]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/mmc/card/block.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
44
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50
51 #ifdef KERNEL
52 #ifdef MODULE_PARAM_PREFIX
53 #undef MODULE_PARAM_PREFIX
54 #endif
55 #define MODULE_PARAM_PREFIX "mmcblk."
56 #endif
57
58 #define INAND_CMD38_ARG_EXT_CSD 113
59 #define INAND_CMD38_ARG_ERASE 0x00
60 #define INAND_CMD38_ARG_TRIM 0x01
61 #define INAND_CMD38_ARG_SECERASE 0x80
62 #define INAND_CMD38_ARG_SECTRIM1 0x81
63 #define INAND_CMD38_ARG_SECTRIM2 0x88
64 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67
68 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
69 (rq_data_dir(req) == WRITE))
70 #define PACKED_CMD_VER 0x01
71 #define PACKED_CMD_WR 0x02
72
73 static DEFINE_MUTEX(block_mutex);
74
75 /*
76 * The defaults come from config options but can be overriden by module
77 * or bootarg options.
78 */
79 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
80
81 /*
82 * We've only got one major, so number of mmcblk devices is
83 * limited to (1 << 20) / number of minors per device. It is also
84 * currently limited by the size of the static bitmaps below.
85 */
86 static int max_devices;
87
88 #define MAX_DEVICES 256
89
90 /* TODO: Replace these with struct ida */
91 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
92 static DECLARE_BITMAP(name_use, MAX_DEVICES);
93
94 /*
95 * There is one mmc_blk_data per slot.
96 */
97 struct mmc_blk_data {
98 spinlock_t lock;
99 struct gendisk *disk;
100 struct mmc_queue queue;
101 struct list_head part;
102
103 unsigned int flags;
104 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
105 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
106 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
107
108 unsigned int usage;
109 unsigned int read_only;
110 unsigned int part_type;
111 unsigned int name_idx;
112 unsigned int reset_done;
113 #define MMC_BLK_READ BIT(0)
114 #define MMC_BLK_WRITE BIT(1)
115 #define MMC_BLK_DISCARD BIT(2)
116 #define MMC_BLK_SECDISCARD BIT(3)
117
118 /*
119 * Only set in main mmc_blk_data associated
120 * with mmc_card with dev_set_drvdata, and keeps
121 * track of the current selected device partition.
122 */
123 unsigned int part_curr;
124 struct device_attribute force_ro;
125 struct device_attribute power_ro_lock;
126 int area_type;
127 };
128
129 static DEFINE_MUTEX(open_lock);
130
131 enum {
132 MMC_PACKED_NR_IDX = -1,
133 MMC_PACKED_NR_ZERO,
134 MMC_PACKED_NR_SINGLE,
135 };
136
137 module_param(perdev_minors, int, 0444);
138 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
139
140 static inline int mmc_blk_part_switch(struct mmc_card *card,
141 struct mmc_blk_data *md);
142 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
143
144 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
145 {
146 struct mmc_packed *packed = mqrq->packed;
147
148 BUG_ON(!packed);
149
150 mqrq->cmd_type = MMC_PACKED_NONE;
151 packed->nr_entries = MMC_PACKED_NR_ZERO;
152 packed->idx_failure = MMC_PACKED_NR_IDX;
153 packed->retries = 0;
154 packed->blocks = 0;
155 }
156
157 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
158 {
159 struct mmc_blk_data *md;
160
161 mutex_lock(&open_lock);
162 md = disk->private_data;
163 if (md && md->usage == 0)
164 md = NULL;
165 if (md)
166 md->usage++;
167 mutex_unlock(&open_lock);
168
169 return md;
170 }
171
172 static inline int mmc_get_devidx(struct gendisk *disk)
173 {
174 int devidx = disk->first_minor / perdev_minors;
175 return devidx;
176 }
177
178 static void mmc_blk_put(struct mmc_blk_data *md)
179 {
180 mutex_lock(&open_lock);
181 md->usage--;
182 if (md->usage == 0) {
183 int devidx = mmc_get_devidx(md->disk);
184 blk_cleanup_queue(md->queue.queue);
185
186 __clear_bit(devidx, dev_use);
187
188 put_disk(md->disk);
189 kfree(md);
190 }
191 mutex_unlock(&open_lock);
192 }
193
194 static ssize_t power_ro_lock_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196 {
197 int ret;
198 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
199 struct mmc_card *card = md->queue.card;
200 int locked = 0;
201
202 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
203 locked = 2;
204 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
205 locked = 1;
206
207 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
208
209 mmc_blk_put(md);
210
211 return ret;
212 }
213
214 static ssize_t power_ro_lock_store(struct device *dev,
215 struct device_attribute *attr, const char *buf, size_t count)
216 {
217 int ret;
218 struct mmc_blk_data *md, *part_md;
219 struct mmc_card *card;
220 unsigned long set;
221
222 if (kstrtoul(buf, 0, &set))
223 return -EINVAL;
224
225 if (set != 1)
226 return count;
227
228 md = mmc_blk_get(dev_to_disk(dev));
229 card = md->queue.card;
230
231 mmc_get_card(card);
232
233 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
234 card->ext_csd.boot_ro_lock |
235 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
236 card->ext_csd.part_time);
237 if (ret)
238 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
239 else
240 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
241
242 mmc_put_card(card);
243
244 if (!ret) {
245 pr_info("%s: Locking boot partition ro until next power on\n",
246 md->disk->disk_name);
247 set_disk_ro(md->disk, 1);
248
249 list_for_each_entry(part_md, &md->part, part)
250 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
251 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
252 set_disk_ro(part_md->disk, 1);
253 }
254 }
255
256 mmc_blk_put(md);
257 return count;
258 }
259
260 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
261 char *buf)
262 {
263 int ret;
264 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
265
266 ret = snprintf(buf, PAGE_SIZE, "%d\n",
267 get_disk_ro(dev_to_disk(dev)) ^
268 md->read_only);
269 mmc_blk_put(md);
270 return ret;
271 }
272
273 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 int ret;
277 char *end;
278 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
279 unsigned long set = simple_strtoul(buf, &end, 0);
280 if (end == buf) {
281 ret = -EINVAL;
282 goto out;
283 }
284
285 set_disk_ro(dev_to_disk(dev), set || md->read_only);
286 ret = count;
287 out:
288 mmc_blk_put(md);
289 return ret;
290 }
291
292 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
293 {
294 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
295 int ret = -ENXIO;
296
297 mutex_lock(&block_mutex);
298 if (md) {
299 if (md->usage == 2)
300 check_disk_change(bdev);
301 ret = 0;
302
303 if ((mode & FMODE_WRITE) && md->read_only) {
304 mmc_blk_put(md);
305 ret = -EROFS;
306 }
307 }
308 mutex_unlock(&block_mutex);
309
310 return ret;
311 }
312
313 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
314 {
315 struct mmc_blk_data *md = disk->private_data;
316
317 mutex_lock(&block_mutex);
318 mmc_blk_put(md);
319 mutex_unlock(&block_mutex);
320 }
321
322 static int
323 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
324 {
325 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
326 geo->heads = 4;
327 geo->sectors = 16;
328 return 0;
329 }
330
331 struct mmc_blk_ioc_data {
332 struct mmc_ioc_cmd ic;
333 unsigned char *buf;
334 u64 buf_bytes;
335 };
336
337 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
338 struct mmc_ioc_cmd __user *user)
339 {
340 struct mmc_blk_ioc_data *idata;
341 int err;
342
343 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
344 if (!idata) {
345 err = -ENOMEM;
346 goto out;
347 }
348
349 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
350 err = -EFAULT;
351 goto idata_err;
352 }
353
354 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
355 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
356 err = -EOVERFLOW;
357 goto idata_err;
358 }
359
360 if (!idata->buf_bytes)
361 return idata;
362
363 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
364 if (!idata->buf) {
365 err = -ENOMEM;
366 goto idata_err;
367 }
368
369 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
370 idata->ic.data_ptr, idata->buf_bytes)) {
371 err = -EFAULT;
372 goto copy_err;
373 }
374
375 return idata;
376
377 copy_err:
378 kfree(idata->buf);
379 idata_err:
380 kfree(idata);
381 out:
382 return ERR_PTR(err);
383 }
384
385 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
386 struct mmc_blk_ioc_data *idata)
387 {
388 struct mmc_ioc_cmd *ic = &idata->ic;
389
390 if (copy_to_user(&(ic_ptr->response), ic->response,
391 sizeof(ic->response)))
392 return -EFAULT;
393
394 if (!idata->ic.write_flag) {
395 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
396 idata->buf, idata->buf_bytes))
397 return -EFAULT;
398 }
399
400 return 0;
401 }
402
403 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
404 u32 retries_max)
405 {
406 int err;
407 u32 retry_count = 0;
408
409 if (!status || !retries_max)
410 return -EINVAL;
411
412 do {
413 err = get_card_status(card, status, 5);
414 if (err)
415 break;
416
417 if (!R1_STATUS(*status) &&
418 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
419 break; /* RPMB programming operation complete */
420
421 /*
422 * Rechedule to give the MMC device a chance to continue
423 * processing the previous command without being polled too
424 * frequently.
425 */
426 usleep_range(1000, 5000);
427 } while (++retry_count < retries_max);
428
429 if (retry_count == retries_max)
430 err = -EPERM;
431
432 return err;
433 }
434
435 static int ioctl_do_sanitize(struct mmc_card *card)
436 {
437 int err;
438
439 if (!mmc_can_sanitize(card)) {
440 pr_warn("%s: %s - SANITIZE is not supported\n",
441 mmc_hostname(card->host), __func__);
442 err = -EOPNOTSUPP;
443 goto out;
444 }
445
446 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
447 mmc_hostname(card->host), __func__);
448
449 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
450 EXT_CSD_SANITIZE_START, 1,
451 MMC_SANITIZE_REQ_TIMEOUT);
452
453 if (err)
454 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
455 mmc_hostname(card->host), __func__, err);
456
457 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
458 __func__);
459 out:
460 return err;
461 }
462
463 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
464 struct mmc_blk_ioc_data *idata)
465 {
466 struct mmc_command cmd = {0};
467 struct mmc_data data = {0};
468 struct mmc_request mrq = {NULL};
469 struct scatterlist sg;
470 int err;
471 int is_rpmb = false;
472 u32 status = 0;
473
474 if (!card || !md || !idata)
475 return -EINVAL;
476
477 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
478 is_rpmb = true;
479
480 cmd.opcode = idata->ic.opcode;
481 cmd.arg = idata->ic.arg;
482 cmd.flags = idata->ic.flags;
483
484 if (idata->buf_bytes) {
485 data.sg = &sg;
486 data.sg_len = 1;
487 data.blksz = idata->ic.blksz;
488 data.blocks = idata->ic.blocks;
489
490 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
491
492 if (idata->ic.write_flag)
493 data.flags = MMC_DATA_WRITE;
494 else
495 data.flags = MMC_DATA_READ;
496
497 /* data.flags must already be set before doing this. */
498 mmc_set_data_timeout(&data, card);
499
500 /* Allow overriding the timeout_ns for empirical tuning. */
501 if (idata->ic.data_timeout_ns)
502 data.timeout_ns = idata->ic.data_timeout_ns;
503
504 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
505 /*
506 * Pretend this is a data transfer and rely on the
507 * host driver to compute timeout. When all host
508 * drivers support cmd.cmd_timeout for R1B, this
509 * can be changed to:
510 *
511 * mrq.data = NULL;
512 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
513 */
514 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
515 }
516
517 mrq.data = &data;
518 }
519
520 mrq.cmd = &cmd;
521
522 err = mmc_blk_part_switch(card, md);
523 if (err)
524 return err;
525
526 if (idata->ic.is_acmd) {
527 err = mmc_app_cmd(card->host, card);
528 if (err)
529 return err;
530 }
531
532 if (is_rpmb) {
533 err = mmc_set_blockcount(card, data.blocks,
534 idata->ic.write_flag & (1 << 31));
535 if (err)
536 return err;
537 }
538
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH)) {
541 err = ioctl_do_sanitize(card);
542
543 if (err)
544 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
545 __func__, err);
546
547 return err;
548 }
549
550 mmc_wait_for_req(card->host, &mrq);
551
552 if (cmd.error) {
553 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
554 __func__, cmd.error);
555 return cmd.error;
556 }
557 if (data.error) {
558 dev_err(mmc_dev(card->host), "%s: data error %d\n",
559 __func__, data.error);
560 return data.error;
561 }
562
563 /*
564 * According to the SD specs, some commands require a delay after
565 * issuing the command.
566 */
567 if (idata->ic.postsleep_min_us)
568 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
569
570 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
571
572 if (is_rpmb) {
573 /*
574 * Ensure RPMB command has completed by polling CMD13
575 * "Send Status".
576 */
577 err = ioctl_rpmb_card_status_poll(card, &status, 5);
578 if (err)
579 dev_err(mmc_dev(card->host),
580 "%s: Card Status=0x%08X, error %d\n",
581 __func__, status, err);
582 }
583
584 return err;
585 }
586
587 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
588 struct mmc_ioc_cmd __user *ic_ptr)
589 {
590 struct mmc_blk_ioc_data *idata;
591 struct mmc_blk_data *md;
592 struct mmc_card *card;
593 int err = 0, ioc_err = 0;
594
595 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
596 if (IS_ERR(idata))
597 return PTR_ERR(idata);
598
599 md = mmc_blk_get(bdev->bd_disk);
600 if (!md) {
601 err = -EINVAL;
602 goto cmd_err;
603 }
604
605 card = md->queue.card;
606 if (IS_ERR(card)) {
607 err = PTR_ERR(card);
608 goto cmd_done;
609 }
610
611 mmc_get_card(card);
612
613 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
614
615 mmc_put_card(card);
616
617 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
618
619 cmd_done:
620 mmc_blk_put(md);
621 cmd_err:
622 kfree(idata->buf);
623 kfree(idata);
624 return ioc_err ? ioc_err : err;
625 }
626
627 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
628 struct mmc_ioc_multi_cmd __user *user)
629 {
630 struct mmc_blk_ioc_data **idata = NULL;
631 struct mmc_ioc_cmd __user *cmds = user->cmds;
632 struct mmc_card *card;
633 struct mmc_blk_data *md;
634 int i, err = 0, ioc_err = 0;
635 __u64 num_of_cmds;
636
637 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
638 sizeof(num_of_cmds)))
639 return -EFAULT;
640
641 if (num_of_cmds > MMC_IOC_MAX_CMDS)
642 return -EINVAL;
643
644 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
645 if (!idata)
646 return -ENOMEM;
647
648 for (i = 0; i < num_of_cmds; i++) {
649 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
650 if (IS_ERR(idata[i])) {
651 err = PTR_ERR(idata[i]);
652 num_of_cmds = i;
653 goto cmd_err;
654 }
655 }
656
657 md = mmc_blk_get(bdev->bd_disk);
658 if (!md)
659 goto cmd_err;
660
661 card = md->queue.card;
662 if (IS_ERR(card)) {
663 err = PTR_ERR(card);
664 goto cmd_done;
665 }
666
667 mmc_get_card(card);
668
669 for (i = 0; i < num_of_cmds && !ioc_err; i++)
670 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
671
672 mmc_put_card(card);
673
674 /* copy to user if data and response */
675 for (i = 0; i < num_of_cmds && !err; i++)
676 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
677
678 cmd_done:
679 mmc_blk_put(md);
680 cmd_err:
681 for (i = 0; i < num_of_cmds; i++) {
682 kfree(idata[i]->buf);
683 kfree(idata[i]);
684 }
685 kfree(idata);
686 return ioc_err ? ioc_err : err;
687 }
688
689 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
690 unsigned int cmd, unsigned long arg)
691 {
692 /*
693 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
694 * whole block device, not on a partition. This prevents overspray
695 * between sibling partitions.
696 */
697 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
698 return -EPERM;
699
700 switch (cmd) {
701 case MMC_IOC_CMD:
702 return mmc_blk_ioctl_cmd(bdev,
703 (struct mmc_ioc_cmd __user *)arg);
704 case MMC_IOC_MULTI_CMD:
705 return mmc_blk_ioctl_multi_cmd(bdev,
706 (struct mmc_ioc_multi_cmd __user *)arg);
707 default:
708 return -EINVAL;
709 }
710 }
711
712 #ifdef CONFIG_COMPAT
713 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
714 unsigned int cmd, unsigned long arg)
715 {
716 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
717 }
718 #endif
719
720 static const struct block_device_operations mmc_bdops = {
721 .open = mmc_blk_open,
722 .release = mmc_blk_release,
723 .getgeo = mmc_blk_getgeo,
724 .owner = THIS_MODULE,
725 .ioctl = mmc_blk_ioctl,
726 #ifdef CONFIG_COMPAT
727 .compat_ioctl = mmc_blk_compat_ioctl,
728 #endif
729 };
730
731 static inline int mmc_blk_part_switch(struct mmc_card *card,
732 struct mmc_blk_data *md)
733 {
734 int ret;
735 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
736
737 if (main_md->part_curr == md->part_type)
738 return 0;
739
740 if (mmc_card_mmc(card)) {
741 u8 part_config = card->ext_csd.part_config;
742
743 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
744 part_config |= md->part_type;
745
746 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
747 EXT_CSD_PART_CONFIG, part_config,
748 card->ext_csd.part_time);
749 if (ret)
750 return ret;
751
752 card->ext_csd.part_config = part_config;
753 }
754
755 main_md->part_curr = md->part_type;
756 return 0;
757 }
758
759 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
760 {
761 int err;
762 u32 result;
763 __be32 *blocks;
764
765 struct mmc_request mrq = {NULL};
766 struct mmc_command cmd = {0};
767 struct mmc_data data = {0};
768
769 struct scatterlist sg;
770
771 cmd.opcode = MMC_APP_CMD;
772 cmd.arg = card->rca << 16;
773 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
774
775 err = mmc_wait_for_cmd(card->host, &cmd, 0);
776 if (err)
777 return (u32)-1;
778 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
779 return (u32)-1;
780
781 memset(&cmd, 0, sizeof(struct mmc_command));
782
783 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
784 cmd.arg = 0;
785 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
786
787 data.blksz = 4;
788 data.blocks = 1;
789 data.flags = MMC_DATA_READ;
790 data.sg = &sg;
791 data.sg_len = 1;
792 mmc_set_data_timeout(&data, card);
793
794 mrq.cmd = &cmd;
795 mrq.data = &data;
796
797 blocks = kmalloc(4, GFP_KERNEL);
798 if (!blocks)
799 return (u32)-1;
800
801 sg_init_one(&sg, blocks, 4);
802
803 mmc_wait_for_req(card->host, &mrq);
804
805 result = ntohl(*blocks);
806 kfree(blocks);
807
808 if (cmd.error || data.error)
809 result = (u32)-1;
810
811 return result;
812 }
813
814 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
815 {
816 struct mmc_command cmd = {0};
817 int err;
818
819 cmd.opcode = MMC_SEND_STATUS;
820 if (!mmc_host_is_spi(card->host))
821 cmd.arg = card->rca << 16;
822 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
823 err = mmc_wait_for_cmd(card->host, &cmd, retries);
824 if (err == 0)
825 *status = cmd.resp[0];
826 return err;
827 }
828
829 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
830 bool hw_busy_detect, struct request *req, int *gen_err)
831 {
832 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
833 int err = 0;
834 u32 status;
835
836 do {
837 err = get_card_status(card, &status, 5);
838 if (err) {
839 pr_err("%s: error %d requesting status\n",
840 req->rq_disk->disk_name, err);
841 return err;
842 }
843
844 if (status & R1_ERROR) {
845 pr_err("%s: %s: error sending status cmd, status %#x\n",
846 req->rq_disk->disk_name, __func__, status);
847 *gen_err = 1;
848 }
849
850 /* We may rely on the host hw to handle busy detection.*/
851 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
852 hw_busy_detect)
853 break;
854
855 /*
856 * Timeout if the device never becomes ready for data and never
857 * leaves the program state.
858 */
859 if (time_after(jiffies, timeout)) {
860 pr_err("%s: Card stuck in programming state! %s %s\n",
861 mmc_hostname(card->host),
862 req->rq_disk->disk_name, __func__);
863 return -ETIMEDOUT;
864 }
865
866 /*
867 * Some cards mishandle the status bits,
868 * so make sure to check both the busy
869 * indication and the card state.
870 */
871 } while (!(status & R1_READY_FOR_DATA) ||
872 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
873
874 return err;
875 }
876
877 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
878 struct request *req, int *gen_err, u32 *stop_status)
879 {
880 struct mmc_host *host = card->host;
881 struct mmc_command cmd = {0};
882 int err;
883 bool use_r1b_resp = rq_data_dir(req) == WRITE;
884
885 /*
886 * Normally we use R1B responses for WRITE, but in cases where the host
887 * has specified a max_busy_timeout we need to validate it. A failure
888 * means we need to prevent the host from doing hw busy detection, which
889 * is done by converting to a R1 response instead.
890 */
891 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
892 use_r1b_resp = false;
893
894 cmd.opcode = MMC_STOP_TRANSMISSION;
895 if (use_r1b_resp) {
896 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
897 cmd.busy_timeout = timeout_ms;
898 } else {
899 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
900 }
901
902 err = mmc_wait_for_cmd(host, &cmd, 5);
903 if (err)
904 return err;
905
906 *stop_status = cmd.resp[0];
907
908 /* No need to check card status in case of READ. */
909 if (rq_data_dir(req) == READ)
910 return 0;
911
912 if (!mmc_host_is_spi(host) &&
913 (*stop_status & R1_ERROR)) {
914 pr_err("%s: %s: general error sending stop command, resp %#x\n",
915 req->rq_disk->disk_name, __func__, *stop_status);
916 *gen_err = 1;
917 }
918
919 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
920 }
921
922 #define ERR_NOMEDIUM 3
923 #define ERR_RETRY 2
924 #define ERR_ABORT 1
925 #define ERR_CONTINUE 0
926
927 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
928 bool status_valid, u32 status)
929 {
930 switch (error) {
931 case -EILSEQ:
932 /* response crc error, retry the r/w cmd */
933 pr_err("%s: %s sending %s command, card status %#x\n",
934 req->rq_disk->disk_name, "response CRC error",
935 name, status);
936 return ERR_RETRY;
937
938 case -ETIMEDOUT:
939 pr_err("%s: %s sending %s command, card status %#x\n",
940 req->rq_disk->disk_name, "timed out", name, status);
941
942 /* If the status cmd initially failed, retry the r/w cmd */
943 if (!status_valid)
944 return ERR_RETRY;
945
946 /*
947 * If it was a r/w cmd crc error, or illegal command
948 * (eg, issued in wrong state) then retry - we should
949 * have corrected the state problem above.
950 */
951 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
952 return ERR_RETRY;
953
954 /* Otherwise abort the command */
955 return ERR_ABORT;
956
957 default:
958 /* We don't understand the error code the driver gave us */
959 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
960 req->rq_disk->disk_name, error, status);
961 return ERR_ABORT;
962 }
963 }
964
965 /*
966 * Initial r/w and stop cmd error recovery.
967 * We don't know whether the card received the r/w cmd or not, so try to
968 * restore things back to a sane state. Essentially, we do this as follows:
969 * - Obtain card status. If the first attempt to obtain card status fails,
970 * the status word will reflect the failed status cmd, not the failed
971 * r/w cmd. If we fail to obtain card status, it suggests we can no
972 * longer communicate with the card.
973 * - Check the card state. If the card received the cmd but there was a
974 * transient problem with the response, it might still be in a data transfer
975 * mode. Try to send it a stop command. If this fails, we can't recover.
976 * - If the r/w cmd failed due to a response CRC error, it was probably
977 * transient, so retry the cmd.
978 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
979 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
980 * illegal cmd, retry.
981 * Otherwise we don't understand what happened, so abort.
982 */
983 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
984 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
985 {
986 bool prev_cmd_status_valid = true;
987 u32 status, stop_status = 0;
988 int err, retry;
989
990 if (mmc_card_removed(card))
991 return ERR_NOMEDIUM;
992
993 /*
994 * Try to get card status which indicates both the card state
995 * and why there was no response. If the first attempt fails,
996 * we can't be sure the returned status is for the r/w command.
997 */
998 for (retry = 2; retry >= 0; retry--) {
999 err = get_card_status(card, &status, 0);
1000 if (!err)
1001 break;
1002
1003 /* Re-tune if needed */
1004 mmc_retune_recheck(card->host);
1005
1006 prev_cmd_status_valid = false;
1007 pr_err("%s: error %d sending status command, %sing\n",
1008 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1009 }
1010
1011 /* We couldn't get a response from the card. Give up. */
1012 if (err) {
1013 /* Check if the card is removed */
1014 if (mmc_detect_card_removed(card->host))
1015 return ERR_NOMEDIUM;
1016 return ERR_ABORT;
1017 }
1018
1019 /* Flag ECC errors */
1020 if ((status & R1_CARD_ECC_FAILED) ||
1021 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1022 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1023 *ecc_err = 1;
1024
1025 /* Flag General errors */
1026 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1027 if ((status & R1_ERROR) ||
1028 (brq->stop.resp[0] & R1_ERROR)) {
1029 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1030 req->rq_disk->disk_name, __func__,
1031 brq->stop.resp[0], status);
1032 *gen_err = 1;
1033 }
1034
1035 /*
1036 * Check the current card state. If it is in some data transfer
1037 * mode, tell it to stop (and hopefully transition back to TRAN.)
1038 */
1039 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1040 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1041 err = send_stop(card,
1042 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1043 req, gen_err, &stop_status);
1044 if (err) {
1045 pr_err("%s: error %d sending stop command\n",
1046 req->rq_disk->disk_name, err);
1047 /*
1048 * If the stop cmd also timed out, the card is probably
1049 * not present, so abort. Other errors are bad news too.
1050 */
1051 return ERR_ABORT;
1052 }
1053
1054 if (stop_status & R1_CARD_ECC_FAILED)
1055 *ecc_err = 1;
1056 }
1057
1058 /* Check for set block count errors */
1059 if (brq->sbc.error)
1060 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1061 prev_cmd_status_valid, status);
1062
1063 /* Check for r/w command errors */
1064 if (brq->cmd.error)
1065 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1066 prev_cmd_status_valid, status);
1067
1068 /* Data errors */
1069 if (!brq->stop.error)
1070 return ERR_CONTINUE;
1071
1072 /* Now for stop errors. These aren't fatal to the transfer. */
1073 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1074 req->rq_disk->disk_name, brq->stop.error,
1075 brq->cmd.resp[0], status);
1076
1077 /*
1078 * Subsitute in our own stop status as this will give the error
1079 * state which happened during the execution of the r/w command.
1080 */
1081 if (stop_status) {
1082 brq->stop.resp[0] = stop_status;
1083 brq->stop.error = 0;
1084 }
1085 return ERR_CONTINUE;
1086 }
1087
1088 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1089 int type)
1090 {
1091 int err;
1092
1093 if (md->reset_done & type)
1094 return -EEXIST;
1095
1096 md->reset_done |= type;
1097 err = mmc_hw_reset(host);
1098 /* Ensure we switch back to the correct partition */
1099 if (err != -EOPNOTSUPP) {
1100 struct mmc_blk_data *main_md =
1101 dev_get_drvdata(&host->card->dev);
1102 int part_err;
1103
1104 main_md->part_curr = main_md->part_type;
1105 part_err = mmc_blk_part_switch(host->card, md);
1106 if (part_err) {
1107 /*
1108 * We have failed to get back into the correct
1109 * partition, so we need to abort the whole request.
1110 */
1111 return -ENODEV;
1112 }
1113 }
1114 return err;
1115 }
1116
1117 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1118 {
1119 md->reset_done &= ~type;
1120 }
1121
1122 int mmc_access_rpmb(struct mmc_queue *mq)
1123 {
1124 struct mmc_blk_data *md = mq->data;
1125 /*
1126 * If this is a RPMB partition access, return ture
1127 */
1128 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1129 return true;
1130
1131 return false;
1132 }
1133
1134 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1135 {
1136 struct mmc_blk_data *md = mq->data;
1137 struct mmc_card *card = md->queue.card;
1138 unsigned int from, nr, arg;
1139 int err = 0, type = MMC_BLK_DISCARD;
1140
1141 if (!mmc_can_erase(card)) {
1142 err = -EOPNOTSUPP;
1143 goto out;
1144 }
1145
1146 from = blk_rq_pos(req);
1147 nr = blk_rq_sectors(req);
1148
1149 if (mmc_can_discard(card))
1150 arg = MMC_DISCARD_ARG;
1151 else if (mmc_can_trim(card))
1152 arg = MMC_TRIM_ARG;
1153 else
1154 arg = MMC_ERASE_ARG;
1155 retry:
1156 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1157 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1158 INAND_CMD38_ARG_EXT_CSD,
1159 arg == MMC_TRIM_ARG ?
1160 INAND_CMD38_ARG_TRIM :
1161 INAND_CMD38_ARG_ERASE,
1162 0);
1163 if (err)
1164 goto out;
1165 }
1166 err = mmc_erase(card, from, nr, arg);
1167 out:
1168 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1169 goto retry;
1170 if (!err)
1171 mmc_blk_reset_success(md, type);
1172 blk_end_request(req, err, blk_rq_bytes(req));
1173
1174 return err ? 0 : 1;
1175 }
1176
1177 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1178 struct request *req)
1179 {
1180 struct mmc_blk_data *md = mq->data;
1181 struct mmc_card *card = md->queue.card;
1182 unsigned int from, nr, arg;
1183 int err = 0, type = MMC_BLK_SECDISCARD;
1184
1185 if (!(mmc_can_secure_erase_trim(card))) {
1186 err = -EOPNOTSUPP;
1187 goto out;
1188 }
1189
1190 from = blk_rq_pos(req);
1191 nr = blk_rq_sectors(req);
1192
1193 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1194 arg = MMC_SECURE_TRIM1_ARG;
1195 else
1196 arg = MMC_SECURE_ERASE_ARG;
1197
1198 retry:
1199 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1200 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1201 INAND_CMD38_ARG_EXT_CSD,
1202 arg == MMC_SECURE_TRIM1_ARG ?
1203 INAND_CMD38_ARG_SECTRIM1 :
1204 INAND_CMD38_ARG_SECERASE,
1205 0);
1206 if (err)
1207 goto out_retry;
1208 }
1209
1210 err = mmc_erase(card, from, nr, arg);
1211 if (err == -EIO)
1212 goto out_retry;
1213 if (err)
1214 goto out;
1215
1216 if (arg == MMC_SECURE_TRIM1_ARG) {
1217 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1218 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1219 INAND_CMD38_ARG_EXT_CSD,
1220 INAND_CMD38_ARG_SECTRIM2,
1221 0);
1222 if (err)
1223 goto out_retry;
1224 }
1225
1226 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1227 if (err == -EIO)
1228 goto out_retry;
1229 if (err)
1230 goto out;
1231 }
1232
1233 out_retry:
1234 if (err && !mmc_blk_reset(md, card->host, type))
1235 goto retry;
1236 if (!err)
1237 mmc_blk_reset_success(md, type);
1238 out:
1239 blk_end_request(req, err, blk_rq_bytes(req));
1240
1241 return err ? 0 : 1;
1242 }
1243
1244 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1245 {
1246 struct mmc_blk_data *md = mq->data;
1247 struct mmc_card *card = md->queue.card;
1248 int ret = 0;
1249
1250 ret = mmc_flush_cache(card);
1251 if (ret)
1252 ret = -EIO;
1253
1254 blk_end_request_all(req, ret);
1255
1256 return ret ? 0 : 1;
1257 }
1258
1259 /*
1260 * Reformat current write as a reliable write, supporting
1261 * both legacy and the enhanced reliable write MMC cards.
1262 * In each transfer we'll handle only as much as a single
1263 * reliable write can handle, thus finish the request in
1264 * partial completions.
1265 */
1266 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1267 struct mmc_card *card,
1268 struct request *req)
1269 {
1270 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1271 /* Legacy mode imposes restrictions on transfers. */
1272 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1273 brq->data.blocks = 1;
1274
1275 if (brq->data.blocks > card->ext_csd.rel_sectors)
1276 brq->data.blocks = card->ext_csd.rel_sectors;
1277 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1278 brq->data.blocks = 1;
1279 }
1280 }
1281
1282 #define CMD_ERRORS \
1283 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1284 R1_ADDRESS_ERROR | /* Misaligned address */ \
1285 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1286 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1287 R1_CC_ERROR | /* Card controller error */ \
1288 R1_ERROR) /* General/unknown error */
1289
1290 static int mmc_blk_err_check(struct mmc_card *card,
1291 struct mmc_async_req *areq)
1292 {
1293 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1294 mmc_active);
1295 struct mmc_blk_request *brq = &mq_mrq->brq;
1296 struct request *req = mq_mrq->req;
1297 int need_retune = card->host->need_retune;
1298 int ecc_err = 0, gen_err = 0;
1299
1300 /*
1301 * sbc.error indicates a problem with the set block count
1302 * command. No data will have been transferred.
1303 *
1304 * cmd.error indicates a problem with the r/w command. No
1305 * data will have been transferred.
1306 *
1307 * stop.error indicates a problem with the stop command. Data
1308 * may have been transferred, or may still be transferring.
1309 */
1310 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1311 brq->data.error) {
1312 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1313 case ERR_RETRY:
1314 return MMC_BLK_RETRY;
1315 case ERR_ABORT:
1316 return MMC_BLK_ABORT;
1317 case ERR_NOMEDIUM:
1318 return MMC_BLK_NOMEDIUM;
1319 case ERR_CONTINUE:
1320 break;
1321 }
1322 }
1323
1324 /*
1325 * Check for errors relating to the execution of the
1326 * initial command - such as address errors. No data
1327 * has been transferred.
1328 */
1329 if (brq->cmd.resp[0] & CMD_ERRORS) {
1330 pr_err("%s: r/w command failed, status = %#x\n",
1331 req->rq_disk->disk_name, brq->cmd.resp[0]);
1332 return MMC_BLK_ABORT;
1333 }
1334
1335 /*
1336 * Everything else is either success, or a data error of some
1337 * kind. If it was a write, we may have transitioned to
1338 * program mode, which we have to wait for it to complete.
1339 */
1340 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1341 int err;
1342
1343 /* Check stop command response */
1344 if (brq->stop.resp[0] & R1_ERROR) {
1345 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1346 req->rq_disk->disk_name, __func__,
1347 brq->stop.resp[0]);
1348 gen_err = 1;
1349 }
1350
1351 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1352 &gen_err);
1353 if (err)
1354 return MMC_BLK_CMD_ERR;
1355 }
1356
1357 /* if general error occurs, retry the write operation. */
1358 if (gen_err) {
1359 pr_warn("%s: retrying write for general error\n",
1360 req->rq_disk->disk_name);
1361 return MMC_BLK_RETRY;
1362 }
1363
1364 if (brq->data.error) {
1365 if (need_retune && !brq->retune_retry_done) {
1366 pr_info("%s: retrying because a re-tune was needed\n",
1367 req->rq_disk->disk_name);
1368 brq->retune_retry_done = 1;
1369 return MMC_BLK_RETRY;
1370 }
1371 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1372 req->rq_disk->disk_name, brq->data.error,
1373 (unsigned)blk_rq_pos(req),
1374 (unsigned)blk_rq_sectors(req),
1375 brq->cmd.resp[0], brq->stop.resp[0]);
1376
1377 if (rq_data_dir(req) == READ) {
1378 if (ecc_err)
1379 return MMC_BLK_ECC_ERR;
1380 return MMC_BLK_DATA_ERR;
1381 } else {
1382 return MMC_BLK_CMD_ERR;
1383 }
1384 }
1385
1386 if (!brq->data.bytes_xfered)
1387 return MMC_BLK_RETRY;
1388
1389 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1390 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1391 return MMC_BLK_PARTIAL;
1392 else
1393 return MMC_BLK_SUCCESS;
1394 }
1395
1396 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1397 return MMC_BLK_PARTIAL;
1398
1399 return MMC_BLK_SUCCESS;
1400 }
1401
1402 static int mmc_blk_packed_err_check(struct mmc_card *card,
1403 struct mmc_async_req *areq)
1404 {
1405 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1406 mmc_active);
1407 struct request *req = mq_rq->req;
1408 struct mmc_packed *packed = mq_rq->packed;
1409 int err, check, status;
1410 u8 *ext_csd;
1411
1412 BUG_ON(!packed);
1413
1414 packed->retries--;
1415 check = mmc_blk_err_check(card, areq);
1416 err = get_card_status(card, &status, 0);
1417 if (err) {
1418 pr_err("%s: error %d sending status command\n",
1419 req->rq_disk->disk_name, err);
1420 return MMC_BLK_ABORT;
1421 }
1422
1423 if (status & R1_EXCEPTION_EVENT) {
1424 err = mmc_get_ext_csd(card, &ext_csd);
1425 if (err) {
1426 pr_err("%s: error %d sending ext_csd\n",
1427 req->rq_disk->disk_name, err);
1428 return MMC_BLK_ABORT;
1429 }
1430
1431 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1432 EXT_CSD_PACKED_FAILURE) &&
1433 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1434 EXT_CSD_PACKED_GENERIC_ERROR)) {
1435 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1436 EXT_CSD_PACKED_INDEXED_ERROR) {
1437 packed->idx_failure =
1438 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1439 check = MMC_BLK_PARTIAL;
1440 }
1441 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1442 "failure index: %d\n",
1443 req->rq_disk->disk_name, packed->nr_entries,
1444 packed->blocks, packed->idx_failure);
1445 }
1446 kfree(ext_csd);
1447 }
1448
1449 return check;
1450 }
1451
1452 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1453 struct mmc_card *card,
1454 int disable_multi,
1455 struct mmc_queue *mq)
1456 {
1457 u32 readcmd, writecmd;
1458 struct mmc_blk_request *brq = &mqrq->brq;
1459 struct request *req = mqrq->req;
1460 struct mmc_blk_data *md = mq->data;
1461 bool do_data_tag;
1462
1463 /*
1464 * Reliable writes are used to implement Forced Unit Access and
1465 * are supported only on MMCs.
1466 */
1467 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1468 (rq_data_dir(req) == WRITE) &&
1469 (md->flags & MMC_BLK_REL_WR);
1470
1471 memset(brq, 0, sizeof(struct mmc_blk_request));
1472 brq->mrq.cmd = &brq->cmd;
1473 brq->mrq.data = &brq->data;
1474
1475 brq->cmd.arg = blk_rq_pos(req);
1476 if (!mmc_card_blockaddr(card))
1477 brq->cmd.arg <<= 9;
1478 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1479 brq->data.blksz = 512;
1480 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1481 brq->stop.arg = 0;
1482 brq->data.blocks = blk_rq_sectors(req);
1483
1484 /*
1485 * The block layer doesn't support all sector count
1486 * restrictions, so we need to be prepared for too big
1487 * requests.
1488 */
1489 if (brq->data.blocks > card->host->max_blk_count)
1490 brq->data.blocks = card->host->max_blk_count;
1491
1492 if (brq->data.blocks > 1) {
1493 /*
1494 * After a read error, we redo the request one sector
1495 * at a time in order to accurately determine which
1496 * sectors can be read successfully.
1497 */
1498 if (disable_multi)
1499 brq->data.blocks = 1;
1500
1501 /*
1502 * Some controllers have HW issues while operating
1503 * in multiple I/O mode
1504 */
1505 if (card->host->ops->multi_io_quirk)
1506 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1507 (rq_data_dir(req) == READ) ?
1508 MMC_DATA_READ : MMC_DATA_WRITE,
1509 brq->data.blocks);
1510 }
1511
1512 if (brq->data.blocks > 1 || do_rel_wr) {
1513 /* SPI multiblock writes terminate using a special
1514 * token, not a STOP_TRANSMISSION request.
1515 */
1516 if (!mmc_host_is_spi(card->host) ||
1517 rq_data_dir(req) == READ)
1518 brq->mrq.stop = &brq->stop;
1519 readcmd = MMC_READ_MULTIPLE_BLOCK;
1520 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1521 } else {
1522 brq->mrq.stop = NULL;
1523 readcmd = MMC_READ_SINGLE_BLOCK;
1524 writecmd = MMC_WRITE_BLOCK;
1525 }
1526 if (rq_data_dir(req) == READ) {
1527 brq->cmd.opcode = readcmd;
1528 brq->data.flags |= MMC_DATA_READ;
1529 if (brq->mrq.stop)
1530 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1531 MMC_CMD_AC;
1532 } else {
1533 brq->cmd.opcode = writecmd;
1534 brq->data.flags |= MMC_DATA_WRITE;
1535 if (brq->mrq.stop)
1536 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1537 MMC_CMD_AC;
1538 }
1539
1540 if (do_rel_wr)
1541 mmc_apply_rel_rw(brq, card, req);
1542
1543 /*
1544 * Data tag is used only during writing meta data to speed
1545 * up write and any subsequent read of this meta data
1546 */
1547 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1548 (req->cmd_flags & REQ_META) &&
1549 (rq_data_dir(req) == WRITE) &&
1550 ((brq->data.blocks * brq->data.blksz) >=
1551 card->ext_csd.data_tag_unit_size);
1552
1553 /*
1554 * Pre-defined multi-block transfers are preferable to
1555 * open ended-ones (and necessary for reliable writes).
1556 * However, it is not sufficient to just send CMD23,
1557 * and avoid the final CMD12, as on an error condition
1558 * CMD12 (stop) needs to be sent anyway. This, coupled
1559 * with Auto-CMD23 enhancements provided by some
1560 * hosts, means that the complexity of dealing
1561 * with this is best left to the host. If CMD23 is
1562 * supported by card and host, we'll fill sbc in and let
1563 * the host deal with handling it correctly. This means
1564 * that for hosts that don't expose MMC_CAP_CMD23, no
1565 * change of behavior will be observed.
1566 *
1567 * N.B: Some MMC cards experience perf degradation.
1568 * We'll avoid using CMD23-bounded multiblock writes for
1569 * these, while retaining features like reliable writes.
1570 */
1571 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1572 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1573 do_data_tag)) {
1574 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1575 brq->sbc.arg = brq->data.blocks |
1576 (do_rel_wr ? (1 << 31) : 0) |
1577 (do_data_tag ? (1 << 29) : 0);
1578 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1579 brq->mrq.sbc = &brq->sbc;
1580 }
1581
1582 mmc_set_data_timeout(&brq->data, card);
1583
1584 brq->data.sg = mqrq->sg;
1585 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1586
1587 /*
1588 * Adjust the sg list so it is the same size as the
1589 * request.
1590 */
1591 if (brq->data.blocks != blk_rq_sectors(req)) {
1592 int i, data_size = brq->data.blocks << 9;
1593 struct scatterlist *sg;
1594
1595 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1596 data_size -= sg->length;
1597 if (data_size <= 0) {
1598 sg->length += data_size;
1599 i++;
1600 break;
1601 }
1602 }
1603 brq->data.sg_len = i;
1604 }
1605
1606 mqrq->mmc_active.mrq = &brq->mrq;
1607 mqrq->mmc_active.err_check = mmc_blk_err_check;
1608
1609 mmc_queue_bounce_pre(mqrq);
1610 }
1611
1612 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1613 struct mmc_card *card)
1614 {
1615 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1616 unsigned int max_seg_sz = queue_max_segment_size(q);
1617 unsigned int len, nr_segs = 0;
1618
1619 do {
1620 len = min(hdr_sz, max_seg_sz);
1621 hdr_sz -= len;
1622 nr_segs++;
1623 } while (hdr_sz);
1624
1625 return nr_segs;
1626 }
1627
1628 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1629 {
1630 struct request_queue *q = mq->queue;
1631 struct mmc_card *card = mq->card;
1632 struct request *cur = req, *next = NULL;
1633 struct mmc_blk_data *md = mq->data;
1634 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1635 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1636 unsigned int req_sectors = 0, phys_segments = 0;
1637 unsigned int max_blk_count, max_phys_segs;
1638 bool put_back = true;
1639 u8 max_packed_rw = 0;
1640 u8 reqs = 0;
1641
1642 if (!(md->flags & MMC_BLK_PACKED_CMD))
1643 goto no_packed;
1644
1645 if ((rq_data_dir(cur) == WRITE) &&
1646 mmc_host_packed_wr(card->host))
1647 max_packed_rw = card->ext_csd.max_packed_writes;
1648
1649 if (max_packed_rw == 0)
1650 goto no_packed;
1651
1652 if (mmc_req_rel_wr(cur) &&
1653 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1654 goto no_packed;
1655
1656 if (mmc_large_sector(card) &&
1657 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1658 goto no_packed;
1659
1660 mmc_blk_clear_packed(mqrq);
1661
1662 max_blk_count = min(card->host->max_blk_count,
1663 card->host->max_req_size >> 9);
1664 if (unlikely(max_blk_count > 0xffff))
1665 max_blk_count = 0xffff;
1666
1667 max_phys_segs = queue_max_segments(q);
1668 req_sectors += blk_rq_sectors(cur);
1669 phys_segments += cur->nr_phys_segments;
1670
1671 if (rq_data_dir(cur) == WRITE) {
1672 req_sectors += mmc_large_sector(card) ? 8 : 1;
1673 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1674 }
1675
1676 do {
1677 if (reqs >= max_packed_rw - 1) {
1678 put_back = false;
1679 break;
1680 }
1681
1682 spin_lock_irq(q->queue_lock);
1683 next = blk_fetch_request(q);
1684 spin_unlock_irq(q->queue_lock);
1685 if (!next) {
1686 put_back = false;
1687 break;
1688 }
1689
1690 if (mmc_large_sector(card) &&
1691 !IS_ALIGNED(blk_rq_sectors(next), 8))
1692 break;
1693
1694 if (next->cmd_flags & REQ_DISCARD ||
1695 next->cmd_flags & REQ_FLUSH)
1696 break;
1697
1698 if (rq_data_dir(cur) != rq_data_dir(next))
1699 break;
1700
1701 if (mmc_req_rel_wr(next) &&
1702 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1703 break;
1704
1705 req_sectors += blk_rq_sectors(next);
1706 if (req_sectors > max_blk_count)
1707 break;
1708
1709 phys_segments += next->nr_phys_segments;
1710 if (phys_segments > max_phys_segs)
1711 break;
1712
1713 list_add_tail(&next->queuelist, &mqrq->packed->list);
1714 cur = next;
1715 reqs++;
1716 } while (1);
1717
1718 if (put_back) {
1719 spin_lock_irq(q->queue_lock);
1720 blk_requeue_request(q, next);
1721 spin_unlock_irq(q->queue_lock);
1722 }
1723
1724 if (reqs > 0) {
1725 list_add(&req->queuelist, &mqrq->packed->list);
1726 mqrq->packed->nr_entries = ++reqs;
1727 mqrq->packed->retries = reqs;
1728 return reqs;
1729 }
1730
1731 no_packed:
1732 mqrq->cmd_type = MMC_PACKED_NONE;
1733 return 0;
1734 }
1735
1736 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1737 struct mmc_card *card,
1738 struct mmc_queue *mq)
1739 {
1740 struct mmc_blk_request *brq = &mqrq->brq;
1741 struct request *req = mqrq->req;
1742 struct request *prq;
1743 struct mmc_blk_data *md = mq->data;
1744 struct mmc_packed *packed = mqrq->packed;
1745 bool do_rel_wr, do_data_tag;
1746 u32 *packed_cmd_hdr;
1747 u8 hdr_blocks;
1748 u8 i = 1;
1749
1750 BUG_ON(!packed);
1751
1752 mqrq->cmd_type = MMC_PACKED_WRITE;
1753 packed->blocks = 0;
1754 packed->idx_failure = MMC_PACKED_NR_IDX;
1755
1756 packed_cmd_hdr = packed->cmd_hdr;
1757 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1758 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1759 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1760 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1761
1762 /*
1763 * Argument for each entry of packed group
1764 */
1765 list_for_each_entry(prq, &packed->list, queuelist) {
1766 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1767 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1768 (prq->cmd_flags & REQ_META) &&
1769 (rq_data_dir(prq) == WRITE) &&
1770 ((brq->data.blocks * brq->data.blksz) >=
1771 card->ext_csd.data_tag_unit_size);
1772 /* Argument of CMD23 */
1773 packed_cmd_hdr[(i * 2)] =
1774 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1775 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1776 blk_rq_sectors(prq);
1777 /* Argument of CMD18 or CMD25 */
1778 packed_cmd_hdr[((i * 2)) + 1] =
1779 mmc_card_blockaddr(card) ?
1780 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1781 packed->blocks += blk_rq_sectors(prq);
1782 i++;
1783 }
1784
1785 memset(brq, 0, sizeof(struct mmc_blk_request));
1786 brq->mrq.cmd = &brq->cmd;
1787 brq->mrq.data = &brq->data;
1788 brq->mrq.sbc = &brq->sbc;
1789 brq->mrq.stop = &brq->stop;
1790
1791 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1792 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1793 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1794
1795 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1796 brq->cmd.arg = blk_rq_pos(req);
1797 if (!mmc_card_blockaddr(card))
1798 brq->cmd.arg <<= 9;
1799 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1800
1801 brq->data.blksz = 512;
1802 brq->data.blocks = packed->blocks + hdr_blocks;
1803 brq->data.flags |= MMC_DATA_WRITE;
1804
1805 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1806 brq->stop.arg = 0;
1807 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1808
1809 mmc_set_data_timeout(&brq->data, card);
1810
1811 brq->data.sg = mqrq->sg;
1812 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1813
1814 mqrq->mmc_active.mrq = &brq->mrq;
1815 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1816
1817 mmc_queue_bounce_pre(mqrq);
1818 }
1819
1820 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1821 struct mmc_blk_request *brq, struct request *req,
1822 int ret)
1823 {
1824 struct mmc_queue_req *mq_rq;
1825 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1826
1827 /*
1828 * If this is an SD card and we're writing, we can first
1829 * mark the known good sectors as ok.
1830 *
1831 * If the card is not SD, we can still ok written sectors
1832 * as reported by the controller (which might be less than
1833 * the real number of written sectors, but never more).
1834 */
1835 if (mmc_card_sd(card)) {
1836 u32 blocks;
1837
1838 blocks = mmc_sd_num_wr_blocks(card);
1839 if (blocks != (u32)-1) {
1840 ret = blk_end_request(req, 0, blocks << 9);
1841 }
1842 } else {
1843 if (!mmc_packed_cmd(mq_rq->cmd_type))
1844 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1845 }
1846 return ret;
1847 }
1848
1849 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1850 {
1851 struct request *prq;
1852 struct mmc_packed *packed = mq_rq->packed;
1853 int idx = packed->idx_failure, i = 0;
1854 int ret = 0;
1855
1856 BUG_ON(!packed);
1857
1858 while (!list_empty(&packed->list)) {
1859 prq = list_entry_rq(packed->list.next);
1860 if (idx == i) {
1861 /* retry from error index */
1862 packed->nr_entries -= idx;
1863 mq_rq->req = prq;
1864 ret = 1;
1865
1866 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1867 list_del_init(&prq->queuelist);
1868 mmc_blk_clear_packed(mq_rq);
1869 }
1870 return ret;
1871 }
1872 list_del_init(&prq->queuelist);
1873 blk_end_request(prq, 0, blk_rq_bytes(prq));
1874 i++;
1875 }
1876
1877 mmc_blk_clear_packed(mq_rq);
1878 return ret;
1879 }
1880
1881 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1882 {
1883 struct request *prq;
1884 struct mmc_packed *packed = mq_rq->packed;
1885
1886 BUG_ON(!packed);
1887
1888 while (!list_empty(&packed->list)) {
1889 prq = list_entry_rq(packed->list.next);
1890 list_del_init(&prq->queuelist);
1891 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1892 }
1893
1894 mmc_blk_clear_packed(mq_rq);
1895 }
1896
1897 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1898 struct mmc_queue_req *mq_rq)
1899 {
1900 struct request *prq;
1901 struct request_queue *q = mq->queue;
1902 struct mmc_packed *packed = mq_rq->packed;
1903
1904 BUG_ON(!packed);
1905
1906 while (!list_empty(&packed->list)) {
1907 prq = list_entry_rq(packed->list.prev);
1908 if (prq->queuelist.prev != &packed->list) {
1909 list_del_init(&prq->queuelist);
1910 spin_lock_irq(q->queue_lock);
1911 blk_requeue_request(mq->queue, prq);
1912 spin_unlock_irq(q->queue_lock);
1913 } else {
1914 list_del_init(&prq->queuelist);
1915 }
1916 }
1917
1918 mmc_blk_clear_packed(mq_rq);
1919 }
1920
1921 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1922 {
1923 struct mmc_blk_data *md = mq->data;
1924 struct mmc_card *card = md->queue.card;
1925 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1926 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1927 enum mmc_blk_status status;
1928 struct mmc_queue_req *mq_rq;
1929 struct request *req = rqc;
1930 struct mmc_async_req *areq;
1931 const u8 packed_nr = 2;
1932 u8 reqs = 0;
1933
1934 if (!rqc && !mq->mqrq_prev->req)
1935 return 0;
1936
1937 if (rqc)
1938 reqs = mmc_blk_prep_packed_list(mq, rqc);
1939
1940 do {
1941 if (rqc) {
1942 /*
1943 * When 4KB native sector is enabled, only 8 blocks
1944 * multiple read or write is allowed
1945 */
1946 if ((brq->data.blocks & 0x07) &&
1947 (card->ext_csd.data_sector_size == 4096)) {
1948 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1949 req->rq_disk->disk_name);
1950 mq_rq = mq->mqrq_cur;
1951 goto cmd_abort;
1952 }
1953
1954 if (reqs >= packed_nr)
1955 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1956 card, mq);
1957 else
1958 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1959 areq = &mq->mqrq_cur->mmc_active;
1960 } else
1961 areq = NULL;
1962 areq = mmc_start_req(card->host, areq, (int *) &status);
1963 if (!areq) {
1964 if (status == MMC_BLK_NEW_REQUEST)
1965 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1966 return 0;
1967 }
1968
1969 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1970 brq = &mq_rq->brq;
1971 req = mq_rq->req;
1972 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1973 mmc_queue_bounce_post(mq_rq);
1974
1975 switch (status) {
1976 case MMC_BLK_SUCCESS:
1977 case MMC_BLK_PARTIAL:
1978 /*
1979 * A block was successfully transferred.
1980 */
1981 mmc_blk_reset_success(md, type);
1982
1983 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1984 ret = mmc_blk_end_packed_req(mq_rq);
1985 break;
1986 } else {
1987 ret = blk_end_request(req, 0,
1988 brq->data.bytes_xfered);
1989 }
1990
1991 /*
1992 * If the blk_end_request function returns non-zero even
1993 * though all data has been transferred and no errors
1994 * were returned by the host controller, it's a bug.
1995 */
1996 if (status == MMC_BLK_SUCCESS && ret) {
1997 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1998 __func__, blk_rq_bytes(req),
1999 brq->data.bytes_xfered);
2000 rqc = NULL;
2001 goto cmd_abort;
2002 }
2003 break;
2004 case MMC_BLK_CMD_ERR:
2005 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2006 if (mmc_blk_reset(md, card->host, type))
2007 goto cmd_abort;
2008 if (!ret)
2009 goto start_new_req;
2010 break;
2011 case MMC_BLK_RETRY:
2012 retune_retry_done = brq->retune_retry_done;
2013 if (retry++ < 5)
2014 break;
2015 /* Fall through */
2016 case MMC_BLK_ABORT:
2017 if (!mmc_blk_reset(md, card->host, type))
2018 break;
2019 goto cmd_abort;
2020 case MMC_BLK_DATA_ERR: {
2021 int err;
2022
2023 err = mmc_blk_reset(md, card->host, type);
2024 if (!err)
2025 break;
2026 if (err == -ENODEV ||
2027 mmc_packed_cmd(mq_rq->cmd_type))
2028 goto cmd_abort;
2029 /* Fall through */
2030 }
2031 case MMC_BLK_ECC_ERR:
2032 if (brq->data.blocks > 1) {
2033 /* Redo read one sector at a time */
2034 pr_warn("%s: retrying using single block read\n",
2035 req->rq_disk->disk_name);
2036 disable_multi = 1;
2037 break;
2038 }
2039 /*
2040 * After an error, we redo I/O one sector at a
2041 * time, so we only reach here after trying to
2042 * read a single sector.
2043 */
2044 ret = blk_end_request(req, -EIO,
2045 brq->data.blksz);
2046 if (!ret)
2047 goto start_new_req;
2048 break;
2049 case MMC_BLK_NOMEDIUM:
2050 goto cmd_abort;
2051 default:
2052 pr_err("%s: Unhandled return value (%d)",
2053 req->rq_disk->disk_name, status);
2054 goto cmd_abort;
2055 }
2056
2057 if (ret) {
2058 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2059 if (!mq_rq->packed->retries)
2060 goto cmd_abort;
2061 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2062 mmc_start_req(card->host,
2063 &mq_rq->mmc_active, NULL);
2064 } else {
2065
2066 /*
2067 * In case of a incomplete request
2068 * prepare it again and resend.
2069 */
2070 mmc_blk_rw_rq_prep(mq_rq, card,
2071 disable_multi, mq);
2072 mmc_start_req(card->host,
2073 &mq_rq->mmc_active, NULL);
2074 }
2075 mq_rq->brq.retune_retry_done = retune_retry_done;
2076 }
2077 } while (ret);
2078
2079 return 1;
2080
2081 cmd_abort:
2082 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2083 mmc_blk_abort_packed_req(mq_rq);
2084 } else {
2085 if (mmc_card_removed(card))
2086 req->cmd_flags |= REQ_QUIET;
2087 while (ret)
2088 ret = blk_end_request(req, -EIO,
2089 blk_rq_cur_bytes(req));
2090 }
2091
2092 start_new_req:
2093 if (rqc) {
2094 if (mmc_card_removed(card)) {
2095 rqc->cmd_flags |= REQ_QUIET;
2096 blk_end_request_all(rqc, -EIO);
2097 } else {
2098 /*
2099 * If current request is packed, it needs to put back.
2100 */
2101 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2102 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2103
2104 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2105 mmc_start_req(card->host,
2106 &mq->mqrq_cur->mmc_active, NULL);
2107 }
2108 }
2109
2110 return 0;
2111 }
2112
2113 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2114 {
2115 int ret;
2116 struct mmc_blk_data *md = mq->data;
2117 struct mmc_card *card = md->queue.card;
2118 struct mmc_host *host = card->host;
2119 unsigned long flags;
2120 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2121
2122 if (req && !mq->mqrq_prev->req)
2123 /* claim host only for the first request */
2124 mmc_get_card(card);
2125
2126 ret = mmc_blk_part_switch(card, md);
2127 if (ret) {
2128 if (req) {
2129 blk_end_request_all(req, -EIO);
2130 }
2131 ret = 0;
2132 goto out;
2133 }
2134
2135 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2136 if (cmd_flags & REQ_DISCARD) {
2137 /* complete ongoing async transfer before issuing discard */
2138 if (card->host->areq)
2139 mmc_blk_issue_rw_rq(mq, NULL);
2140 if (req->cmd_flags & REQ_SECURE)
2141 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2142 else
2143 ret = mmc_blk_issue_discard_rq(mq, req);
2144 } else if (cmd_flags & REQ_FLUSH) {
2145 /* complete ongoing async transfer before issuing flush */
2146 if (card->host->areq)
2147 mmc_blk_issue_rw_rq(mq, NULL);
2148 ret = mmc_blk_issue_flush(mq, req);
2149 } else {
2150 if (!req && host->areq) {
2151 spin_lock_irqsave(&host->context_info.lock, flags);
2152 host->context_info.is_waiting_last_req = true;
2153 spin_unlock_irqrestore(&host->context_info.lock, flags);
2154 }
2155 ret = mmc_blk_issue_rw_rq(mq, req);
2156 }
2157
2158 out:
2159 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2160 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2161 /*
2162 * Release host when there are no more requests
2163 * and after special request(discard, flush) is done.
2164 * In case sepecial request, there is no reentry to
2165 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2166 */
2167 mmc_put_card(card);
2168 return ret;
2169 }
2170
2171 static inline int mmc_blk_readonly(struct mmc_card *card)
2172 {
2173 return mmc_card_readonly(card) ||
2174 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2175 }
2176
2177 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2178 struct device *parent,
2179 sector_t size,
2180 bool default_ro,
2181 const char *subname,
2182 int area_type)
2183 {
2184 struct mmc_blk_data *md;
2185 int devidx, ret;
2186
2187 devidx = find_first_zero_bit(dev_use, max_devices);
2188 if (devidx >= max_devices)
2189 return ERR_PTR(-ENOSPC);
2190 __set_bit(devidx, dev_use);
2191
2192 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2193 if (!md) {
2194 ret = -ENOMEM;
2195 goto out;
2196 }
2197
2198 /*
2199 * !subname implies we are creating main mmc_blk_data that will be
2200 * associated with mmc_card with dev_set_drvdata. Due to device
2201 * partitions, devidx will not coincide with a per-physical card
2202 * index anymore so we keep track of a name index.
2203 */
2204 if (!subname) {
2205 md->name_idx = find_first_zero_bit(name_use, max_devices);
2206 __set_bit(md->name_idx, name_use);
2207 } else
2208 md->name_idx = ((struct mmc_blk_data *)
2209 dev_to_disk(parent)->private_data)->name_idx;
2210
2211 md->area_type = area_type;
2212
2213 /*
2214 * Set the read-only status based on the supported commands
2215 * and the write protect switch.
2216 */
2217 md->read_only = mmc_blk_readonly(card);
2218
2219 md->disk = alloc_disk(perdev_minors);
2220 if (md->disk == NULL) {
2221 ret = -ENOMEM;
2222 goto err_kfree;
2223 }
2224
2225 spin_lock_init(&md->lock);
2226 INIT_LIST_HEAD(&md->part);
2227 md->usage = 1;
2228
2229 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2230 if (ret)
2231 goto err_putdisk;
2232
2233 md->queue.issue_fn = mmc_blk_issue_rq;
2234 md->queue.data = md;
2235
2236 md->disk->major = MMC_BLOCK_MAJOR;
2237 md->disk->first_minor = devidx * perdev_minors;
2238 md->disk->fops = &mmc_bdops;
2239 md->disk->private_data = md;
2240 md->disk->queue = md->queue.queue;
2241 md->disk->driverfs_dev = parent;
2242 set_disk_ro(md->disk, md->read_only || default_ro);
2243 md->disk->flags = GENHD_FL_EXT_DEVT;
2244 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2245 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2246
2247 /*
2248 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2249 *
2250 * - be set for removable media with permanent block devices
2251 * - be unset for removable block devices with permanent media
2252 *
2253 * Since MMC block devices clearly fall under the second
2254 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2255 * should use the block device creation/destruction hotplug
2256 * messages to tell when the card is present.
2257 */
2258
2259 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2260 "mmcblk%u%s", md->name_idx, subname ? subname : "");
2261
2262 if (mmc_card_mmc(card))
2263 blk_queue_logical_block_size(md->queue.queue,
2264 card->ext_csd.data_sector_size);
2265 else
2266 blk_queue_logical_block_size(md->queue.queue, 512);
2267
2268 set_capacity(md->disk, size);
2269
2270 if (mmc_host_cmd23(card->host)) {
2271 if (mmc_card_mmc(card) ||
2272 (mmc_card_sd(card) &&
2273 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2274 md->flags |= MMC_BLK_CMD23;
2275 }
2276
2277 if (mmc_card_mmc(card) &&
2278 md->flags & MMC_BLK_CMD23 &&
2279 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2280 card->ext_csd.rel_sectors)) {
2281 md->flags |= MMC_BLK_REL_WR;
2282 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2283 }
2284
2285 if (mmc_card_mmc(card) &&
2286 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2287 (md->flags & MMC_BLK_CMD23) &&
2288 card->ext_csd.packed_event_en) {
2289 if (!mmc_packed_init(&md->queue, card))
2290 md->flags |= MMC_BLK_PACKED_CMD;
2291 }
2292
2293 return md;
2294
2295 err_putdisk:
2296 put_disk(md->disk);
2297 err_kfree:
2298 kfree(md);
2299 out:
2300 return ERR_PTR(ret);
2301 }
2302
2303 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2304 {
2305 sector_t size;
2306
2307 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2308 /*
2309 * The EXT_CSD sector count is in number or 512 byte
2310 * sectors.
2311 */
2312 size = card->ext_csd.sectors;
2313 } else {
2314 /*
2315 * The CSD capacity field is in units of read_blkbits.
2316 * set_capacity takes units of 512 bytes.
2317 */
2318 size = (typeof(sector_t))card->csd.capacity
2319 << (card->csd.read_blkbits - 9);
2320 }
2321
2322 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2323 MMC_BLK_DATA_AREA_MAIN);
2324 }
2325
2326 static int mmc_blk_alloc_part(struct mmc_card *card,
2327 struct mmc_blk_data *md,
2328 unsigned int part_type,
2329 sector_t size,
2330 bool default_ro,
2331 const char *subname,
2332 int area_type)
2333 {
2334 char cap_str[10];
2335 struct mmc_blk_data *part_md;
2336
2337 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2338 subname, area_type);
2339 if (IS_ERR(part_md))
2340 return PTR_ERR(part_md);
2341 part_md->part_type = part_type;
2342 list_add(&part_md->part, &md->part);
2343
2344 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2345 cap_str, sizeof(cap_str));
2346 pr_info("%s: %s %s partition %u %s\n",
2347 part_md->disk->disk_name, mmc_card_id(card),
2348 mmc_card_name(card), part_md->part_type, cap_str);
2349 return 0;
2350 }
2351
2352 /* MMC Physical partitions consist of two boot partitions and
2353 * up to four general purpose partitions.
2354 * For each partition enabled in EXT_CSD a block device will be allocatedi
2355 * to provide access to the partition.
2356 */
2357
2358 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2359 {
2360 int idx, ret = 0;
2361
2362 if (!mmc_card_mmc(card))
2363 return 0;
2364
2365 for (idx = 0; idx < card->nr_parts; idx++) {
2366 if (card->part[idx].size) {
2367 ret = mmc_blk_alloc_part(card, md,
2368 card->part[idx].part_cfg,
2369 card->part[idx].size >> 9,
2370 card->part[idx].force_ro,
2371 card->part[idx].name,
2372 card->part[idx].area_type);
2373 if (ret)
2374 return ret;
2375 }
2376 }
2377
2378 return ret;
2379 }
2380
2381 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2382 {
2383 struct mmc_card *card;
2384
2385 if (md) {
2386 /*
2387 * Flush remaining requests and free queues. It
2388 * is freeing the queue that stops new requests
2389 * from being accepted.
2390 */
2391 card = md->queue.card;
2392 mmc_cleanup_queue(&md->queue);
2393 if (md->flags & MMC_BLK_PACKED_CMD)
2394 mmc_packed_clean(&md->queue);
2395 if (md->disk->flags & GENHD_FL_UP) {
2396 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2397 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2398 card->ext_csd.boot_ro_lockable)
2399 device_remove_file(disk_to_dev(md->disk),
2400 &md->power_ro_lock);
2401
2402 del_gendisk(md->disk);
2403 }
2404 mmc_blk_put(md);
2405 }
2406 }
2407
2408 static void mmc_blk_remove_parts(struct mmc_card *card,
2409 struct mmc_blk_data *md)
2410 {
2411 struct list_head *pos, *q;
2412 struct mmc_blk_data *part_md;
2413
2414 __clear_bit(md->name_idx, name_use);
2415 list_for_each_safe(pos, q, &md->part) {
2416 part_md = list_entry(pos, struct mmc_blk_data, part);
2417 list_del(pos);
2418 mmc_blk_remove_req(part_md);
2419 }
2420 }
2421
2422 static int mmc_add_disk(struct mmc_blk_data *md)
2423 {
2424 int ret;
2425 struct mmc_card *card = md->queue.card;
2426
2427 add_disk(md->disk);
2428 md->force_ro.show = force_ro_show;
2429 md->force_ro.store = force_ro_store;
2430 sysfs_attr_init(&md->force_ro.attr);
2431 md->force_ro.attr.name = "force_ro";
2432 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2433 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2434 if (ret)
2435 goto force_ro_fail;
2436
2437 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2438 card->ext_csd.boot_ro_lockable) {
2439 umode_t mode;
2440
2441 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2442 mode = S_IRUGO;
2443 else
2444 mode = S_IRUGO | S_IWUSR;
2445
2446 md->power_ro_lock.show = power_ro_lock_show;
2447 md->power_ro_lock.store = power_ro_lock_store;
2448 sysfs_attr_init(&md->power_ro_lock.attr);
2449 md->power_ro_lock.attr.mode = mode;
2450 md->power_ro_lock.attr.name =
2451 "ro_lock_until_next_power_on";
2452 ret = device_create_file(disk_to_dev(md->disk),
2453 &md->power_ro_lock);
2454 if (ret)
2455 goto power_ro_lock_fail;
2456 }
2457 return ret;
2458
2459 power_ro_lock_fail:
2460 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2461 force_ro_fail:
2462 del_gendisk(md->disk);
2463
2464 return ret;
2465 }
2466
2467 #define CID_MANFID_SANDISK 0x2
2468 #define CID_MANFID_TOSHIBA 0x11
2469 #define CID_MANFID_MICRON 0x13
2470 #define CID_MANFID_SAMSUNG 0x15
2471 #define CID_MANFID_KINGSTON 0x70
2472
2473 static const struct mmc_fixup blk_fixups[] =
2474 {
2475 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2476 MMC_QUIRK_INAND_CMD38),
2477 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2478 MMC_QUIRK_INAND_CMD38),
2479 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2480 MMC_QUIRK_INAND_CMD38),
2481 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2482 MMC_QUIRK_INAND_CMD38),
2483 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2484 MMC_QUIRK_INAND_CMD38),
2485
2486 /*
2487 * Some MMC cards experience performance degradation with CMD23
2488 * instead of CMD12-bounded multiblock transfers. For now we'll
2489 * black list what's bad...
2490 * - Certain Toshiba cards.
2491 *
2492 * N.B. This doesn't affect SD cards.
2493 */
2494 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2495 MMC_QUIRK_BLK_NO_CMD23),
2496 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2497 MMC_QUIRK_BLK_NO_CMD23),
2498 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2499 MMC_QUIRK_BLK_NO_CMD23),
2500 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2501 MMC_QUIRK_BLK_NO_CMD23),
2502 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2503 MMC_QUIRK_BLK_NO_CMD23),
2504
2505 /*
2506 * Some Micron MMC cards needs longer data read timeout than
2507 * indicated in CSD.
2508 */
2509 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2510 MMC_QUIRK_LONG_READ_TIME),
2511
2512 /*
2513 * On these Samsung MoviNAND parts, performing secure erase or
2514 * secure trim can result in unrecoverable corruption due to a
2515 * firmware bug.
2516 */
2517 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2518 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2519 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2520 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2521 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2522 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2523 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2524 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2525 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2526 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2527 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2528 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2529 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2530 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2531 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2532 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2533
2534 /*
2535 * On Some Kingston eMMCs, performing trim can result in
2536 * unrecoverable data conrruption occasionally due to a firmware bug.
2537 */
2538 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2539 MMC_QUIRK_TRIM_BROKEN),
2540 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2541 MMC_QUIRK_TRIM_BROKEN),
2542
2543 END_FIXUP
2544 };
2545
2546 static int mmc_blk_probe(struct mmc_card *card)
2547 {
2548 struct mmc_blk_data *md, *part_md;
2549 char cap_str[10];
2550
2551 /*
2552 * Check that the card supports the command class(es) we need.
2553 */
2554 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2555 return -ENODEV;
2556
2557 mmc_fixup_device(card, blk_fixups);
2558
2559 md = mmc_blk_alloc(card);
2560 if (IS_ERR(md))
2561 return PTR_ERR(md);
2562
2563 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2564 cap_str, sizeof(cap_str));
2565 pr_info("%s: %s %s %s %s\n",
2566 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2567 cap_str, md->read_only ? "(ro)" : "");
2568
2569 if (mmc_blk_alloc_parts(card, md))
2570 goto out;
2571
2572 dev_set_drvdata(&card->dev, md);
2573
2574 if (mmc_add_disk(md))
2575 goto out;
2576
2577 list_for_each_entry(part_md, &md->part, part) {
2578 if (mmc_add_disk(part_md))
2579 goto out;
2580 }
2581
2582 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2583 pm_runtime_use_autosuspend(&card->dev);
2584
2585 /*
2586 * Don't enable runtime PM for SD-combo cards here. Leave that
2587 * decision to be taken during the SDIO init sequence instead.
2588 */
2589 if (card->type != MMC_TYPE_SD_COMBO) {
2590 pm_runtime_set_active(&card->dev);
2591 pm_runtime_enable(&card->dev);
2592 }
2593
2594 return 0;
2595
2596 out:
2597 mmc_blk_remove_parts(card, md);
2598 mmc_blk_remove_req(md);
2599 return 0;
2600 }
2601
2602 static void mmc_blk_remove(struct mmc_card *card)
2603 {
2604 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2605
2606 mmc_blk_remove_parts(card, md);
2607 pm_runtime_get_sync(&card->dev);
2608 mmc_claim_host(card->host);
2609 mmc_blk_part_switch(card, md);
2610 mmc_release_host(card->host);
2611 if (card->type != MMC_TYPE_SD_COMBO)
2612 pm_runtime_disable(&card->dev);
2613 pm_runtime_put_noidle(&card->dev);
2614 mmc_blk_remove_req(md);
2615 dev_set_drvdata(&card->dev, NULL);
2616 }
2617
2618 static int _mmc_blk_suspend(struct mmc_card *card)
2619 {
2620 struct mmc_blk_data *part_md;
2621 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2622
2623 if (md) {
2624 mmc_queue_suspend(&md->queue);
2625 list_for_each_entry(part_md, &md->part, part) {
2626 mmc_queue_suspend(&part_md->queue);
2627 }
2628 }
2629 return 0;
2630 }
2631
2632 static void mmc_blk_shutdown(struct mmc_card *card)
2633 {
2634 _mmc_blk_suspend(card);
2635 }
2636
2637 #ifdef CONFIG_PM_SLEEP
2638 static int mmc_blk_suspend(struct device *dev)
2639 {
2640 struct mmc_card *card = mmc_dev_to_card(dev);
2641
2642 return _mmc_blk_suspend(card);
2643 }
2644
2645 static int mmc_blk_resume(struct device *dev)
2646 {
2647 struct mmc_blk_data *part_md;
2648 struct mmc_blk_data *md = dev_get_drvdata(dev);
2649
2650 if (md) {
2651 /*
2652 * Resume involves the card going into idle state,
2653 * so current partition is always the main one.
2654 */
2655 md->part_curr = md->part_type;
2656 mmc_queue_resume(&md->queue);
2657 list_for_each_entry(part_md, &md->part, part) {
2658 mmc_queue_resume(&part_md->queue);
2659 }
2660 }
2661 return 0;
2662 }
2663 #endif
2664
2665 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2666
2667 static struct mmc_driver mmc_driver = {
2668 .drv = {
2669 .name = "mmcblk",
2670 .pm = &mmc_blk_pm_ops,
2671 },
2672 .probe = mmc_blk_probe,
2673 .remove = mmc_blk_remove,
2674 .shutdown = mmc_blk_shutdown,
2675 };
2676
2677 static int __init mmc_blk_init(void)
2678 {
2679 int res;
2680
2681 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2682 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2683
2684 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2685
2686 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2687 if (res)
2688 goto out;
2689
2690 res = mmc_register_driver(&mmc_driver);
2691 if (res)
2692 goto out2;
2693
2694 return 0;
2695 out2:
2696 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2697 out:
2698 return res;
2699 }
2700
2701 static void __exit mmc_blk_exit(void)
2702 {
2703 mmc_unregister_driver(&mmc_driver);
2704 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2705 }
2706
2707 module_init(mmc_blk_init);
2708 module_exit(mmc_blk_exit);
2709
2710 MODULE_LICENSE("GPL");
2711 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2712