]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/card/block.c
mmc: block: don't use the OR operation for flag of data
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
44
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
54
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
64
65 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
66 (rq_data_dir(req) == WRITE))
67 #define PACKED_CMD_VER 0x01
68 #define PACKED_CMD_WR 0x02
69
70 static DEFINE_MUTEX(block_mutex);
71
72 /*
73 * The defaults come from config options but can be overriden by module
74 * or bootarg options.
75 */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77
78 /*
79 * We've only got one major, so number of mmcblk devices is
80 * limited to (1 << 20) / number of minors per device. It is also
81 * currently limited by the size of the static bitmaps below.
82 */
83 static int max_devices;
84
85 #define MAX_DEVICES 256
86
87 /* TODO: Replace these with struct ida */
88 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
89 static DECLARE_BITMAP(name_use, MAX_DEVICES);
90
91 /*
92 * There is one mmc_blk_data per slot.
93 */
94 struct mmc_blk_data {
95 spinlock_t lock;
96 struct gendisk *disk;
97 struct mmc_queue queue;
98 struct list_head part;
99
100 unsigned int flags;
101 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
102 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
103 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104
105 unsigned int usage;
106 unsigned int read_only;
107 unsigned int part_type;
108 unsigned int name_idx;
109 unsigned int reset_done;
110 #define MMC_BLK_READ BIT(0)
111 #define MMC_BLK_WRITE BIT(1)
112 #define MMC_BLK_DISCARD BIT(2)
113 #define MMC_BLK_SECDISCARD BIT(3)
114
115 /*
116 * Only set in main mmc_blk_data associated
117 * with mmc_card with dev_set_drvdata, and keeps
118 * track of the current selected device partition.
119 */
120 unsigned int part_curr;
121 struct device_attribute force_ro;
122 struct device_attribute power_ro_lock;
123 int area_type;
124 };
125
126 static DEFINE_MUTEX(open_lock);
127
128 enum {
129 MMC_PACKED_NR_IDX = -1,
130 MMC_PACKED_NR_ZERO,
131 MMC_PACKED_NR_SINGLE,
132 };
133
134 module_param(perdev_minors, int, 0444);
135 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
136
137 static inline int mmc_blk_part_switch(struct mmc_card *card,
138 struct mmc_blk_data *md);
139 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
140
141 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
142 {
143 struct mmc_packed *packed = mqrq->packed;
144
145 BUG_ON(!packed);
146
147 mqrq->cmd_type = MMC_PACKED_NONE;
148 packed->nr_entries = MMC_PACKED_NR_ZERO;
149 packed->idx_failure = MMC_PACKED_NR_IDX;
150 packed->retries = 0;
151 packed->blocks = 0;
152 }
153
154 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
155 {
156 struct mmc_blk_data *md;
157
158 mutex_lock(&open_lock);
159 md = disk->private_data;
160 if (md && md->usage == 0)
161 md = NULL;
162 if (md)
163 md->usage++;
164 mutex_unlock(&open_lock);
165
166 return md;
167 }
168
169 static inline int mmc_get_devidx(struct gendisk *disk)
170 {
171 int devidx = disk->first_minor / perdev_minors;
172 return devidx;
173 }
174
175 static void mmc_blk_put(struct mmc_blk_data *md)
176 {
177 mutex_lock(&open_lock);
178 md->usage--;
179 if (md->usage == 0) {
180 int devidx = mmc_get_devidx(md->disk);
181 blk_cleanup_queue(md->queue.queue);
182
183 __clear_bit(devidx, dev_use);
184
185 put_disk(md->disk);
186 kfree(md);
187 }
188 mutex_unlock(&open_lock);
189 }
190
191 static ssize_t power_ro_lock_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 int ret;
195 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
196 struct mmc_card *card = md->queue.card;
197 int locked = 0;
198
199 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
200 locked = 2;
201 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
202 locked = 1;
203
204 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
205
206 mmc_blk_put(md);
207
208 return ret;
209 }
210
211 static ssize_t power_ro_lock_store(struct device *dev,
212 struct device_attribute *attr, const char *buf, size_t count)
213 {
214 int ret;
215 struct mmc_blk_data *md, *part_md;
216 struct mmc_card *card;
217 unsigned long set;
218
219 if (kstrtoul(buf, 0, &set))
220 return -EINVAL;
221
222 if (set != 1)
223 return count;
224
225 md = mmc_blk_get(dev_to_disk(dev));
226 card = md->queue.card;
227
228 mmc_get_card(card);
229
230 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
231 card->ext_csd.boot_ro_lock |
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
233 card->ext_csd.part_time);
234 if (ret)
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
236 else
237 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
238
239 mmc_put_card(card);
240
241 if (!ret) {
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md->disk->disk_name);
244 set_disk_ro(md->disk, 1);
245
246 list_for_each_entry(part_md, &md->part, part)
247 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
249 set_disk_ro(part_md->disk, 1);
250 }
251 }
252
253 mmc_blk_put(md);
254 return count;
255 }
256
257 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
258 char *buf)
259 {
260 int ret;
261 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
262
263 ret = snprintf(buf, PAGE_SIZE, "%d\n",
264 get_disk_ro(dev_to_disk(dev)) ^
265 md->read_only);
266 mmc_blk_put(md);
267 return ret;
268 }
269
270 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
272 {
273 int ret;
274 char *end;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 unsigned long set = simple_strtoul(buf, &end, 0);
277 if (end == buf) {
278 ret = -EINVAL;
279 goto out;
280 }
281
282 set_disk_ro(dev_to_disk(dev), set || md->read_only);
283 ret = count;
284 out:
285 mmc_blk_put(md);
286 return ret;
287 }
288
289 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
292 int ret = -ENXIO;
293
294 mutex_lock(&block_mutex);
295 if (md) {
296 if (md->usage == 2)
297 check_disk_change(bdev);
298 ret = 0;
299
300 if ((mode & FMODE_WRITE) && md->read_only) {
301 mmc_blk_put(md);
302 ret = -EROFS;
303 }
304 }
305 mutex_unlock(&block_mutex);
306
307 return ret;
308 }
309
310 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
311 {
312 struct mmc_blk_data *md = disk->private_data;
313
314 mutex_lock(&block_mutex);
315 mmc_blk_put(md);
316 mutex_unlock(&block_mutex);
317 }
318
319 static int
320 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
321 {
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
326 }
327
328 struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
332 };
333
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
336 {
337 struct mmc_blk_ioc_data *idata;
338 int err;
339
340 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
344 }
345
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
349 }
350
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
353 err = -EOVERFLOW;
354 goto idata_err;
355 }
356
357 if (!idata->buf_bytes)
358 return idata;
359
360 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
361 if (!idata->buf) {
362 err = -ENOMEM;
363 goto idata_err;
364 }
365
366 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
367 idata->ic.data_ptr, idata->buf_bytes)) {
368 err = -EFAULT;
369 goto copy_err;
370 }
371
372 return idata;
373
374 copy_err:
375 kfree(idata->buf);
376 idata_err:
377 kfree(idata);
378 out:
379 return ERR_PTR(err);
380 }
381
382 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
383 struct mmc_blk_ioc_data *idata)
384 {
385 struct mmc_ioc_cmd *ic = &idata->ic;
386
387 if (copy_to_user(&(ic_ptr->response), ic->response,
388 sizeof(ic->response)))
389 return -EFAULT;
390
391 if (!idata->ic.write_flag) {
392 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
393 idata->buf, idata->buf_bytes))
394 return -EFAULT;
395 }
396
397 return 0;
398 }
399
400 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
401 u32 retries_max)
402 {
403 int err;
404 u32 retry_count = 0;
405
406 if (!status || !retries_max)
407 return -EINVAL;
408
409 do {
410 err = get_card_status(card, status, 5);
411 if (err)
412 break;
413
414 if (!R1_STATUS(*status) &&
415 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
416 break; /* RPMB programming operation complete */
417
418 /*
419 * Rechedule to give the MMC device a chance to continue
420 * processing the previous command without being polled too
421 * frequently.
422 */
423 usleep_range(1000, 5000);
424 } while (++retry_count < retries_max);
425
426 if (retry_count == retries_max)
427 err = -EPERM;
428
429 return err;
430 }
431
432 static int ioctl_do_sanitize(struct mmc_card *card)
433 {
434 int err;
435
436 if (!mmc_can_sanitize(card)) {
437 pr_warn("%s: %s - SANITIZE is not supported\n",
438 mmc_hostname(card->host), __func__);
439 err = -EOPNOTSUPP;
440 goto out;
441 }
442
443 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
444 mmc_hostname(card->host), __func__);
445
446 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
447 EXT_CSD_SANITIZE_START, 1,
448 MMC_SANITIZE_REQ_TIMEOUT);
449
450 if (err)
451 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
452 mmc_hostname(card->host), __func__, err);
453
454 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
455 __func__);
456 out:
457 return err;
458 }
459
460 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
461 struct mmc_blk_ioc_data *idata)
462 {
463 struct mmc_command cmd = {0};
464 struct mmc_data data = {0};
465 struct mmc_request mrq = {NULL};
466 struct scatterlist sg;
467 int err;
468 int is_rpmb = false;
469 u32 status = 0;
470
471 if (!card || !md || !idata)
472 return -EINVAL;
473
474 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
475 is_rpmb = true;
476
477 cmd.opcode = idata->ic.opcode;
478 cmd.arg = idata->ic.arg;
479 cmd.flags = idata->ic.flags;
480
481 if (idata->buf_bytes) {
482 data.sg = &sg;
483 data.sg_len = 1;
484 data.blksz = idata->ic.blksz;
485 data.blocks = idata->ic.blocks;
486
487 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
488
489 if (idata->ic.write_flag)
490 data.flags = MMC_DATA_WRITE;
491 else
492 data.flags = MMC_DATA_READ;
493
494 /* data.flags must already be set before doing this. */
495 mmc_set_data_timeout(&data, card);
496
497 /* Allow overriding the timeout_ns for empirical tuning. */
498 if (idata->ic.data_timeout_ns)
499 data.timeout_ns = idata->ic.data_timeout_ns;
500
501 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
502 /*
503 * Pretend this is a data transfer and rely on the
504 * host driver to compute timeout. When all host
505 * drivers support cmd.cmd_timeout for R1B, this
506 * can be changed to:
507 *
508 * mrq.data = NULL;
509 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
510 */
511 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
512 }
513
514 mrq.data = &data;
515 }
516
517 mrq.cmd = &cmd;
518
519 err = mmc_blk_part_switch(card, md);
520 if (err)
521 return err;
522
523 if (idata->ic.is_acmd) {
524 err = mmc_app_cmd(card->host, card);
525 if (err)
526 return err;
527 }
528
529 if (is_rpmb) {
530 err = mmc_set_blockcount(card, data.blocks,
531 idata->ic.write_flag & (1 << 31));
532 if (err)
533 return err;
534 }
535
536 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
537 (cmd.opcode == MMC_SWITCH)) {
538 err = ioctl_do_sanitize(card);
539
540 if (err)
541 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
542 __func__, err);
543
544 return err;
545 }
546
547 mmc_wait_for_req(card->host, &mrq);
548
549 if (cmd.error) {
550 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
551 __func__, cmd.error);
552 return cmd.error;
553 }
554 if (data.error) {
555 dev_err(mmc_dev(card->host), "%s: data error %d\n",
556 __func__, data.error);
557 return data.error;
558 }
559
560 /*
561 * According to the SD specs, some commands require a delay after
562 * issuing the command.
563 */
564 if (idata->ic.postsleep_min_us)
565 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
566
567 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
568
569 if (is_rpmb) {
570 /*
571 * Ensure RPMB command has completed by polling CMD13
572 * "Send Status".
573 */
574 err = ioctl_rpmb_card_status_poll(card, &status, 5);
575 if (err)
576 dev_err(mmc_dev(card->host),
577 "%s: Card Status=0x%08X, error %d\n",
578 __func__, status, err);
579 }
580
581 return err;
582 }
583
584 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
585 struct mmc_ioc_cmd __user *ic_ptr)
586 {
587 struct mmc_blk_ioc_data *idata;
588 struct mmc_blk_data *md;
589 struct mmc_card *card;
590 int err = 0, ioc_err = 0;
591
592 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
593 if (IS_ERR(idata))
594 return PTR_ERR(idata);
595
596 md = mmc_blk_get(bdev->bd_disk);
597 if (!md) {
598 err = -EINVAL;
599 goto cmd_err;
600 }
601
602 card = md->queue.card;
603 if (IS_ERR(card)) {
604 err = PTR_ERR(card);
605 goto cmd_done;
606 }
607
608 mmc_get_card(card);
609
610 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
611
612 mmc_put_card(card);
613
614 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
615
616 cmd_done:
617 mmc_blk_put(md);
618 cmd_err:
619 kfree(idata->buf);
620 kfree(idata);
621 return ioc_err ? ioc_err : err;
622 }
623
624 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
625 struct mmc_ioc_multi_cmd __user *user)
626 {
627 struct mmc_blk_ioc_data **idata = NULL;
628 struct mmc_ioc_cmd __user *cmds = user->cmds;
629 struct mmc_card *card;
630 struct mmc_blk_data *md;
631 int i, err = 0, ioc_err = 0;
632 __u64 num_of_cmds;
633
634 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
635 sizeof(num_of_cmds)))
636 return -EFAULT;
637
638 if (num_of_cmds > MMC_IOC_MAX_CMDS)
639 return -EINVAL;
640
641 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
642 if (!idata)
643 return -ENOMEM;
644
645 for (i = 0; i < num_of_cmds; i++) {
646 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
647 if (IS_ERR(idata[i])) {
648 err = PTR_ERR(idata[i]);
649 num_of_cmds = i;
650 goto cmd_err;
651 }
652 }
653
654 md = mmc_blk_get(bdev->bd_disk);
655 if (!md) {
656 err = -EINVAL;
657 goto cmd_err;
658 }
659
660 card = md->queue.card;
661 if (IS_ERR(card)) {
662 err = PTR_ERR(card);
663 goto cmd_done;
664 }
665
666 mmc_get_card(card);
667
668 for (i = 0; i < num_of_cmds && !ioc_err; i++)
669 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
670
671 mmc_put_card(card);
672
673 /* copy to user if data and response */
674 for (i = 0; i < num_of_cmds && !err; i++)
675 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
676
677 cmd_done:
678 mmc_blk_put(md);
679 cmd_err:
680 for (i = 0; i < num_of_cmds; i++) {
681 kfree(idata[i]->buf);
682 kfree(idata[i]);
683 }
684 kfree(idata);
685 return ioc_err ? ioc_err : err;
686 }
687
688 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
689 unsigned int cmd, unsigned long arg)
690 {
691 /*
692 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
693 * whole block device, not on a partition. This prevents overspray
694 * between sibling partitions.
695 */
696 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
697 return -EPERM;
698
699 switch (cmd) {
700 case MMC_IOC_CMD:
701 return mmc_blk_ioctl_cmd(bdev,
702 (struct mmc_ioc_cmd __user *)arg);
703 case MMC_IOC_MULTI_CMD:
704 return mmc_blk_ioctl_multi_cmd(bdev,
705 (struct mmc_ioc_multi_cmd __user *)arg);
706 default:
707 return -EINVAL;
708 }
709 }
710
711 #ifdef CONFIG_COMPAT
712 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
713 unsigned int cmd, unsigned long arg)
714 {
715 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
716 }
717 #endif
718
719 static const struct block_device_operations mmc_bdops = {
720 .open = mmc_blk_open,
721 .release = mmc_blk_release,
722 .getgeo = mmc_blk_getgeo,
723 .owner = THIS_MODULE,
724 .ioctl = mmc_blk_ioctl,
725 #ifdef CONFIG_COMPAT
726 .compat_ioctl = mmc_blk_compat_ioctl,
727 #endif
728 };
729
730 static inline int mmc_blk_part_switch(struct mmc_card *card,
731 struct mmc_blk_data *md)
732 {
733 int ret;
734 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
735
736 if (main_md->part_curr == md->part_type)
737 return 0;
738
739 if (mmc_card_mmc(card)) {
740 u8 part_config = card->ext_csd.part_config;
741
742 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
743 part_config |= md->part_type;
744
745 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
746 EXT_CSD_PART_CONFIG, part_config,
747 card->ext_csd.part_time);
748 if (ret)
749 return ret;
750
751 card->ext_csd.part_config = part_config;
752 }
753
754 main_md->part_curr = md->part_type;
755 return 0;
756 }
757
758 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
759 {
760 int err;
761 u32 result;
762 __be32 *blocks;
763
764 struct mmc_request mrq = {NULL};
765 struct mmc_command cmd = {0};
766 struct mmc_data data = {0};
767
768 struct scatterlist sg;
769
770 cmd.opcode = MMC_APP_CMD;
771 cmd.arg = card->rca << 16;
772 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
773
774 err = mmc_wait_for_cmd(card->host, &cmd, 0);
775 if (err)
776 return (u32)-1;
777 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
778 return (u32)-1;
779
780 memset(&cmd, 0, sizeof(struct mmc_command));
781
782 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
783 cmd.arg = 0;
784 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
785
786 data.blksz = 4;
787 data.blocks = 1;
788 data.flags = MMC_DATA_READ;
789 data.sg = &sg;
790 data.sg_len = 1;
791 mmc_set_data_timeout(&data, card);
792
793 mrq.cmd = &cmd;
794 mrq.data = &data;
795
796 blocks = kmalloc(4, GFP_KERNEL);
797 if (!blocks)
798 return (u32)-1;
799
800 sg_init_one(&sg, blocks, 4);
801
802 mmc_wait_for_req(card->host, &mrq);
803
804 result = ntohl(*blocks);
805 kfree(blocks);
806
807 if (cmd.error || data.error)
808 result = (u32)-1;
809
810 return result;
811 }
812
813 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
814 {
815 struct mmc_command cmd = {0};
816 int err;
817
818 cmd.opcode = MMC_SEND_STATUS;
819 if (!mmc_host_is_spi(card->host))
820 cmd.arg = card->rca << 16;
821 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
822 err = mmc_wait_for_cmd(card->host, &cmd, retries);
823 if (err == 0)
824 *status = cmd.resp[0];
825 return err;
826 }
827
828 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
829 bool hw_busy_detect, struct request *req, int *gen_err)
830 {
831 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
832 int err = 0;
833 u32 status;
834
835 do {
836 err = get_card_status(card, &status, 5);
837 if (err) {
838 pr_err("%s: error %d requesting status\n",
839 req->rq_disk->disk_name, err);
840 return err;
841 }
842
843 if (status & R1_ERROR) {
844 pr_err("%s: %s: error sending status cmd, status %#x\n",
845 req->rq_disk->disk_name, __func__, status);
846 *gen_err = 1;
847 }
848
849 /* We may rely on the host hw to handle busy detection.*/
850 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
851 hw_busy_detect)
852 break;
853
854 /*
855 * Timeout if the device never becomes ready for data and never
856 * leaves the program state.
857 */
858 if (time_after(jiffies, timeout)) {
859 pr_err("%s: Card stuck in programming state! %s %s\n",
860 mmc_hostname(card->host),
861 req->rq_disk->disk_name, __func__);
862 return -ETIMEDOUT;
863 }
864
865 /*
866 * Some cards mishandle the status bits,
867 * so make sure to check both the busy
868 * indication and the card state.
869 */
870 } while (!(status & R1_READY_FOR_DATA) ||
871 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
872
873 return err;
874 }
875
876 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
877 struct request *req, int *gen_err, u32 *stop_status)
878 {
879 struct mmc_host *host = card->host;
880 struct mmc_command cmd = {0};
881 int err;
882 bool use_r1b_resp = rq_data_dir(req) == WRITE;
883
884 /*
885 * Normally we use R1B responses for WRITE, but in cases where the host
886 * has specified a max_busy_timeout we need to validate it. A failure
887 * means we need to prevent the host from doing hw busy detection, which
888 * is done by converting to a R1 response instead.
889 */
890 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
891 use_r1b_resp = false;
892
893 cmd.opcode = MMC_STOP_TRANSMISSION;
894 if (use_r1b_resp) {
895 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
896 cmd.busy_timeout = timeout_ms;
897 } else {
898 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
899 }
900
901 err = mmc_wait_for_cmd(host, &cmd, 5);
902 if (err)
903 return err;
904
905 *stop_status = cmd.resp[0];
906
907 /* No need to check card status in case of READ. */
908 if (rq_data_dir(req) == READ)
909 return 0;
910
911 if (!mmc_host_is_spi(host) &&
912 (*stop_status & R1_ERROR)) {
913 pr_err("%s: %s: general error sending stop command, resp %#x\n",
914 req->rq_disk->disk_name, __func__, *stop_status);
915 *gen_err = 1;
916 }
917
918 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
919 }
920
921 #define ERR_NOMEDIUM 3
922 #define ERR_RETRY 2
923 #define ERR_ABORT 1
924 #define ERR_CONTINUE 0
925
926 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
927 bool status_valid, u32 status)
928 {
929 switch (error) {
930 case -EILSEQ:
931 /* response crc error, retry the r/w cmd */
932 pr_err("%s: %s sending %s command, card status %#x\n",
933 req->rq_disk->disk_name, "response CRC error",
934 name, status);
935 return ERR_RETRY;
936
937 case -ETIMEDOUT:
938 pr_err("%s: %s sending %s command, card status %#x\n",
939 req->rq_disk->disk_name, "timed out", name, status);
940
941 /* If the status cmd initially failed, retry the r/w cmd */
942 if (!status_valid)
943 return ERR_RETRY;
944
945 /*
946 * If it was a r/w cmd crc error, or illegal command
947 * (eg, issued in wrong state) then retry - we should
948 * have corrected the state problem above.
949 */
950 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
951 return ERR_RETRY;
952
953 /* Otherwise abort the command */
954 return ERR_ABORT;
955
956 default:
957 /* We don't understand the error code the driver gave us */
958 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
959 req->rq_disk->disk_name, error, status);
960 return ERR_ABORT;
961 }
962 }
963
964 /*
965 * Initial r/w and stop cmd error recovery.
966 * We don't know whether the card received the r/w cmd or not, so try to
967 * restore things back to a sane state. Essentially, we do this as follows:
968 * - Obtain card status. If the first attempt to obtain card status fails,
969 * the status word will reflect the failed status cmd, not the failed
970 * r/w cmd. If we fail to obtain card status, it suggests we can no
971 * longer communicate with the card.
972 * - Check the card state. If the card received the cmd but there was a
973 * transient problem with the response, it might still be in a data transfer
974 * mode. Try to send it a stop command. If this fails, we can't recover.
975 * - If the r/w cmd failed due to a response CRC error, it was probably
976 * transient, so retry the cmd.
977 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
978 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
979 * illegal cmd, retry.
980 * Otherwise we don't understand what happened, so abort.
981 */
982 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
983 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
984 {
985 bool prev_cmd_status_valid = true;
986 u32 status, stop_status = 0;
987 int err, retry;
988
989 if (mmc_card_removed(card))
990 return ERR_NOMEDIUM;
991
992 /*
993 * Try to get card status which indicates both the card state
994 * and why there was no response. If the first attempt fails,
995 * we can't be sure the returned status is for the r/w command.
996 */
997 for (retry = 2; retry >= 0; retry--) {
998 err = get_card_status(card, &status, 0);
999 if (!err)
1000 break;
1001
1002 /* Re-tune if needed */
1003 mmc_retune_recheck(card->host);
1004
1005 prev_cmd_status_valid = false;
1006 pr_err("%s: error %d sending status command, %sing\n",
1007 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1008 }
1009
1010 /* We couldn't get a response from the card. Give up. */
1011 if (err) {
1012 /* Check if the card is removed */
1013 if (mmc_detect_card_removed(card->host))
1014 return ERR_NOMEDIUM;
1015 return ERR_ABORT;
1016 }
1017
1018 /* Flag ECC errors */
1019 if ((status & R1_CARD_ECC_FAILED) ||
1020 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1021 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1022 *ecc_err = 1;
1023
1024 /* Flag General errors */
1025 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1026 if ((status & R1_ERROR) ||
1027 (brq->stop.resp[0] & R1_ERROR)) {
1028 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1029 req->rq_disk->disk_name, __func__,
1030 brq->stop.resp[0], status);
1031 *gen_err = 1;
1032 }
1033
1034 /*
1035 * Check the current card state. If it is in some data transfer
1036 * mode, tell it to stop (and hopefully transition back to TRAN.)
1037 */
1038 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1039 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1040 err = send_stop(card,
1041 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1042 req, gen_err, &stop_status);
1043 if (err) {
1044 pr_err("%s: error %d sending stop command\n",
1045 req->rq_disk->disk_name, err);
1046 /*
1047 * If the stop cmd also timed out, the card is probably
1048 * not present, so abort. Other errors are bad news too.
1049 */
1050 return ERR_ABORT;
1051 }
1052
1053 if (stop_status & R1_CARD_ECC_FAILED)
1054 *ecc_err = 1;
1055 }
1056
1057 /* Check for set block count errors */
1058 if (brq->sbc.error)
1059 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1060 prev_cmd_status_valid, status);
1061
1062 /* Check for r/w command errors */
1063 if (brq->cmd.error)
1064 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1065 prev_cmd_status_valid, status);
1066
1067 /* Data errors */
1068 if (!brq->stop.error)
1069 return ERR_CONTINUE;
1070
1071 /* Now for stop errors. These aren't fatal to the transfer. */
1072 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1073 req->rq_disk->disk_name, brq->stop.error,
1074 brq->cmd.resp[0], status);
1075
1076 /*
1077 * Subsitute in our own stop status as this will give the error
1078 * state which happened during the execution of the r/w command.
1079 */
1080 if (stop_status) {
1081 brq->stop.resp[0] = stop_status;
1082 brq->stop.error = 0;
1083 }
1084 return ERR_CONTINUE;
1085 }
1086
1087 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1088 int type)
1089 {
1090 int err;
1091
1092 if (md->reset_done & type)
1093 return -EEXIST;
1094
1095 md->reset_done |= type;
1096 err = mmc_hw_reset(host);
1097 /* Ensure we switch back to the correct partition */
1098 if (err != -EOPNOTSUPP) {
1099 struct mmc_blk_data *main_md =
1100 dev_get_drvdata(&host->card->dev);
1101 int part_err;
1102
1103 main_md->part_curr = main_md->part_type;
1104 part_err = mmc_blk_part_switch(host->card, md);
1105 if (part_err) {
1106 /*
1107 * We have failed to get back into the correct
1108 * partition, so we need to abort the whole request.
1109 */
1110 return -ENODEV;
1111 }
1112 }
1113 return err;
1114 }
1115
1116 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1117 {
1118 md->reset_done &= ~type;
1119 }
1120
1121 int mmc_access_rpmb(struct mmc_queue *mq)
1122 {
1123 struct mmc_blk_data *md = mq->data;
1124 /*
1125 * If this is a RPMB partition access, return ture
1126 */
1127 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1128 return true;
1129
1130 return false;
1131 }
1132
1133 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1134 {
1135 struct mmc_blk_data *md = mq->data;
1136 struct mmc_card *card = md->queue.card;
1137 unsigned int from, nr, arg;
1138 int err = 0, type = MMC_BLK_DISCARD;
1139
1140 if (!mmc_can_erase(card)) {
1141 err = -EOPNOTSUPP;
1142 goto out;
1143 }
1144
1145 from = blk_rq_pos(req);
1146 nr = blk_rq_sectors(req);
1147
1148 if (mmc_can_discard(card))
1149 arg = MMC_DISCARD_ARG;
1150 else if (mmc_can_trim(card))
1151 arg = MMC_TRIM_ARG;
1152 else
1153 arg = MMC_ERASE_ARG;
1154 retry:
1155 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1156 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1157 INAND_CMD38_ARG_EXT_CSD,
1158 arg == MMC_TRIM_ARG ?
1159 INAND_CMD38_ARG_TRIM :
1160 INAND_CMD38_ARG_ERASE,
1161 0);
1162 if (err)
1163 goto out;
1164 }
1165 err = mmc_erase(card, from, nr, arg);
1166 out:
1167 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1168 goto retry;
1169 if (!err)
1170 mmc_blk_reset_success(md, type);
1171 blk_end_request(req, err, blk_rq_bytes(req));
1172
1173 return err ? 0 : 1;
1174 }
1175
1176 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1177 struct request *req)
1178 {
1179 struct mmc_blk_data *md = mq->data;
1180 struct mmc_card *card = md->queue.card;
1181 unsigned int from, nr, arg;
1182 int err = 0, type = MMC_BLK_SECDISCARD;
1183
1184 if (!(mmc_can_secure_erase_trim(card))) {
1185 err = -EOPNOTSUPP;
1186 goto out;
1187 }
1188
1189 from = blk_rq_pos(req);
1190 nr = blk_rq_sectors(req);
1191
1192 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1193 arg = MMC_SECURE_TRIM1_ARG;
1194 else
1195 arg = MMC_SECURE_ERASE_ARG;
1196
1197 retry:
1198 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1199 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1200 INAND_CMD38_ARG_EXT_CSD,
1201 arg == MMC_SECURE_TRIM1_ARG ?
1202 INAND_CMD38_ARG_SECTRIM1 :
1203 INAND_CMD38_ARG_SECERASE,
1204 0);
1205 if (err)
1206 goto out_retry;
1207 }
1208
1209 err = mmc_erase(card, from, nr, arg);
1210 if (err == -EIO)
1211 goto out_retry;
1212 if (err)
1213 goto out;
1214
1215 if (arg == MMC_SECURE_TRIM1_ARG) {
1216 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1217 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1218 INAND_CMD38_ARG_EXT_CSD,
1219 INAND_CMD38_ARG_SECTRIM2,
1220 0);
1221 if (err)
1222 goto out_retry;
1223 }
1224
1225 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1226 if (err == -EIO)
1227 goto out_retry;
1228 if (err)
1229 goto out;
1230 }
1231
1232 out_retry:
1233 if (err && !mmc_blk_reset(md, card->host, type))
1234 goto retry;
1235 if (!err)
1236 mmc_blk_reset_success(md, type);
1237 out:
1238 blk_end_request(req, err, blk_rq_bytes(req));
1239
1240 return err ? 0 : 1;
1241 }
1242
1243 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1244 {
1245 struct mmc_blk_data *md = mq->data;
1246 struct mmc_card *card = md->queue.card;
1247 int ret = 0;
1248
1249 ret = mmc_flush_cache(card);
1250 if (ret)
1251 ret = -EIO;
1252
1253 blk_end_request_all(req, ret);
1254
1255 return ret ? 0 : 1;
1256 }
1257
1258 /*
1259 * Reformat current write as a reliable write, supporting
1260 * both legacy and the enhanced reliable write MMC cards.
1261 * In each transfer we'll handle only as much as a single
1262 * reliable write can handle, thus finish the request in
1263 * partial completions.
1264 */
1265 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1266 struct mmc_card *card,
1267 struct request *req)
1268 {
1269 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1270 /* Legacy mode imposes restrictions on transfers. */
1271 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1272 brq->data.blocks = 1;
1273
1274 if (brq->data.blocks > card->ext_csd.rel_sectors)
1275 brq->data.blocks = card->ext_csd.rel_sectors;
1276 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1277 brq->data.blocks = 1;
1278 }
1279 }
1280
1281 #define CMD_ERRORS \
1282 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1283 R1_ADDRESS_ERROR | /* Misaligned address */ \
1284 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1285 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1286 R1_CC_ERROR | /* Card controller error */ \
1287 R1_ERROR) /* General/unknown error */
1288
1289 static int mmc_blk_err_check(struct mmc_card *card,
1290 struct mmc_async_req *areq)
1291 {
1292 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1293 mmc_active);
1294 struct mmc_blk_request *brq = &mq_mrq->brq;
1295 struct request *req = mq_mrq->req;
1296 int need_retune = card->host->need_retune;
1297 int ecc_err = 0, gen_err = 0;
1298
1299 /*
1300 * sbc.error indicates a problem with the set block count
1301 * command. No data will have been transferred.
1302 *
1303 * cmd.error indicates a problem with the r/w command. No
1304 * data will have been transferred.
1305 *
1306 * stop.error indicates a problem with the stop command. Data
1307 * may have been transferred, or may still be transferring.
1308 */
1309 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1310 brq->data.error) {
1311 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1312 case ERR_RETRY:
1313 return MMC_BLK_RETRY;
1314 case ERR_ABORT:
1315 return MMC_BLK_ABORT;
1316 case ERR_NOMEDIUM:
1317 return MMC_BLK_NOMEDIUM;
1318 case ERR_CONTINUE:
1319 break;
1320 }
1321 }
1322
1323 /*
1324 * Check for errors relating to the execution of the
1325 * initial command - such as address errors. No data
1326 * has been transferred.
1327 */
1328 if (brq->cmd.resp[0] & CMD_ERRORS) {
1329 pr_err("%s: r/w command failed, status = %#x\n",
1330 req->rq_disk->disk_name, brq->cmd.resp[0]);
1331 return MMC_BLK_ABORT;
1332 }
1333
1334 /*
1335 * Everything else is either success, or a data error of some
1336 * kind. If it was a write, we may have transitioned to
1337 * program mode, which we have to wait for it to complete.
1338 */
1339 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1340 int err;
1341
1342 /* Check stop command response */
1343 if (brq->stop.resp[0] & R1_ERROR) {
1344 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1345 req->rq_disk->disk_name, __func__,
1346 brq->stop.resp[0]);
1347 gen_err = 1;
1348 }
1349
1350 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1351 &gen_err);
1352 if (err)
1353 return MMC_BLK_CMD_ERR;
1354 }
1355
1356 /* if general error occurs, retry the write operation. */
1357 if (gen_err) {
1358 pr_warn("%s: retrying write for general error\n",
1359 req->rq_disk->disk_name);
1360 return MMC_BLK_RETRY;
1361 }
1362
1363 if (brq->data.error) {
1364 if (need_retune && !brq->retune_retry_done) {
1365 pr_info("%s: retrying because a re-tune was needed\n",
1366 req->rq_disk->disk_name);
1367 brq->retune_retry_done = 1;
1368 return MMC_BLK_RETRY;
1369 }
1370 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1371 req->rq_disk->disk_name, brq->data.error,
1372 (unsigned)blk_rq_pos(req),
1373 (unsigned)blk_rq_sectors(req),
1374 brq->cmd.resp[0], brq->stop.resp[0]);
1375
1376 if (rq_data_dir(req) == READ) {
1377 if (ecc_err)
1378 return MMC_BLK_ECC_ERR;
1379 return MMC_BLK_DATA_ERR;
1380 } else {
1381 return MMC_BLK_CMD_ERR;
1382 }
1383 }
1384
1385 if (!brq->data.bytes_xfered)
1386 return MMC_BLK_RETRY;
1387
1388 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1389 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1390 return MMC_BLK_PARTIAL;
1391 else
1392 return MMC_BLK_SUCCESS;
1393 }
1394
1395 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1396 return MMC_BLK_PARTIAL;
1397
1398 return MMC_BLK_SUCCESS;
1399 }
1400
1401 static int mmc_blk_packed_err_check(struct mmc_card *card,
1402 struct mmc_async_req *areq)
1403 {
1404 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1405 mmc_active);
1406 struct request *req = mq_rq->req;
1407 struct mmc_packed *packed = mq_rq->packed;
1408 int err, check, status;
1409 u8 *ext_csd;
1410
1411 BUG_ON(!packed);
1412
1413 packed->retries--;
1414 check = mmc_blk_err_check(card, areq);
1415 err = get_card_status(card, &status, 0);
1416 if (err) {
1417 pr_err("%s: error %d sending status command\n",
1418 req->rq_disk->disk_name, err);
1419 return MMC_BLK_ABORT;
1420 }
1421
1422 if (status & R1_EXCEPTION_EVENT) {
1423 err = mmc_get_ext_csd(card, &ext_csd);
1424 if (err) {
1425 pr_err("%s: error %d sending ext_csd\n",
1426 req->rq_disk->disk_name, err);
1427 return MMC_BLK_ABORT;
1428 }
1429
1430 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1431 EXT_CSD_PACKED_FAILURE) &&
1432 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1433 EXT_CSD_PACKED_GENERIC_ERROR)) {
1434 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1435 EXT_CSD_PACKED_INDEXED_ERROR) {
1436 packed->idx_failure =
1437 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1438 check = MMC_BLK_PARTIAL;
1439 }
1440 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1441 "failure index: %d\n",
1442 req->rq_disk->disk_name, packed->nr_entries,
1443 packed->blocks, packed->idx_failure);
1444 }
1445 kfree(ext_csd);
1446 }
1447
1448 return check;
1449 }
1450
1451 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1452 struct mmc_card *card,
1453 int disable_multi,
1454 struct mmc_queue *mq)
1455 {
1456 u32 readcmd, writecmd;
1457 struct mmc_blk_request *brq = &mqrq->brq;
1458 struct request *req = mqrq->req;
1459 struct mmc_blk_data *md = mq->data;
1460 bool do_data_tag;
1461
1462 /*
1463 * Reliable writes are used to implement Forced Unit Access and
1464 * are supported only on MMCs.
1465 */
1466 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1467 (rq_data_dir(req) == WRITE) &&
1468 (md->flags & MMC_BLK_REL_WR);
1469
1470 memset(brq, 0, sizeof(struct mmc_blk_request));
1471 brq->mrq.cmd = &brq->cmd;
1472 brq->mrq.data = &brq->data;
1473
1474 brq->cmd.arg = blk_rq_pos(req);
1475 if (!mmc_card_blockaddr(card))
1476 brq->cmd.arg <<= 9;
1477 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1478 brq->data.blksz = 512;
1479 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1480 brq->stop.arg = 0;
1481 brq->data.blocks = blk_rq_sectors(req);
1482
1483 /*
1484 * The block layer doesn't support all sector count
1485 * restrictions, so we need to be prepared for too big
1486 * requests.
1487 */
1488 if (brq->data.blocks > card->host->max_blk_count)
1489 brq->data.blocks = card->host->max_blk_count;
1490
1491 if (brq->data.blocks > 1) {
1492 /*
1493 * After a read error, we redo the request one sector
1494 * at a time in order to accurately determine which
1495 * sectors can be read successfully.
1496 */
1497 if (disable_multi)
1498 brq->data.blocks = 1;
1499
1500 /*
1501 * Some controllers have HW issues while operating
1502 * in multiple I/O mode
1503 */
1504 if (card->host->ops->multi_io_quirk)
1505 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1506 (rq_data_dir(req) == READ) ?
1507 MMC_DATA_READ : MMC_DATA_WRITE,
1508 brq->data.blocks);
1509 }
1510
1511 if (brq->data.blocks > 1 || do_rel_wr) {
1512 /* SPI multiblock writes terminate using a special
1513 * token, not a STOP_TRANSMISSION request.
1514 */
1515 if (!mmc_host_is_spi(card->host) ||
1516 rq_data_dir(req) == READ)
1517 brq->mrq.stop = &brq->stop;
1518 readcmd = MMC_READ_MULTIPLE_BLOCK;
1519 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1520 } else {
1521 brq->mrq.stop = NULL;
1522 readcmd = MMC_READ_SINGLE_BLOCK;
1523 writecmd = MMC_WRITE_BLOCK;
1524 }
1525 if (rq_data_dir(req) == READ) {
1526 brq->cmd.opcode = readcmd;
1527 brq->data.flags = MMC_DATA_READ;
1528 if (brq->mrq.stop)
1529 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1530 MMC_CMD_AC;
1531 } else {
1532 brq->cmd.opcode = writecmd;
1533 brq->data.flags = MMC_DATA_WRITE;
1534 if (brq->mrq.stop)
1535 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1536 MMC_CMD_AC;
1537 }
1538
1539 if (do_rel_wr)
1540 mmc_apply_rel_rw(brq, card, req);
1541
1542 /*
1543 * Data tag is used only during writing meta data to speed
1544 * up write and any subsequent read of this meta data
1545 */
1546 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1547 (req->cmd_flags & REQ_META) &&
1548 (rq_data_dir(req) == WRITE) &&
1549 ((brq->data.blocks * brq->data.blksz) >=
1550 card->ext_csd.data_tag_unit_size);
1551
1552 /*
1553 * Pre-defined multi-block transfers are preferable to
1554 * open ended-ones (and necessary for reliable writes).
1555 * However, it is not sufficient to just send CMD23,
1556 * and avoid the final CMD12, as on an error condition
1557 * CMD12 (stop) needs to be sent anyway. This, coupled
1558 * with Auto-CMD23 enhancements provided by some
1559 * hosts, means that the complexity of dealing
1560 * with this is best left to the host. If CMD23 is
1561 * supported by card and host, we'll fill sbc in and let
1562 * the host deal with handling it correctly. This means
1563 * that for hosts that don't expose MMC_CAP_CMD23, no
1564 * change of behavior will be observed.
1565 *
1566 * N.B: Some MMC cards experience perf degradation.
1567 * We'll avoid using CMD23-bounded multiblock writes for
1568 * these, while retaining features like reliable writes.
1569 */
1570 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572 do_data_tag)) {
1573 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574 brq->sbc.arg = brq->data.blocks |
1575 (do_rel_wr ? (1 << 31) : 0) |
1576 (do_data_tag ? (1 << 29) : 0);
1577 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578 brq->mrq.sbc = &brq->sbc;
1579 }
1580
1581 mmc_set_data_timeout(&brq->data, card);
1582
1583 brq->data.sg = mqrq->sg;
1584 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1585
1586 /*
1587 * Adjust the sg list so it is the same size as the
1588 * request.
1589 */
1590 if (brq->data.blocks != blk_rq_sectors(req)) {
1591 int i, data_size = brq->data.blocks << 9;
1592 struct scatterlist *sg;
1593
1594 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1595 data_size -= sg->length;
1596 if (data_size <= 0) {
1597 sg->length += data_size;
1598 i++;
1599 break;
1600 }
1601 }
1602 brq->data.sg_len = i;
1603 }
1604
1605 mqrq->mmc_active.mrq = &brq->mrq;
1606 mqrq->mmc_active.err_check = mmc_blk_err_check;
1607
1608 mmc_queue_bounce_pre(mqrq);
1609 }
1610
1611 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1612 struct mmc_card *card)
1613 {
1614 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1615 unsigned int max_seg_sz = queue_max_segment_size(q);
1616 unsigned int len, nr_segs = 0;
1617
1618 do {
1619 len = min(hdr_sz, max_seg_sz);
1620 hdr_sz -= len;
1621 nr_segs++;
1622 } while (hdr_sz);
1623
1624 return nr_segs;
1625 }
1626
1627 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1628 {
1629 struct request_queue *q = mq->queue;
1630 struct mmc_card *card = mq->card;
1631 struct request *cur = req, *next = NULL;
1632 struct mmc_blk_data *md = mq->data;
1633 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1634 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1635 unsigned int req_sectors = 0, phys_segments = 0;
1636 unsigned int max_blk_count, max_phys_segs;
1637 bool put_back = true;
1638 u8 max_packed_rw = 0;
1639 u8 reqs = 0;
1640
1641 if (!(md->flags & MMC_BLK_PACKED_CMD))
1642 goto no_packed;
1643
1644 if ((rq_data_dir(cur) == WRITE) &&
1645 mmc_host_packed_wr(card->host))
1646 max_packed_rw = card->ext_csd.max_packed_writes;
1647
1648 if (max_packed_rw == 0)
1649 goto no_packed;
1650
1651 if (mmc_req_rel_wr(cur) &&
1652 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1653 goto no_packed;
1654
1655 if (mmc_large_sector(card) &&
1656 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1657 goto no_packed;
1658
1659 mmc_blk_clear_packed(mqrq);
1660
1661 max_blk_count = min(card->host->max_blk_count,
1662 card->host->max_req_size >> 9);
1663 if (unlikely(max_blk_count > 0xffff))
1664 max_blk_count = 0xffff;
1665
1666 max_phys_segs = queue_max_segments(q);
1667 req_sectors += blk_rq_sectors(cur);
1668 phys_segments += cur->nr_phys_segments;
1669
1670 if (rq_data_dir(cur) == WRITE) {
1671 req_sectors += mmc_large_sector(card) ? 8 : 1;
1672 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1673 }
1674
1675 do {
1676 if (reqs >= max_packed_rw - 1) {
1677 put_back = false;
1678 break;
1679 }
1680
1681 spin_lock_irq(q->queue_lock);
1682 next = blk_fetch_request(q);
1683 spin_unlock_irq(q->queue_lock);
1684 if (!next) {
1685 put_back = false;
1686 break;
1687 }
1688
1689 if (mmc_large_sector(card) &&
1690 !IS_ALIGNED(blk_rq_sectors(next), 8))
1691 break;
1692
1693 if (next->cmd_flags & REQ_DISCARD ||
1694 next->cmd_flags & REQ_FLUSH)
1695 break;
1696
1697 if (rq_data_dir(cur) != rq_data_dir(next))
1698 break;
1699
1700 if (mmc_req_rel_wr(next) &&
1701 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1702 break;
1703
1704 req_sectors += blk_rq_sectors(next);
1705 if (req_sectors > max_blk_count)
1706 break;
1707
1708 phys_segments += next->nr_phys_segments;
1709 if (phys_segments > max_phys_segs)
1710 break;
1711
1712 list_add_tail(&next->queuelist, &mqrq->packed->list);
1713 cur = next;
1714 reqs++;
1715 } while (1);
1716
1717 if (put_back) {
1718 spin_lock_irq(q->queue_lock);
1719 blk_requeue_request(q, next);
1720 spin_unlock_irq(q->queue_lock);
1721 }
1722
1723 if (reqs > 0) {
1724 list_add(&req->queuelist, &mqrq->packed->list);
1725 mqrq->packed->nr_entries = ++reqs;
1726 mqrq->packed->retries = reqs;
1727 return reqs;
1728 }
1729
1730 no_packed:
1731 mqrq->cmd_type = MMC_PACKED_NONE;
1732 return 0;
1733 }
1734
1735 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1736 struct mmc_card *card,
1737 struct mmc_queue *mq)
1738 {
1739 struct mmc_blk_request *brq = &mqrq->brq;
1740 struct request *req = mqrq->req;
1741 struct request *prq;
1742 struct mmc_blk_data *md = mq->data;
1743 struct mmc_packed *packed = mqrq->packed;
1744 bool do_rel_wr, do_data_tag;
1745 u32 *packed_cmd_hdr;
1746 u8 hdr_blocks;
1747 u8 i = 1;
1748
1749 BUG_ON(!packed);
1750
1751 mqrq->cmd_type = MMC_PACKED_WRITE;
1752 packed->blocks = 0;
1753 packed->idx_failure = MMC_PACKED_NR_IDX;
1754
1755 packed_cmd_hdr = packed->cmd_hdr;
1756 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1757 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1758 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1759 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1760
1761 /*
1762 * Argument for each entry of packed group
1763 */
1764 list_for_each_entry(prq, &packed->list, queuelist) {
1765 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1766 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1767 (prq->cmd_flags & REQ_META) &&
1768 (rq_data_dir(prq) == WRITE) &&
1769 ((brq->data.blocks * brq->data.blksz) >=
1770 card->ext_csd.data_tag_unit_size);
1771 /* Argument of CMD23 */
1772 packed_cmd_hdr[(i * 2)] =
1773 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1774 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1775 blk_rq_sectors(prq);
1776 /* Argument of CMD18 or CMD25 */
1777 packed_cmd_hdr[((i * 2)) + 1] =
1778 mmc_card_blockaddr(card) ?
1779 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1780 packed->blocks += blk_rq_sectors(prq);
1781 i++;
1782 }
1783
1784 memset(brq, 0, sizeof(struct mmc_blk_request));
1785 brq->mrq.cmd = &brq->cmd;
1786 brq->mrq.data = &brq->data;
1787 brq->mrq.sbc = &brq->sbc;
1788 brq->mrq.stop = &brq->stop;
1789
1790 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1791 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1792 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1793
1794 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1795 brq->cmd.arg = blk_rq_pos(req);
1796 if (!mmc_card_blockaddr(card))
1797 brq->cmd.arg <<= 9;
1798 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1799
1800 brq->data.blksz = 512;
1801 brq->data.blocks = packed->blocks + hdr_blocks;
1802 brq->data.flags = MMC_DATA_WRITE;
1803
1804 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1805 brq->stop.arg = 0;
1806 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1807
1808 mmc_set_data_timeout(&brq->data, card);
1809
1810 brq->data.sg = mqrq->sg;
1811 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1812
1813 mqrq->mmc_active.mrq = &brq->mrq;
1814 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1815
1816 mmc_queue_bounce_pre(mqrq);
1817 }
1818
1819 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1820 struct mmc_blk_request *brq, struct request *req,
1821 int ret)
1822 {
1823 struct mmc_queue_req *mq_rq;
1824 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1825
1826 /*
1827 * If this is an SD card and we're writing, we can first
1828 * mark the known good sectors as ok.
1829 *
1830 * If the card is not SD, we can still ok written sectors
1831 * as reported by the controller (which might be less than
1832 * the real number of written sectors, but never more).
1833 */
1834 if (mmc_card_sd(card)) {
1835 u32 blocks;
1836
1837 blocks = mmc_sd_num_wr_blocks(card);
1838 if (blocks != (u32)-1) {
1839 ret = blk_end_request(req, 0, blocks << 9);
1840 }
1841 } else {
1842 if (!mmc_packed_cmd(mq_rq->cmd_type))
1843 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1844 }
1845 return ret;
1846 }
1847
1848 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1849 {
1850 struct request *prq;
1851 struct mmc_packed *packed = mq_rq->packed;
1852 int idx = packed->idx_failure, i = 0;
1853 int ret = 0;
1854
1855 BUG_ON(!packed);
1856
1857 while (!list_empty(&packed->list)) {
1858 prq = list_entry_rq(packed->list.next);
1859 if (idx == i) {
1860 /* retry from error index */
1861 packed->nr_entries -= idx;
1862 mq_rq->req = prq;
1863 ret = 1;
1864
1865 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1866 list_del_init(&prq->queuelist);
1867 mmc_blk_clear_packed(mq_rq);
1868 }
1869 return ret;
1870 }
1871 list_del_init(&prq->queuelist);
1872 blk_end_request(prq, 0, blk_rq_bytes(prq));
1873 i++;
1874 }
1875
1876 mmc_blk_clear_packed(mq_rq);
1877 return ret;
1878 }
1879
1880 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1881 {
1882 struct request *prq;
1883 struct mmc_packed *packed = mq_rq->packed;
1884
1885 BUG_ON(!packed);
1886
1887 while (!list_empty(&packed->list)) {
1888 prq = list_entry_rq(packed->list.next);
1889 list_del_init(&prq->queuelist);
1890 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1891 }
1892
1893 mmc_blk_clear_packed(mq_rq);
1894 }
1895
1896 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1897 struct mmc_queue_req *mq_rq)
1898 {
1899 struct request *prq;
1900 struct request_queue *q = mq->queue;
1901 struct mmc_packed *packed = mq_rq->packed;
1902
1903 BUG_ON(!packed);
1904
1905 while (!list_empty(&packed->list)) {
1906 prq = list_entry_rq(packed->list.prev);
1907 if (prq->queuelist.prev != &packed->list) {
1908 list_del_init(&prq->queuelist);
1909 spin_lock_irq(q->queue_lock);
1910 blk_requeue_request(mq->queue, prq);
1911 spin_unlock_irq(q->queue_lock);
1912 } else {
1913 list_del_init(&prq->queuelist);
1914 }
1915 }
1916
1917 mmc_blk_clear_packed(mq_rq);
1918 }
1919
1920 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1921 {
1922 struct mmc_blk_data *md = mq->data;
1923 struct mmc_card *card = md->queue.card;
1924 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1925 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1926 enum mmc_blk_status status;
1927 struct mmc_queue_req *mq_rq;
1928 struct request *req = rqc;
1929 struct mmc_async_req *areq;
1930 const u8 packed_nr = 2;
1931 u8 reqs = 0;
1932
1933 if (!rqc && !mq->mqrq_prev->req)
1934 return 0;
1935
1936 if (rqc)
1937 reqs = mmc_blk_prep_packed_list(mq, rqc);
1938
1939 do {
1940 if (rqc) {
1941 /*
1942 * When 4KB native sector is enabled, only 8 blocks
1943 * multiple read or write is allowed
1944 */
1945 if ((brq->data.blocks & 0x07) &&
1946 (card->ext_csd.data_sector_size == 4096)) {
1947 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1948 req->rq_disk->disk_name);
1949 mq_rq = mq->mqrq_cur;
1950 goto cmd_abort;
1951 }
1952
1953 if (reqs >= packed_nr)
1954 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1955 card, mq);
1956 else
1957 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1958 areq = &mq->mqrq_cur->mmc_active;
1959 } else
1960 areq = NULL;
1961 areq = mmc_start_req(card->host, areq, (int *) &status);
1962 if (!areq) {
1963 if (status == MMC_BLK_NEW_REQUEST)
1964 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1965 return 0;
1966 }
1967
1968 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1969 brq = &mq_rq->brq;
1970 req = mq_rq->req;
1971 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1972 mmc_queue_bounce_post(mq_rq);
1973
1974 switch (status) {
1975 case MMC_BLK_SUCCESS:
1976 case MMC_BLK_PARTIAL:
1977 /*
1978 * A block was successfully transferred.
1979 */
1980 mmc_blk_reset_success(md, type);
1981
1982 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1983 ret = mmc_blk_end_packed_req(mq_rq);
1984 break;
1985 } else {
1986 ret = blk_end_request(req, 0,
1987 brq->data.bytes_xfered);
1988 }
1989
1990 /*
1991 * If the blk_end_request function returns non-zero even
1992 * though all data has been transferred and no errors
1993 * were returned by the host controller, it's a bug.
1994 */
1995 if (status == MMC_BLK_SUCCESS && ret) {
1996 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1997 __func__, blk_rq_bytes(req),
1998 brq->data.bytes_xfered);
1999 rqc = NULL;
2000 goto cmd_abort;
2001 }
2002 break;
2003 case MMC_BLK_CMD_ERR:
2004 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2005 if (mmc_blk_reset(md, card->host, type))
2006 goto cmd_abort;
2007 if (!ret)
2008 goto start_new_req;
2009 break;
2010 case MMC_BLK_RETRY:
2011 retune_retry_done = brq->retune_retry_done;
2012 if (retry++ < 5)
2013 break;
2014 /* Fall through */
2015 case MMC_BLK_ABORT:
2016 if (!mmc_blk_reset(md, card->host, type))
2017 break;
2018 goto cmd_abort;
2019 case MMC_BLK_DATA_ERR: {
2020 int err;
2021
2022 err = mmc_blk_reset(md, card->host, type);
2023 if (!err)
2024 break;
2025 if (err == -ENODEV ||
2026 mmc_packed_cmd(mq_rq->cmd_type))
2027 goto cmd_abort;
2028 /* Fall through */
2029 }
2030 case MMC_BLK_ECC_ERR:
2031 if (brq->data.blocks > 1) {
2032 /* Redo read one sector at a time */
2033 pr_warn("%s: retrying using single block read\n",
2034 req->rq_disk->disk_name);
2035 disable_multi = 1;
2036 break;
2037 }
2038 /*
2039 * After an error, we redo I/O one sector at a
2040 * time, so we only reach here after trying to
2041 * read a single sector.
2042 */
2043 ret = blk_end_request(req, -EIO,
2044 brq->data.blksz);
2045 if (!ret)
2046 goto start_new_req;
2047 break;
2048 case MMC_BLK_NOMEDIUM:
2049 goto cmd_abort;
2050 default:
2051 pr_err("%s: Unhandled return value (%d)",
2052 req->rq_disk->disk_name, status);
2053 goto cmd_abort;
2054 }
2055
2056 if (ret) {
2057 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2058 if (!mq_rq->packed->retries)
2059 goto cmd_abort;
2060 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2061 mmc_start_req(card->host,
2062 &mq_rq->mmc_active, NULL);
2063 } else {
2064
2065 /*
2066 * In case of a incomplete request
2067 * prepare it again and resend.
2068 */
2069 mmc_blk_rw_rq_prep(mq_rq, card,
2070 disable_multi, mq);
2071 mmc_start_req(card->host,
2072 &mq_rq->mmc_active, NULL);
2073 }
2074 mq_rq->brq.retune_retry_done = retune_retry_done;
2075 }
2076 } while (ret);
2077
2078 return 1;
2079
2080 cmd_abort:
2081 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2082 mmc_blk_abort_packed_req(mq_rq);
2083 } else {
2084 if (mmc_card_removed(card))
2085 req->cmd_flags |= REQ_QUIET;
2086 while (ret)
2087 ret = blk_end_request(req, -EIO,
2088 blk_rq_cur_bytes(req));
2089 }
2090
2091 start_new_req:
2092 if (rqc) {
2093 if (mmc_card_removed(card)) {
2094 rqc->cmd_flags |= REQ_QUIET;
2095 blk_end_request_all(rqc, -EIO);
2096 } else {
2097 /*
2098 * If current request is packed, it needs to put back.
2099 */
2100 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2101 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2102
2103 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2104 mmc_start_req(card->host,
2105 &mq->mqrq_cur->mmc_active, NULL);
2106 }
2107 }
2108
2109 return 0;
2110 }
2111
2112 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2113 {
2114 int ret;
2115 struct mmc_blk_data *md = mq->data;
2116 struct mmc_card *card = md->queue.card;
2117 struct mmc_host *host = card->host;
2118 unsigned long flags;
2119 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2120
2121 if (req && !mq->mqrq_prev->req)
2122 /* claim host only for the first request */
2123 mmc_get_card(card);
2124
2125 ret = mmc_blk_part_switch(card, md);
2126 if (ret) {
2127 if (req) {
2128 blk_end_request_all(req, -EIO);
2129 }
2130 ret = 0;
2131 goto out;
2132 }
2133
2134 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2135 if (cmd_flags & REQ_DISCARD) {
2136 /* complete ongoing async transfer before issuing discard */
2137 if (card->host->areq)
2138 mmc_blk_issue_rw_rq(mq, NULL);
2139 if (req->cmd_flags & REQ_SECURE)
2140 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2141 else
2142 ret = mmc_blk_issue_discard_rq(mq, req);
2143 } else if (cmd_flags & REQ_FLUSH) {
2144 /* complete ongoing async transfer before issuing flush */
2145 if (card->host->areq)
2146 mmc_blk_issue_rw_rq(mq, NULL);
2147 ret = mmc_blk_issue_flush(mq, req);
2148 } else {
2149 if (!req && host->areq) {
2150 spin_lock_irqsave(&host->context_info.lock, flags);
2151 host->context_info.is_waiting_last_req = true;
2152 spin_unlock_irqrestore(&host->context_info.lock, flags);
2153 }
2154 ret = mmc_blk_issue_rw_rq(mq, req);
2155 }
2156
2157 out:
2158 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2159 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2160 /*
2161 * Release host when there are no more requests
2162 * and after special request(discard, flush) is done.
2163 * In case sepecial request, there is no reentry to
2164 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2165 */
2166 mmc_put_card(card);
2167 return ret;
2168 }
2169
2170 static inline int mmc_blk_readonly(struct mmc_card *card)
2171 {
2172 return mmc_card_readonly(card) ||
2173 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2174 }
2175
2176 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2177 struct device *parent,
2178 sector_t size,
2179 bool default_ro,
2180 const char *subname,
2181 int area_type)
2182 {
2183 struct mmc_blk_data *md;
2184 int devidx, ret;
2185
2186 devidx = find_first_zero_bit(dev_use, max_devices);
2187 if (devidx >= max_devices)
2188 return ERR_PTR(-ENOSPC);
2189 __set_bit(devidx, dev_use);
2190
2191 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2192 if (!md) {
2193 ret = -ENOMEM;
2194 goto out;
2195 }
2196
2197 /*
2198 * !subname implies we are creating main mmc_blk_data that will be
2199 * associated with mmc_card with dev_set_drvdata. Due to device
2200 * partitions, devidx will not coincide with a per-physical card
2201 * index anymore so we keep track of a name index.
2202 */
2203 if (!subname) {
2204 md->name_idx = find_first_zero_bit(name_use, max_devices);
2205 __set_bit(md->name_idx, name_use);
2206 } else
2207 md->name_idx = ((struct mmc_blk_data *)
2208 dev_to_disk(parent)->private_data)->name_idx;
2209
2210 md->area_type = area_type;
2211
2212 /*
2213 * Set the read-only status based on the supported commands
2214 * and the write protect switch.
2215 */
2216 md->read_only = mmc_blk_readonly(card);
2217
2218 md->disk = alloc_disk(perdev_minors);
2219 if (md->disk == NULL) {
2220 ret = -ENOMEM;
2221 goto err_kfree;
2222 }
2223
2224 spin_lock_init(&md->lock);
2225 INIT_LIST_HEAD(&md->part);
2226 md->usage = 1;
2227
2228 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2229 if (ret)
2230 goto err_putdisk;
2231
2232 md->queue.issue_fn = mmc_blk_issue_rq;
2233 md->queue.data = md;
2234
2235 md->disk->major = MMC_BLOCK_MAJOR;
2236 md->disk->first_minor = devidx * perdev_minors;
2237 md->disk->fops = &mmc_bdops;
2238 md->disk->private_data = md;
2239 md->disk->queue = md->queue.queue;
2240 md->disk->driverfs_dev = parent;
2241 set_disk_ro(md->disk, md->read_only || default_ro);
2242 md->disk->flags = GENHD_FL_EXT_DEVT;
2243 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2244 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2245
2246 /*
2247 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2248 *
2249 * - be set for removable media with permanent block devices
2250 * - be unset for removable block devices with permanent media
2251 *
2252 * Since MMC block devices clearly fall under the second
2253 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2254 * should use the block device creation/destruction hotplug
2255 * messages to tell when the card is present.
2256 */
2257
2258 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2259 "mmcblk%u%s", md->name_idx, subname ? subname : "");
2260
2261 if (mmc_card_mmc(card))
2262 blk_queue_logical_block_size(md->queue.queue,
2263 card->ext_csd.data_sector_size);
2264 else
2265 blk_queue_logical_block_size(md->queue.queue, 512);
2266
2267 set_capacity(md->disk, size);
2268
2269 if (mmc_host_cmd23(card->host)) {
2270 if (mmc_card_mmc(card) ||
2271 (mmc_card_sd(card) &&
2272 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2273 md->flags |= MMC_BLK_CMD23;
2274 }
2275
2276 if (mmc_card_mmc(card) &&
2277 md->flags & MMC_BLK_CMD23 &&
2278 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2279 card->ext_csd.rel_sectors)) {
2280 md->flags |= MMC_BLK_REL_WR;
2281 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2282 }
2283
2284 if (mmc_card_mmc(card) &&
2285 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2286 (md->flags & MMC_BLK_CMD23) &&
2287 card->ext_csd.packed_event_en) {
2288 if (!mmc_packed_init(&md->queue, card))
2289 md->flags |= MMC_BLK_PACKED_CMD;
2290 }
2291
2292 return md;
2293
2294 err_putdisk:
2295 put_disk(md->disk);
2296 err_kfree:
2297 kfree(md);
2298 out:
2299 return ERR_PTR(ret);
2300 }
2301
2302 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2303 {
2304 sector_t size;
2305
2306 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2307 /*
2308 * The EXT_CSD sector count is in number or 512 byte
2309 * sectors.
2310 */
2311 size = card->ext_csd.sectors;
2312 } else {
2313 /*
2314 * The CSD capacity field is in units of read_blkbits.
2315 * set_capacity takes units of 512 bytes.
2316 */
2317 size = (typeof(sector_t))card->csd.capacity
2318 << (card->csd.read_blkbits - 9);
2319 }
2320
2321 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2322 MMC_BLK_DATA_AREA_MAIN);
2323 }
2324
2325 static int mmc_blk_alloc_part(struct mmc_card *card,
2326 struct mmc_blk_data *md,
2327 unsigned int part_type,
2328 sector_t size,
2329 bool default_ro,
2330 const char *subname,
2331 int area_type)
2332 {
2333 char cap_str[10];
2334 struct mmc_blk_data *part_md;
2335
2336 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2337 subname, area_type);
2338 if (IS_ERR(part_md))
2339 return PTR_ERR(part_md);
2340 part_md->part_type = part_type;
2341 list_add(&part_md->part, &md->part);
2342
2343 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2344 cap_str, sizeof(cap_str));
2345 pr_info("%s: %s %s partition %u %s\n",
2346 part_md->disk->disk_name, mmc_card_id(card),
2347 mmc_card_name(card), part_md->part_type, cap_str);
2348 return 0;
2349 }
2350
2351 /* MMC Physical partitions consist of two boot partitions and
2352 * up to four general purpose partitions.
2353 * For each partition enabled in EXT_CSD a block device will be allocatedi
2354 * to provide access to the partition.
2355 */
2356
2357 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2358 {
2359 int idx, ret = 0;
2360
2361 if (!mmc_card_mmc(card))
2362 return 0;
2363
2364 for (idx = 0; idx < card->nr_parts; idx++) {
2365 if (card->part[idx].size) {
2366 ret = mmc_blk_alloc_part(card, md,
2367 card->part[idx].part_cfg,
2368 card->part[idx].size >> 9,
2369 card->part[idx].force_ro,
2370 card->part[idx].name,
2371 card->part[idx].area_type);
2372 if (ret)
2373 return ret;
2374 }
2375 }
2376
2377 return ret;
2378 }
2379
2380 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2381 {
2382 struct mmc_card *card;
2383
2384 if (md) {
2385 /*
2386 * Flush remaining requests and free queues. It
2387 * is freeing the queue that stops new requests
2388 * from being accepted.
2389 */
2390 card = md->queue.card;
2391 mmc_cleanup_queue(&md->queue);
2392 if (md->flags & MMC_BLK_PACKED_CMD)
2393 mmc_packed_clean(&md->queue);
2394 if (md->disk->flags & GENHD_FL_UP) {
2395 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2396 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2397 card->ext_csd.boot_ro_lockable)
2398 device_remove_file(disk_to_dev(md->disk),
2399 &md->power_ro_lock);
2400
2401 del_gendisk(md->disk);
2402 }
2403 mmc_blk_put(md);
2404 }
2405 }
2406
2407 static void mmc_blk_remove_parts(struct mmc_card *card,
2408 struct mmc_blk_data *md)
2409 {
2410 struct list_head *pos, *q;
2411 struct mmc_blk_data *part_md;
2412
2413 __clear_bit(md->name_idx, name_use);
2414 list_for_each_safe(pos, q, &md->part) {
2415 part_md = list_entry(pos, struct mmc_blk_data, part);
2416 list_del(pos);
2417 mmc_blk_remove_req(part_md);
2418 }
2419 }
2420
2421 static int mmc_add_disk(struct mmc_blk_data *md)
2422 {
2423 int ret;
2424 struct mmc_card *card = md->queue.card;
2425
2426 add_disk(md->disk);
2427 md->force_ro.show = force_ro_show;
2428 md->force_ro.store = force_ro_store;
2429 sysfs_attr_init(&md->force_ro.attr);
2430 md->force_ro.attr.name = "force_ro";
2431 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2432 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2433 if (ret)
2434 goto force_ro_fail;
2435
2436 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2437 card->ext_csd.boot_ro_lockable) {
2438 umode_t mode;
2439
2440 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2441 mode = S_IRUGO;
2442 else
2443 mode = S_IRUGO | S_IWUSR;
2444
2445 md->power_ro_lock.show = power_ro_lock_show;
2446 md->power_ro_lock.store = power_ro_lock_store;
2447 sysfs_attr_init(&md->power_ro_lock.attr);
2448 md->power_ro_lock.attr.mode = mode;
2449 md->power_ro_lock.attr.name =
2450 "ro_lock_until_next_power_on";
2451 ret = device_create_file(disk_to_dev(md->disk),
2452 &md->power_ro_lock);
2453 if (ret)
2454 goto power_ro_lock_fail;
2455 }
2456 return ret;
2457
2458 power_ro_lock_fail:
2459 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2460 force_ro_fail:
2461 del_gendisk(md->disk);
2462
2463 return ret;
2464 }
2465
2466 #define CID_MANFID_SANDISK 0x2
2467 #define CID_MANFID_TOSHIBA 0x11
2468 #define CID_MANFID_MICRON 0x13
2469 #define CID_MANFID_SAMSUNG 0x15
2470 #define CID_MANFID_KINGSTON 0x70
2471
2472 static const struct mmc_fixup blk_fixups[] =
2473 {
2474 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2475 MMC_QUIRK_INAND_CMD38),
2476 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2477 MMC_QUIRK_INAND_CMD38),
2478 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2479 MMC_QUIRK_INAND_CMD38),
2480 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2481 MMC_QUIRK_INAND_CMD38),
2482 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2483 MMC_QUIRK_INAND_CMD38),
2484
2485 /*
2486 * Some MMC cards experience performance degradation with CMD23
2487 * instead of CMD12-bounded multiblock transfers. For now we'll
2488 * black list what's bad...
2489 * - Certain Toshiba cards.
2490 *
2491 * N.B. This doesn't affect SD cards.
2492 */
2493 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2494 MMC_QUIRK_BLK_NO_CMD23),
2495 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2496 MMC_QUIRK_BLK_NO_CMD23),
2497 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2498 MMC_QUIRK_BLK_NO_CMD23),
2499 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2500 MMC_QUIRK_BLK_NO_CMD23),
2501 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2502 MMC_QUIRK_BLK_NO_CMD23),
2503
2504 /*
2505 * Some Micron MMC cards needs longer data read timeout than
2506 * indicated in CSD.
2507 */
2508 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2509 MMC_QUIRK_LONG_READ_TIME),
2510
2511 /*
2512 * On these Samsung MoviNAND parts, performing secure erase or
2513 * secure trim can result in unrecoverable corruption due to a
2514 * firmware bug.
2515 */
2516 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2517 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2518 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2519 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2520 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2521 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2522 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2523 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2524 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2525 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2526 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2527 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2528 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2529 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2530 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2531 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2532
2533 /*
2534 * On Some Kingston eMMCs, performing trim can result in
2535 * unrecoverable data conrruption occasionally due to a firmware bug.
2536 */
2537 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2538 MMC_QUIRK_TRIM_BROKEN),
2539 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2540 MMC_QUIRK_TRIM_BROKEN),
2541
2542 END_FIXUP
2543 };
2544
2545 static int mmc_blk_probe(struct mmc_card *card)
2546 {
2547 struct mmc_blk_data *md, *part_md;
2548 char cap_str[10];
2549
2550 /*
2551 * Check that the card supports the command class(es) we need.
2552 */
2553 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2554 return -ENODEV;
2555
2556 mmc_fixup_device(card, blk_fixups);
2557
2558 md = mmc_blk_alloc(card);
2559 if (IS_ERR(md))
2560 return PTR_ERR(md);
2561
2562 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2563 cap_str, sizeof(cap_str));
2564 pr_info("%s: %s %s %s %s\n",
2565 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2566 cap_str, md->read_only ? "(ro)" : "");
2567
2568 if (mmc_blk_alloc_parts(card, md))
2569 goto out;
2570
2571 dev_set_drvdata(&card->dev, md);
2572
2573 if (mmc_add_disk(md))
2574 goto out;
2575
2576 list_for_each_entry(part_md, &md->part, part) {
2577 if (mmc_add_disk(part_md))
2578 goto out;
2579 }
2580
2581 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2582 pm_runtime_use_autosuspend(&card->dev);
2583
2584 /*
2585 * Don't enable runtime PM for SD-combo cards here. Leave that
2586 * decision to be taken during the SDIO init sequence instead.
2587 */
2588 if (card->type != MMC_TYPE_SD_COMBO) {
2589 pm_runtime_set_active(&card->dev);
2590 pm_runtime_enable(&card->dev);
2591 }
2592
2593 return 0;
2594
2595 out:
2596 mmc_blk_remove_parts(card, md);
2597 mmc_blk_remove_req(md);
2598 return 0;
2599 }
2600
2601 static void mmc_blk_remove(struct mmc_card *card)
2602 {
2603 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2604
2605 mmc_blk_remove_parts(card, md);
2606 pm_runtime_get_sync(&card->dev);
2607 mmc_claim_host(card->host);
2608 mmc_blk_part_switch(card, md);
2609 mmc_release_host(card->host);
2610 if (card->type != MMC_TYPE_SD_COMBO)
2611 pm_runtime_disable(&card->dev);
2612 pm_runtime_put_noidle(&card->dev);
2613 mmc_blk_remove_req(md);
2614 dev_set_drvdata(&card->dev, NULL);
2615 }
2616
2617 static int _mmc_blk_suspend(struct mmc_card *card)
2618 {
2619 struct mmc_blk_data *part_md;
2620 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2621
2622 if (md) {
2623 mmc_queue_suspend(&md->queue);
2624 list_for_each_entry(part_md, &md->part, part) {
2625 mmc_queue_suspend(&part_md->queue);
2626 }
2627 }
2628 return 0;
2629 }
2630
2631 static void mmc_blk_shutdown(struct mmc_card *card)
2632 {
2633 _mmc_blk_suspend(card);
2634 }
2635
2636 #ifdef CONFIG_PM_SLEEP
2637 static int mmc_blk_suspend(struct device *dev)
2638 {
2639 struct mmc_card *card = mmc_dev_to_card(dev);
2640
2641 return _mmc_blk_suspend(card);
2642 }
2643
2644 static int mmc_blk_resume(struct device *dev)
2645 {
2646 struct mmc_blk_data *part_md;
2647 struct mmc_blk_data *md = dev_get_drvdata(dev);
2648
2649 if (md) {
2650 /*
2651 * Resume involves the card going into idle state,
2652 * so current partition is always the main one.
2653 */
2654 md->part_curr = md->part_type;
2655 mmc_queue_resume(&md->queue);
2656 list_for_each_entry(part_md, &md->part, part) {
2657 mmc_queue_resume(&part_md->queue);
2658 }
2659 }
2660 return 0;
2661 }
2662 #endif
2663
2664 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2665
2666 static struct mmc_driver mmc_driver = {
2667 .drv = {
2668 .name = "mmcblk",
2669 .pm = &mmc_blk_pm_ops,
2670 },
2671 .probe = mmc_blk_probe,
2672 .remove = mmc_blk_remove,
2673 .shutdown = mmc_blk_shutdown,
2674 };
2675
2676 static int __init mmc_blk_init(void)
2677 {
2678 int res;
2679
2680 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2681 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2682
2683 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2684
2685 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2686 if (res)
2687 goto out;
2688
2689 res = mmc_register_driver(&mmc_driver);
2690 if (res)
2691 goto out2;
2692
2693 return 0;
2694 out2:
2695 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2696 out:
2697 return res;
2698 }
2699
2700 static void __exit mmc_blk_exit(void)
2701 {
2702 mmc_unregister_driver(&mmc_driver);
2703 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2704 }
2705
2706 module_init(mmc_blk_init);
2707 module_exit(mmc_blk_exit);
2708
2709 MODULE_LICENSE("GPL");
2710 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2711