
924 for (partid = 0; partid < xp_max_npartitions; partid++) {
925 part = &xpc_partitions[partid];
926
927 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
928
929 part->activate_IRQ_rcvd = 0;
930 spin_lock_init(&part->act_lock);
931 part->act_state = XPC_P_AS_INACTIVE;
932 XPC_SET_REASON(part, 0, 0);
933
934 init_timer(&part->disengage_timer);
935 part->disengage_timer.function =
936 xpc_timeout_partition_disengage;
937 part->disengage_timer.data = (unsigned long)part;
938
939 part->setup_state = XPC_P_SS_UNSET;
940 init_waitqueue_head(&part->teardown_wq);
941 atomic_set(&part->references, 0);
942 }
943
944 return xpc_arch_ops.setup_partitions();
945 }
946
947 static void
948 xpc_teardown_partitions(void)
949 {
950 xpc_arch_ops.teardown_partitions();
951 kfree(xpc_partitions);
952 }
953
954 static void
955 xpc_do_exit(enum xp_retval reason)
956 {
957 short partid;
958 int active_part_count, printed_waiting_msg = 0;
959 struct xpc_partition *part;
960 unsigned long printmsg_time, disengage_timeout = 0;
961
962 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
963 DBUG_ON(xpc_exiting == 1);
964
965 /*
966 * Let the heartbeat checker thread and the discovery thread
967 * (if one is running) know that they should exit. Also wake up
968 * the heartbeat checker thread in case it's sleeping.
969 */
970 xpc_exiting = 1;
971 wake_up_interruptible(&xpc_activate_IRQ_wq);
972
973 /* wait for the discovery thread to exit */
974 wait_for_completion(&xpc_discovery_exited);
975
976 /* wait for the heartbeat checker thread to exit */
977 wait_for_completion(&xpc_hb_checker_exited);
978
979 /* sleep for a 1/3 of a second or so */
980 (void)msleep_interruptible(300);
981
982 /* wait for all partitions to become inactive */
983
984 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
985 xpc_disengage_timedout = 0;
986
987 do {
988 active_part_count = 0;
989
990 for (partid = 0; partid < xp_max_npartitions; partid++) {
991 part = &xpc_partitions[partid];
992
993 if (xpc_partition_disengaged(part) &&
994 part->act_state == XPC_P_AS_INACTIVE) {
995 continue;
996 }
997
998 active_part_count++;
999
1000 XPC_DEACTIVATE_PARTITION(part, reason);
1001
1002 if (part->disengage_timeout > disengage_timeout)
1003 disengage_timeout = part->disengage_timeout;
1004 }
1005
1006 if (xpc_arch_ops.any_partition_engaged()) {
1007 if (time_is_before_jiffies(printmsg_time)) {
1008 dev_info(xpc_part, "waiting for remote "
1009 "partitions to deactivate, timeout in "
1010 "%ld seconds\n", (disengage_timeout -
1011 jiffies) / HZ);
1012 printmsg_time = jiffies +
1013 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1014 printed_waiting_msg = 1;
1015 }
1016
1017 } else if (active_part_count > 0) {
1018 if (printed_waiting_msg) {
1019 dev_info(xpc_part, "waiting for local partition"
1020 " to deactivate\n");
1021 printed_waiting_msg = 0;
1022 }
1023
1024 } else {
1025 if (!xpc_disengage_timedout) {
1026 dev_info(xpc_part, "all partitions have "
1027 "deactivated\n");
1028 }
1029 break;
1030 }
1031
1032 /* sleep for a 1/3 of a second or so */
1033 (void)msleep_interruptible(300);
1034
1035 } while (1);
1036
1037 DBUG_ON(xpc_arch_ops.any_partition_engaged());
1038
1039 xpc_teardown_rsvd_page();
1040
1041 if (reason == xpUnloading) {
1042 (void)unregister_die_notifier(&xpc_die_notifier);
1043 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1044 }
1045
1046 /* clear the interface to XPC's functions */
1047 xpc_clear_interface();
1048
1049 if (xpc_sysctl)
1050 unregister_sysctl_table(xpc_sysctl);
1051
1052 xpc_teardown_partitions();
1053
1054 if (is_shub())
1055 xpc_exit_sn2();
1056 else if (is_uv())
1057 xpc_exit_uv();
1058 }
1059
1060 /*
1061 * This function is called when the system is being rebooted.
1062 */
1063 static int
1064 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1065 {
1066 enum xp_retval reason;
1067
1068 switch (event) {
1069 case SYS_RESTART:
1070 reason = xpSystemReboot;
1071 break;
1072 case SYS_HALT:
1073 reason = xpSystemHalt;
1074 break;
1075 case SYS_POWER_OFF:
1076 reason = xpSystemPoweroff;
1077 break;
1078 default:
1079 reason = xpSystemGoingDown;
1080 }
1081
1082 xpc_do_exit(reason);
1083 return NOTIFY_DONE;
1084 }
1085
1086 /* Used to only allow one cpu to complete disconnect */
1087 static unsigned int xpc_die_disconnecting;
1088
1089 /*
1090 * Notify other partitions to deactivate from us by first disengaging from all
1091 * references to our memory.
1092 */
1093 static void
1094 xpc_die_deactivate(void)
1095 {
1096 struct xpc_partition *part;
1097 short partid;
1098 int any_engaged;
1099 long keep_waiting;
1100 long wait_to_print;
1101
1102 if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1103 return;
1104
1105 /* keep xpc_hb_checker thread from doing anything (just in case) */
1106 xpc_exiting = 1;
1107
1108 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */
1109
1110 for (partid = 0; partid < xp_max_npartitions; partid++) {
1111 part = &xpc_partitions[partid];
1112
1113 if (xpc_arch_ops.partition_engaged(partid) ||
1114 part->act_state != XPC_P_AS_INACTIVE) {
1115 xpc_arch_ops.request_partition_deactivation(part);
1116 xpc_arch_ops.indicate_partition_disengaged(part);
1117 }
1118 }
1119
1120 /*
1121 * Though we requested that all other partitions deactivate from us,
1122 * we only wait until they've all disengaged or we've reached the
1123 * defined timelimit.
1124 *
1125 * Given that one iteration through the following while-loop takes
1126 * approximately 200 microseconds, calculate the #of loops to take
1127 * before bailing and the #of loops before printing a waiting message.
1128 */
1129 keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1130 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1131
1132 while (1) {
1133 any_engaged = xpc_arch_ops.any_partition_engaged();
1134 if (!any_engaged) {
1135 dev_info(xpc_part, "all partitions have deactivated\n");
1136 break;
1137 }
1138
1139 if (!keep_waiting--) {
1140 for (partid = 0; partid < xp_max_npartitions;
1141 partid++) {
1142 if (xpc_arch_ops.partition_engaged(partid)) {
1143 dev_info(xpc_part, "deactivate from "
1144 "remote partition %d timed "
1145 "out\n", partid);
1146 }
1147 }
1148 break;
1149 }
1150
1151 if (!wait_to_print--) {
1152 dev_info(xpc_part, "waiting for remote partitions to "
1153 "deactivate, timeout in %ld seconds\n",
1154 keep_waiting / (1000 * 5));
1155 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1156 1000 * 5;
1157 }
1158
1159 udelay(200);
1160 }
1161 }
1162
1163 /*
1164 * This function is called when the system is being restarted or halted due
1165 * to some sort of system failure. If this is the case we need to notify the
1166 * other partitions to disengage from all references to our memory.
1167 * This function can also be called when our heartbeater could be offlined
1168 * for a time. In this case we need to notify other partitions to not worry
1169 * about the lack of a heartbeat.
1170 */
1171 static int
1172 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1173 {
1174 #ifdef CONFIG_IA64 /* !!! temporary kludge */
1175 switch (event) {
1176 case DIE_MACHINE_RESTART:
1177 case DIE_MACHINE_HALT:
1178 xpc_die_deactivate();
1179 break;
1180
1181 case DIE_KDEBUG_ENTER:
1182 /* Should lack of heartbeat be ignored by other partitions? */
1183 if (!xpc_kdebug_ignore)
1184 break;
1185
1186 /* fall through */
1187 case DIE_MCA_MONARCH_ENTER:
1188 case DIE_INIT_MONARCH_ENTER:
1189 xpc_arch_ops.offline_heartbeat();
1190 break;
1191
1192 case DIE_KDEBUG_LEAVE:
1193 /* Is lack of heartbeat being ignored by other partitions? */
1194 if (!xpc_kdebug_ignore)
1195 break;
1196
1197 /* fall through */
1198 case DIE_MCA_MONARCH_LEAVE:
1199 case DIE_INIT_MONARCH_LEAVE:
1200 xpc_arch_ops.online_heartbeat();
1201 break;
1202 }
1203 #else
1204 struct die_args *die_args = _die_args;
1205
1206 switch (event) {
1207 case DIE_TRAP:
1208 if (die_args->trapnr == X86_TRAP_DF)
1209 xpc_die_deactivate();
1210
1211 if (((die_args->trapnr == X86_TRAP_MF) ||
1212 (die_args->trapnr == X86_TRAP_XF)) &&
1213 !user_mode(die_args->regs))
1214 xpc_die_deactivate();
1215
1216 break;
1217 case DIE_INT3:
1218 case DIE_DEBUG:
1219 break;
1220 case DIE_OOPS:
1221 case DIE_GPF:
1222 default:
1223 xpc_die_deactivate();
1224 }
1225 #endif
1226
1227 return NOTIFY_DONE;
1228 }
1229
1230 int __init
1231 xpc_init(void)
1232 {
1233 int ret;
1234 struct task_struct *kthread;
1235
1236 dev_set_name(xpc_part, "part");
1237 dev_set_name(xpc_chan, "chan");
1238
1239 if (is_shub()) {
1240 /*
1241 * The ia64-sn2 architecture supports at most 64 partitions.
1242 * And the inability to unregister remote amos restricts us
1243 * further to only support exactly 64 partitions on this
1244 * architecture, no less.
1245 */
1246 if (xp_max_npartitions != 64) {
1247 dev_err(xpc_part, "max #of partitions not set to 64\n");
1248 ret = -EINVAL;
1249 } else {
1250 ret = xpc_init_sn2();
1251 }
1252
1253 } else if (is_uv()) {
1254 ret = xpc_init_uv();
1255
1256 } else {
1257 ret = -ENODEV;
1258 }
1259
1260 if (ret != 0)
1261 return ret;
1262
1263 ret = xpc_setup_partitions();
1264 if (ret != 0) {
1265 dev_err(xpc_part, "can't get memory for partition structure\n");
1266 goto out_1;
1267 }
1268
1269 xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1270
1271 /*
1272 * Fill the partition reserved page with the information needed by
1273 * other partitions to discover we are alive and establish initial
1274 * communications.
1275 */
1276 ret = xpc_setup_rsvd_page();
1277 if (ret != 0) {
1278 dev_err(xpc_part, "can't setup our reserved page\n");
1279 goto out_2;
1280 }
1281
1282 /* add ourselves to the reboot_notifier_list */
1283 ret = register_reboot_notifier(&xpc_reboot_notifier);
1284 if (ret != 0)
1285 dev_warn(xpc_part, "can't register reboot notifier\n");
1286
1287 /* add ourselves to the die_notifier list */
1288 ret = register_die_notifier(&xpc_die_notifier);
1289 if (ret != 0)
1290 dev_warn(xpc_part, "can't register die notifier\n");
1291
1292 /*
1293 * The real work-horse behind xpc. This processes incoming
1294 * interrupts and monitors remote heartbeats.
1295 */
1296 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1297 if (IS_ERR(kthread)) {
1298 dev_err(xpc_part, "failed while forking hb check thread\n");
1299 ret = -EBUSY;
1300 goto out_3;
1301 }
1302
1303 /*
1304 * Startup a thread that will attempt to discover other partitions to
1305 * activate based on info provided by SAL. This new thread is short
1306 * lived and will exit once discovery is complete.
1307 */
1308 kthread = kthread_run(xpc_initiate_discovery, NULL,
1309 XPC_DISCOVERY_THREAD_NAME);
1310 if (IS_ERR(kthread)) {
1311 dev_err(xpc_part, "failed while forking discovery thread\n");
1312
1313 /* mark this new thread as a non-starter */
1314 complete(&xpc_discovery_exited);
1315
1316 xpc_do_exit(xpUnloading);
1317 return -EBUSY;
1318 }
1319
1320 /* set the interface to point at XPC's functions */
1321 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1322 xpc_initiate_send, xpc_initiate_send_notify,
1323 xpc_initiate_received, xpc_initiate_partid_to_nasids);
1324
1325 return 0;
1326
1327 /* initialization was not successful */
1328 out_3:
1329 xpc_teardown_rsvd_page();
1330
1331 (void)unregister_die_notifier(&xpc_die_notifier);
1332 (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1333 out_2:
1334 if (xpc_sysctl)
1335 unregister_sysctl_table(xpc_sysctl);
1336
1337 xpc_teardown_partitions();
1338 out_1:
1339 if (is_shub())
1340 xpc_exit_sn2();
1341 else if (is_uv())
1342 xpc_exit_uv();
1343 return ret;
1344 }
1345
1346 module_init(xpc_init);
1347
1348 void __exit
1349 xpc_exit(void)
1350 {
1351 xpc_do_exit(xpUnloading);
1352 }
1353
1354 module_exit(xpc_exit);
1355
1356 MODULE_AUTHOR("Silicon Graphics, Inc.");
1357 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1358 MODULE_LICENSE("GPL");
1359
1360 module_param(xpc_hb_interval, int, 0);
1361 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1362 "heartbeat increments.");
1363
1364 module_param(xpc_hb_check_interval, int, 0);
1365 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1366 "heartbeat checks.");
1367
1368 module_param(xpc_disengage_timelimit, int, 0);
1369 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1370 "for disengage to complete.");
1371
1372 module_param(xpc_kdebug_ignore, int, 0);
1373 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1374 "other partitions when dropping into kdebug.");