]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mmc/card/block.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-hirsute-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <asm/uaccess.h>
47
48 #include "queue.h"
49
50 MODULE_ALIAS("mmc:block");
51 #ifdef MODULE_PARAM_PREFIX
52 #undef MODULE_PARAM_PREFIX
53 #endif
54 #define MODULE_PARAM_PREFIX "mmcblk."
55
56 #define INAND_CMD38_ARG_EXT_CSD 113
57 #define INAND_CMD38_ARG_ERASE 0x00
58 #define INAND_CMD38_ARG_TRIM 0x01
59 #define INAND_CMD38_ARG_SECERASE 0x80
60 #define INAND_CMD38_ARG_SECTRIM1 0x81
61 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
63 #define MMC_SANITIZE_REQ_TIMEOUT 240000
64 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65
66 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * limited by the MAX_DEVICES below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 static DEFINE_IDA(mmc_blk_ida);
89 static DEFINE_SPINLOCK(mmc_blk_lock);
90
91 /*
92 * There is one mmc_blk_data per slot.
93 */
94 struct mmc_blk_data {
95 spinlock_t lock;
96 struct gendisk *disk;
97 struct mmc_queue queue;
98 struct list_head part;
99
100 unsigned int flags;
101 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
102 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
103 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104
105 unsigned int usage;
106 unsigned int read_only;
107 unsigned int part_type;
108 unsigned int reset_done;
109 #define MMC_BLK_READ BIT(0)
110 #define MMC_BLK_WRITE BIT(1)
111 #define MMC_BLK_DISCARD BIT(2)
112 #define MMC_BLK_SECDISCARD BIT(3)
113
114 /*
115 * Only set in main mmc_blk_data associated
116 * with mmc_card with dev_set_drvdata, and keeps
117 * track of the current selected device partition.
118 */
119 unsigned int part_curr;
120 struct device_attribute force_ro;
121 struct device_attribute power_ro_lock;
122 int area_type;
123 };
124
125 static DEFINE_MUTEX(open_lock);
126
127 enum {
128 MMC_PACKED_NR_IDX = -1,
129 MMC_PACKED_NR_ZERO,
130 MMC_PACKED_NR_SINGLE,
131 };
132
133 module_param(perdev_minors, int, 0444);
134 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135
136 static inline int mmc_blk_part_switch(struct mmc_card *card,
137 struct mmc_blk_data *md);
138 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139
140 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 {
142 struct mmc_packed *packed = mqrq->packed;
143
144 BUG_ON(!packed);
145
146 mqrq->cmd_type = MMC_PACKED_NONE;
147 packed->nr_entries = MMC_PACKED_NR_ZERO;
148 packed->idx_failure = MMC_PACKED_NR_IDX;
149 packed->retries = 0;
150 packed->blocks = 0;
151 }
152
153 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 {
155 struct mmc_blk_data *md;
156
157 mutex_lock(&open_lock);
158 md = disk->private_data;
159 if (md && md->usage == 0)
160 md = NULL;
161 if (md)
162 md->usage++;
163 mutex_unlock(&open_lock);
164
165 return md;
166 }
167
168 static inline int mmc_get_devidx(struct gendisk *disk)
169 {
170 int devidx = disk->first_minor / perdev_minors;
171 return devidx;
172 }
173
174 static void mmc_blk_put(struct mmc_blk_data *md)
175 {
176 mutex_lock(&open_lock);
177 md->usage--;
178 if (md->usage == 0) {
179 int devidx = mmc_get_devidx(md->disk);
180 blk_cleanup_queue(md->queue.queue);
181
182 spin_lock(&mmc_blk_lock);
183 ida_remove(&mmc_blk_ida, devidx);
184 spin_unlock(&mmc_blk_lock);
185
186 put_disk(md->disk);
187 kfree(md);
188 }
189 mutex_unlock(&open_lock);
190 }
191
192 static ssize_t power_ro_lock_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 int ret;
196 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
197 struct mmc_card *card = md->queue.card;
198 int locked = 0;
199
200 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
201 locked = 2;
202 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
203 locked = 1;
204
205 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
206
207 mmc_blk_put(md);
208
209 return ret;
210 }
211
212 static ssize_t power_ro_lock_store(struct device *dev,
213 struct device_attribute *attr, const char *buf, size_t count)
214 {
215 int ret;
216 struct mmc_blk_data *md, *part_md;
217 struct mmc_card *card;
218 unsigned long set;
219
220 if (kstrtoul(buf, 0, &set))
221 return -EINVAL;
222
223 if (set != 1)
224 return count;
225
226 md = mmc_blk_get(dev_to_disk(dev));
227 card = md->queue.card;
228
229 mmc_get_card(card);
230
231 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
232 card->ext_csd.boot_ro_lock |
233 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
234 card->ext_csd.part_time);
235 if (ret)
236 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
237 else
238 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
239
240 mmc_put_card(card);
241
242 if (!ret) {
243 pr_info("%s: Locking boot partition ro until next power on\n",
244 md->disk->disk_name);
245 set_disk_ro(md->disk, 1);
246
247 list_for_each_entry(part_md, &md->part, part)
248 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
249 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
250 set_disk_ro(part_md->disk, 1);
251 }
252 }
253
254 mmc_blk_put(md);
255 return count;
256 }
257
258 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
259 char *buf)
260 {
261 int ret;
262 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
263
264 ret = snprintf(buf, PAGE_SIZE, "%d\n",
265 get_disk_ro(dev_to_disk(dev)) ^
266 md->read_only);
267 mmc_blk_put(md);
268 return ret;
269 }
270
271 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
272 const char *buf, size_t count)
273 {
274 int ret;
275 char *end;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 unsigned long set = simple_strtoul(buf, &end, 0);
278 if (end == buf) {
279 ret = -EINVAL;
280 goto out;
281 }
282
283 set_disk_ro(dev_to_disk(dev), set || md->read_only);
284 ret = count;
285 out:
286 mmc_blk_put(md);
287 return ret;
288 }
289
290 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
291 {
292 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
293 int ret = -ENXIO;
294
295 mutex_lock(&block_mutex);
296 if (md) {
297 if (md->usage == 2)
298 check_disk_change(bdev);
299 ret = 0;
300
301 if ((mode & FMODE_WRITE) && md->read_only) {
302 mmc_blk_put(md);
303 ret = -EROFS;
304 }
305 }
306 mutex_unlock(&block_mutex);
307
308 return ret;
309 }
310
311 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
312 {
313 struct mmc_blk_data *md = disk->private_data;
314
315 mutex_lock(&block_mutex);
316 mmc_blk_put(md);
317 mutex_unlock(&block_mutex);
318 }
319
320 static int
321 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
322 {
323 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
324 geo->heads = 4;
325 geo->sectors = 16;
326 return 0;
327 }
328
329 struct mmc_blk_ioc_data {
330 struct mmc_ioc_cmd ic;
331 unsigned char *buf;
332 u64 buf_bytes;
333 };
334
335 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
336 struct mmc_ioc_cmd __user *user)
337 {
338 struct mmc_blk_ioc_data *idata;
339 int err;
340
341 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
342 if (!idata) {
343 err = -ENOMEM;
344 goto out;
345 }
346
347 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
348 err = -EFAULT;
349 goto idata_err;
350 }
351
352 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
353 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
354 err = -EOVERFLOW;
355 goto idata_err;
356 }
357
358 if (!idata->buf_bytes)
359 return idata;
360
361 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
362 if (!idata->buf) {
363 err = -ENOMEM;
364 goto idata_err;
365 }
366
367 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
368 idata->ic.data_ptr, idata->buf_bytes)) {
369 err = -EFAULT;
370 goto copy_err;
371 }
372
373 return idata;
374
375 copy_err:
376 kfree(idata->buf);
377 idata_err:
378 kfree(idata);
379 out:
380 return ERR_PTR(err);
381 }
382
383 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
384 struct mmc_blk_ioc_data *idata)
385 {
386 struct mmc_ioc_cmd *ic = &idata->ic;
387
388 if (copy_to_user(&(ic_ptr->response), ic->response,
389 sizeof(ic->response)))
390 return -EFAULT;
391
392 if (!idata->ic.write_flag) {
393 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
394 idata->buf, idata->buf_bytes))
395 return -EFAULT;
396 }
397
398 return 0;
399 }
400
401 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
402 u32 retries_max)
403 {
404 int err;
405 u32 retry_count = 0;
406
407 if (!status || !retries_max)
408 return -EINVAL;
409
410 do {
411 err = get_card_status(card, status, 5);
412 if (err)
413 break;
414
415 if (!R1_STATUS(*status) &&
416 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
417 break; /* RPMB programming operation complete */
418
419 /*
420 * Rechedule to give the MMC device a chance to continue
421 * processing the previous command without being polled too
422 * frequently.
423 */
424 usleep_range(1000, 5000);
425 } while (++retry_count < retries_max);
426
427 if (retry_count == retries_max)
428 err = -EPERM;
429
430 return err;
431 }
432
433 static int ioctl_do_sanitize(struct mmc_card *card)
434 {
435 int err;
436
437 if (!mmc_can_sanitize(card)) {
438 pr_warn("%s: %s - SANITIZE is not supported\n",
439 mmc_hostname(card->host), __func__);
440 err = -EOPNOTSUPP;
441 goto out;
442 }
443
444 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
445 mmc_hostname(card->host), __func__);
446
447 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
448 EXT_CSD_SANITIZE_START, 1,
449 MMC_SANITIZE_REQ_TIMEOUT);
450
451 if (err)
452 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
453 mmc_hostname(card->host), __func__, err);
454
455 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
456 __func__);
457 out:
458 return err;
459 }
460
461 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
462 struct mmc_blk_ioc_data *idata)
463 {
464 struct mmc_command cmd = {0};
465 struct mmc_data data = {0};
466 struct mmc_request mrq = {NULL};
467 struct scatterlist sg;
468 int err;
469 int is_rpmb = false;
470 u32 status = 0;
471
472 if (!card || !md || !idata)
473 return -EINVAL;
474
475 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
476 is_rpmb = true;
477
478 cmd.opcode = idata->ic.opcode;
479 cmd.arg = idata->ic.arg;
480 cmd.flags = idata->ic.flags;
481
482 if (idata->buf_bytes) {
483 data.sg = &sg;
484 data.sg_len = 1;
485 data.blksz = idata->ic.blksz;
486 data.blocks = idata->ic.blocks;
487
488 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
489
490 if (idata->ic.write_flag)
491 data.flags = MMC_DATA_WRITE;
492 else
493 data.flags = MMC_DATA_READ;
494
495 /* data.flags must already be set before doing this. */
496 mmc_set_data_timeout(&data, card);
497
498 /* Allow overriding the timeout_ns for empirical tuning. */
499 if (idata->ic.data_timeout_ns)
500 data.timeout_ns = idata->ic.data_timeout_ns;
501
502 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
503 /*
504 * Pretend this is a data transfer and rely on the
505 * host driver to compute timeout. When all host
506 * drivers support cmd.cmd_timeout for R1B, this
507 * can be changed to:
508 *
509 * mrq.data = NULL;
510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
511 */
512 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
513 }
514
515 mrq.data = &data;
516 }
517
518 mrq.cmd = &cmd;
519
520 err = mmc_blk_part_switch(card, md);
521 if (err)
522 return err;
523
524 if (idata->ic.is_acmd) {
525 err = mmc_app_cmd(card->host, card);
526 if (err)
527 return err;
528 }
529
530 if (is_rpmb) {
531 err = mmc_set_blockcount(card, data.blocks,
532 idata->ic.write_flag & (1 << 31));
533 if (err)
534 return err;
535 }
536
537 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
538 (cmd.opcode == MMC_SWITCH)) {
539 err = ioctl_do_sanitize(card);
540
541 if (err)
542 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
543 __func__, err);
544
545 return err;
546 }
547
548 mmc_wait_for_req(card->host, &mrq);
549
550 if (cmd.error) {
551 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
552 __func__, cmd.error);
553 return cmd.error;
554 }
555 if (data.error) {
556 dev_err(mmc_dev(card->host), "%s: data error %d\n",
557 __func__, data.error);
558 return data.error;
559 }
560
561 /*
562 * According to the SD specs, some commands require a delay after
563 * issuing the command.
564 */
565 if (idata->ic.postsleep_min_us)
566 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
567
568 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
569
570 if (is_rpmb) {
571 /*
572 * Ensure RPMB command has completed by polling CMD13
573 * "Send Status".
574 */
575 err = ioctl_rpmb_card_status_poll(card, &status, 5);
576 if (err)
577 dev_err(mmc_dev(card->host),
578 "%s: Card Status=0x%08X, error %d\n",
579 __func__, status, err);
580 }
581
582 return err;
583 }
584
585 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
586 struct mmc_ioc_cmd __user *ic_ptr)
587 {
588 struct mmc_blk_ioc_data *idata;
589 struct mmc_blk_data *md;
590 struct mmc_card *card;
591 int err = 0, ioc_err = 0;
592
593 /*
594 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
595 * whole block device, not on a partition. This prevents overspray
596 * between sibling partitions.
597 */
598 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
599 return -EPERM;
600
601 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
602 if (IS_ERR(idata))
603 return PTR_ERR(idata);
604
605 md = mmc_blk_get(bdev->bd_disk);
606 if (!md) {
607 err = -EINVAL;
608 goto cmd_err;
609 }
610
611 card = md->queue.card;
612 if (IS_ERR(card)) {
613 err = PTR_ERR(card);
614 goto cmd_done;
615 }
616
617 mmc_get_card(card);
618
619 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
620
621 mmc_put_card(card);
622
623 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
624
625 cmd_done:
626 mmc_blk_put(md);
627 cmd_err:
628 kfree(idata->buf);
629 kfree(idata);
630 return ioc_err ? ioc_err : err;
631 }
632
633 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
634 struct mmc_ioc_multi_cmd __user *user)
635 {
636 struct mmc_blk_ioc_data **idata = NULL;
637 struct mmc_ioc_cmd __user *cmds = user->cmds;
638 struct mmc_card *card;
639 struct mmc_blk_data *md;
640 int i, err = 0, ioc_err = 0;
641 __u64 num_of_cmds;
642
643 /*
644 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
645 * whole block device, not on a partition. This prevents overspray
646 * between sibling partitions.
647 */
648 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
649 return -EPERM;
650
651 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
652 sizeof(num_of_cmds)))
653 return -EFAULT;
654
655 if (num_of_cmds > MMC_IOC_MAX_CMDS)
656 return -EINVAL;
657
658 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
659 if (!idata)
660 return -ENOMEM;
661
662 for (i = 0; i < num_of_cmds; i++) {
663 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
664 if (IS_ERR(idata[i])) {
665 err = PTR_ERR(idata[i]);
666 num_of_cmds = i;
667 goto cmd_err;
668 }
669 }
670
671 md = mmc_blk_get(bdev->bd_disk);
672 if (!md) {
673 err = -EINVAL;
674 goto cmd_err;
675 }
676
677 card = md->queue.card;
678 if (IS_ERR(card)) {
679 err = PTR_ERR(card);
680 goto cmd_done;
681 }
682
683 mmc_get_card(card);
684
685 for (i = 0; i < num_of_cmds && !ioc_err; i++)
686 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
687
688 mmc_put_card(card);
689
690 /* copy to user if data and response */
691 for (i = 0; i < num_of_cmds && !err; i++)
692 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
693
694 cmd_done:
695 mmc_blk_put(md);
696 cmd_err:
697 for (i = 0; i < num_of_cmds; i++) {
698 kfree(idata[i]->buf);
699 kfree(idata[i]);
700 }
701 kfree(idata);
702 return ioc_err ? ioc_err : err;
703 }
704
705 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
706 unsigned int cmd, unsigned long arg)
707 {
708 switch (cmd) {
709 case MMC_IOC_CMD:
710 return mmc_blk_ioctl_cmd(bdev,
711 (struct mmc_ioc_cmd __user *)arg);
712 case MMC_IOC_MULTI_CMD:
713 return mmc_blk_ioctl_multi_cmd(bdev,
714 (struct mmc_ioc_multi_cmd __user *)arg);
715 default:
716 return -EINVAL;
717 }
718 }
719
720 #ifdef CONFIG_COMPAT
721 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
722 unsigned int cmd, unsigned long arg)
723 {
724 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
725 }
726 #endif
727
728 static const struct block_device_operations mmc_bdops = {
729 .open = mmc_blk_open,
730 .release = mmc_blk_release,
731 .getgeo = mmc_blk_getgeo,
732 .owner = THIS_MODULE,
733 .ioctl = mmc_blk_ioctl,
734 #ifdef CONFIG_COMPAT
735 .compat_ioctl = mmc_blk_compat_ioctl,
736 #endif
737 };
738
739 static inline int mmc_blk_part_switch(struct mmc_card *card,
740 struct mmc_blk_data *md)
741 {
742 int ret;
743 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
744
745 if (main_md->part_curr == md->part_type)
746 return 0;
747
748 if (mmc_card_mmc(card)) {
749 u8 part_config = card->ext_csd.part_config;
750
751 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
752 part_config |= md->part_type;
753
754 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
755 EXT_CSD_PART_CONFIG, part_config,
756 card->ext_csd.part_time);
757 if (ret)
758 return ret;
759
760 card->ext_csd.part_config = part_config;
761 }
762
763 main_md->part_curr = md->part_type;
764 return 0;
765 }
766
767 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
768 {
769 int err;
770 u32 result;
771 __be32 *blocks;
772
773 struct mmc_request mrq = {NULL};
774 struct mmc_command cmd = {0};
775 struct mmc_data data = {0};
776
777 struct scatterlist sg;
778
779 cmd.opcode = MMC_APP_CMD;
780 cmd.arg = card->rca << 16;
781 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
782
783 err = mmc_wait_for_cmd(card->host, &cmd, 0);
784 if (err)
785 return (u32)-1;
786 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
787 return (u32)-1;
788
789 memset(&cmd, 0, sizeof(struct mmc_command));
790
791 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
792 cmd.arg = 0;
793 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
794
795 data.blksz = 4;
796 data.blocks = 1;
797 data.flags = MMC_DATA_READ;
798 data.sg = &sg;
799 data.sg_len = 1;
800 mmc_set_data_timeout(&data, card);
801
802 mrq.cmd = &cmd;
803 mrq.data = &data;
804
805 blocks = kmalloc(4, GFP_KERNEL);
806 if (!blocks)
807 return (u32)-1;
808
809 sg_init_one(&sg, blocks, 4);
810
811 mmc_wait_for_req(card->host, &mrq);
812
813 result = ntohl(*blocks);
814 kfree(blocks);
815
816 if (cmd.error || data.error)
817 result = (u32)-1;
818
819 return result;
820 }
821
822 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
823 {
824 struct mmc_command cmd = {0};
825 int err;
826
827 cmd.opcode = MMC_SEND_STATUS;
828 if (!mmc_host_is_spi(card->host))
829 cmd.arg = card->rca << 16;
830 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
831 err = mmc_wait_for_cmd(card->host, &cmd, retries);
832 if (err == 0)
833 *status = cmd.resp[0];
834 return err;
835 }
836
837 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
838 bool hw_busy_detect, struct request *req, int *gen_err)
839 {
840 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
841 int err = 0;
842 u32 status;
843
844 do {
845 err = get_card_status(card, &status, 5);
846 if (err) {
847 pr_err("%s: error %d requesting status\n",
848 req->rq_disk->disk_name, err);
849 return err;
850 }
851
852 if (status & R1_ERROR) {
853 pr_err("%s: %s: error sending status cmd, status %#x\n",
854 req->rq_disk->disk_name, __func__, status);
855 *gen_err = 1;
856 }
857
858 /* We may rely on the host hw to handle busy detection.*/
859 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
860 hw_busy_detect)
861 break;
862
863 /*
864 * Timeout if the device never becomes ready for data and never
865 * leaves the program state.
866 */
867 if (time_after(jiffies, timeout)) {
868 pr_err("%s: Card stuck in programming state! %s %s\n",
869 mmc_hostname(card->host),
870 req->rq_disk->disk_name, __func__);
871 return -ETIMEDOUT;
872 }
873
874 /*
875 * Some cards mishandle the status bits,
876 * so make sure to check both the busy
877 * indication and the card state.
878 */
879 } while (!(status & R1_READY_FOR_DATA) ||
880 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
881
882 return err;
883 }
884
885 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
886 struct request *req, int *gen_err, u32 *stop_status)
887 {
888 struct mmc_host *host = card->host;
889 struct mmc_command cmd = {0};
890 int err;
891 bool use_r1b_resp = rq_data_dir(req) == WRITE;
892
893 /*
894 * Normally we use R1B responses for WRITE, but in cases where the host
895 * has specified a max_busy_timeout we need to validate it. A failure
896 * means we need to prevent the host from doing hw busy detection, which
897 * is done by converting to a R1 response instead.
898 */
899 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
900 use_r1b_resp = false;
901
902 cmd.opcode = MMC_STOP_TRANSMISSION;
903 if (use_r1b_resp) {
904 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
905 cmd.busy_timeout = timeout_ms;
906 } else {
907 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
908 }
909
910 err = mmc_wait_for_cmd(host, &cmd, 5);
911 if (err)
912 return err;
913
914 *stop_status = cmd.resp[0];
915
916 /* No need to check card status in case of READ. */
917 if (rq_data_dir(req) == READ)
918 return 0;
919
920 if (!mmc_host_is_spi(host) &&
921 (*stop_status & R1_ERROR)) {
922 pr_err("%s: %s: general error sending stop command, resp %#x\n",
923 req->rq_disk->disk_name, __func__, *stop_status);
924 *gen_err = 1;
925 }
926
927 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
928 }
929
930 #define ERR_NOMEDIUM 3
931 #define ERR_RETRY 2
932 #define ERR_ABORT 1
933 #define ERR_CONTINUE 0
934
935 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
936 bool status_valid, u32 status)
937 {
938 switch (error) {
939 case -EILSEQ:
940 /* response crc error, retry the r/w cmd */
941 pr_err("%s: %s sending %s command, card status %#x\n",
942 req->rq_disk->disk_name, "response CRC error",
943 name, status);
944 return ERR_RETRY;
945
946 case -ETIMEDOUT:
947 pr_err("%s: %s sending %s command, card status %#x\n",
948 req->rq_disk->disk_name, "timed out", name, status);
949
950 /* If the status cmd initially failed, retry the r/w cmd */
951 if (!status_valid) {
952 pr_err("%s: status not valid, retrying timeout\n",
953 req->rq_disk->disk_name);
954 return ERR_RETRY;
955 }
956
957 /*
958 * If it was a r/w cmd crc error, or illegal command
959 * (eg, issued in wrong state) then retry - we should
960 * have corrected the state problem above.
961 */
962 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
963 pr_err("%s: command error, retrying timeout\n",
964 req->rq_disk->disk_name);
965 return ERR_RETRY;
966 }
967
968 /* Otherwise abort the command */
969 return ERR_ABORT;
970
971 default:
972 /* We don't understand the error code the driver gave us */
973 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
974 req->rq_disk->disk_name, error, status);
975 return ERR_ABORT;
976 }
977 }
978
979 /*
980 * Initial r/w and stop cmd error recovery.
981 * We don't know whether the card received the r/w cmd or not, so try to
982 * restore things back to a sane state. Essentially, we do this as follows:
983 * - Obtain card status. If the first attempt to obtain card status fails,
984 * the status word will reflect the failed status cmd, not the failed
985 * r/w cmd. If we fail to obtain card status, it suggests we can no
986 * longer communicate with the card.
987 * - Check the card state. If the card received the cmd but there was a
988 * transient problem with the response, it might still be in a data transfer
989 * mode. Try to send it a stop command. If this fails, we can't recover.
990 * - If the r/w cmd failed due to a response CRC error, it was probably
991 * transient, so retry the cmd.
992 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
993 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
994 * illegal cmd, retry.
995 * Otherwise we don't understand what happened, so abort.
996 */
997 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
998 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
999 {
1000 bool prev_cmd_status_valid = true;
1001 u32 status, stop_status = 0;
1002 int err, retry;
1003
1004 if (mmc_card_removed(card))
1005 return ERR_NOMEDIUM;
1006
1007 /*
1008 * Try to get card status which indicates both the card state
1009 * and why there was no response. If the first attempt fails,
1010 * we can't be sure the returned status is for the r/w command.
1011 */
1012 for (retry = 2; retry >= 0; retry--) {
1013 err = get_card_status(card, &status, 0);
1014 if (!err)
1015 break;
1016
1017 /* Re-tune if needed */
1018 mmc_retune_recheck(card->host);
1019
1020 prev_cmd_status_valid = false;
1021 pr_err("%s: error %d sending status command, %sing\n",
1022 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1023 }
1024
1025 /* We couldn't get a response from the card. Give up. */
1026 if (err) {
1027 /* Check if the card is removed */
1028 if (mmc_detect_card_removed(card->host))
1029 return ERR_NOMEDIUM;
1030 return ERR_ABORT;
1031 }
1032
1033 /* Flag ECC errors */
1034 if ((status & R1_CARD_ECC_FAILED) ||
1035 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1036 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1037 *ecc_err = 1;
1038
1039 /* Flag General errors */
1040 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1041 if ((status & R1_ERROR) ||
1042 (brq->stop.resp[0] & R1_ERROR)) {
1043 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1044 req->rq_disk->disk_name, __func__,
1045 brq->stop.resp[0], status);
1046 *gen_err = 1;
1047 }
1048
1049 /*
1050 * Check the current card state. If it is in some data transfer
1051 * mode, tell it to stop (and hopefully transition back to TRAN.)
1052 */
1053 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1054 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1055 err = send_stop(card,
1056 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1057 req, gen_err, &stop_status);
1058 if (err) {
1059 pr_err("%s: error %d sending stop command\n",
1060 req->rq_disk->disk_name, err);
1061 /*
1062 * If the stop cmd also timed out, the card is probably
1063 * not present, so abort. Other errors are bad news too.
1064 */
1065 return ERR_ABORT;
1066 }
1067
1068 if (stop_status & R1_CARD_ECC_FAILED)
1069 *ecc_err = 1;
1070 }
1071
1072 /* Check for set block count errors */
1073 if (brq->sbc.error)
1074 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1075 prev_cmd_status_valid, status);
1076
1077 /* Check for r/w command errors */
1078 if (brq->cmd.error)
1079 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1080 prev_cmd_status_valid, status);
1081
1082 /* Data errors */
1083 if (!brq->stop.error)
1084 return ERR_CONTINUE;
1085
1086 /* Now for stop errors. These aren't fatal to the transfer. */
1087 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1088 req->rq_disk->disk_name, brq->stop.error,
1089 brq->cmd.resp[0], status);
1090
1091 /*
1092 * Subsitute in our own stop status as this will give the error
1093 * state which happened during the execution of the r/w command.
1094 */
1095 if (stop_status) {
1096 brq->stop.resp[0] = stop_status;
1097 brq->stop.error = 0;
1098 }
1099 return ERR_CONTINUE;
1100 }
1101
1102 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1103 int type)
1104 {
1105 int err;
1106
1107 if (md->reset_done & type)
1108 return -EEXIST;
1109
1110 md->reset_done |= type;
1111 err = mmc_hw_reset(host);
1112 /* Ensure we switch back to the correct partition */
1113 if (err != -EOPNOTSUPP) {
1114 struct mmc_blk_data *main_md =
1115 dev_get_drvdata(&host->card->dev);
1116 int part_err;
1117
1118 main_md->part_curr = main_md->part_type;
1119 part_err = mmc_blk_part_switch(host->card, md);
1120 if (part_err) {
1121 /*
1122 * We have failed to get back into the correct
1123 * partition, so we need to abort the whole request.
1124 */
1125 return -ENODEV;
1126 }
1127 }
1128 return err;
1129 }
1130
1131 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1132 {
1133 md->reset_done &= ~type;
1134 }
1135
1136 int mmc_access_rpmb(struct mmc_queue *mq)
1137 {
1138 struct mmc_blk_data *md = mq->data;
1139 /*
1140 * If this is a RPMB partition access, return ture
1141 */
1142 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1143 return true;
1144
1145 return false;
1146 }
1147
1148 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1149 {
1150 struct mmc_blk_data *md = mq->data;
1151 struct mmc_card *card = md->queue.card;
1152 unsigned int from, nr, arg;
1153 int err = 0, type = MMC_BLK_DISCARD;
1154
1155 if (!mmc_can_erase(card)) {
1156 err = -EOPNOTSUPP;
1157 goto out;
1158 }
1159
1160 from = blk_rq_pos(req);
1161 nr = blk_rq_sectors(req);
1162
1163 if (mmc_can_discard(card))
1164 arg = MMC_DISCARD_ARG;
1165 else if (mmc_can_trim(card))
1166 arg = MMC_TRIM_ARG;
1167 else
1168 arg = MMC_ERASE_ARG;
1169 retry:
1170 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 INAND_CMD38_ARG_EXT_CSD,
1173 arg == MMC_TRIM_ARG ?
1174 INAND_CMD38_ARG_TRIM :
1175 INAND_CMD38_ARG_ERASE,
1176 0);
1177 if (err)
1178 goto out;
1179 }
1180 err = mmc_erase(card, from, nr, arg);
1181 out:
1182 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1183 goto retry;
1184 if (!err)
1185 mmc_blk_reset_success(md, type);
1186 blk_end_request(req, err, blk_rq_bytes(req));
1187
1188 return err ? 0 : 1;
1189 }
1190
1191 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1192 struct request *req)
1193 {
1194 struct mmc_blk_data *md = mq->data;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int from, nr, arg;
1197 int err = 0, type = MMC_BLK_SECDISCARD;
1198
1199 if (!(mmc_can_secure_erase_trim(card))) {
1200 err = -EOPNOTSUPP;
1201 goto out;
1202 }
1203
1204 from = blk_rq_pos(req);
1205 nr = blk_rq_sectors(req);
1206
1207 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1208 arg = MMC_SECURE_TRIM1_ARG;
1209 else
1210 arg = MMC_SECURE_ERASE_ARG;
1211
1212 retry:
1213 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1214 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1215 INAND_CMD38_ARG_EXT_CSD,
1216 arg == MMC_SECURE_TRIM1_ARG ?
1217 INAND_CMD38_ARG_SECTRIM1 :
1218 INAND_CMD38_ARG_SECERASE,
1219 0);
1220 if (err)
1221 goto out_retry;
1222 }
1223
1224 err = mmc_erase(card, from, nr, arg);
1225 if (err == -EIO)
1226 goto out_retry;
1227 if (err)
1228 goto out;
1229
1230 if (arg == MMC_SECURE_TRIM1_ARG) {
1231 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1232 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1233 INAND_CMD38_ARG_EXT_CSD,
1234 INAND_CMD38_ARG_SECTRIM2,
1235 0);
1236 if (err)
1237 goto out_retry;
1238 }
1239
1240 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1241 if (err == -EIO)
1242 goto out_retry;
1243 if (err)
1244 goto out;
1245 }
1246
1247 out_retry:
1248 if (err && !mmc_blk_reset(md, card->host, type))
1249 goto retry;
1250 if (!err)
1251 mmc_blk_reset_success(md, type);
1252 out:
1253 blk_end_request(req, err, blk_rq_bytes(req));
1254
1255 return err ? 0 : 1;
1256 }
1257
1258 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1259 {
1260 struct mmc_blk_data *md = mq->data;
1261 struct mmc_card *card = md->queue.card;
1262 int ret = 0;
1263
1264 ret = mmc_flush_cache(card);
1265 if (ret)
1266 ret = -EIO;
1267
1268 blk_end_request_all(req, ret);
1269
1270 return ret ? 0 : 1;
1271 }
1272
1273 /*
1274 * Reformat current write as a reliable write, supporting
1275 * both legacy and the enhanced reliable write MMC cards.
1276 * In each transfer we'll handle only as much as a single
1277 * reliable write can handle, thus finish the request in
1278 * partial completions.
1279 */
1280 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1281 struct mmc_card *card,
1282 struct request *req)
1283 {
1284 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1285 /* Legacy mode imposes restrictions on transfers. */
1286 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1287 brq->data.blocks = 1;
1288
1289 if (brq->data.blocks > card->ext_csd.rel_sectors)
1290 brq->data.blocks = card->ext_csd.rel_sectors;
1291 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1292 brq->data.blocks = 1;
1293 }
1294 }
1295
1296 #define CMD_ERRORS \
1297 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1298 R1_ADDRESS_ERROR | /* Misaligned address */ \
1299 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1300 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1301 R1_CC_ERROR | /* Card controller error */ \
1302 R1_ERROR) /* General/unknown error */
1303
1304 static int mmc_blk_err_check(struct mmc_card *card,
1305 struct mmc_async_req *areq)
1306 {
1307 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1308 mmc_active);
1309 struct mmc_blk_request *brq = &mq_mrq->brq;
1310 struct request *req = mq_mrq->req;
1311 int need_retune = card->host->need_retune;
1312 int ecc_err = 0, gen_err = 0;
1313
1314 /*
1315 * sbc.error indicates a problem with the set block count
1316 * command. No data will have been transferred.
1317 *
1318 * cmd.error indicates a problem with the r/w command. No
1319 * data will have been transferred.
1320 *
1321 * stop.error indicates a problem with the stop command. Data
1322 * may have been transferred, or may still be transferring.
1323 */
1324 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1325 brq->data.error) {
1326 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1327 case ERR_RETRY:
1328 return MMC_BLK_RETRY;
1329 case ERR_ABORT:
1330 return MMC_BLK_ABORT;
1331 case ERR_NOMEDIUM:
1332 return MMC_BLK_NOMEDIUM;
1333 case ERR_CONTINUE:
1334 break;
1335 }
1336 }
1337
1338 /*
1339 * Check for errors relating to the execution of the
1340 * initial command - such as address errors. No data
1341 * has been transferred.
1342 */
1343 if (brq->cmd.resp[0] & CMD_ERRORS) {
1344 pr_err("%s: r/w command failed, status = %#x\n",
1345 req->rq_disk->disk_name, brq->cmd.resp[0]);
1346 return MMC_BLK_ABORT;
1347 }
1348
1349 /*
1350 * Everything else is either success, or a data error of some
1351 * kind. If it was a write, we may have transitioned to
1352 * program mode, which we have to wait for it to complete.
1353 */
1354 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1355 int err;
1356
1357 /* Check stop command response */
1358 if (brq->stop.resp[0] & R1_ERROR) {
1359 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1360 req->rq_disk->disk_name, __func__,
1361 brq->stop.resp[0]);
1362 gen_err = 1;
1363 }
1364
1365 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1366 &gen_err);
1367 if (err)
1368 return MMC_BLK_CMD_ERR;
1369 }
1370
1371 /* if general error occurs, retry the write operation. */
1372 if (gen_err) {
1373 pr_warn("%s: retrying write for general error\n",
1374 req->rq_disk->disk_name);
1375 return MMC_BLK_RETRY;
1376 }
1377
1378 if (brq->data.error) {
1379 if (need_retune && !brq->retune_retry_done) {
1380 pr_debug("%s: retrying because a re-tune was needed\n",
1381 req->rq_disk->disk_name);
1382 brq->retune_retry_done = 1;
1383 return MMC_BLK_RETRY;
1384 }
1385 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1386 req->rq_disk->disk_name, brq->data.error,
1387 (unsigned)blk_rq_pos(req),
1388 (unsigned)blk_rq_sectors(req),
1389 brq->cmd.resp[0], brq->stop.resp[0]);
1390
1391 if (rq_data_dir(req) == READ) {
1392 if (ecc_err)
1393 return MMC_BLK_ECC_ERR;
1394 return MMC_BLK_DATA_ERR;
1395 } else {
1396 return MMC_BLK_CMD_ERR;
1397 }
1398 }
1399
1400 if (!brq->data.bytes_xfered)
1401 return MMC_BLK_RETRY;
1402
1403 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1404 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1405 return MMC_BLK_PARTIAL;
1406 else
1407 return MMC_BLK_SUCCESS;
1408 }
1409
1410 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1411 return MMC_BLK_PARTIAL;
1412
1413 return MMC_BLK_SUCCESS;
1414 }
1415
1416 static int mmc_blk_packed_err_check(struct mmc_card *card,
1417 struct mmc_async_req *areq)
1418 {
1419 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1420 mmc_active);
1421 struct request *req = mq_rq->req;
1422 struct mmc_packed *packed = mq_rq->packed;
1423 int err, check, status;
1424 u8 *ext_csd;
1425
1426 BUG_ON(!packed);
1427
1428 packed->retries--;
1429 check = mmc_blk_err_check(card, areq);
1430 err = get_card_status(card, &status, 0);
1431 if (err) {
1432 pr_err("%s: error %d sending status command\n",
1433 req->rq_disk->disk_name, err);
1434 return MMC_BLK_ABORT;
1435 }
1436
1437 if (status & R1_EXCEPTION_EVENT) {
1438 err = mmc_get_ext_csd(card, &ext_csd);
1439 if (err) {
1440 pr_err("%s: error %d sending ext_csd\n",
1441 req->rq_disk->disk_name, err);
1442 return MMC_BLK_ABORT;
1443 }
1444
1445 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1446 EXT_CSD_PACKED_FAILURE) &&
1447 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1448 EXT_CSD_PACKED_GENERIC_ERROR)) {
1449 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1450 EXT_CSD_PACKED_INDEXED_ERROR) {
1451 packed->idx_failure =
1452 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1453 check = MMC_BLK_PARTIAL;
1454 }
1455 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1456 "failure index: %d\n",
1457 req->rq_disk->disk_name, packed->nr_entries,
1458 packed->blocks, packed->idx_failure);
1459 }
1460 kfree(ext_csd);
1461 }
1462
1463 return check;
1464 }
1465
1466 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1467 struct mmc_card *card,
1468 int disable_multi,
1469 struct mmc_queue *mq)
1470 {
1471 u32 readcmd, writecmd;
1472 struct mmc_blk_request *brq = &mqrq->brq;
1473 struct request *req = mqrq->req;
1474 struct mmc_blk_data *md = mq->data;
1475 bool do_data_tag;
1476
1477 /*
1478 * Reliable writes are used to implement Forced Unit Access and
1479 * are supported only on MMCs.
1480 */
1481 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1482 (rq_data_dir(req) == WRITE) &&
1483 (md->flags & MMC_BLK_REL_WR);
1484
1485 memset(brq, 0, sizeof(struct mmc_blk_request));
1486 brq->mrq.cmd = &brq->cmd;
1487 brq->mrq.data = &brq->data;
1488
1489 brq->cmd.arg = blk_rq_pos(req);
1490 if (!mmc_card_blockaddr(card))
1491 brq->cmd.arg <<= 9;
1492 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1493 brq->data.blksz = 512;
1494 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1495 brq->stop.arg = 0;
1496 brq->data.blocks = blk_rq_sectors(req);
1497
1498 /*
1499 * The block layer doesn't support all sector count
1500 * restrictions, so we need to be prepared for too big
1501 * requests.
1502 */
1503 if (brq->data.blocks > card->host->max_blk_count)
1504 brq->data.blocks = card->host->max_blk_count;
1505
1506 if (brq->data.blocks > 1) {
1507 /*
1508 * After a read error, we redo the request one sector
1509 * at a time in order to accurately determine which
1510 * sectors can be read successfully.
1511 */
1512 if (disable_multi)
1513 brq->data.blocks = 1;
1514
1515 /*
1516 * Some controllers have HW issues while operating
1517 * in multiple I/O mode
1518 */
1519 if (card->host->ops->multi_io_quirk)
1520 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1521 (rq_data_dir(req) == READ) ?
1522 MMC_DATA_READ : MMC_DATA_WRITE,
1523 brq->data.blocks);
1524 }
1525
1526 if (brq->data.blocks > 1 || do_rel_wr) {
1527 /* SPI multiblock writes terminate using a special
1528 * token, not a STOP_TRANSMISSION request.
1529 */
1530 if (!mmc_host_is_spi(card->host) ||
1531 rq_data_dir(req) == READ)
1532 brq->mrq.stop = &brq->stop;
1533 readcmd = MMC_READ_MULTIPLE_BLOCK;
1534 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1535 } else {
1536 brq->mrq.stop = NULL;
1537 readcmd = MMC_READ_SINGLE_BLOCK;
1538 writecmd = MMC_WRITE_BLOCK;
1539 }
1540 if (rq_data_dir(req) == READ) {
1541 brq->cmd.opcode = readcmd;
1542 brq->data.flags = MMC_DATA_READ;
1543 if (brq->mrq.stop)
1544 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1545 MMC_CMD_AC;
1546 } else {
1547 brq->cmd.opcode = writecmd;
1548 brq->data.flags = MMC_DATA_WRITE;
1549 if (brq->mrq.stop)
1550 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1551 MMC_CMD_AC;
1552 }
1553
1554 if (do_rel_wr)
1555 mmc_apply_rel_rw(brq, card, req);
1556
1557 /*
1558 * Data tag is used only during writing meta data to speed
1559 * up write and any subsequent read of this meta data
1560 */
1561 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1562 (req->cmd_flags & REQ_META) &&
1563 (rq_data_dir(req) == WRITE) &&
1564 ((brq->data.blocks * brq->data.blksz) >=
1565 card->ext_csd.data_tag_unit_size);
1566
1567 /*
1568 * Pre-defined multi-block transfers are preferable to
1569 * open ended-ones (and necessary for reliable writes).
1570 * However, it is not sufficient to just send CMD23,
1571 * and avoid the final CMD12, as on an error condition
1572 * CMD12 (stop) needs to be sent anyway. This, coupled
1573 * with Auto-CMD23 enhancements provided by some
1574 * hosts, means that the complexity of dealing
1575 * with this is best left to the host. If CMD23 is
1576 * supported by card and host, we'll fill sbc in and let
1577 * the host deal with handling it correctly. This means
1578 * that for hosts that don't expose MMC_CAP_CMD23, no
1579 * change of behavior will be observed.
1580 *
1581 * N.B: Some MMC cards experience perf degradation.
1582 * We'll avoid using CMD23-bounded multiblock writes for
1583 * these, while retaining features like reliable writes.
1584 */
1585 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1586 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1587 do_data_tag)) {
1588 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1589 brq->sbc.arg = brq->data.blocks |
1590 (do_rel_wr ? (1 << 31) : 0) |
1591 (do_data_tag ? (1 << 29) : 0);
1592 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1593 brq->mrq.sbc = &brq->sbc;
1594 }
1595
1596 mmc_set_data_timeout(&brq->data, card);
1597
1598 brq->data.sg = mqrq->sg;
1599 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1600
1601 /*
1602 * Adjust the sg list so it is the same size as the
1603 * request.
1604 */
1605 if (brq->data.blocks != blk_rq_sectors(req)) {
1606 int i, data_size = brq->data.blocks << 9;
1607 struct scatterlist *sg;
1608
1609 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1610 data_size -= sg->length;
1611 if (data_size <= 0) {
1612 sg->length += data_size;
1613 i++;
1614 break;
1615 }
1616 }
1617 brq->data.sg_len = i;
1618 }
1619
1620 mqrq->mmc_active.mrq = &brq->mrq;
1621 mqrq->mmc_active.err_check = mmc_blk_err_check;
1622
1623 mmc_queue_bounce_pre(mqrq);
1624 }
1625
1626 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1627 struct mmc_card *card)
1628 {
1629 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1630 unsigned int max_seg_sz = queue_max_segment_size(q);
1631 unsigned int len, nr_segs = 0;
1632
1633 do {
1634 len = min(hdr_sz, max_seg_sz);
1635 hdr_sz -= len;
1636 nr_segs++;
1637 } while (hdr_sz);
1638
1639 return nr_segs;
1640 }
1641
1642 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1643 {
1644 struct request_queue *q = mq->queue;
1645 struct mmc_card *card = mq->card;
1646 struct request *cur = req, *next = NULL;
1647 struct mmc_blk_data *md = mq->data;
1648 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1649 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1650 unsigned int req_sectors = 0, phys_segments = 0;
1651 unsigned int max_blk_count, max_phys_segs;
1652 bool put_back = true;
1653 u8 max_packed_rw = 0;
1654 u8 reqs = 0;
1655
1656 if (!(md->flags & MMC_BLK_PACKED_CMD))
1657 goto no_packed;
1658
1659 if ((rq_data_dir(cur) == WRITE) &&
1660 mmc_host_packed_wr(card->host))
1661 max_packed_rw = card->ext_csd.max_packed_writes;
1662
1663 if (max_packed_rw == 0)
1664 goto no_packed;
1665
1666 if (mmc_req_rel_wr(cur) &&
1667 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1668 goto no_packed;
1669
1670 if (mmc_large_sector(card) &&
1671 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1672 goto no_packed;
1673
1674 mmc_blk_clear_packed(mqrq);
1675
1676 max_blk_count = min(card->host->max_blk_count,
1677 card->host->max_req_size >> 9);
1678 if (unlikely(max_blk_count > 0xffff))
1679 max_blk_count = 0xffff;
1680
1681 max_phys_segs = queue_max_segments(q);
1682 req_sectors += blk_rq_sectors(cur);
1683 phys_segments += cur->nr_phys_segments;
1684
1685 if (rq_data_dir(cur) == WRITE) {
1686 req_sectors += mmc_large_sector(card) ? 8 : 1;
1687 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1688 }
1689
1690 do {
1691 if (reqs >= max_packed_rw - 1) {
1692 put_back = false;
1693 break;
1694 }
1695
1696 spin_lock_irq(q->queue_lock);
1697 next = blk_fetch_request(q);
1698 spin_unlock_irq(q->queue_lock);
1699 if (!next) {
1700 put_back = false;
1701 break;
1702 }
1703
1704 if (mmc_large_sector(card) &&
1705 !IS_ALIGNED(blk_rq_sectors(next), 8))
1706 break;
1707
1708 if (next->cmd_flags & REQ_DISCARD ||
1709 next->cmd_flags & REQ_FLUSH)
1710 break;
1711
1712 if (rq_data_dir(cur) != rq_data_dir(next))
1713 break;
1714
1715 if (mmc_req_rel_wr(next) &&
1716 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1717 break;
1718
1719 req_sectors += blk_rq_sectors(next);
1720 if (req_sectors > max_blk_count)
1721 break;
1722
1723 phys_segments += next->nr_phys_segments;
1724 if (phys_segments > max_phys_segs)
1725 break;
1726
1727 list_add_tail(&next->queuelist, &mqrq->packed->list);
1728 cur = next;
1729 reqs++;
1730 } while (1);
1731
1732 if (put_back) {
1733 spin_lock_irq(q->queue_lock);
1734 blk_requeue_request(q, next);
1735 spin_unlock_irq(q->queue_lock);
1736 }
1737
1738 if (reqs > 0) {
1739 list_add(&req->queuelist, &mqrq->packed->list);
1740 mqrq->packed->nr_entries = ++reqs;
1741 mqrq->packed->retries = reqs;
1742 return reqs;
1743 }
1744
1745 no_packed:
1746 mqrq->cmd_type = MMC_PACKED_NONE;
1747 return 0;
1748 }
1749
1750 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1751 struct mmc_card *card,
1752 struct mmc_queue *mq)
1753 {
1754 struct mmc_blk_request *brq = &mqrq->brq;
1755 struct request *req = mqrq->req;
1756 struct request *prq;
1757 struct mmc_blk_data *md = mq->data;
1758 struct mmc_packed *packed = mqrq->packed;
1759 bool do_rel_wr, do_data_tag;
1760 u32 *packed_cmd_hdr;
1761 u8 hdr_blocks;
1762 u8 i = 1;
1763
1764 BUG_ON(!packed);
1765
1766 mqrq->cmd_type = MMC_PACKED_WRITE;
1767 packed->blocks = 0;
1768 packed->idx_failure = MMC_PACKED_NR_IDX;
1769
1770 packed_cmd_hdr = packed->cmd_hdr;
1771 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1772 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1773 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1774 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1775
1776 /*
1777 * Argument for each entry of packed group
1778 */
1779 list_for_each_entry(prq, &packed->list, queuelist) {
1780 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1781 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1782 (prq->cmd_flags & REQ_META) &&
1783 (rq_data_dir(prq) == WRITE) &&
1784 ((brq->data.blocks * brq->data.blksz) >=
1785 card->ext_csd.data_tag_unit_size);
1786 /* Argument of CMD23 */
1787 packed_cmd_hdr[(i * 2)] =
1788 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1789 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1790 blk_rq_sectors(prq);
1791 /* Argument of CMD18 or CMD25 */
1792 packed_cmd_hdr[((i * 2)) + 1] =
1793 mmc_card_blockaddr(card) ?
1794 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1795 packed->blocks += blk_rq_sectors(prq);
1796 i++;
1797 }
1798
1799 memset(brq, 0, sizeof(struct mmc_blk_request));
1800 brq->mrq.cmd = &brq->cmd;
1801 brq->mrq.data = &brq->data;
1802 brq->mrq.sbc = &brq->sbc;
1803 brq->mrq.stop = &brq->stop;
1804
1805 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1806 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1807 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1808
1809 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1810 brq->cmd.arg = blk_rq_pos(req);
1811 if (!mmc_card_blockaddr(card))
1812 brq->cmd.arg <<= 9;
1813 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1814
1815 brq->data.blksz = 512;
1816 brq->data.blocks = packed->blocks + hdr_blocks;
1817 brq->data.flags = MMC_DATA_WRITE;
1818
1819 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1820 brq->stop.arg = 0;
1821 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1822
1823 mmc_set_data_timeout(&brq->data, card);
1824
1825 brq->data.sg = mqrq->sg;
1826 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1827
1828 mqrq->mmc_active.mrq = &brq->mrq;
1829 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1830
1831 mmc_queue_bounce_pre(mqrq);
1832 }
1833
1834 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1835 struct mmc_blk_request *brq, struct request *req,
1836 int ret)
1837 {
1838 struct mmc_queue_req *mq_rq;
1839 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1840
1841 /*
1842 * If this is an SD card and we're writing, we can first
1843 * mark the known good sectors as ok.
1844 *
1845 * If the card is not SD, we can still ok written sectors
1846 * as reported by the controller (which might be less than
1847 * the real number of written sectors, but never more).
1848 */
1849 if (mmc_card_sd(card)) {
1850 u32 blocks;
1851
1852 blocks = mmc_sd_num_wr_blocks(card);
1853 if (blocks != (u32)-1) {
1854 ret = blk_end_request(req, 0, blocks << 9);
1855 }
1856 } else {
1857 if (!mmc_packed_cmd(mq_rq->cmd_type))
1858 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1859 }
1860 return ret;
1861 }
1862
1863 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1864 {
1865 struct request *prq;
1866 struct mmc_packed *packed = mq_rq->packed;
1867 int idx = packed->idx_failure, i = 0;
1868 int ret = 0;
1869
1870 BUG_ON(!packed);
1871
1872 while (!list_empty(&packed->list)) {
1873 prq = list_entry_rq(packed->list.next);
1874 if (idx == i) {
1875 /* retry from error index */
1876 packed->nr_entries -= idx;
1877 mq_rq->req = prq;
1878 ret = 1;
1879
1880 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1881 list_del_init(&prq->queuelist);
1882 mmc_blk_clear_packed(mq_rq);
1883 }
1884 return ret;
1885 }
1886 list_del_init(&prq->queuelist);
1887 blk_end_request(prq, 0, blk_rq_bytes(prq));
1888 i++;
1889 }
1890
1891 mmc_blk_clear_packed(mq_rq);
1892 return ret;
1893 }
1894
1895 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1896 {
1897 struct request *prq;
1898 struct mmc_packed *packed = mq_rq->packed;
1899
1900 BUG_ON(!packed);
1901
1902 while (!list_empty(&packed->list)) {
1903 prq = list_entry_rq(packed->list.next);
1904 list_del_init(&prq->queuelist);
1905 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1906 }
1907
1908 mmc_blk_clear_packed(mq_rq);
1909 }
1910
1911 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1912 struct mmc_queue_req *mq_rq)
1913 {
1914 struct request *prq;
1915 struct request_queue *q = mq->queue;
1916 struct mmc_packed *packed = mq_rq->packed;
1917
1918 BUG_ON(!packed);
1919
1920 while (!list_empty(&packed->list)) {
1921 prq = list_entry_rq(packed->list.prev);
1922 if (prq->queuelist.prev != &packed->list) {
1923 list_del_init(&prq->queuelist);
1924 spin_lock_irq(q->queue_lock);
1925 blk_requeue_request(mq->queue, prq);
1926 spin_unlock_irq(q->queue_lock);
1927 } else {
1928 list_del_init(&prq->queuelist);
1929 }
1930 }
1931
1932 mmc_blk_clear_packed(mq_rq);
1933 }
1934
1935 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1936 {
1937 struct mmc_blk_data *md = mq->data;
1938 struct mmc_card *card = md->queue.card;
1939 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1940 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1941 enum mmc_blk_status status;
1942 struct mmc_queue_req *mq_rq;
1943 struct request *req = rqc;
1944 struct mmc_async_req *areq;
1945 const u8 packed_nr = 2;
1946 u8 reqs = 0;
1947
1948 if (!rqc && !mq->mqrq_prev->req)
1949 return 0;
1950
1951 if (rqc)
1952 reqs = mmc_blk_prep_packed_list(mq, rqc);
1953
1954 do {
1955 if (rqc) {
1956 /*
1957 * When 4KB native sector is enabled, only 8 blocks
1958 * multiple read or write is allowed
1959 */
1960 if ((brq->data.blocks & 0x07) &&
1961 (card->ext_csd.data_sector_size == 4096)) {
1962 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1963 req->rq_disk->disk_name);
1964 mq_rq = mq->mqrq_cur;
1965 goto cmd_abort;
1966 }
1967
1968 if (reqs >= packed_nr)
1969 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1970 card, mq);
1971 else
1972 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1973 areq = &mq->mqrq_cur->mmc_active;
1974 } else
1975 areq = NULL;
1976 areq = mmc_start_req(card->host, areq, (int *) &status);
1977 if (!areq) {
1978 if (status == MMC_BLK_NEW_REQUEST)
1979 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1980 return 0;
1981 }
1982
1983 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1984 brq = &mq_rq->brq;
1985 req = mq_rq->req;
1986 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1987 mmc_queue_bounce_post(mq_rq);
1988
1989 switch (status) {
1990 case MMC_BLK_SUCCESS:
1991 case MMC_BLK_PARTIAL:
1992 /*
1993 * A block was successfully transferred.
1994 */
1995 mmc_blk_reset_success(md, type);
1996
1997 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1998 ret = mmc_blk_end_packed_req(mq_rq);
1999 break;
2000 } else {
2001 ret = blk_end_request(req, 0,
2002 brq->data.bytes_xfered);
2003 }
2004
2005 /*
2006 * If the blk_end_request function returns non-zero even
2007 * though all data has been transferred and no errors
2008 * were returned by the host controller, it's a bug.
2009 */
2010 if (status == MMC_BLK_SUCCESS && ret) {
2011 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2012 __func__, blk_rq_bytes(req),
2013 brq->data.bytes_xfered);
2014 rqc = NULL;
2015 goto cmd_abort;
2016 }
2017 break;
2018 case MMC_BLK_CMD_ERR:
2019 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2020 if (mmc_blk_reset(md, card->host, type))
2021 goto cmd_abort;
2022 if (!ret)
2023 goto start_new_req;
2024 break;
2025 case MMC_BLK_RETRY:
2026 retune_retry_done = brq->retune_retry_done;
2027 if (retry++ < 5)
2028 break;
2029 /* Fall through */
2030 case MMC_BLK_ABORT:
2031 if (!mmc_blk_reset(md, card->host, type))
2032 break;
2033 goto cmd_abort;
2034 case MMC_BLK_DATA_ERR: {
2035 int err;
2036
2037 err = mmc_blk_reset(md, card->host, type);
2038 if (!err)
2039 break;
2040 if (err == -ENODEV ||
2041 mmc_packed_cmd(mq_rq->cmd_type))
2042 goto cmd_abort;
2043 /* Fall through */
2044 }
2045 case MMC_BLK_ECC_ERR:
2046 if (brq->data.blocks > 1) {
2047 /* Redo read one sector at a time */
2048 pr_warn("%s: retrying using single block read\n",
2049 req->rq_disk->disk_name);
2050 disable_multi = 1;
2051 break;
2052 }
2053 /*
2054 * After an error, we redo I/O one sector at a
2055 * time, so we only reach here after trying to
2056 * read a single sector.
2057 */
2058 ret = blk_end_request(req, -EIO,
2059 brq->data.blksz);
2060 if (!ret)
2061 goto start_new_req;
2062 break;
2063 case MMC_BLK_NOMEDIUM:
2064 goto cmd_abort;
2065 default:
2066 pr_err("%s: Unhandled return value (%d)",
2067 req->rq_disk->disk_name, status);
2068 goto cmd_abort;
2069 }
2070
2071 if (ret) {
2072 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2073 if (!mq_rq->packed->retries)
2074 goto cmd_abort;
2075 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2076 mmc_start_req(card->host,
2077 &mq_rq->mmc_active, NULL);
2078 } else {
2079
2080 /*
2081 * In case of a incomplete request
2082 * prepare it again and resend.
2083 */
2084 mmc_blk_rw_rq_prep(mq_rq, card,
2085 disable_multi, mq);
2086 mmc_start_req(card->host,
2087 &mq_rq->mmc_active, NULL);
2088 }
2089 mq_rq->brq.retune_retry_done = retune_retry_done;
2090 }
2091 } while (ret);
2092
2093 return 1;
2094
2095 cmd_abort:
2096 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2097 mmc_blk_abort_packed_req(mq_rq);
2098 } else {
2099 if (mmc_card_removed(card))
2100 req->cmd_flags |= REQ_QUIET;
2101 while (ret)
2102 ret = blk_end_request(req, -EIO,
2103 blk_rq_cur_bytes(req));
2104 }
2105
2106 start_new_req:
2107 if (rqc) {
2108 if (mmc_card_removed(card)) {
2109 rqc->cmd_flags |= REQ_QUIET;
2110 blk_end_request_all(rqc, -EIO);
2111 } else {
2112 /*
2113 * If current request is packed, it needs to put back.
2114 */
2115 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2116 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2117
2118 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2119 mmc_start_req(card->host,
2120 &mq->mqrq_cur->mmc_active, NULL);
2121 }
2122 }
2123
2124 return 0;
2125 }
2126
2127 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2128 {
2129 int ret;
2130 struct mmc_blk_data *md = mq->data;
2131 struct mmc_card *card = md->queue.card;
2132 struct mmc_host *host = card->host;
2133 unsigned long flags;
2134 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2135
2136 if (req && !mq->mqrq_prev->req)
2137 /* claim host only for the first request */
2138 mmc_get_card(card);
2139
2140 ret = mmc_blk_part_switch(card, md);
2141 if (ret) {
2142 if (req) {
2143 blk_end_request_all(req, -EIO);
2144 }
2145 ret = 0;
2146 goto out;
2147 }
2148
2149 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2150 if (cmd_flags & REQ_DISCARD) {
2151 /* complete ongoing async transfer before issuing discard */
2152 if (card->host->areq)
2153 mmc_blk_issue_rw_rq(mq, NULL);
2154 if (req->cmd_flags & REQ_SECURE)
2155 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2156 else
2157 ret = mmc_blk_issue_discard_rq(mq, req);
2158 } else if (cmd_flags & REQ_FLUSH) {
2159 /* complete ongoing async transfer before issuing flush */
2160 if (card->host->areq)
2161 mmc_blk_issue_rw_rq(mq, NULL);
2162 ret = mmc_blk_issue_flush(mq, req);
2163 } else {
2164 if (!req && host->areq) {
2165 spin_lock_irqsave(&host->context_info.lock, flags);
2166 host->context_info.is_waiting_last_req = true;
2167 spin_unlock_irqrestore(&host->context_info.lock, flags);
2168 }
2169 ret = mmc_blk_issue_rw_rq(mq, req);
2170 }
2171
2172 out:
2173 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2174 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2175 /*
2176 * Release host when there are no more requests
2177 * and after special request(discard, flush) is done.
2178 * In case sepecial request, there is no reentry to
2179 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2180 */
2181 mmc_put_card(card);
2182 return ret;
2183 }
2184
2185 static inline int mmc_blk_readonly(struct mmc_card *card)
2186 {
2187 return mmc_card_readonly(card) ||
2188 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2189 }
2190
2191 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2192 struct device *parent,
2193 sector_t size,
2194 bool default_ro,
2195 const char *subname,
2196 int area_type)
2197 {
2198 struct mmc_blk_data *md;
2199 int devidx, ret;
2200
2201 again:
2202 if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
2203 return ERR_PTR(-ENOMEM);
2204
2205 spin_lock(&mmc_blk_lock);
2206 ret = ida_get_new(&mmc_blk_ida, &devidx);
2207 spin_unlock(&mmc_blk_lock);
2208
2209 if (ret == -EAGAIN)
2210 goto again;
2211 else if (ret)
2212 return ERR_PTR(ret);
2213
2214 if (devidx >= max_devices) {
2215 ret = -ENOSPC;
2216 goto out;
2217 }
2218
2219 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2220 if (!md) {
2221 ret = -ENOMEM;
2222 goto out;
2223 }
2224
2225 md->area_type = area_type;
2226
2227 /*
2228 * Set the read-only status based on the supported commands
2229 * and the write protect switch.
2230 */
2231 md->read_only = mmc_blk_readonly(card);
2232
2233 md->disk = alloc_disk(perdev_minors);
2234 if (md->disk == NULL) {
2235 ret = -ENOMEM;
2236 goto err_kfree;
2237 }
2238
2239 spin_lock_init(&md->lock);
2240 INIT_LIST_HEAD(&md->part);
2241 md->usage = 1;
2242
2243 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2244 if (ret)
2245 goto err_putdisk;
2246
2247 md->queue.issue_fn = mmc_blk_issue_rq;
2248 md->queue.data = md;
2249
2250 md->disk->major = MMC_BLOCK_MAJOR;
2251 md->disk->first_minor = devidx * perdev_minors;
2252 md->disk->fops = &mmc_bdops;
2253 md->disk->private_data = md;
2254 md->disk->queue = md->queue.queue;
2255 md->disk->driverfs_dev = parent;
2256 set_disk_ro(md->disk, md->read_only || default_ro);
2257 md->disk->flags = GENHD_FL_EXT_DEVT;
2258 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2259 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2260
2261 /*
2262 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2263 *
2264 * - be set for removable media with permanent block devices
2265 * - be unset for removable block devices with permanent media
2266 *
2267 * Since MMC block devices clearly fall under the second
2268 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2269 * should use the block device creation/destruction hotplug
2270 * messages to tell when the card is present.
2271 */
2272
2273 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2274 "mmcblk%u%s", card->host->index, subname ? subname : "");
2275
2276 if (mmc_card_mmc(card))
2277 blk_queue_logical_block_size(md->queue.queue,
2278 card->ext_csd.data_sector_size);
2279 else
2280 blk_queue_logical_block_size(md->queue.queue, 512);
2281
2282 set_capacity(md->disk, size);
2283
2284 if (mmc_host_cmd23(card->host)) {
2285 if (mmc_card_mmc(card) ||
2286 (mmc_card_sd(card) &&
2287 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2288 md->flags |= MMC_BLK_CMD23;
2289 }
2290
2291 if (mmc_card_mmc(card) &&
2292 md->flags & MMC_BLK_CMD23 &&
2293 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2294 card->ext_csd.rel_sectors)) {
2295 md->flags |= MMC_BLK_REL_WR;
2296 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2297 }
2298
2299 if (mmc_card_mmc(card) &&
2300 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2301 (md->flags & MMC_BLK_CMD23) &&
2302 card->ext_csd.packed_event_en) {
2303 if (!mmc_packed_init(&md->queue, card))
2304 md->flags |= MMC_BLK_PACKED_CMD;
2305 }
2306
2307 return md;
2308
2309 err_putdisk:
2310 put_disk(md->disk);
2311 err_kfree:
2312 kfree(md);
2313 out:
2314 spin_lock(&mmc_blk_lock);
2315 ida_remove(&mmc_blk_ida, devidx);
2316 spin_unlock(&mmc_blk_lock);
2317 return ERR_PTR(ret);
2318 }
2319
2320 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2321 {
2322 sector_t size;
2323
2324 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2325 /*
2326 * The EXT_CSD sector count is in number or 512 byte
2327 * sectors.
2328 */
2329 size = card->ext_csd.sectors;
2330 } else {
2331 /*
2332 * The CSD capacity field is in units of read_blkbits.
2333 * set_capacity takes units of 512 bytes.
2334 */
2335 size = (typeof(sector_t))card->csd.capacity
2336 << (card->csd.read_blkbits - 9);
2337 }
2338
2339 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2340 MMC_BLK_DATA_AREA_MAIN);
2341 }
2342
2343 static int mmc_blk_alloc_part(struct mmc_card *card,
2344 struct mmc_blk_data *md,
2345 unsigned int part_type,
2346 sector_t size,
2347 bool default_ro,
2348 const char *subname,
2349 int area_type)
2350 {
2351 char cap_str[10];
2352 struct mmc_blk_data *part_md;
2353
2354 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2355 subname, area_type);
2356 if (IS_ERR(part_md))
2357 return PTR_ERR(part_md);
2358 part_md->part_type = part_type;
2359 list_add(&part_md->part, &md->part);
2360
2361 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2362 cap_str, sizeof(cap_str));
2363 pr_info("%s: %s %s partition %u %s\n",
2364 part_md->disk->disk_name, mmc_card_id(card),
2365 mmc_card_name(card), part_md->part_type, cap_str);
2366 return 0;
2367 }
2368
2369 /* MMC Physical partitions consist of two boot partitions and
2370 * up to four general purpose partitions.
2371 * For each partition enabled in EXT_CSD a block device will be allocatedi
2372 * to provide access to the partition.
2373 */
2374
2375 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2376 {
2377 int idx, ret = 0;
2378
2379 if (!mmc_card_mmc(card))
2380 return 0;
2381
2382 for (idx = 0; idx < card->nr_parts; idx++) {
2383 if (card->part[idx].size) {
2384 ret = mmc_blk_alloc_part(card, md,
2385 card->part[idx].part_cfg,
2386 card->part[idx].size >> 9,
2387 card->part[idx].force_ro,
2388 card->part[idx].name,
2389 card->part[idx].area_type);
2390 if (ret)
2391 return ret;
2392 }
2393 }
2394
2395 return ret;
2396 }
2397
2398 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2399 {
2400 struct mmc_card *card;
2401
2402 if (md) {
2403 /*
2404 * Flush remaining requests and free queues. It
2405 * is freeing the queue that stops new requests
2406 * from being accepted.
2407 */
2408 card = md->queue.card;
2409 mmc_cleanup_queue(&md->queue);
2410 if (md->flags & MMC_BLK_PACKED_CMD)
2411 mmc_packed_clean(&md->queue);
2412 if (md->disk->flags & GENHD_FL_UP) {
2413 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2414 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2415 card->ext_csd.boot_ro_lockable)
2416 device_remove_file(disk_to_dev(md->disk),
2417 &md->power_ro_lock);
2418
2419 del_gendisk(md->disk);
2420 }
2421 mmc_blk_put(md);
2422 }
2423 }
2424
2425 static void mmc_blk_remove_parts(struct mmc_card *card,
2426 struct mmc_blk_data *md)
2427 {
2428 struct list_head *pos, *q;
2429 struct mmc_blk_data *part_md;
2430
2431 list_for_each_safe(pos, q, &md->part) {
2432 part_md = list_entry(pos, struct mmc_blk_data, part);
2433 list_del(pos);
2434 mmc_blk_remove_req(part_md);
2435 }
2436 }
2437
2438 static int mmc_add_disk(struct mmc_blk_data *md)
2439 {
2440 int ret;
2441 struct mmc_card *card = md->queue.card;
2442
2443 add_disk(md->disk);
2444 md->force_ro.show = force_ro_show;
2445 md->force_ro.store = force_ro_store;
2446 sysfs_attr_init(&md->force_ro.attr);
2447 md->force_ro.attr.name = "force_ro";
2448 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2449 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2450 if (ret)
2451 goto force_ro_fail;
2452
2453 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2454 card->ext_csd.boot_ro_lockable) {
2455 umode_t mode;
2456
2457 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2458 mode = S_IRUGO;
2459 else
2460 mode = S_IRUGO | S_IWUSR;
2461
2462 md->power_ro_lock.show = power_ro_lock_show;
2463 md->power_ro_lock.store = power_ro_lock_store;
2464 sysfs_attr_init(&md->power_ro_lock.attr);
2465 md->power_ro_lock.attr.mode = mode;
2466 md->power_ro_lock.attr.name =
2467 "ro_lock_until_next_power_on";
2468 ret = device_create_file(disk_to_dev(md->disk),
2469 &md->power_ro_lock);
2470 if (ret)
2471 goto power_ro_lock_fail;
2472 }
2473 return ret;
2474
2475 power_ro_lock_fail:
2476 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2477 force_ro_fail:
2478 del_gendisk(md->disk);
2479
2480 return ret;
2481 }
2482
2483 #define CID_MANFID_SANDISK 0x2
2484 #define CID_MANFID_TOSHIBA 0x11
2485 #define CID_MANFID_MICRON 0x13
2486 #define CID_MANFID_SAMSUNG 0x15
2487 #define CID_MANFID_KINGSTON 0x70
2488
2489 static const struct mmc_fixup blk_fixups[] =
2490 {
2491 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2492 MMC_QUIRK_INAND_CMD38),
2493 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2494 MMC_QUIRK_INAND_CMD38),
2495 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2496 MMC_QUIRK_INAND_CMD38),
2497 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2498 MMC_QUIRK_INAND_CMD38),
2499 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2500 MMC_QUIRK_INAND_CMD38),
2501
2502 /*
2503 * Some MMC cards experience performance degradation with CMD23
2504 * instead of CMD12-bounded multiblock transfers. For now we'll
2505 * black list what's bad...
2506 * - Certain Toshiba cards.
2507 *
2508 * N.B. This doesn't affect SD cards.
2509 */
2510 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2511 MMC_QUIRK_BLK_NO_CMD23),
2512 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2513 MMC_QUIRK_BLK_NO_CMD23),
2514 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2515 MMC_QUIRK_BLK_NO_CMD23),
2516 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2517 MMC_QUIRK_BLK_NO_CMD23),
2518 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2519 MMC_QUIRK_BLK_NO_CMD23),
2520
2521 /*
2522 * Some Micron MMC cards needs longer data read timeout than
2523 * indicated in CSD.
2524 */
2525 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2526 MMC_QUIRK_LONG_READ_TIME),
2527
2528 /*
2529 * On these Samsung MoviNAND parts, performing secure erase or
2530 * secure trim can result in unrecoverable corruption due to a
2531 * firmware bug.
2532 */
2533 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2534 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2535 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2536 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2537 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2538 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2539 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2540 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2541 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2542 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2543 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2544 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2545 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2546 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2547 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2548 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2549
2550 /*
2551 * On Some Kingston eMMCs, performing trim can result in
2552 * unrecoverable data conrruption occasionally due to a firmware bug.
2553 */
2554 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2555 MMC_QUIRK_TRIM_BROKEN),
2556 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2557 MMC_QUIRK_TRIM_BROKEN),
2558
2559 END_FIXUP
2560 };
2561
2562 static int mmc_blk_probe(struct mmc_card *card)
2563 {
2564 struct mmc_blk_data *md, *part_md;
2565 char cap_str[10];
2566
2567 /*
2568 * Check that the card supports the command class(es) we need.
2569 */
2570 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2571 return -ENODEV;
2572
2573 mmc_fixup_device(card, blk_fixups);
2574
2575 md = mmc_blk_alloc(card);
2576 if (IS_ERR(md))
2577 return PTR_ERR(md);
2578
2579 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2580 cap_str, sizeof(cap_str));
2581 pr_info("%s: %s %s %s %s\n",
2582 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2583 cap_str, md->read_only ? "(ro)" : "");
2584
2585 if (mmc_blk_alloc_parts(card, md))
2586 goto out;
2587
2588 dev_set_drvdata(&card->dev, md);
2589
2590 if (mmc_add_disk(md))
2591 goto out;
2592
2593 list_for_each_entry(part_md, &md->part, part) {
2594 if (mmc_add_disk(part_md))
2595 goto out;
2596 }
2597
2598 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2599 pm_runtime_use_autosuspend(&card->dev);
2600
2601 /*
2602 * Don't enable runtime PM for SD-combo cards here. Leave that
2603 * decision to be taken during the SDIO init sequence instead.
2604 */
2605 if (card->type != MMC_TYPE_SD_COMBO) {
2606 pm_runtime_set_active(&card->dev);
2607 pm_runtime_enable(&card->dev);
2608 }
2609
2610 return 0;
2611
2612 out:
2613 mmc_blk_remove_parts(card, md);
2614 mmc_blk_remove_req(md);
2615 return 0;
2616 }
2617
2618 static void mmc_blk_remove(struct mmc_card *card)
2619 {
2620 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2621
2622 mmc_blk_remove_parts(card, md);
2623 pm_runtime_get_sync(&card->dev);
2624 mmc_claim_host(card->host);
2625 mmc_blk_part_switch(card, md);
2626 mmc_release_host(card->host);
2627 if (card->type != MMC_TYPE_SD_COMBO)
2628 pm_runtime_disable(&card->dev);
2629 pm_runtime_put_noidle(&card->dev);
2630 mmc_blk_remove_req(md);
2631 dev_set_drvdata(&card->dev, NULL);
2632 }
2633
2634 static int _mmc_blk_suspend(struct mmc_card *card)
2635 {
2636 struct mmc_blk_data *part_md;
2637 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2638
2639 if (md) {
2640 mmc_queue_suspend(&md->queue);
2641 list_for_each_entry(part_md, &md->part, part) {
2642 mmc_queue_suspend(&part_md->queue);
2643 }
2644 }
2645 return 0;
2646 }
2647
2648 static void mmc_blk_shutdown(struct mmc_card *card)
2649 {
2650 _mmc_blk_suspend(card);
2651 }
2652
2653 #ifdef CONFIG_PM_SLEEP
2654 static int mmc_blk_suspend(struct device *dev)
2655 {
2656 struct mmc_card *card = mmc_dev_to_card(dev);
2657
2658 return _mmc_blk_suspend(card);
2659 }
2660
2661 static int mmc_blk_resume(struct device *dev)
2662 {
2663 struct mmc_blk_data *part_md;
2664 struct mmc_blk_data *md = dev_get_drvdata(dev);
2665
2666 if (md) {
2667 /*
2668 * Resume involves the card going into idle state,
2669 * so current partition is always the main one.
2670 */
2671 md->part_curr = md->part_type;
2672 mmc_queue_resume(&md->queue);
2673 list_for_each_entry(part_md, &md->part, part) {
2674 mmc_queue_resume(&part_md->queue);
2675 }
2676 }
2677 return 0;
2678 }
2679 #endif
2680
2681 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2682
2683 static struct mmc_driver mmc_driver = {
2684 .drv = {
2685 .name = "mmcblk",
2686 .pm = &mmc_blk_pm_ops,
2687 },
2688 .probe = mmc_blk_probe,
2689 .remove = mmc_blk_remove,
2690 .shutdown = mmc_blk_shutdown,
2691 };
2692
2693 static int __init mmc_blk_init(void)
2694 {
2695 int res;
2696
2697 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2698 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2699
2700 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2701
2702 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2703 if (res)
2704 goto out;
2705
2706 res = mmc_register_driver(&mmc_driver);
2707 if (res)
2708 goto out2;
2709
2710 return 0;
2711 out2:
2712 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2713 out:
2714 return res;
2715 }
2716
2717 static void __exit mmc_blk_exit(void)
2718 {
2719 mmc_unregister_driver(&mmc_driver);
2720 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2721 }
2722
2723 module_init(mmc_blk_init);
2724 module_exit(mmc_blk_exit);
2725
2726 MODULE_LICENSE("GPL");
2727 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2728