]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/card/block.c
block: add a separate operation type for secure erase
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <asm/uaccess.h>
47
48 #include "queue.h"
49
50 MODULE_ALIAS("mmc:block");
51 #ifdef MODULE_PARAM_PREFIX
52 #undef MODULE_PARAM_PREFIX
53 #endif
54 #define MODULE_PARAM_PREFIX "mmcblk."
55
56 #define INAND_CMD38_ARG_EXT_CSD 113
57 #define INAND_CMD38_ARG_ERASE 0x00
58 #define INAND_CMD38_ARG_TRIM 0x01
59 #define INAND_CMD38_ARG_SECERASE 0x80
60 #define INAND_CMD38_ARG_SECTRIM1 0x81
61 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
63 #define MMC_SANITIZE_REQ_TIMEOUT 240000
64 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65
66 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * limited by the MAX_DEVICES below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 static DEFINE_IDA(mmc_blk_ida);
89 static DEFINE_SPINLOCK(mmc_blk_lock);
90
91 /*
92 * There is one mmc_blk_data per slot.
93 */
94 struct mmc_blk_data {
95 spinlock_t lock;
96 struct gendisk *disk;
97 struct mmc_queue queue;
98 struct list_head part;
99
100 unsigned int flags;
101 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
102 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
103 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104
105 unsigned int usage;
106 unsigned int read_only;
107 unsigned int part_type;
108 unsigned int reset_done;
109 #define MMC_BLK_READ BIT(0)
110 #define MMC_BLK_WRITE BIT(1)
111 #define MMC_BLK_DISCARD BIT(2)
112 #define MMC_BLK_SECDISCARD BIT(3)
113
114 /*
115 * Only set in main mmc_blk_data associated
116 * with mmc_card with dev_set_drvdata, and keeps
117 * track of the current selected device partition.
118 */
119 unsigned int part_curr;
120 struct device_attribute force_ro;
121 struct device_attribute power_ro_lock;
122 int area_type;
123 };
124
125 static DEFINE_MUTEX(open_lock);
126
127 enum {
128 MMC_PACKED_NR_IDX = -1,
129 MMC_PACKED_NR_ZERO,
130 MMC_PACKED_NR_SINGLE,
131 };
132
133 module_param(perdev_minors, int, 0444);
134 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135
136 static inline int mmc_blk_part_switch(struct mmc_card *card,
137 struct mmc_blk_data *md);
138 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139
140 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 {
142 struct mmc_packed *packed = mqrq->packed;
143
144 BUG_ON(!packed);
145
146 mqrq->cmd_type = MMC_PACKED_NONE;
147 packed->nr_entries = MMC_PACKED_NR_ZERO;
148 packed->idx_failure = MMC_PACKED_NR_IDX;
149 packed->retries = 0;
150 packed->blocks = 0;
151 }
152
153 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 {
155 struct mmc_blk_data *md;
156
157 mutex_lock(&open_lock);
158 md = disk->private_data;
159 if (md && md->usage == 0)
160 md = NULL;
161 if (md)
162 md->usage++;
163 mutex_unlock(&open_lock);
164
165 return md;
166 }
167
168 static inline int mmc_get_devidx(struct gendisk *disk)
169 {
170 int devidx = disk->first_minor / perdev_minors;
171 return devidx;
172 }
173
174 static void mmc_blk_put(struct mmc_blk_data *md)
175 {
176 mutex_lock(&open_lock);
177 md->usage--;
178 if (md->usage == 0) {
179 int devidx = mmc_get_devidx(md->disk);
180 blk_cleanup_queue(md->queue.queue);
181
182 spin_lock(&mmc_blk_lock);
183 ida_remove(&mmc_blk_ida, devidx);
184 spin_unlock(&mmc_blk_lock);
185
186 put_disk(md->disk);
187 kfree(md);
188 }
189 mutex_unlock(&open_lock);
190 }
191
192 static ssize_t power_ro_lock_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 int ret;
196 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
197 struct mmc_card *card = md->queue.card;
198 int locked = 0;
199
200 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
201 locked = 2;
202 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
203 locked = 1;
204
205 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
206
207 mmc_blk_put(md);
208
209 return ret;
210 }
211
212 static ssize_t power_ro_lock_store(struct device *dev,
213 struct device_attribute *attr, const char *buf, size_t count)
214 {
215 int ret;
216 struct mmc_blk_data *md, *part_md;
217 struct mmc_card *card;
218 unsigned long set;
219
220 if (kstrtoul(buf, 0, &set))
221 return -EINVAL;
222
223 if (set != 1)
224 return count;
225
226 md = mmc_blk_get(dev_to_disk(dev));
227 card = md->queue.card;
228
229 mmc_get_card(card);
230
231 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
232 card->ext_csd.boot_ro_lock |
233 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
234 card->ext_csd.part_time);
235 if (ret)
236 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
237 else
238 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
239
240 mmc_put_card(card);
241
242 if (!ret) {
243 pr_info("%s: Locking boot partition ro until next power on\n",
244 md->disk->disk_name);
245 set_disk_ro(md->disk, 1);
246
247 list_for_each_entry(part_md, &md->part, part)
248 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
249 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
250 set_disk_ro(part_md->disk, 1);
251 }
252 }
253
254 mmc_blk_put(md);
255 return count;
256 }
257
258 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
259 char *buf)
260 {
261 int ret;
262 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
263
264 ret = snprintf(buf, PAGE_SIZE, "%d\n",
265 get_disk_ro(dev_to_disk(dev)) ^
266 md->read_only);
267 mmc_blk_put(md);
268 return ret;
269 }
270
271 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
272 const char *buf, size_t count)
273 {
274 int ret;
275 char *end;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 unsigned long set = simple_strtoul(buf, &end, 0);
278 if (end == buf) {
279 ret = -EINVAL;
280 goto out;
281 }
282
283 set_disk_ro(dev_to_disk(dev), set || md->read_only);
284 ret = count;
285 out:
286 mmc_blk_put(md);
287 return ret;
288 }
289
290 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
291 {
292 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
293 int ret = -ENXIO;
294
295 mutex_lock(&block_mutex);
296 if (md) {
297 if (md->usage == 2)
298 check_disk_change(bdev);
299 ret = 0;
300
301 if ((mode & FMODE_WRITE) && md->read_only) {
302 mmc_blk_put(md);
303 ret = -EROFS;
304 }
305 }
306 mutex_unlock(&block_mutex);
307
308 return ret;
309 }
310
311 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
312 {
313 struct mmc_blk_data *md = disk->private_data;
314
315 mutex_lock(&block_mutex);
316 mmc_blk_put(md);
317 mutex_unlock(&block_mutex);
318 }
319
320 static int
321 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
322 {
323 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
324 geo->heads = 4;
325 geo->sectors = 16;
326 return 0;
327 }
328
329 struct mmc_blk_ioc_data {
330 struct mmc_ioc_cmd ic;
331 unsigned char *buf;
332 u64 buf_bytes;
333 };
334
335 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
336 struct mmc_ioc_cmd __user *user)
337 {
338 struct mmc_blk_ioc_data *idata;
339 int err;
340
341 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
342 if (!idata) {
343 err = -ENOMEM;
344 goto out;
345 }
346
347 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
348 err = -EFAULT;
349 goto idata_err;
350 }
351
352 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
353 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
354 err = -EOVERFLOW;
355 goto idata_err;
356 }
357
358 if (!idata->buf_bytes)
359 return idata;
360
361 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
362 if (!idata->buf) {
363 err = -ENOMEM;
364 goto idata_err;
365 }
366
367 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
368 idata->ic.data_ptr, idata->buf_bytes)) {
369 err = -EFAULT;
370 goto copy_err;
371 }
372
373 return idata;
374
375 copy_err:
376 kfree(idata->buf);
377 idata_err:
378 kfree(idata);
379 out:
380 return ERR_PTR(err);
381 }
382
383 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
384 struct mmc_blk_ioc_data *idata)
385 {
386 struct mmc_ioc_cmd *ic = &idata->ic;
387
388 if (copy_to_user(&(ic_ptr->response), ic->response,
389 sizeof(ic->response)))
390 return -EFAULT;
391
392 if (!idata->ic.write_flag) {
393 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
394 idata->buf, idata->buf_bytes))
395 return -EFAULT;
396 }
397
398 return 0;
399 }
400
401 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
402 u32 retries_max)
403 {
404 int err;
405 u32 retry_count = 0;
406
407 if (!status || !retries_max)
408 return -EINVAL;
409
410 do {
411 err = get_card_status(card, status, 5);
412 if (err)
413 break;
414
415 if (!R1_STATUS(*status) &&
416 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
417 break; /* RPMB programming operation complete */
418
419 /*
420 * Rechedule to give the MMC device a chance to continue
421 * processing the previous command without being polled too
422 * frequently.
423 */
424 usleep_range(1000, 5000);
425 } while (++retry_count < retries_max);
426
427 if (retry_count == retries_max)
428 err = -EPERM;
429
430 return err;
431 }
432
433 static int ioctl_do_sanitize(struct mmc_card *card)
434 {
435 int err;
436
437 if (!mmc_can_sanitize(card)) {
438 pr_warn("%s: %s - SANITIZE is not supported\n",
439 mmc_hostname(card->host), __func__);
440 err = -EOPNOTSUPP;
441 goto out;
442 }
443
444 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
445 mmc_hostname(card->host), __func__);
446
447 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
448 EXT_CSD_SANITIZE_START, 1,
449 MMC_SANITIZE_REQ_TIMEOUT);
450
451 if (err)
452 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
453 mmc_hostname(card->host), __func__, err);
454
455 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
456 __func__);
457 out:
458 return err;
459 }
460
461 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
462 struct mmc_blk_ioc_data *idata)
463 {
464 struct mmc_command cmd = {0};
465 struct mmc_data data = {0};
466 struct mmc_request mrq = {NULL};
467 struct scatterlist sg;
468 int err;
469 int is_rpmb = false;
470 u32 status = 0;
471
472 if (!card || !md || !idata)
473 return -EINVAL;
474
475 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
476 is_rpmb = true;
477
478 cmd.opcode = idata->ic.opcode;
479 cmd.arg = idata->ic.arg;
480 cmd.flags = idata->ic.flags;
481
482 if (idata->buf_bytes) {
483 data.sg = &sg;
484 data.sg_len = 1;
485 data.blksz = idata->ic.blksz;
486 data.blocks = idata->ic.blocks;
487
488 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
489
490 if (idata->ic.write_flag)
491 data.flags = MMC_DATA_WRITE;
492 else
493 data.flags = MMC_DATA_READ;
494
495 /* data.flags must already be set before doing this. */
496 mmc_set_data_timeout(&data, card);
497
498 /* Allow overriding the timeout_ns for empirical tuning. */
499 if (idata->ic.data_timeout_ns)
500 data.timeout_ns = idata->ic.data_timeout_ns;
501
502 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
503 /*
504 * Pretend this is a data transfer and rely on the
505 * host driver to compute timeout. When all host
506 * drivers support cmd.cmd_timeout for R1B, this
507 * can be changed to:
508 *
509 * mrq.data = NULL;
510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
511 */
512 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
513 }
514
515 mrq.data = &data;
516 }
517
518 mrq.cmd = &cmd;
519
520 err = mmc_blk_part_switch(card, md);
521 if (err)
522 return err;
523
524 if (idata->ic.is_acmd) {
525 err = mmc_app_cmd(card->host, card);
526 if (err)
527 return err;
528 }
529
530 if (is_rpmb) {
531 err = mmc_set_blockcount(card, data.blocks,
532 idata->ic.write_flag & (1 << 31));
533 if (err)
534 return err;
535 }
536
537 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
538 (cmd.opcode == MMC_SWITCH)) {
539 err = ioctl_do_sanitize(card);
540
541 if (err)
542 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
543 __func__, err);
544
545 return err;
546 }
547
548 mmc_wait_for_req(card->host, &mrq);
549
550 if (cmd.error) {
551 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
552 __func__, cmd.error);
553 return cmd.error;
554 }
555 if (data.error) {
556 dev_err(mmc_dev(card->host), "%s: data error %d\n",
557 __func__, data.error);
558 return data.error;
559 }
560
561 /*
562 * According to the SD specs, some commands require a delay after
563 * issuing the command.
564 */
565 if (idata->ic.postsleep_min_us)
566 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
567
568 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
569
570 if (is_rpmb) {
571 /*
572 * Ensure RPMB command has completed by polling CMD13
573 * "Send Status".
574 */
575 err = ioctl_rpmb_card_status_poll(card, &status, 5);
576 if (err)
577 dev_err(mmc_dev(card->host),
578 "%s: Card Status=0x%08X, error %d\n",
579 __func__, status, err);
580 }
581
582 return err;
583 }
584
585 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
586 struct mmc_ioc_cmd __user *ic_ptr)
587 {
588 struct mmc_blk_ioc_data *idata;
589 struct mmc_blk_data *md;
590 struct mmc_card *card;
591 int err = 0, ioc_err = 0;
592
593 /*
594 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
595 * whole block device, not on a partition. This prevents overspray
596 * between sibling partitions.
597 */
598 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
599 return -EPERM;
600
601 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
602 if (IS_ERR(idata))
603 return PTR_ERR(idata);
604
605 md = mmc_blk_get(bdev->bd_disk);
606 if (!md) {
607 err = -EINVAL;
608 goto cmd_err;
609 }
610
611 card = md->queue.card;
612 if (IS_ERR(card)) {
613 err = PTR_ERR(card);
614 goto cmd_done;
615 }
616
617 mmc_get_card(card);
618
619 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
620
621 /* Always switch back to main area after RPMB access */
622 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
623 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
624
625 mmc_put_card(card);
626
627 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
628
629 cmd_done:
630 mmc_blk_put(md);
631 cmd_err:
632 kfree(idata->buf);
633 kfree(idata);
634 return ioc_err ? ioc_err : err;
635 }
636
637 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
638 struct mmc_ioc_multi_cmd __user *user)
639 {
640 struct mmc_blk_ioc_data **idata = NULL;
641 struct mmc_ioc_cmd __user *cmds = user->cmds;
642 struct mmc_card *card;
643 struct mmc_blk_data *md;
644 int i, err = 0, ioc_err = 0;
645 __u64 num_of_cmds;
646
647 /*
648 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
649 * whole block device, not on a partition. This prevents overspray
650 * between sibling partitions.
651 */
652 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
653 return -EPERM;
654
655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 sizeof(num_of_cmds)))
657 return -EFAULT;
658
659 if (num_of_cmds > MMC_IOC_MAX_CMDS)
660 return -EINVAL;
661
662 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
663 if (!idata)
664 return -ENOMEM;
665
666 for (i = 0; i < num_of_cmds; i++) {
667 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
668 if (IS_ERR(idata[i])) {
669 err = PTR_ERR(idata[i]);
670 num_of_cmds = i;
671 goto cmd_err;
672 }
673 }
674
675 md = mmc_blk_get(bdev->bd_disk);
676 if (!md) {
677 err = -EINVAL;
678 goto cmd_err;
679 }
680
681 card = md->queue.card;
682 if (IS_ERR(card)) {
683 err = PTR_ERR(card);
684 goto cmd_done;
685 }
686
687 mmc_get_card(card);
688
689 for (i = 0; i < num_of_cmds && !ioc_err; i++)
690 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
691
692 /* Always switch back to main area after RPMB access */
693 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
694 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
695
696 mmc_put_card(card);
697
698 /* copy to user if data and response */
699 for (i = 0; i < num_of_cmds && !err; i++)
700 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
701
702 cmd_done:
703 mmc_blk_put(md);
704 cmd_err:
705 for (i = 0; i < num_of_cmds; i++) {
706 kfree(idata[i]->buf);
707 kfree(idata[i]);
708 }
709 kfree(idata);
710 return ioc_err ? ioc_err : err;
711 }
712
713 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
714 unsigned int cmd, unsigned long arg)
715 {
716 switch (cmd) {
717 case MMC_IOC_CMD:
718 return mmc_blk_ioctl_cmd(bdev,
719 (struct mmc_ioc_cmd __user *)arg);
720 case MMC_IOC_MULTI_CMD:
721 return mmc_blk_ioctl_multi_cmd(bdev,
722 (struct mmc_ioc_multi_cmd __user *)arg);
723 default:
724 return -EINVAL;
725 }
726 }
727
728 #ifdef CONFIG_COMPAT
729 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
730 unsigned int cmd, unsigned long arg)
731 {
732 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
733 }
734 #endif
735
736 static const struct block_device_operations mmc_bdops = {
737 .open = mmc_blk_open,
738 .release = mmc_blk_release,
739 .getgeo = mmc_blk_getgeo,
740 .owner = THIS_MODULE,
741 .ioctl = mmc_blk_ioctl,
742 #ifdef CONFIG_COMPAT
743 .compat_ioctl = mmc_blk_compat_ioctl,
744 #endif
745 };
746
747 static inline int mmc_blk_part_switch(struct mmc_card *card,
748 struct mmc_blk_data *md)
749 {
750 int ret;
751 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
752
753 if (main_md->part_curr == md->part_type)
754 return 0;
755
756 if (mmc_card_mmc(card)) {
757 u8 part_config = card->ext_csd.part_config;
758
759 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
760 mmc_retune_pause(card->host);
761
762 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
763 part_config |= md->part_type;
764
765 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
766 EXT_CSD_PART_CONFIG, part_config,
767 card->ext_csd.part_time);
768 if (ret) {
769 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
770 mmc_retune_unpause(card->host);
771 return ret;
772 }
773
774 card->ext_csd.part_config = part_config;
775
776 if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
777 mmc_retune_unpause(card->host);
778 }
779
780 main_md->part_curr = md->part_type;
781 return 0;
782 }
783
784 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
785 {
786 int err;
787 u32 result;
788 __be32 *blocks;
789
790 struct mmc_request mrq = {NULL};
791 struct mmc_command cmd = {0};
792 struct mmc_data data = {0};
793
794 struct scatterlist sg;
795
796 cmd.opcode = MMC_APP_CMD;
797 cmd.arg = card->rca << 16;
798 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
799
800 err = mmc_wait_for_cmd(card->host, &cmd, 0);
801 if (err)
802 return (u32)-1;
803 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
804 return (u32)-1;
805
806 memset(&cmd, 0, sizeof(struct mmc_command));
807
808 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
809 cmd.arg = 0;
810 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
811
812 data.blksz = 4;
813 data.blocks = 1;
814 data.flags = MMC_DATA_READ;
815 data.sg = &sg;
816 data.sg_len = 1;
817 mmc_set_data_timeout(&data, card);
818
819 mrq.cmd = &cmd;
820 mrq.data = &data;
821
822 blocks = kmalloc(4, GFP_KERNEL);
823 if (!blocks)
824 return (u32)-1;
825
826 sg_init_one(&sg, blocks, 4);
827
828 mmc_wait_for_req(card->host, &mrq);
829
830 result = ntohl(*blocks);
831 kfree(blocks);
832
833 if (cmd.error || data.error)
834 result = (u32)-1;
835
836 return result;
837 }
838
839 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
840 {
841 struct mmc_command cmd = {0};
842 int err;
843
844 cmd.opcode = MMC_SEND_STATUS;
845 if (!mmc_host_is_spi(card->host))
846 cmd.arg = card->rca << 16;
847 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
848 err = mmc_wait_for_cmd(card->host, &cmd, retries);
849 if (err == 0)
850 *status = cmd.resp[0];
851 return err;
852 }
853
854 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
855 bool hw_busy_detect, struct request *req, int *gen_err)
856 {
857 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
858 int err = 0;
859 u32 status;
860
861 do {
862 err = get_card_status(card, &status, 5);
863 if (err) {
864 pr_err("%s: error %d requesting status\n",
865 req->rq_disk->disk_name, err);
866 return err;
867 }
868
869 if (status & R1_ERROR) {
870 pr_err("%s: %s: error sending status cmd, status %#x\n",
871 req->rq_disk->disk_name, __func__, status);
872 *gen_err = 1;
873 }
874
875 /* We may rely on the host hw to handle busy detection.*/
876 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
877 hw_busy_detect)
878 break;
879
880 /*
881 * Timeout if the device never becomes ready for data and never
882 * leaves the program state.
883 */
884 if (time_after(jiffies, timeout)) {
885 pr_err("%s: Card stuck in programming state! %s %s\n",
886 mmc_hostname(card->host),
887 req->rq_disk->disk_name, __func__);
888 return -ETIMEDOUT;
889 }
890
891 /*
892 * Some cards mishandle the status bits,
893 * so make sure to check both the busy
894 * indication and the card state.
895 */
896 } while (!(status & R1_READY_FOR_DATA) ||
897 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
898
899 return err;
900 }
901
902 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
903 struct request *req, int *gen_err, u32 *stop_status)
904 {
905 struct mmc_host *host = card->host;
906 struct mmc_command cmd = {0};
907 int err;
908 bool use_r1b_resp = rq_data_dir(req) == WRITE;
909
910 /*
911 * Normally we use R1B responses for WRITE, but in cases where the host
912 * has specified a max_busy_timeout we need to validate it. A failure
913 * means we need to prevent the host from doing hw busy detection, which
914 * is done by converting to a R1 response instead.
915 */
916 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
917 use_r1b_resp = false;
918
919 cmd.opcode = MMC_STOP_TRANSMISSION;
920 if (use_r1b_resp) {
921 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
922 cmd.busy_timeout = timeout_ms;
923 } else {
924 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
925 }
926
927 err = mmc_wait_for_cmd(host, &cmd, 5);
928 if (err)
929 return err;
930
931 *stop_status = cmd.resp[0];
932
933 /* No need to check card status in case of READ. */
934 if (rq_data_dir(req) == READ)
935 return 0;
936
937 if (!mmc_host_is_spi(host) &&
938 (*stop_status & R1_ERROR)) {
939 pr_err("%s: %s: general error sending stop command, resp %#x\n",
940 req->rq_disk->disk_name, __func__, *stop_status);
941 *gen_err = 1;
942 }
943
944 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
945 }
946
947 #define ERR_NOMEDIUM 3
948 #define ERR_RETRY 2
949 #define ERR_ABORT 1
950 #define ERR_CONTINUE 0
951
952 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
953 bool status_valid, u32 status)
954 {
955 switch (error) {
956 case -EILSEQ:
957 /* response crc error, retry the r/w cmd */
958 pr_err("%s: %s sending %s command, card status %#x\n",
959 req->rq_disk->disk_name, "response CRC error",
960 name, status);
961 return ERR_RETRY;
962
963 case -ETIMEDOUT:
964 pr_err("%s: %s sending %s command, card status %#x\n",
965 req->rq_disk->disk_name, "timed out", name, status);
966
967 /* If the status cmd initially failed, retry the r/w cmd */
968 if (!status_valid) {
969 pr_err("%s: status not valid, retrying timeout\n",
970 req->rq_disk->disk_name);
971 return ERR_RETRY;
972 }
973
974 /*
975 * If it was a r/w cmd crc error, or illegal command
976 * (eg, issued in wrong state) then retry - we should
977 * have corrected the state problem above.
978 */
979 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
980 pr_err("%s: command error, retrying timeout\n",
981 req->rq_disk->disk_name);
982 return ERR_RETRY;
983 }
984
985 /* Otherwise abort the command */
986 return ERR_ABORT;
987
988 default:
989 /* We don't understand the error code the driver gave us */
990 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
991 req->rq_disk->disk_name, error, status);
992 return ERR_ABORT;
993 }
994 }
995
996 /*
997 * Initial r/w and stop cmd error recovery.
998 * We don't know whether the card received the r/w cmd or not, so try to
999 * restore things back to a sane state. Essentially, we do this as follows:
1000 * - Obtain card status. If the first attempt to obtain card status fails,
1001 * the status word will reflect the failed status cmd, not the failed
1002 * r/w cmd. If we fail to obtain card status, it suggests we can no
1003 * longer communicate with the card.
1004 * - Check the card state. If the card received the cmd but there was a
1005 * transient problem with the response, it might still be in a data transfer
1006 * mode. Try to send it a stop command. If this fails, we can't recover.
1007 * - If the r/w cmd failed due to a response CRC error, it was probably
1008 * transient, so retry the cmd.
1009 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1010 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1011 * illegal cmd, retry.
1012 * Otherwise we don't understand what happened, so abort.
1013 */
1014 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1015 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
1016 {
1017 bool prev_cmd_status_valid = true;
1018 u32 status, stop_status = 0;
1019 int err, retry;
1020
1021 if (mmc_card_removed(card))
1022 return ERR_NOMEDIUM;
1023
1024 /*
1025 * Try to get card status which indicates both the card state
1026 * and why there was no response. If the first attempt fails,
1027 * we can't be sure the returned status is for the r/w command.
1028 */
1029 for (retry = 2; retry >= 0; retry--) {
1030 err = get_card_status(card, &status, 0);
1031 if (!err)
1032 break;
1033
1034 /* Re-tune if needed */
1035 mmc_retune_recheck(card->host);
1036
1037 prev_cmd_status_valid = false;
1038 pr_err("%s: error %d sending status command, %sing\n",
1039 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1040 }
1041
1042 /* We couldn't get a response from the card. Give up. */
1043 if (err) {
1044 /* Check if the card is removed */
1045 if (mmc_detect_card_removed(card->host))
1046 return ERR_NOMEDIUM;
1047 return ERR_ABORT;
1048 }
1049
1050 /* Flag ECC errors */
1051 if ((status & R1_CARD_ECC_FAILED) ||
1052 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1053 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1054 *ecc_err = 1;
1055
1056 /* Flag General errors */
1057 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1058 if ((status & R1_ERROR) ||
1059 (brq->stop.resp[0] & R1_ERROR)) {
1060 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1061 req->rq_disk->disk_name, __func__,
1062 brq->stop.resp[0], status);
1063 *gen_err = 1;
1064 }
1065
1066 /*
1067 * Check the current card state. If it is in some data transfer
1068 * mode, tell it to stop (and hopefully transition back to TRAN.)
1069 */
1070 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1071 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1072 err = send_stop(card,
1073 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1074 req, gen_err, &stop_status);
1075 if (err) {
1076 pr_err("%s: error %d sending stop command\n",
1077 req->rq_disk->disk_name, err);
1078 /*
1079 * If the stop cmd also timed out, the card is probably
1080 * not present, so abort. Other errors are bad news too.
1081 */
1082 return ERR_ABORT;
1083 }
1084
1085 if (stop_status & R1_CARD_ECC_FAILED)
1086 *ecc_err = 1;
1087 }
1088
1089 /* Check for set block count errors */
1090 if (brq->sbc.error)
1091 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1092 prev_cmd_status_valid, status);
1093
1094 /* Check for r/w command errors */
1095 if (brq->cmd.error)
1096 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1097 prev_cmd_status_valid, status);
1098
1099 /* Data errors */
1100 if (!brq->stop.error)
1101 return ERR_CONTINUE;
1102
1103 /* Now for stop errors. These aren't fatal to the transfer. */
1104 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1105 req->rq_disk->disk_name, brq->stop.error,
1106 brq->cmd.resp[0], status);
1107
1108 /*
1109 * Subsitute in our own stop status as this will give the error
1110 * state which happened during the execution of the r/w command.
1111 */
1112 if (stop_status) {
1113 brq->stop.resp[0] = stop_status;
1114 brq->stop.error = 0;
1115 }
1116 return ERR_CONTINUE;
1117 }
1118
1119 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1120 int type)
1121 {
1122 int err;
1123
1124 if (md->reset_done & type)
1125 return -EEXIST;
1126
1127 md->reset_done |= type;
1128 err = mmc_hw_reset(host);
1129 /* Ensure we switch back to the correct partition */
1130 if (err != -EOPNOTSUPP) {
1131 struct mmc_blk_data *main_md =
1132 dev_get_drvdata(&host->card->dev);
1133 int part_err;
1134
1135 main_md->part_curr = main_md->part_type;
1136 part_err = mmc_blk_part_switch(host->card, md);
1137 if (part_err) {
1138 /*
1139 * We have failed to get back into the correct
1140 * partition, so we need to abort the whole request.
1141 */
1142 return -ENODEV;
1143 }
1144 }
1145 return err;
1146 }
1147
1148 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1149 {
1150 md->reset_done &= ~type;
1151 }
1152
1153 int mmc_access_rpmb(struct mmc_queue *mq)
1154 {
1155 struct mmc_blk_data *md = mq->data;
1156 /*
1157 * If this is a RPMB partition access, return ture
1158 */
1159 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1160 return true;
1161
1162 return false;
1163 }
1164
1165 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1166 {
1167 struct mmc_blk_data *md = mq->data;
1168 struct mmc_card *card = md->queue.card;
1169 unsigned int from, nr, arg;
1170 int err = 0, type = MMC_BLK_DISCARD;
1171
1172 if (!mmc_can_erase(card)) {
1173 err = -EOPNOTSUPP;
1174 goto out;
1175 }
1176
1177 from = blk_rq_pos(req);
1178 nr = blk_rq_sectors(req);
1179
1180 if (mmc_can_discard(card))
1181 arg = MMC_DISCARD_ARG;
1182 else if (mmc_can_trim(card))
1183 arg = MMC_TRIM_ARG;
1184 else
1185 arg = MMC_ERASE_ARG;
1186 retry:
1187 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1188 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1189 INAND_CMD38_ARG_EXT_CSD,
1190 arg == MMC_TRIM_ARG ?
1191 INAND_CMD38_ARG_TRIM :
1192 INAND_CMD38_ARG_ERASE,
1193 0);
1194 if (err)
1195 goto out;
1196 }
1197 err = mmc_erase(card, from, nr, arg);
1198 out:
1199 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1200 goto retry;
1201 if (!err)
1202 mmc_blk_reset_success(md, type);
1203 blk_end_request(req, err, blk_rq_bytes(req));
1204
1205 return err ? 0 : 1;
1206 }
1207
1208 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1209 struct request *req)
1210 {
1211 struct mmc_blk_data *md = mq->data;
1212 struct mmc_card *card = md->queue.card;
1213 unsigned int from, nr, arg;
1214 int err = 0, type = MMC_BLK_SECDISCARD;
1215
1216 if (!(mmc_can_secure_erase_trim(card))) {
1217 err = -EOPNOTSUPP;
1218 goto out;
1219 }
1220
1221 from = blk_rq_pos(req);
1222 nr = blk_rq_sectors(req);
1223
1224 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1225 arg = MMC_SECURE_TRIM1_ARG;
1226 else
1227 arg = MMC_SECURE_ERASE_ARG;
1228
1229 retry:
1230 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1231 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1232 INAND_CMD38_ARG_EXT_CSD,
1233 arg == MMC_SECURE_TRIM1_ARG ?
1234 INAND_CMD38_ARG_SECTRIM1 :
1235 INAND_CMD38_ARG_SECERASE,
1236 0);
1237 if (err)
1238 goto out_retry;
1239 }
1240
1241 err = mmc_erase(card, from, nr, arg);
1242 if (err == -EIO)
1243 goto out_retry;
1244 if (err)
1245 goto out;
1246
1247 if (arg == MMC_SECURE_TRIM1_ARG) {
1248 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1249 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1250 INAND_CMD38_ARG_EXT_CSD,
1251 INAND_CMD38_ARG_SECTRIM2,
1252 0);
1253 if (err)
1254 goto out_retry;
1255 }
1256
1257 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1258 if (err == -EIO)
1259 goto out_retry;
1260 if (err)
1261 goto out;
1262 }
1263
1264 out_retry:
1265 if (err && !mmc_blk_reset(md, card->host, type))
1266 goto retry;
1267 if (!err)
1268 mmc_blk_reset_success(md, type);
1269 out:
1270 blk_end_request(req, err, blk_rq_bytes(req));
1271
1272 return err ? 0 : 1;
1273 }
1274
1275 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1276 {
1277 struct mmc_blk_data *md = mq->data;
1278 struct mmc_card *card = md->queue.card;
1279 int ret = 0;
1280
1281 ret = mmc_flush_cache(card);
1282 if (ret)
1283 ret = -EIO;
1284
1285 blk_end_request_all(req, ret);
1286
1287 return ret ? 0 : 1;
1288 }
1289
1290 /*
1291 * Reformat current write as a reliable write, supporting
1292 * both legacy and the enhanced reliable write MMC cards.
1293 * In each transfer we'll handle only as much as a single
1294 * reliable write can handle, thus finish the request in
1295 * partial completions.
1296 */
1297 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1298 struct mmc_card *card,
1299 struct request *req)
1300 {
1301 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1302 /* Legacy mode imposes restrictions on transfers. */
1303 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1304 brq->data.blocks = 1;
1305
1306 if (brq->data.blocks > card->ext_csd.rel_sectors)
1307 brq->data.blocks = card->ext_csd.rel_sectors;
1308 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1309 brq->data.blocks = 1;
1310 }
1311 }
1312
1313 #define CMD_ERRORS \
1314 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1315 R1_ADDRESS_ERROR | /* Misaligned address */ \
1316 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1317 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1318 R1_CC_ERROR | /* Card controller error */ \
1319 R1_ERROR) /* General/unknown error */
1320
1321 static int mmc_blk_err_check(struct mmc_card *card,
1322 struct mmc_async_req *areq)
1323 {
1324 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1325 mmc_active);
1326 struct mmc_blk_request *brq = &mq_mrq->brq;
1327 struct request *req = mq_mrq->req;
1328 int need_retune = card->host->need_retune;
1329 int ecc_err = 0, gen_err = 0;
1330
1331 /*
1332 * sbc.error indicates a problem with the set block count
1333 * command. No data will have been transferred.
1334 *
1335 * cmd.error indicates a problem with the r/w command. No
1336 * data will have been transferred.
1337 *
1338 * stop.error indicates a problem with the stop command. Data
1339 * may have been transferred, or may still be transferring.
1340 */
1341 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1342 brq->data.error) {
1343 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1344 case ERR_RETRY:
1345 return MMC_BLK_RETRY;
1346 case ERR_ABORT:
1347 return MMC_BLK_ABORT;
1348 case ERR_NOMEDIUM:
1349 return MMC_BLK_NOMEDIUM;
1350 case ERR_CONTINUE:
1351 break;
1352 }
1353 }
1354
1355 /*
1356 * Check for errors relating to the execution of the
1357 * initial command - such as address errors. No data
1358 * has been transferred.
1359 */
1360 if (brq->cmd.resp[0] & CMD_ERRORS) {
1361 pr_err("%s: r/w command failed, status = %#x\n",
1362 req->rq_disk->disk_name, brq->cmd.resp[0]);
1363 return MMC_BLK_ABORT;
1364 }
1365
1366 /*
1367 * Everything else is either success, or a data error of some
1368 * kind. If it was a write, we may have transitioned to
1369 * program mode, which we have to wait for it to complete.
1370 */
1371 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1372 int err;
1373
1374 /* Check stop command response */
1375 if (brq->stop.resp[0] & R1_ERROR) {
1376 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1377 req->rq_disk->disk_name, __func__,
1378 brq->stop.resp[0]);
1379 gen_err = 1;
1380 }
1381
1382 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1383 &gen_err);
1384 if (err)
1385 return MMC_BLK_CMD_ERR;
1386 }
1387
1388 /* if general error occurs, retry the write operation. */
1389 if (gen_err) {
1390 pr_warn("%s: retrying write for general error\n",
1391 req->rq_disk->disk_name);
1392 return MMC_BLK_RETRY;
1393 }
1394
1395 if (brq->data.error) {
1396 if (need_retune && !brq->retune_retry_done) {
1397 pr_debug("%s: retrying because a re-tune was needed\n",
1398 req->rq_disk->disk_name);
1399 brq->retune_retry_done = 1;
1400 return MMC_BLK_RETRY;
1401 }
1402 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1403 req->rq_disk->disk_name, brq->data.error,
1404 (unsigned)blk_rq_pos(req),
1405 (unsigned)blk_rq_sectors(req),
1406 brq->cmd.resp[0], brq->stop.resp[0]);
1407
1408 if (rq_data_dir(req) == READ) {
1409 if (ecc_err)
1410 return MMC_BLK_ECC_ERR;
1411 return MMC_BLK_DATA_ERR;
1412 } else {
1413 return MMC_BLK_CMD_ERR;
1414 }
1415 }
1416
1417 if (!brq->data.bytes_xfered)
1418 return MMC_BLK_RETRY;
1419
1420 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1421 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1422 return MMC_BLK_PARTIAL;
1423 else
1424 return MMC_BLK_SUCCESS;
1425 }
1426
1427 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1428 return MMC_BLK_PARTIAL;
1429
1430 return MMC_BLK_SUCCESS;
1431 }
1432
1433 static int mmc_blk_packed_err_check(struct mmc_card *card,
1434 struct mmc_async_req *areq)
1435 {
1436 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1437 mmc_active);
1438 struct request *req = mq_rq->req;
1439 struct mmc_packed *packed = mq_rq->packed;
1440 int err, check, status;
1441 u8 *ext_csd;
1442
1443 BUG_ON(!packed);
1444
1445 packed->retries--;
1446 check = mmc_blk_err_check(card, areq);
1447 err = get_card_status(card, &status, 0);
1448 if (err) {
1449 pr_err("%s: error %d sending status command\n",
1450 req->rq_disk->disk_name, err);
1451 return MMC_BLK_ABORT;
1452 }
1453
1454 if (status & R1_EXCEPTION_EVENT) {
1455 err = mmc_get_ext_csd(card, &ext_csd);
1456 if (err) {
1457 pr_err("%s: error %d sending ext_csd\n",
1458 req->rq_disk->disk_name, err);
1459 return MMC_BLK_ABORT;
1460 }
1461
1462 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1463 EXT_CSD_PACKED_FAILURE) &&
1464 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1465 EXT_CSD_PACKED_GENERIC_ERROR)) {
1466 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1467 EXT_CSD_PACKED_INDEXED_ERROR) {
1468 packed->idx_failure =
1469 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1470 check = MMC_BLK_PARTIAL;
1471 }
1472 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1473 "failure index: %d\n",
1474 req->rq_disk->disk_name, packed->nr_entries,
1475 packed->blocks, packed->idx_failure);
1476 }
1477 kfree(ext_csd);
1478 }
1479
1480 return check;
1481 }
1482
1483 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1484 struct mmc_card *card,
1485 int disable_multi,
1486 struct mmc_queue *mq)
1487 {
1488 u32 readcmd, writecmd;
1489 struct mmc_blk_request *brq = &mqrq->brq;
1490 struct request *req = mqrq->req;
1491 struct mmc_blk_data *md = mq->data;
1492 bool do_data_tag;
1493
1494 /*
1495 * Reliable writes are used to implement Forced Unit Access and
1496 * are supported only on MMCs.
1497 */
1498 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1499 (rq_data_dir(req) == WRITE) &&
1500 (md->flags & MMC_BLK_REL_WR);
1501
1502 memset(brq, 0, sizeof(struct mmc_blk_request));
1503 brq->mrq.cmd = &brq->cmd;
1504 brq->mrq.data = &brq->data;
1505
1506 brq->cmd.arg = blk_rq_pos(req);
1507 if (!mmc_card_blockaddr(card))
1508 brq->cmd.arg <<= 9;
1509 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1510 brq->data.blksz = 512;
1511 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1512 brq->stop.arg = 0;
1513 brq->data.blocks = blk_rq_sectors(req);
1514
1515 /*
1516 * The block layer doesn't support all sector count
1517 * restrictions, so we need to be prepared for too big
1518 * requests.
1519 */
1520 if (brq->data.blocks > card->host->max_blk_count)
1521 brq->data.blocks = card->host->max_blk_count;
1522
1523 if (brq->data.blocks > 1) {
1524 /*
1525 * After a read error, we redo the request one sector
1526 * at a time in order to accurately determine which
1527 * sectors can be read successfully.
1528 */
1529 if (disable_multi)
1530 brq->data.blocks = 1;
1531
1532 /*
1533 * Some controllers have HW issues while operating
1534 * in multiple I/O mode
1535 */
1536 if (card->host->ops->multi_io_quirk)
1537 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1538 (rq_data_dir(req) == READ) ?
1539 MMC_DATA_READ : MMC_DATA_WRITE,
1540 brq->data.blocks);
1541 }
1542
1543 if (brq->data.blocks > 1 || do_rel_wr) {
1544 /* SPI multiblock writes terminate using a special
1545 * token, not a STOP_TRANSMISSION request.
1546 */
1547 if (!mmc_host_is_spi(card->host) ||
1548 rq_data_dir(req) == READ)
1549 brq->mrq.stop = &brq->stop;
1550 readcmd = MMC_READ_MULTIPLE_BLOCK;
1551 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1552 } else {
1553 brq->mrq.stop = NULL;
1554 readcmd = MMC_READ_SINGLE_BLOCK;
1555 writecmd = MMC_WRITE_BLOCK;
1556 }
1557 if (rq_data_dir(req) == READ) {
1558 brq->cmd.opcode = readcmd;
1559 brq->data.flags = MMC_DATA_READ;
1560 if (brq->mrq.stop)
1561 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1562 MMC_CMD_AC;
1563 } else {
1564 brq->cmd.opcode = writecmd;
1565 brq->data.flags = MMC_DATA_WRITE;
1566 if (brq->mrq.stop)
1567 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1568 MMC_CMD_AC;
1569 }
1570
1571 if (do_rel_wr)
1572 mmc_apply_rel_rw(brq, card, req);
1573
1574 /*
1575 * Data tag is used only during writing meta data to speed
1576 * up write and any subsequent read of this meta data
1577 */
1578 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1579 (req->cmd_flags & REQ_META) &&
1580 (rq_data_dir(req) == WRITE) &&
1581 ((brq->data.blocks * brq->data.blksz) >=
1582 card->ext_csd.data_tag_unit_size);
1583
1584 /*
1585 * Pre-defined multi-block transfers are preferable to
1586 * open ended-ones (and necessary for reliable writes).
1587 * However, it is not sufficient to just send CMD23,
1588 * and avoid the final CMD12, as on an error condition
1589 * CMD12 (stop) needs to be sent anyway. This, coupled
1590 * with Auto-CMD23 enhancements provided by some
1591 * hosts, means that the complexity of dealing
1592 * with this is best left to the host. If CMD23 is
1593 * supported by card and host, we'll fill sbc in and let
1594 * the host deal with handling it correctly. This means
1595 * that for hosts that don't expose MMC_CAP_CMD23, no
1596 * change of behavior will be observed.
1597 *
1598 * N.B: Some MMC cards experience perf degradation.
1599 * We'll avoid using CMD23-bounded multiblock writes for
1600 * these, while retaining features like reliable writes.
1601 */
1602 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1603 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1604 do_data_tag)) {
1605 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1606 brq->sbc.arg = brq->data.blocks |
1607 (do_rel_wr ? (1 << 31) : 0) |
1608 (do_data_tag ? (1 << 29) : 0);
1609 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1610 brq->mrq.sbc = &brq->sbc;
1611 }
1612
1613 mmc_set_data_timeout(&brq->data, card);
1614
1615 brq->data.sg = mqrq->sg;
1616 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1617
1618 /*
1619 * Adjust the sg list so it is the same size as the
1620 * request.
1621 */
1622 if (brq->data.blocks != blk_rq_sectors(req)) {
1623 int i, data_size = brq->data.blocks << 9;
1624 struct scatterlist *sg;
1625
1626 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1627 data_size -= sg->length;
1628 if (data_size <= 0) {
1629 sg->length += data_size;
1630 i++;
1631 break;
1632 }
1633 }
1634 brq->data.sg_len = i;
1635 }
1636
1637 mqrq->mmc_active.mrq = &brq->mrq;
1638 mqrq->mmc_active.err_check = mmc_blk_err_check;
1639
1640 mmc_queue_bounce_pre(mqrq);
1641 }
1642
1643 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1644 struct mmc_card *card)
1645 {
1646 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1647 unsigned int max_seg_sz = queue_max_segment_size(q);
1648 unsigned int len, nr_segs = 0;
1649
1650 do {
1651 len = min(hdr_sz, max_seg_sz);
1652 hdr_sz -= len;
1653 nr_segs++;
1654 } while (hdr_sz);
1655
1656 return nr_segs;
1657 }
1658
1659 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1660 {
1661 struct request_queue *q = mq->queue;
1662 struct mmc_card *card = mq->card;
1663 struct request *cur = req, *next = NULL;
1664 struct mmc_blk_data *md = mq->data;
1665 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1666 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1667 unsigned int req_sectors = 0, phys_segments = 0;
1668 unsigned int max_blk_count, max_phys_segs;
1669 bool put_back = true;
1670 u8 max_packed_rw = 0;
1671 u8 reqs = 0;
1672
1673 if (!(md->flags & MMC_BLK_PACKED_CMD))
1674 goto no_packed;
1675
1676 if ((rq_data_dir(cur) == WRITE) &&
1677 mmc_host_packed_wr(card->host))
1678 max_packed_rw = card->ext_csd.max_packed_writes;
1679
1680 if (max_packed_rw == 0)
1681 goto no_packed;
1682
1683 if (mmc_req_rel_wr(cur) &&
1684 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1685 goto no_packed;
1686
1687 if (mmc_large_sector(card) &&
1688 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1689 goto no_packed;
1690
1691 mmc_blk_clear_packed(mqrq);
1692
1693 max_blk_count = min(card->host->max_blk_count,
1694 card->host->max_req_size >> 9);
1695 if (unlikely(max_blk_count > 0xffff))
1696 max_blk_count = 0xffff;
1697
1698 max_phys_segs = queue_max_segments(q);
1699 req_sectors += blk_rq_sectors(cur);
1700 phys_segments += cur->nr_phys_segments;
1701
1702 if (rq_data_dir(cur) == WRITE) {
1703 req_sectors += mmc_large_sector(card) ? 8 : 1;
1704 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1705 }
1706
1707 do {
1708 if (reqs >= max_packed_rw - 1) {
1709 put_back = false;
1710 break;
1711 }
1712
1713 spin_lock_irq(q->queue_lock);
1714 next = blk_fetch_request(q);
1715 spin_unlock_irq(q->queue_lock);
1716 if (!next) {
1717 put_back = false;
1718 break;
1719 }
1720
1721 if (mmc_large_sector(card) &&
1722 !IS_ALIGNED(blk_rq_sectors(next), 8))
1723 break;
1724
1725 if (req_op(next) == REQ_OP_DISCARD ||
1726 req_op(next) == REQ_OP_FLUSH)
1727 break;
1728
1729 if (rq_data_dir(cur) != rq_data_dir(next))
1730 break;
1731
1732 if (mmc_req_rel_wr(next) &&
1733 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1734 break;
1735
1736 req_sectors += blk_rq_sectors(next);
1737 if (req_sectors > max_blk_count)
1738 break;
1739
1740 phys_segments += next->nr_phys_segments;
1741 if (phys_segments > max_phys_segs)
1742 break;
1743
1744 list_add_tail(&next->queuelist, &mqrq->packed->list);
1745 cur = next;
1746 reqs++;
1747 } while (1);
1748
1749 if (put_back) {
1750 spin_lock_irq(q->queue_lock);
1751 blk_requeue_request(q, next);
1752 spin_unlock_irq(q->queue_lock);
1753 }
1754
1755 if (reqs > 0) {
1756 list_add(&req->queuelist, &mqrq->packed->list);
1757 mqrq->packed->nr_entries = ++reqs;
1758 mqrq->packed->retries = reqs;
1759 return reqs;
1760 }
1761
1762 no_packed:
1763 mqrq->cmd_type = MMC_PACKED_NONE;
1764 return 0;
1765 }
1766
1767 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1768 struct mmc_card *card,
1769 struct mmc_queue *mq)
1770 {
1771 struct mmc_blk_request *brq = &mqrq->brq;
1772 struct request *req = mqrq->req;
1773 struct request *prq;
1774 struct mmc_blk_data *md = mq->data;
1775 struct mmc_packed *packed = mqrq->packed;
1776 bool do_rel_wr, do_data_tag;
1777 u32 *packed_cmd_hdr;
1778 u8 hdr_blocks;
1779 u8 i = 1;
1780
1781 BUG_ON(!packed);
1782
1783 mqrq->cmd_type = MMC_PACKED_WRITE;
1784 packed->blocks = 0;
1785 packed->idx_failure = MMC_PACKED_NR_IDX;
1786
1787 packed_cmd_hdr = packed->cmd_hdr;
1788 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1789 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1790 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1791 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1792
1793 /*
1794 * Argument for each entry of packed group
1795 */
1796 list_for_each_entry(prq, &packed->list, queuelist) {
1797 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1798 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1799 (prq->cmd_flags & REQ_META) &&
1800 (rq_data_dir(prq) == WRITE) &&
1801 ((brq->data.blocks * brq->data.blksz) >=
1802 card->ext_csd.data_tag_unit_size);
1803 /* Argument of CMD23 */
1804 packed_cmd_hdr[(i * 2)] =
1805 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1806 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1807 blk_rq_sectors(prq);
1808 /* Argument of CMD18 or CMD25 */
1809 packed_cmd_hdr[((i * 2)) + 1] =
1810 mmc_card_blockaddr(card) ?
1811 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1812 packed->blocks += blk_rq_sectors(prq);
1813 i++;
1814 }
1815
1816 memset(brq, 0, sizeof(struct mmc_blk_request));
1817 brq->mrq.cmd = &brq->cmd;
1818 brq->mrq.data = &brq->data;
1819 brq->mrq.sbc = &brq->sbc;
1820 brq->mrq.stop = &brq->stop;
1821
1822 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1823 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1824 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1825
1826 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1827 brq->cmd.arg = blk_rq_pos(req);
1828 if (!mmc_card_blockaddr(card))
1829 brq->cmd.arg <<= 9;
1830 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1831
1832 brq->data.blksz = 512;
1833 brq->data.blocks = packed->blocks + hdr_blocks;
1834 brq->data.flags = MMC_DATA_WRITE;
1835
1836 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1837 brq->stop.arg = 0;
1838 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1839
1840 mmc_set_data_timeout(&brq->data, card);
1841
1842 brq->data.sg = mqrq->sg;
1843 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1844
1845 mqrq->mmc_active.mrq = &brq->mrq;
1846 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1847
1848 mmc_queue_bounce_pre(mqrq);
1849 }
1850
1851 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1852 struct mmc_blk_request *brq, struct request *req,
1853 int ret)
1854 {
1855 struct mmc_queue_req *mq_rq;
1856 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1857
1858 /*
1859 * If this is an SD card and we're writing, we can first
1860 * mark the known good sectors as ok.
1861 *
1862 * If the card is not SD, we can still ok written sectors
1863 * as reported by the controller (which might be less than
1864 * the real number of written sectors, but never more).
1865 */
1866 if (mmc_card_sd(card)) {
1867 u32 blocks;
1868
1869 blocks = mmc_sd_num_wr_blocks(card);
1870 if (blocks != (u32)-1) {
1871 ret = blk_end_request(req, 0, blocks << 9);
1872 }
1873 } else {
1874 if (!mmc_packed_cmd(mq_rq->cmd_type))
1875 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1876 }
1877 return ret;
1878 }
1879
1880 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1881 {
1882 struct request *prq;
1883 struct mmc_packed *packed = mq_rq->packed;
1884 int idx = packed->idx_failure, i = 0;
1885 int ret = 0;
1886
1887 BUG_ON(!packed);
1888
1889 while (!list_empty(&packed->list)) {
1890 prq = list_entry_rq(packed->list.next);
1891 if (idx == i) {
1892 /* retry from error index */
1893 packed->nr_entries -= idx;
1894 mq_rq->req = prq;
1895 ret = 1;
1896
1897 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1898 list_del_init(&prq->queuelist);
1899 mmc_blk_clear_packed(mq_rq);
1900 }
1901 return ret;
1902 }
1903 list_del_init(&prq->queuelist);
1904 blk_end_request(prq, 0, blk_rq_bytes(prq));
1905 i++;
1906 }
1907
1908 mmc_blk_clear_packed(mq_rq);
1909 return ret;
1910 }
1911
1912 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1913 {
1914 struct request *prq;
1915 struct mmc_packed *packed = mq_rq->packed;
1916
1917 BUG_ON(!packed);
1918
1919 while (!list_empty(&packed->list)) {
1920 prq = list_entry_rq(packed->list.next);
1921 list_del_init(&prq->queuelist);
1922 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1923 }
1924
1925 mmc_blk_clear_packed(mq_rq);
1926 }
1927
1928 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1929 struct mmc_queue_req *mq_rq)
1930 {
1931 struct request *prq;
1932 struct request_queue *q = mq->queue;
1933 struct mmc_packed *packed = mq_rq->packed;
1934
1935 BUG_ON(!packed);
1936
1937 while (!list_empty(&packed->list)) {
1938 prq = list_entry_rq(packed->list.prev);
1939 if (prq->queuelist.prev != &packed->list) {
1940 list_del_init(&prq->queuelist);
1941 spin_lock_irq(q->queue_lock);
1942 blk_requeue_request(mq->queue, prq);
1943 spin_unlock_irq(q->queue_lock);
1944 } else {
1945 list_del_init(&prq->queuelist);
1946 }
1947 }
1948
1949 mmc_blk_clear_packed(mq_rq);
1950 }
1951
1952 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1953 {
1954 struct mmc_blk_data *md = mq->data;
1955 struct mmc_card *card = md->queue.card;
1956 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1957 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1958 enum mmc_blk_status status;
1959 struct mmc_queue_req *mq_rq;
1960 struct request *req = rqc;
1961 struct mmc_async_req *areq;
1962 const u8 packed_nr = 2;
1963 u8 reqs = 0;
1964
1965 if (!rqc && !mq->mqrq_prev->req)
1966 return 0;
1967
1968 if (rqc)
1969 reqs = mmc_blk_prep_packed_list(mq, rqc);
1970
1971 do {
1972 if (rqc) {
1973 /*
1974 * When 4KB native sector is enabled, only 8 blocks
1975 * multiple read or write is allowed
1976 */
1977 if ((brq->data.blocks & 0x07) &&
1978 (card->ext_csd.data_sector_size == 4096)) {
1979 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1980 req->rq_disk->disk_name);
1981 mq_rq = mq->mqrq_cur;
1982 goto cmd_abort;
1983 }
1984
1985 if (reqs >= packed_nr)
1986 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1987 card, mq);
1988 else
1989 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1990 areq = &mq->mqrq_cur->mmc_active;
1991 } else
1992 areq = NULL;
1993 areq = mmc_start_req(card->host, areq, (int *) &status);
1994 if (!areq) {
1995 if (status == MMC_BLK_NEW_REQUEST)
1996 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1997 return 0;
1998 }
1999
2000 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
2001 brq = &mq_rq->brq;
2002 req = mq_rq->req;
2003 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2004 mmc_queue_bounce_post(mq_rq);
2005
2006 switch (status) {
2007 case MMC_BLK_SUCCESS:
2008 case MMC_BLK_PARTIAL:
2009 /*
2010 * A block was successfully transferred.
2011 */
2012 mmc_blk_reset_success(md, type);
2013
2014 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2015 ret = mmc_blk_end_packed_req(mq_rq);
2016 break;
2017 } else {
2018 ret = blk_end_request(req, 0,
2019 brq->data.bytes_xfered);
2020 }
2021
2022 /*
2023 * If the blk_end_request function returns non-zero even
2024 * though all data has been transferred and no errors
2025 * were returned by the host controller, it's a bug.
2026 */
2027 if (status == MMC_BLK_SUCCESS && ret) {
2028 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2029 __func__, blk_rq_bytes(req),
2030 brq->data.bytes_xfered);
2031 rqc = NULL;
2032 goto cmd_abort;
2033 }
2034 break;
2035 case MMC_BLK_CMD_ERR:
2036 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2037 if (mmc_blk_reset(md, card->host, type))
2038 goto cmd_abort;
2039 if (!ret)
2040 goto start_new_req;
2041 break;
2042 case MMC_BLK_RETRY:
2043 retune_retry_done = brq->retune_retry_done;
2044 if (retry++ < 5)
2045 break;
2046 /* Fall through */
2047 case MMC_BLK_ABORT:
2048 if (!mmc_blk_reset(md, card->host, type))
2049 break;
2050 goto cmd_abort;
2051 case MMC_BLK_DATA_ERR: {
2052 int err;
2053
2054 err = mmc_blk_reset(md, card->host, type);
2055 if (!err)
2056 break;
2057 if (err == -ENODEV ||
2058 mmc_packed_cmd(mq_rq->cmd_type))
2059 goto cmd_abort;
2060 /* Fall through */
2061 }
2062 case MMC_BLK_ECC_ERR:
2063 if (brq->data.blocks > 1) {
2064 /* Redo read one sector at a time */
2065 pr_warn("%s: retrying using single block read\n",
2066 req->rq_disk->disk_name);
2067 disable_multi = 1;
2068 break;
2069 }
2070 /*
2071 * After an error, we redo I/O one sector at a
2072 * time, so we only reach here after trying to
2073 * read a single sector.
2074 */
2075 ret = blk_end_request(req, -EIO,
2076 brq->data.blksz);
2077 if (!ret)
2078 goto start_new_req;
2079 break;
2080 case MMC_BLK_NOMEDIUM:
2081 goto cmd_abort;
2082 default:
2083 pr_err("%s: Unhandled return value (%d)",
2084 req->rq_disk->disk_name, status);
2085 goto cmd_abort;
2086 }
2087
2088 if (ret) {
2089 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2090 if (!mq_rq->packed->retries)
2091 goto cmd_abort;
2092 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2093 mmc_start_req(card->host,
2094 &mq_rq->mmc_active, NULL);
2095 } else {
2096
2097 /*
2098 * In case of a incomplete request
2099 * prepare it again and resend.
2100 */
2101 mmc_blk_rw_rq_prep(mq_rq, card,
2102 disable_multi, mq);
2103 mmc_start_req(card->host,
2104 &mq_rq->mmc_active, NULL);
2105 }
2106 mq_rq->brq.retune_retry_done = retune_retry_done;
2107 }
2108 } while (ret);
2109
2110 return 1;
2111
2112 cmd_abort:
2113 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2114 mmc_blk_abort_packed_req(mq_rq);
2115 } else {
2116 if (mmc_card_removed(card))
2117 req->cmd_flags |= REQ_QUIET;
2118 while (ret)
2119 ret = blk_end_request(req, -EIO,
2120 blk_rq_cur_bytes(req));
2121 }
2122
2123 start_new_req:
2124 if (rqc) {
2125 if (mmc_card_removed(card)) {
2126 rqc->cmd_flags |= REQ_QUIET;
2127 blk_end_request_all(rqc, -EIO);
2128 } else {
2129 /*
2130 * If current request is packed, it needs to put back.
2131 */
2132 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2133 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2134
2135 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2136 mmc_start_req(card->host,
2137 &mq->mqrq_cur->mmc_active, NULL);
2138 }
2139 }
2140
2141 return 0;
2142 }
2143
2144 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2145 {
2146 int ret;
2147 struct mmc_blk_data *md = mq->data;
2148 struct mmc_card *card = md->queue.card;
2149 struct mmc_host *host = card->host;
2150 unsigned long flags;
2151
2152 if (req && !mq->mqrq_prev->req)
2153 /* claim host only for the first request */
2154 mmc_get_card(card);
2155
2156 ret = mmc_blk_part_switch(card, md);
2157 if (ret) {
2158 if (req) {
2159 blk_end_request_all(req, -EIO);
2160 }
2161 ret = 0;
2162 goto out;
2163 }
2164
2165 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2166 if (req && req_op(req) == REQ_OP_DISCARD) {
2167 /* complete ongoing async transfer before issuing discard */
2168 if (card->host->areq)
2169 mmc_blk_issue_rw_rq(mq, NULL);
2170 ret = mmc_blk_issue_discard_rq(mq, req);
2171 } else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
2172 /* complete ongoing async transfer before issuing secure erase*/
2173 if (card->host->areq)
2174 mmc_blk_issue_rw_rq(mq, NULL);
2175 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2176 } else if (req && req_op(req) == REQ_OP_FLUSH) {
2177 /* complete ongoing async transfer before issuing flush */
2178 if (card->host->areq)
2179 mmc_blk_issue_rw_rq(mq, NULL);
2180 ret = mmc_blk_issue_flush(mq, req);
2181 } else {
2182 if (!req && host->areq) {
2183 spin_lock_irqsave(&host->context_info.lock, flags);
2184 host->context_info.is_waiting_last_req = true;
2185 spin_unlock_irqrestore(&host->context_info.lock, flags);
2186 }
2187 ret = mmc_blk_issue_rw_rq(mq, req);
2188 }
2189
2190 out:
2191 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2192 mmc_req_is_special(req))
2193 /*
2194 * Release host when there are no more requests
2195 * and after special request(discard, flush) is done.
2196 * In case sepecial request, there is no reentry to
2197 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2198 */
2199 mmc_put_card(card);
2200 return ret;
2201 }
2202
2203 static inline int mmc_blk_readonly(struct mmc_card *card)
2204 {
2205 return mmc_card_readonly(card) ||
2206 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2207 }
2208
2209 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2210 struct device *parent,
2211 sector_t size,
2212 bool default_ro,
2213 const char *subname,
2214 int area_type)
2215 {
2216 struct mmc_blk_data *md;
2217 int devidx, ret;
2218
2219 again:
2220 if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
2221 return ERR_PTR(-ENOMEM);
2222
2223 spin_lock(&mmc_blk_lock);
2224 ret = ida_get_new(&mmc_blk_ida, &devidx);
2225 spin_unlock(&mmc_blk_lock);
2226
2227 if (ret == -EAGAIN)
2228 goto again;
2229 else if (ret)
2230 return ERR_PTR(ret);
2231
2232 if (devidx >= max_devices) {
2233 ret = -ENOSPC;
2234 goto out;
2235 }
2236
2237 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2238 if (!md) {
2239 ret = -ENOMEM;
2240 goto out;
2241 }
2242
2243 md->area_type = area_type;
2244
2245 /*
2246 * Set the read-only status based on the supported commands
2247 * and the write protect switch.
2248 */
2249 md->read_only = mmc_blk_readonly(card);
2250
2251 md->disk = alloc_disk(perdev_minors);
2252 if (md->disk == NULL) {
2253 ret = -ENOMEM;
2254 goto err_kfree;
2255 }
2256
2257 spin_lock_init(&md->lock);
2258 INIT_LIST_HEAD(&md->part);
2259 md->usage = 1;
2260
2261 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2262 if (ret)
2263 goto err_putdisk;
2264
2265 md->queue.issue_fn = mmc_blk_issue_rq;
2266 md->queue.data = md;
2267
2268 md->disk->major = MMC_BLOCK_MAJOR;
2269 md->disk->first_minor = devidx * perdev_minors;
2270 md->disk->fops = &mmc_bdops;
2271 md->disk->private_data = md;
2272 md->disk->queue = md->queue.queue;
2273 md->disk->driverfs_dev = parent;
2274 set_disk_ro(md->disk, md->read_only || default_ro);
2275 md->disk->flags = GENHD_FL_EXT_DEVT;
2276 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2277 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2278
2279 /*
2280 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2281 *
2282 * - be set for removable media with permanent block devices
2283 * - be unset for removable block devices with permanent media
2284 *
2285 * Since MMC block devices clearly fall under the second
2286 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2287 * should use the block device creation/destruction hotplug
2288 * messages to tell when the card is present.
2289 */
2290
2291 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2292 "mmcblk%u%s", card->host->index, subname ? subname : "");
2293
2294 if (mmc_card_mmc(card))
2295 blk_queue_logical_block_size(md->queue.queue,
2296 card->ext_csd.data_sector_size);
2297 else
2298 blk_queue_logical_block_size(md->queue.queue, 512);
2299
2300 set_capacity(md->disk, size);
2301
2302 if (mmc_host_cmd23(card->host)) {
2303 if (mmc_card_mmc(card) ||
2304 (mmc_card_sd(card) &&
2305 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2306 md->flags |= MMC_BLK_CMD23;
2307 }
2308
2309 if (mmc_card_mmc(card) &&
2310 md->flags & MMC_BLK_CMD23 &&
2311 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2312 card->ext_csd.rel_sectors)) {
2313 md->flags |= MMC_BLK_REL_WR;
2314 blk_queue_write_cache(md->queue.queue, true, true);
2315 }
2316
2317 if (mmc_card_mmc(card) &&
2318 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2319 (md->flags & MMC_BLK_CMD23) &&
2320 card->ext_csd.packed_event_en) {
2321 if (!mmc_packed_init(&md->queue, card))
2322 md->flags |= MMC_BLK_PACKED_CMD;
2323 }
2324
2325 return md;
2326
2327 err_putdisk:
2328 put_disk(md->disk);
2329 err_kfree:
2330 kfree(md);
2331 out:
2332 spin_lock(&mmc_blk_lock);
2333 ida_remove(&mmc_blk_ida, devidx);
2334 spin_unlock(&mmc_blk_lock);
2335 return ERR_PTR(ret);
2336 }
2337
2338 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2339 {
2340 sector_t size;
2341
2342 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2343 /*
2344 * The EXT_CSD sector count is in number or 512 byte
2345 * sectors.
2346 */
2347 size = card->ext_csd.sectors;
2348 } else {
2349 /*
2350 * The CSD capacity field is in units of read_blkbits.
2351 * set_capacity takes units of 512 bytes.
2352 */
2353 size = (typeof(sector_t))card->csd.capacity
2354 << (card->csd.read_blkbits - 9);
2355 }
2356
2357 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2358 MMC_BLK_DATA_AREA_MAIN);
2359 }
2360
2361 static int mmc_blk_alloc_part(struct mmc_card *card,
2362 struct mmc_blk_data *md,
2363 unsigned int part_type,
2364 sector_t size,
2365 bool default_ro,
2366 const char *subname,
2367 int area_type)
2368 {
2369 char cap_str[10];
2370 struct mmc_blk_data *part_md;
2371
2372 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2373 subname, area_type);
2374 if (IS_ERR(part_md))
2375 return PTR_ERR(part_md);
2376 part_md->part_type = part_type;
2377 list_add(&part_md->part, &md->part);
2378
2379 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2380 cap_str, sizeof(cap_str));
2381 pr_info("%s: %s %s partition %u %s\n",
2382 part_md->disk->disk_name, mmc_card_id(card),
2383 mmc_card_name(card), part_md->part_type, cap_str);
2384 return 0;
2385 }
2386
2387 /* MMC Physical partitions consist of two boot partitions and
2388 * up to four general purpose partitions.
2389 * For each partition enabled in EXT_CSD a block device will be allocatedi
2390 * to provide access to the partition.
2391 */
2392
2393 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2394 {
2395 int idx, ret = 0;
2396
2397 if (!mmc_card_mmc(card))
2398 return 0;
2399
2400 for (idx = 0; idx < card->nr_parts; idx++) {
2401 if (card->part[idx].size) {
2402 ret = mmc_blk_alloc_part(card, md,
2403 card->part[idx].part_cfg,
2404 card->part[idx].size >> 9,
2405 card->part[idx].force_ro,
2406 card->part[idx].name,
2407 card->part[idx].area_type);
2408 if (ret)
2409 return ret;
2410 }
2411 }
2412
2413 return ret;
2414 }
2415
2416 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2417 {
2418 struct mmc_card *card;
2419
2420 if (md) {
2421 /*
2422 * Flush remaining requests and free queues. It
2423 * is freeing the queue that stops new requests
2424 * from being accepted.
2425 */
2426 card = md->queue.card;
2427 mmc_cleanup_queue(&md->queue);
2428 if (md->flags & MMC_BLK_PACKED_CMD)
2429 mmc_packed_clean(&md->queue);
2430 if (md->disk->flags & GENHD_FL_UP) {
2431 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2432 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2433 card->ext_csd.boot_ro_lockable)
2434 device_remove_file(disk_to_dev(md->disk),
2435 &md->power_ro_lock);
2436
2437 del_gendisk(md->disk);
2438 }
2439 mmc_blk_put(md);
2440 }
2441 }
2442
2443 static void mmc_blk_remove_parts(struct mmc_card *card,
2444 struct mmc_blk_data *md)
2445 {
2446 struct list_head *pos, *q;
2447 struct mmc_blk_data *part_md;
2448
2449 list_for_each_safe(pos, q, &md->part) {
2450 part_md = list_entry(pos, struct mmc_blk_data, part);
2451 list_del(pos);
2452 mmc_blk_remove_req(part_md);
2453 }
2454 }
2455
2456 static int mmc_add_disk(struct mmc_blk_data *md)
2457 {
2458 int ret;
2459 struct mmc_card *card = md->queue.card;
2460
2461 add_disk(md->disk);
2462 md->force_ro.show = force_ro_show;
2463 md->force_ro.store = force_ro_store;
2464 sysfs_attr_init(&md->force_ro.attr);
2465 md->force_ro.attr.name = "force_ro";
2466 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2467 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2468 if (ret)
2469 goto force_ro_fail;
2470
2471 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2472 card->ext_csd.boot_ro_lockable) {
2473 umode_t mode;
2474
2475 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2476 mode = S_IRUGO;
2477 else
2478 mode = S_IRUGO | S_IWUSR;
2479
2480 md->power_ro_lock.show = power_ro_lock_show;
2481 md->power_ro_lock.store = power_ro_lock_store;
2482 sysfs_attr_init(&md->power_ro_lock.attr);
2483 md->power_ro_lock.attr.mode = mode;
2484 md->power_ro_lock.attr.name =
2485 "ro_lock_until_next_power_on";
2486 ret = device_create_file(disk_to_dev(md->disk),
2487 &md->power_ro_lock);
2488 if (ret)
2489 goto power_ro_lock_fail;
2490 }
2491 return ret;
2492
2493 power_ro_lock_fail:
2494 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2495 force_ro_fail:
2496 del_gendisk(md->disk);
2497
2498 return ret;
2499 }
2500
2501 #define CID_MANFID_SANDISK 0x2
2502 #define CID_MANFID_TOSHIBA 0x11
2503 #define CID_MANFID_MICRON 0x13
2504 #define CID_MANFID_SAMSUNG 0x15
2505 #define CID_MANFID_KINGSTON 0x70
2506
2507 static const struct mmc_fixup blk_fixups[] =
2508 {
2509 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2510 MMC_QUIRK_INAND_CMD38),
2511 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2512 MMC_QUIRK_INAND_CMD38),
2513 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2514 MMC_QUIRK_INAND_CMD38),
2515 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2516 MMC_QUIRK_INAND_CMD38),
2517 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2518 MMC_QUIRK_INAND_CMD38),
2519
2520 /*
2521 * Some MMC cards experience performance degradation with CMD23
2522 * instead of CMD12-bounded multiblock transfers. For now we'll
2523 * black list what's bad...
2524 * - Certain Toshiba cards.
2525 *
2526 * N.B. This doesn't affect SD cards.
2527 */
2528 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2529 MMC_QUIRK_BLK_NO_CMD23),
2530 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2531 MMC_QUIRK_BLK_NO_CMD23),
2532 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2533 MMC_QUIRK_BLK_NO_CMD23),
2534 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2535 MMC_QUIRK_BLK_NO_CMD23),
2536 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2537 MMC_QUIRK_BLK_NO_CMD23),
2538
2539 /*
2540 * Some MMC cards need longer data read timeout than indicated in CSD.
2541 */
2542 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2543 MMC_QUIRK_LONG_READ_TIME),
2544 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2545 MMC_QUIRK_LONG_READ_TIME),
2546
2547 /*
2548 * On these Samsung MoviNAND parts, performing secure erase or
2549 * secure trim can result in unrecoverable corruption due to a
2550 * firmware bug.
2551 */
2552 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2553 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2554 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2555 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2556 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2557 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2558 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2559 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2560 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2561 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2562 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2563 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2564 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2565 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2566 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2567 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2568
2569 /*
2570 * On Some Kingston eMMCs, performing trim can result in
2571 * unrecoverable data conrruption occasionally due to a firmware bug.
2572 */
2573 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2574 MMC_QUIRK_TRIM_BROKEN),
2575 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2576 MMC_QUIRK_TRIM_BROKEN),
2577
2578 END_FIXUP
2579 };
2580
2581 static int mmc_blk_probe(struct mmc_card *card)
2582 {
2583 struct mmc_blk_data *md, *part_md;
2584 char cap_str[10];
2585
2586 /*
2587 * Check that the card supports the command class(es) we need.
2588 */
2589 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2590 return -ENODEV;
2591
2592 mmc_fixup_device(card, blk_fixups);
2593
2594 md = mmc_blk_alloc(card);
2595 if (IS_ERR(md))
2596 return PTR_ERR(md);
2597
2598 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2599 cap_str, sizeof(cap_str));
2600 pr_info("%s: %s %s %s %s\n",
2601 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2602 cap_str, md->read_only ? "(ro)" : "");
2603
2604 if (mmc_blk_alloc_parts(card, md))
2605 goto out;
2606
2607 dev_set_drvdata(&card->dev, md);
2608
2609 if (mmc_add_disk(md))
2610 goto out;
2611
2612 list_for_each_entry(part_md, &md->part, part) {
2613 if (mmc_add_disk(part_md))
2614 goto out;
2615 }
2616
2617 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2618 pm_runtime_use_autosuspend(&card->dev);
2619
2620 /*
2621 * Don't enable runtime PM for SD-combo cards here. Leave that
2622 * decision to be taken during the SDIO init sequence instead.
2623 */
2624 if (card->type != MMC_TYPE_SD_COMBO) {
2625 pm_runtime_set_active(&card->dev);
2626 pm_runtime_enable(&card->dev);
2627 }
2628
2629 return 0;
2630
2631 out:
2632 mmc_blk_remove_parts(card, md);
2633 mmc_blk_remove_req(md);
2634 return 0;
2635 }
2636
2637 static void mmc_blk_remove(struct mmc_card *card)
2638 {
2639 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2640
2641 mmc_blk_remove_parts(card, md);
2642 pm_runtime_get_sync(&card->dev);
2643 mmc_claim_host(card->host);
2644 mmc_blk_part_switch(card, md);
2645 mmc_release_host(card->host);
2646 if (card->type != MMC_TYPE_SD_COMBO)
2647 pm_runtime_disable(&card->dev);
2648 pm_runtime_put_noidle(&card->dev);
2649 mmc_blk_remove_req(md);
2650 dev_set_drvdata(&card->dev, NULL);
2651 }
2652
2653 static int _mmc_blk_suspend(struct mmc_card *card)
2654 {
2655 struct mmc_blk_data *part_md;
2656 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2657
2658 if (md) {
2659 mmc_queue_suspend(&md->queue);
2660 list_for_each_entry(part_md, &md->part, part) {
2661 mmc_queue_suspend(&part_md->queue);
2662 }
2663 }
2664 return 0;
2665 }
2666
2667 static void mmc_blk_shutdown(struct mmc_card *card)
2668 {
2669 _mmc_blk_suspend(card);
2670 }
2671
2672 #ifdef CONFIG_PM_SLEEP
2673 static int mmc_blk_suspend(struct device *dev)
2674 {
2675 struct mmc_card *card = mmc_dev_to_card(dev);
2676
2677 return _mmc_blk_suspend(card);
2678 }
2679
2680 static int mmc_blk_resume(struct device *dev)
2681 {
2682 struct mmc_blk_data *part_md;
2683 struct mmc_blk_data *md = dev_get_drvdata(dev);
2684
2685 if (md) {
2686 /*
2687 * Resume involves the card going into idle state,
2688 * so current partition is always the main one.
2689 */
2690 md->part_curr = md->part_type;
2691 mmc_queue_resume(&md->queue);
2692 list_for_each_entry(part_md, &md->part, part) {
2693 mmc_queue_resume(&part_md->queue);
2694 }
2695 }
2696 return 0;
2697 }
2698 #endif
2699
2700 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2701
2702 static struct mmc_driver mmc_driver = {
2703 .drv = {
2704 .name = "mmcblk",
2705 .pm = &mmc_blk_pm_ops,
2706 },
2707 .probe = mmc_blk_probe,
2708 .remove = mmc_blk_remove,
2709 .shutdown = mmc_blk_shutdown,
2710 };
2711
2712 static int __init mmc_blk_init(void)
2713 {
2714 int res;
2715
2716 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2717 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2718
2719 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2720
2721 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2722 if (res)
2723 goto out;
2724
2725 res = mmc_register_driver(&mmc_driver);
2726 if (res)
2727 goto out2;
2728
2729 return 0;
2730 out2:
2731 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2732 out:
2733 return res;
2734 }
2735
2736 static void __exit mmc_blk_exit(void)
2737 {
2738 mmc_unregister_driver(&mmc_driver);
2739 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2740 }
2741
2742 module_init(mmc_blk_init);
2743 module_exit(mmc_blk_exit);
2744
2745 MODULE_LICENSE("GPL");
2746 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2747