]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/card/block.c
Merge remote-tracking branches 'asoc/topic/tas571x', 'asoc/topic/tlv320aic31xx',...
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <asm/uaccess.h>
47
48 #include "queue.h"
49
50 MODULE_ALIAS("mmc:block");
51 #ifdef MODULE_PARAM_PREFIX
52 #undef MODULE_PARAM_PREFIX
53 #endif
54 #define MODULE_PARAM_PREFIX "mmcblk."
55
56 #define INAND_CMD38_ARG_EXT_CSD 113
57 #define INAND_CMD38_ARG_ERASE 0x00
58 #define INAND_CMD38_ARG_TRIM 0x01
59 #define INAND_CMD38_ARG_SECERASE 0x80
60 #define INAND_CMD38_ARG_SECTRIM1 0x81
61 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
63 #define MMC_SANITIZE_REQ_TIMEOUT 240000
64 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65
66 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * limited by the MAX_DEVICES below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 static DEFINE_IDA(mmc_blk_ida);
89 static DEFINE_SPINLOCK(mmc_blk_lock);
90
91 /*
92 * There is one mmc_blk_data per slot.
93 */
94 struct mmc_blk_data {
95 spinlock_t lock;
96 struct gendisk *disk;
97 struct mmc_queue queue;
98 struct list_head part;
99
100 unsigned int flags;
101 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
102 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
103 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
104
105 unsigned int usage;
106 unsigned int read_only;
107 unsigned int part_type;
108 unsigned int reset_done;
109 #define MMC_BLK_READ BIT(0)
110 #define MMC_BLK_WRITE BIT(1)
111 #define MMC_BLK_DISCARD BIT(2)
112 #define MMC_BLK_SECDISCARD BIT(3)
113
114 /*
115 * Only set in main mmc_blk_data associated
116 * with mmc_card with dev_set_drvdata, and keeps
117 * track of the current selected device partition.
118 */
119 unsigned int part_curr;
120 struct device_attribute force_ro;
121 struct device_attribute power_ro_lock;
122 int area_type;
123 };
124
125 static DEFINE_MUTEX(open_lock);
126
127 enum {
128 MMC_PACKED_NR_IDX = -1,
129 MMC_PACKED_NR_ZERO,
130 MMC_PACKED_NR_SINGLE,
131 };
132
133 module_param(perdev_minors, int, 0444);
134 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135
136 static inline int mmc_blk_part_switch(struct mmc_card *card,
137 struct mmc_blk_data *md);
138 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139
140 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 {
142 struct mmc_packed *packed = mqrq->packed;
143
144 BUG_ON(!packed);
145
146 mqrq->cmd_type = MMC_PACKED_NONE;
147 packed->nr_entries = MMC_PACKED_NR_ZERO;
148 packed->idx_failure = MMC_PACKED_NR_IDX;
149 packed->retries = 0;
150 packed->blocks = 0;
151 }
152
153 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 {
155 struct mmc_blk_data *md;
156
157 mutex_lock(&open_lock);
158 md = disk->private_data;
159 if (md && md->usage == 0)
160 md = NULL;
161 if (md)
162 md->usage++;
163 mutex_unlock(&open_lock);
164
165 return md;
166 }
167
168 static inline int mmc_get_devidx(struct gendisk *disk)
169 {
170 int devidx = disk->first_minor / perdev_minors;
171 return devidx;
172 }
173
174 static void mmc_blk_put(struct mmc_blk_data *md)
175 {
176 mutex_lock(&open_lock);
177 md->usage--;
178 if (md->usage == 0) {
179 int devidx = mmc_get_devidx(md->disk);
180 blk_cleanup_queue(md->queue.queue);
181
182 spin_lock(&mmc_blk_lock);
183 ida_remove(&mmc_blk_ida, devidx);
184 spin_unlock(&mmc_blk_lock);
185
186 put_disk(md->disk);
187 kfree(md);
188 }
189 mutex_unlock(&open_lock);
190 }
191
192 static ssize_t power_ro_lock_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 int ret;
196 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
197 struct mmc_card *card = md->queue.card;
198 int locked = 0;
199
200 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
201 locked = 2;
202 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
203 locked = 1;
204
205 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
206
207 mmc_blk_put(md);
208
209 return ret;
210 }
211
212 static ssize_t power_ro_lock_store(struct device *dev,
213 struct device_attribute *attr, const char *buf, size_t count)
214 {
215 int ret;
216 struct mmc_blk_data *md, *part_md;
217 struct mmc_card *card;
218 unsigned long set;
219
220 if (kstrtoul(buf, 0, &set))
221 return -EINVAL;
222
223 if (set != 1)
224 return count;
225
226 md = mmc_blk_get(dev_to_disk(dev));
227 card = md->queue.card;
228
229 mmc_get_card(card);
230
231 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
232 card->ext_csd.boot_ro_lock |
233 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
234 card->ext_csd.part_time);
235 if (ret)
236 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
237 else
238 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
239
240 mmc_put_card(card);
241
242 if (!ret) {
243 pr_info("%s: Locking boot partition ro until next power on\n",
244 md->disk->disk_name);
245 set_disk_ro(md->disk, 1);
246
247 list_for_each_entry(part_md, &md->part, part)
248 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
249 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
250 set_disk_ro(part_md->disk, 1);
251 }
252 }
253
254 mmc_blk_put(md);
255 return count;
256 }
257
258 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
259 char *buf)
260 {
261 int ret;
262 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
263
264 ret = snprintf(buf, PAGE_SIZE, "%d\n",
265 get_disk_ro(dev_to_disk(dev)) ^
266 md->read_only);
267 mmc_blk_put(md);
268 return ret;
269 }
270
271 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
272 const char *buf, size_t count)
273 {
274 int ret;
275 char *end;
276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 unsigned long set = simple_strtoul(buf, &end, 0);
278 if (end == buf) {
279 ret = -EINVAL;
280 goto out;
281 }
282
283 set_disk_ro(dev_to_disk(dev), set || md->read_only);
284 ret = count;
285 out:
286 mmc_blk_put(md);
287 return ret;
288 }
289
290 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
291 {
292 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
293 int ret = -ENXIO;
294
295 mutex_lock(&block_mutex);
296 if (md) {
297 if (md->usage == 2)
298 check_disk_change(bdev);
299 ret = 0;
300
301 if ((mode & FMODE_WRITE) && md->read_only) {
302 mmc_blk_put(md);
303 ret = -EROFS;
304 }
305 }
306 mutex_unlock(&block_mutex);
307
308 return ret;
309 }
310
311 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
312 {
313 struct mmc_blk_data *md = disk->private_data;
314
315 mutex_lock(&block_mutex);
316 mmc_blk_put(md);
317 mutex_unlock(&block_mutex);
318 }
319
320 static int
321 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
322 {
323 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
324 geo->heads = 4;
325 geo->sectors = 16;
326 return 0;
327 }
328
329 struct mmc_blk_ioc_data {
330 struct mmc_ioc_cmd ic;
331 unsigned char *buf;
332 u64 buf_bytes;
333 };
334
335 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
336 struct mmc_ioc_cmd __user *user)
337 {
338 struct mmc_blk_ioc_data *idata;
339 int err;
340
341 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
342 if (!idata) {
343 err = -ENOMEM;
344 goto out;
345 }
346
347 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
348 err = -EFAULT;
349 goto idata_err;
350 }
351
352 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
353 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
354 err = -EOVERFLOW;
355 goto idata_err;
356 }
357
358 if (!idata->buf_bytes) {
359 idata->buf = NULL;
360 return idata;
361 }
362
363 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
364 if (!idata->buf) {
365 err = -ENOMEM;
366 goto idata_err;
367 }
368
369 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
370 idata->ic.data_ptr, idata->buf_bytes)) {
371 err = -EFAULT;
372 goto copy_err;
373 }
374
375 return idata;
376
377 copy_err:
378 kfree(idata->buf);
379 idata_err:
380 kfree(idata);
381 out:
382 return ERR_PTR(err);
383 }
384
385 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
386 struct mmc_blk_ioc_data *idata)
387 {
388 struct mmc_ioc_cmd *ic = &idata->ic;
389
390 if (copy_to_user(&(ic_ptr->response), ic->response,
391 sizeof(ic->response)))
392 return -EFAULT;
393
394 if (!idata->ic.write_flag) {
395 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
396 idata->buf, idata->buf_bytes))
397 return -EFAULT;
398 }
399
400 return 0;
401 }
402
403 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
404 u32 retries_max)
405 {
406 int err;
407 u32 retry_count = 0;
408
409 if (!status || !retries_max)
410 return -EINVAL;
411
412 do {
413 err = get_card_status(card, status, 5);
414 if (err)
415 break;
416
417 if (!R1_STATUS(*status) &&
418 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
419 break; /* RPMB programming operation complete */
420
421 /*
422 * Rechedule to give the MMC device a chance to continue
423 * processing the previous command without being polled too
424 * frequently.
425 */
426 usleep_range(1000, 5000);
427 } while (++retry_count < retries_max);
428
429 if (retry_count == retries_max)
430 err = -EPERM;
431
432 return err;
433 }
434
435 static int ioctl_do_sanitize(struct mmc_card *card)
436 {
437 int err;
438
439 if (!mmc_can_sanitize(card)) {
440 pr_warn("%s: %s - SANITIZE is not supported\n",
441 mmc_hostname(card->host), __func__);
442 err = -EOPNOTSUPP;
443 goto out;
444 }
445
446 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
447 mmc_hostname(card->host), __func__);
448
449 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
450 EXT_CSD_SANITIZE_START, 1,
451 MMC_SANITIZE_REQ_TIMEOUT);
452
453 if (err)
454 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
455 mmc_hostname(card->host), __func__, err);
456
457 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
458 __func__);
459 out:
460 return err;
461 }
462
463 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
464 struct mmc_blk_ioc_data *idata)
465 {
466 struct mmc_command cmd = {0};
467 struct mmc_data data = {0};
468 struct mmc_request mrq = {NULL};
469 struct scatterlist sg;
470 int err;
471 int is_rpmb = false;
472 u32 status = 0;
473
474 if (!card || !md || !idata)
475 return -EINVAL;
476
477 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
478 is_rpmb = true;
479
480 cmd.opcode = idata->ic.opcode;
481 cmd.arg = idata->ic.arg;
482 cmd.flags = idata->ic.flags;
483
484 if (idata->buf_bytes) {
485 data.sg = &sg;
486 data.sg_len = 1;
487 data.blksz = idata->ic.blksz;
488 data.blocks = idata->ic.blocks;
489
490 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
491
492 if (idata->ic.write_flag)
493 data.flags = MMC_DATA_WRITE;
494 else
495 data.flags = MMC_DATA_READ;
496
497 /* data.flags must already be set before doing this. */
498 mmc_set_data_timeout(&data, card);
499
500 /* Allow overriding the timeout_ns for empirical tuning. */
501 if (idata->ic.data_timeout_ns)
502 data.timeout_ns = idata->ic.data_timeout_ns;
503
504 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
505 /*
506 * Pretend this is a data transfer and rely on the
507 * host driver to compute timeout. When all host
508 * drivers support cmd.cmd_timeout for R1B, this
509 * can be changed to:
510 *
511 * mrq.data = NULL;
512 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
513 */
514 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
515 }
516
517 mrq.data = &data;
518 }
519
520 mrq.cmd = &cmd;
521
522 err = mmc_blk_part_switch(card, md);
523 if (err)
524 return err;
525
526 if (idata->ic.is_acmd) {
527 err = mmc_app_cmd(card->host, card);
528 if (err)
529 return err;
530 }
531
532 if (is_rpmb) {
533 err = mmc_set_blockcount(card, data.blocks,
534 idata->ic.write_flag & (1 << 31));
535 if (err)
536 return err;
537 }
538
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH)) {
541 err = ioctl_do_sanitize(card);
542
543 if (err)
544 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
545 __func__, err);
546
547 return err;
548 }
549
550 mmc_wait_for_req(card->host, &mrq);
551
552 if (cmd.error) {
553 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
554 __func__, cmd.error);
555 return cmd.error;
556 }
557 if (data.error) {
558 dev_err(mmc_dev(card->host), "%s: data error %d\n",
559 __func__, data.error);
560 return data.error;
561 }
562
563 /*
564 * According to the SD specs, some commands require a delay after
565 * issuing the command.
566 */
567 if (idata->ic.postsleep_min_us)
568 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
569
570 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
571
572 if (is_rpmb) {
573 /*
574 * Ensure RPMB command has completed by polling CMD13
575 * "Send Status".
576 */
577 err = ioctl_rpmb_card_status_poll(card, &status, 5);
578 if (err)
579 dev_err(mmc_dev(card->host),
580 "%s: Card Status=0x%08X, error %d\n",
581 __func__, status, err);
582 }
583
584 return err;
585 }
586
587 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
588 struct mmc_ioc_cmd __user *ic_ptr)
589 {
590 struct mmc_blk_ioc_data *idata;
591 struct mmc_blk_data *md;
592 struct mmc_card *card;
593 int err = 0, ioc_err = 0;
594
595 /*
596 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
597 * whole block device, not on a partition. This prevents overspray
598 * between sibling partitions.
599 */
600 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
601 return -EPERM;
602
603 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
604 if (IS_ERR(idata))
605 return PTR_ERR(idata);
606
607 md = mmc_blk_get(bdev->bd_disk);
608 if (!md) {
609 err = -EINVAL;
610 goto cmd_err;
611 }
612
613 card = md->queue.card;
614 if (IS_ERR(card)) {
615 err = PTR_ERR(card);
616 goto cmd_done;
617 }
618
619 mmc_get_card(card);
620
621 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
622
623 /* Always switch back to main area after RPMB access */
624 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
625 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
626
627 mmc_put_card(card);
628
629 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
630
631 cmd_done:
632 mmc_blk_put(md);
633 cmd_err:
634 kfree(idata->buf);
635 kfree(idata);
636 return ioc_err ? ioc_err : err;
637 }
638
639 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
640 struct mmc_ioc_multi_cmd __user *user)
641 {
642 struct mmc_blk_ioc_data **idata = NULL;
643 struct mmc_ioc_cmd __user *cmds = user->cmds;
644 struct mmc_card *card;
645 struct mmc_blk_data *md;
646 int i, err = 0, ioc_err = 0;
647 __u64 num_of_cmds;
648
649 /*
650 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
651 * whole block device, not on a partition. This prevents overspray
652 * between sibling partitions.
653 */
654 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
655 return -EPERM;
656
657 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
658 sizeof(num_of_cmds)))
659 return -EFAULT;
660
661 if (num_of_cmds > MMC_IOC_MAX_CMDS)
662 return -EINVAL;
663
664 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
665 if (!idata)
666 return -ENOMEM;
667
668 for (i = 0; i < num_of_cmds; i++) {
669 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
670 if (IS_ERR(idata[i])) {
671 err = PTR_ERR(idata[i]);
672 num_of_cmds = i;
673 goto cmd_err;
674 }
675 }
676
677 md = mmc_blk_get(bdev->bd_disk);
678 if (!md) {
679 err = -EINVAL;
680 goto cmd_err;
681 }
682
683 card = md->queue.card;
684 if (IS_ERR(card)) {
685 err = PTR_ERR(card);
686 goto cmd_done;
687 }
688
689 mmc_get_card(card);
690
691 for (i = 0; i < num_of_cmds && !ioc_err; i++)
692 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
693
694 /* Always switch back to main area after RPMB access */
695 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
696 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
697
698 mmc_put_card(card);
699
700 /* copy to user if data and response */
701 for (i = 0; i < num_of_cmds && !err; i++)
702 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
703
704 cmd_done:
705 mmc_blk_put(md);
706 cmd_err:
707 for (i = 0; i < num_of_cmds; i++) {
708 kfree(idata[i]->buf);
709 kfree(idata[i]);
710 }
711 kfree(idata);
712 return ioc_err ? ioc_err : err;
713 }
714
715 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
716 unsigned int cmd, unsigned long arg)
717 {
718 switch (cmd) {
719 case MMC_IOC_CMD:
720 return mmc_blk_ioctl_cmd(bdev,
721 (struct mmc_ioc_cmd __user *)arg);
722 case MMC_IOC_MULTI_CMD:
723 return mmc_blk_ioctl_multi_cmd(bdev,
724 (struct mmc_ioc_multi_cmd __user *)arg);
725 default:
726 return -EINVAL;
727 }
728 }
729
730 #ifdef CONFIG_COMPAT
731 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
732 unsigned int cmd, unsigned long arg)
733 {
734 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
735 }
736 #endif
737
738 static const struct block_device_operations mmc_bdops = {
739 .open = mmc_blk_open,
740 .release = mmc_blk_release,
741 .getgeo = mmc_blk_getgeo,
742 .owner = THIS_MODULE,
743 .ioctl = mmc_blk_ioctl,
744 #ifdef CONFIG_COMPAT
745 .compat_ioctl = mmc_blk_compat_ioctl,
746 #endif
747 };
748
749 static inline int mmc_blk_part_switch(struct mmc_card *card,
750 struct mmc_blk_data *md)
751 {
752 int ret;
753 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
754
755 if (main_md->part_curr == md->part_type)
756 return 0;
757
758 if (mmc_card_mmc(card)) {
759 u8 part_config = card->ext_csd.part_config;
760
761 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
762 mmc_retune_pause(card->host);
763
764 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
765 part_config |= md->part_type;
766
767 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
768 EXT_CSD_PART_CONFIG, part_config,
769 card->ext_csd.part_time);
770 if (ret) {
771 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
772 mmc_retune_unpause(card->host);
773 return ret;
774 }
775
776 card->ext_csd.part_config = part_config;
777
778 if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
779 mmc_retune_unpause(card->host);
780 }
781
782 main_md->part_curr = md->part_type;
783 return 0;
784 }
785
786 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
787 {
788 int err;
789 u32 result;
790 __be32 *blocks;
791
792 struct mmc_request mrq = {NULL};
793 struct mmc_command cmd = {0};
794 struct mmc_data data = {0};
795
796 struct scatterlist sg;
797
798 cmd.opcode = MMC_APP_CMD;
799 cmd.arg = card->rca << 16;
800 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
801
802 err = mmc_wait_for_cmd(card->host, &cmd, 0);
803 if (err)
804 return (u32)-1;
805 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
806 return (u32)-1;
807
808 memset(&cmd, 0, sizeof(struct mmc_command));
809
810 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
811 cmd.arg = 0;
812 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
813
814 data.blksz = 4;
815 data.blocks = 1;
816 data.flags = MMC_DATA_READ;
817 data.sg = &sg;
818 data.sg_len = 1;
819 mmc_set_data_timeout(&data, card);
820
821 mrq.cmd = &cmd;
822 mrq.data = &data;
823
824 blocks = kmalloc(4, GFP_KERNEL);
825 if (!blocks)
826 return (u32)-1;
827
828 sg_init_one(&sg, blocks, 4);
829
830 mmc_wait_for_req(card->host, &mrq);
831
832 result = ntohl(*blocks);
833 kfree(blocks);
834
835 if (cmd.error || data.error)
836 result = (u32)-1;
837
838 return result;
839 }
840
841 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
842 {
843 struct mmc_command cmd = {0};
844 int err;
845
846 cmd.opcode = MMC_SEND_STATUS;
847 if (!mmc_host_is_spi(card->host))
848 cmd.arg = card->rca << 16;
849 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
850 err = mmc_wait_for_cmd(card->host, &cmd, retries);
851 if (err == 0)
852 *status = cmd.resp[0];
853 return err;
854 }
855
856 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
857 bool hw_busy_detect, struct request *req, int *gen_err)
858 {
859 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
860 int err = 0;
861 u32 status;
862
863 do {
864 err = get_card_status(card, &status, 5);
865 if (err) {
866 pr_err("%s: error %d requesting status\n",
867 req->rq_disk->disk_name, err);
868 return err;
869 }
870
871 if (status & R1_ERROR) {
872 pr_err("%s: %s: error sending status cmd, status %#x\n",
873 req->rq_disk->disk_name, __func__, status);
874 *gen_err = 1;
875 }
876
877 /* We may rely on the host hw to handle busy detection.*/
878 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
879 hw_busy_detect)
880 break;
881
882 /*
883 * Timeout if the device never becomes ready for data and never
884 * leaves the program state.
885 */
886 if (time_after(jiffies, timeout)) {
887 pr_err("%s: Card stuck in programming state! %s %s\n",
888 mmc_hostname(card->host),
889 req->rq_disk->disk_name, __func__);
890 return -ETIMEDOUT;
891 }
892
893 /*
894 * Some cards mishandle the status bits,
895 * so make sure to check both the busy
896 * indication and the card state.
897 */
898 } while (!(status & R1_READY_FOR_DATA) ||
899 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
900
901 return err;
902 }
903
904 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
905 struct request *req, int *gen_err, u32 *stop_status)
906 {
907 struct mmc_host *host = card->host;
908 struct mmc_command cmd = {0};
909 int err;
910 bool use_r1b_resp = rq_data_dir(req) == WRITE;
911
912 /*
913 * Normally we use R1B responses for WRITE, but in cases where the host
914 * has specified a max_busy_timeout we need to validate it. A failure
915 * means we need to prevent the host from doing hw busy detection, which
916 * is done by converting to a R1 response instead.
917 */
918 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
919 use_r1b_resp = false;
920
921 cmd.opcode = MMC_STOP_TRANSMISSION;
922 if (use_r1b_resp) {
923 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
924 cmd.busy_timeout = timeout_ms;
925 } else {
926 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
927 }
928
929 err = mmc_wait_for_cmd(host, &cmd, 5);
930 if (err)
931 return err;
932
933 *stop_status = cmd.resp[0];
934
935 /* No need to check card status in case of READ. */
936 if (rq_data_dir(req) == READ)
937 return 0;
938
939 if (!mmc_host_is_spi(host) &&
940 (*stop_status & R1_ERROR)) {
941 pr_err("%s: %s: general error sending stop command, resp %#x\n",
942 req->rq_disk->disk_name, __func__, *stop_status);
943 *gen_err = 1;
944 }
945
946 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
947 }
948
949 #define ERR_NOMEDIUM 3
950 #define ERR_RETRY 2
951 #define ERR_ABORT 1
952 #define ERR_CONTINUE 0
953
954 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
955 bool status_valid, u32 status)
956 {
957 switch (error) {
958 case -EILSEQ:
959 /* response crc error, retry the r/w cmd */
960 pr_err("%s: %s sending %s command, card status %#x\n",
961 req->rq_disk->disk_name, "response CRC error",
962 name, status);
963 return ERR_RETRY;
964
965 case -ETIMEDOUT:
966 pr_err("%s: %s sending %s command, card status %#x\n",
967 req->rq_disk->disk_name, "timed out", name, status);
968
969 /* If the status cmd initially failed, retry the r/w cmd */
970 if (!status_valid) {
971 pr_err("%s: status not valid, retrying timeout\n",
972 req->rq_disk->disk_name);
973 return ERR_RETRY;
974 }
975
976 /*
977 * If it was a r/w cmd crc error, or illegal command
978 * (eg, issued in wrong state) then retry - we should
979 * have corrected the state problem above.
980 */
981 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
982 pr_err("%s: command error, retrying timeout\n",
983 req->rq_disk->disk_name);
984 return ERR_RETRY;
985 }
986
987 /* Otherwise abort the command */
988 return ERR_ABORT;
989
990 default:
991 /* We don't understand the error code the driver gave us */
992 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
993 req->rq_disk->disk_name, error, status);
994 return ERR_ABORT;
995 }
996 }
997
998 /*
999 * Initial r/w and stop cmd error recovery.
1000 * We don't know whether the card received the r/w cmd or not, so try to
1001 * restore things back to a sane state. Essentially, we do this as follows:
1002 * - Obtain card status. If the first attempt to obtain card status fails,
1003 * the status word will reflect the failed status cmd, not the failed
1004 * r/w cmd. If we fail to obtain card status, it suggests we can no
1005 * longer communicate with the card.
1006 * - Check the card state. If the card received the cmd but there was a
1007 * transient problem with the response, it might still be in a data transfer
1008 * mode. Try to send it a stop command. If this fails, we can't recover.
1009 * - If the r/w cmd failed due to a response CRC error, it was probably
1010 * transient, so retry the cmd.
1011 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1012 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1013 * illegal cmd, retry.
1014 * Otherwise we don't understand what happened, so abort.
1015 */
1016 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1017 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
1018 {
1019 bool prev_cmd_status_valid = true;
1020 u32 status, stop_status = 0;
1021 int err, retry;
1022
1023 if (mmc_card_removed(card))
1024 return ERR_NOMEDIUM;
1025
1026 /*
1027 * Try to get card status which indicates both the card state
1028 * and why there was no response. If the first attempt fails,
1029 * we can't be sure the returned status is for the r/w command.
1030 */
1031 for (retry = 2; retry >= 0; retry--) {
1032 err = get_card_status(card, &status, 0);
1033 if (!err)
1034 break;
1035
1036 /* Re-tune if needed */
1037 mmc_retune_recheck(card->host);
1038
1039 prev_cmd_status_valid = false;
1040 pr_err("%s: error %d sending status command, %sing\n",
1041 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1042 }
1043
1044 /* We couldn't get a response from the card. Give up. */
1045 if (err) {
1046 /* Check if the card is removed */
1047 if (mmc_detect_card_removed(card->host))
1048 return ERR_NOMEDIUM;
1049 return ERR_ABORT;
1050 }
1051
1052 /* Flag ECC errors */
1053 if ((status & R1_CARD_ECC_FAILED) ||
1054 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1055 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1056 *ecc_err = 1;
1057
1058 /* Flag General errors */
1059 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1060 if ((status & R1_ERROR) ||
1061 (brq->stop.resp[0] & R1_ERROR)) {
1062 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1063 req->rq_disk->disk_name, __func__,
1064 brq->stop.resp[0], status);
1065 *gen_err = 1;
1066 }
1067
1068 /*
1069 * Check the current card state. If it is in some data transfer
1070 * mode, tell it to stop (and hopefully transition back to TRAN.)
1071 */
1072 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1073 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1074 err = send_stop(card,
1075 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1076 req, gen_err, &stop_status);
1077 if (err) {
1078 pr_err("%s: error %d sending stop command\n",
1079 req->rq_disk->disk_name, err);
1080 /*
1081 * If the stop cmd also timed out, the card is probably
1082 * not present, so abort. Other errors are bad news too.
1083 */
1084 return ERR_ABORT;
1085 }
1086
1087 if (stop_status & R1_CARD_ECC_FAILED)
1088 *ecc_err = 1;
1089 }
1090
1091 /* Check for set block count errors */
1092 if (brq->sbc.error)
1093 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1094 prev_cmd_status_valid, status);
1095
1096 /* Check for r/w command errors */
1097 if (brq->cmd.error)
1098 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1099 prev_cmd_status_valid, status);
1100
1101 /* Data errors */
1102 if (!brq->stop.error)
1103 return ERR_CONTINUE;
1104
1105 /* Now for stop errors. These aren't fatal to the transfer. */
1106 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1107 req->rq_disk->disk_name, brq->stop.error,
1108 brq->cmd.resp[0], status);
1109
1110 /*
1111 * Subsitute in our own stop status as this will give the error
1112 * state which happened during the execution of the r/w command.
1113 */
1114 if (stop_status) {
1115 brq->stop.resp[0] = stop_status;
1116 brq->stop.error = 0;
1117 }
1118 return ERR_CONTINUE;
1119 }
1120
1121 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1122 int type)
1123 {
1124 int err;
1125
1126 if (md->reset_done & type)
1127 return -EEXIST;
1128
1129 md->reset_done |= type;
1130 err = mmc_hw_reset(host);
1131 /* Ensure we switch back to the correct partition */
1132 if (err != -EOPNOTSUPP) {
1133 struct mmc_blk_data *main_md =
1134 dev_get_drvdata(&host->card->dev);
1135 int part_err;
1136
1137 main_md->part_curr = main_md->part_type;
1138 part_err = mmc_blk_part_switch(host->card, md);
1139 if (part_err) {
1140 /*
1141 * We have failed to get back into the correct
1142 * partition, so we need to abort the whole request.
1143 */
1144 return -ENODEV;
1145 }
1146 }
1147 return err;
1148 }
1149
1150 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1151 {
1152 md->reset_done &= ~type;
1153 }
1154
1155 int mmc_access_rpmb(struct mmc_queue *mq)
1156 {
1157 struct mmc_blk_data *md = mq->data;
1158 /*
1159 * If this is a RPMB partition access, return ture
1160 */
1161 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1162 return true;
1163
1164 return false;
1165 }
1166
1167 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1168 {
1169 struct mmc_blk_data *md = mq->data;
1170 struct mmc_card *card = md->queue.card;
1171 unsigned int from, nr, arg;
1172 int err = 0, type = MMC_BLK_DISCARD;
1173
1174 if (!mmc_can_erase(card)) {
1175 err = -EOPNOTSUPP;
1176 goto out;
1177 }
1178
1179 from = blk_rq_pos(req);
1180 nr = blk_rq_sectors(req);
1181
1182 if (mmc_can_discard(card))
1183 arg = MMC_DISCARD_ARG;
1184 else if (mmc_can_trim(card))
1185 arg = MMC_TRIM_ARG;
1186 else
1187 arg = MMC_ERASE_ARG;
1188 retry:
1189 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1190 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 INAND_CMD38_ARG_EXT_CSD,
1192 arg == MMC_TRIM_ARG ?
1193 INAND_CMD38_ARG_TRIM :
1194 INAND_CMD38_ARG_ERASE,
1195 0);
1196 if (err)
1197 goto out;
1198 }
1199 err = mmc_erase(card, from, nr, arg);
1200 out:
1201 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1202 goto retry;
1203 if (!err)
1204 mmc_blk_reset_success(md, type);
1205 blk_end_request(req, err, blk_rq_bytes(req));
1206
1207 return err ? 0 : 1;
1208 }
1209
1210 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1211 struct request *req)
1212 {
1213 struct mmc_blk_data *md = mq->data;
1214 struct mmc_card *card = md->queue.card;
1215 unsigned int from, nr, arg;
1216 int err = 0, type = MMC_BLK_SECDISCARD;
1217
1218 if (!(mmc_can_secure_erase_trim(card))) {
1219 err = -EOPNOTSUPP;
1220 goto out;
1221 }
1222
1223 from = blk_rq_pos(req);
1224 nr = blk_rq_sectors(req);
1225
1226 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1227 arg = MMC_SECURE_TRIM1_ARG;
1228 else
1229 arg = MMC_SECURE_ERASE_ARG;
1230
1231 retry:
1232 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1233 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1234 INAND_CMD38_ARG_EXT_CSD,
1235 arg == MMC_SECURE_TRIM1_ARG ?
1236 INAND_CMD38_ARG_SECTRIM1 :
1237 INAND_CMD38_ARG_SECERASE,
1238 0);
1239 if (err)
1240 goto out_retry;
1241 }
1242
1243 err = mmc_erase(card, from, nr, arg);
1244 if (err == -EIO)
1245 goto out_retry;
1246 if (err)
1247 goto out;
1248
1249 if (arg == MMC_SECURE_TRIM1_ARG) {
1250 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1251 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1252 INAND_CMD38_ARG_EXT_CSD,
1253 INAND_CMD38_ARG_SECTRIM2,
1254 0);
1255 if (err)
1256 goto out_retry;
1257 }
1258
1259 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1260 if (err == -EIO)
1261 goto out_retry;
1262 if (err)
1263 goto out;
1264 }
1265
1266 out_retry:
1267 if (err && !mmc_blk_reset(md, card->host, type))
1268 goto retry;
1269 if (!err)
1270 mmc_blk_reset_success(md, type);
1271 out:
1272 blk_end_request(req, err, blk_rq_bytes(req));
1273
1274 return err ? 0 : 1;
1275 }
1276
1277 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1278 {
1279 struct mmc_blk_data *md = mq->data;
1280 struct mmc_card *card = md->queue.card;
1281 int ret = 0;
1282
1283 ret = mmc_flush_cache(card);
1284 if (ret)
1285 ret = -EIO;
1286
1287 blk_end_request_all(req, ret);
1288
1289 return ret ? 0 : 1;
1290 }
1291
1292 /*
1293 * Reformat current write as a reliable write, supporting
1294 * both legacy and the enhanced reliable write MMC cards.
1295 * In each transfer we'll handle only as much as a single
1296 * reliable write can handle, thus finish the request in
1297 * partial completions.
1298 */
1299 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1300 struct mmc_card *card,
1301 struct request *req)
1302 {
1303 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1304 /* Legacy mode imposes restrictions on transfers. */
1305 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1306 brq->data.blocks = 1;
1307
1308 if (brq->data.blocks > card->ext_csd.rel_sectors)
1309 brq->data.blocks = card->ext_csd.rel_sectors;
1310 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1311 brq->data.blocks = 1;
1312 }
1313 }
1314
1315 #define CMD_ERRORS \
1316 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1317 R1_ADDRESS_ERROR | /* Misaligned address */ \
1318 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1319 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1320 R1_CC_ERROR | /* Card controller error */ \
1321 R1_ERROR) /* General/unknown error */
1322
1323 static int mmc_blk_err_check(struct mmc_card *card,
1324 struct mmc_async_req *areq)
1325 {
1326 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1327 mmc_active);
1328 struct mmc_blk_request *brq = &mq_mrq->brq;
1329 struct request *req = mq_mrq->req;
1330 int need_retune = card->host->need_retune;
1331 int ecc_err = 0, gen_err = 0;
1332
1333 /*
1334 * sbc.error indicates a problem with the set block count
1335 * command. No data will have been transferred.
1336 *
1337 * cmd.error indicates a problem with the r/w command. No
1338 * data will have been transferred.
1339 *
1340 * stop.error indicates a problem with the stop command. Data
1341 * may have been transferred, or may still be transferring.
1342 */
1343 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1344 brq->data.error) {
1345 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1346 case ERR_RETRY:
1347 return MMC_BLK_RETRY;
1348 case ERR_ABORT:
1349 return MMC_BLK_ABORT;
1350 case ERR_NOMEDIUM:
1351 return MMC_BLK_NOMEDIUM;
1352 case ERR_CONTINUE:
1353 break;
1354 }
1355 }
1356
1357 /*
1358 * Check for errors relating to the execution of the
1359 * initial command - such as address errors. No data
1360 * has been transferred.
1361 */
1362 if (brq->cmd.resp[0] & CMD_ERRORS) {
1363 pr_err("%s: r/w command failed, status = %#x\n",
1364 req->rq_disk->disk_name, brq->cmd.resp[0]);
1365 return MMC_BLK_ABORT;
1366 }
1367
1368 /*
1369 * Everything else is either success, or a data error of some
1370 * kind. If it was a write, we may have transitioned to
1371 * program mode, which we have to wait for it to complete.
1372 */
1373 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1374 int err;
1375
1376 /* Check stop command response */
1377 if (brq->stop.resp[0] & R1_ERROR) {
1378 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1379 req->rq_disk->disk_name, __func__,
1380 brq->stop.resp[0]);
1381 gen_err = 1;
1382 }
1383
1384 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1385 &gen_err);
1386 if (err)
1387 return MMC_BLK_CMD_ERR;
1388 }
1389
1390 /* if general error occurs, retry the write operation. */
1391 if (gen_err) {
1392 pr_warn("%s: retrying write for general error\n",
1393 req->rq_disk->disk_name);
1394 return MMC_BLK_RETRY;
1395 }
1396
1397 if (brq->data.error) {
1398 if (need_retune && !brq->retune_retry_done) {
1399 pr_debug("%s: retrying because a re-tune was needed\n",
1400 req->rq_disk->disk_name);
1401 brq->retune_retry_done = 1;
1402 return MMC_BLK_RETRY;
1403 }
1404 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1405 req->rq_disk->disk_name, brq->data.error,
1406 (unsigned)blk_rq_pos(req),
1407 (unsigned)blk_rq_sectors(req),
1408 brq->cmd.resp[0], brq->stop.resp[0]);
1409
1410 if (rq_data_dir(req) == READ) {
1411 if (ecc_err)
1412 return MMC_BLK_ECC_ERR;
1413 return MMC_BLK_DATA_ERR;
1414 } else {
1415 return MMC_BLK_CMD_ERR;
1416 }
1417 }
1418
1419 if (!brq->data.bytes_xfered)
1420 return MMC_BLK_RETRY;
1421
1422 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1423 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1424 return MMC_BLK_PARTIAL;
1425 else
1426 return MMC_BLK_SUCCESS;
1427 }
1428
1429 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1430 return MMC_BLK_PARTIAL;
1431
1432 return MMC_BLK_SUCCESS;
1433 }
1434
1435 static int mmc_blk_packed_err_check(struct mmc_card *card,
1436 struct mmc_async_req *areq)
1437 {
1438 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1439 mmc_active);
1440 struct request *req = mq_rq->req;
1441 struct mmc_packed *packed = mq_rq->packed;
1442 int err, check, status;
1443 u8 *ext_csd;
1444
1445 BUG_ON(!packed);
1446
1447 packed->retries--;
1448 check = mmc_blk_err_check(card, areq);
1449 err = get_card_status(card, &status, 0);
1450 if (err) {
1451 pr_err("%s: error %d sending status command\n",
1452 req->rq_disk->disk_name, err);
1453 return MMC_BLK_ABORT;
1454 }
1455
1456 if (status & R1_EXCEPTION_EVENT) {
1457 err = mmc_get_ext_csd(card, &ext_csd);
1458 if (err) {
1459 pr_err("%s: error %d sending ext_csd\n",
1460 req->rq_disk->disk_name, err);
1461 return MMC_BLK_ABORT;
1462 }
1463
1464 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1465 EXT_CSD_PACKED_FAILURE) &&
1466 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1467 EXT_CSD_PACKED_GENERIC_ERROR)) {
1468 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1469 EXT_CSD_PACKED_INDEXED_ERROR) {
1470 packed->idx_failure =
1471 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1472 check = MMC_BLK_PARTIAL;
1473 }
1474 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1475 "failure index: %d\n",
1476 req->rq_disk->disk_name, packed->nr_entries,
1477 packed->blocks, packed->idx_failure);
1478 }
1479 kfree(ext_csd);
1480 }
1481
1482 return check;
1483 }
1484
1485 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1486 struct mmc_card *card,
1487 int disable_multi,
1488 struct mmc_queue *mq)
1489 {
1490 u32 readcmd, writecmd;
1491 struct mmc_blk_request *brq = &mqrq->brq;
1492 struct request *req = mqrq->req;
1493 struct mmc_blk_data *md = mq->data;
1494 bool do_data_tag;
1495
1496 /*
1497 * Reliable writes are used to implement Forced Unit Access and
1498 * are supported only on MMCs.
1499 */
1500 bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1501 (rq_data_dir(req) == WRITE) &&
1502 (md->flags & MMC_BLK_REL_WR);
1503
1504 memset(brq, 0, sizeof(struct mmc_blk_request));
1505 brq->mrq.cmd = &brq->cmd;
1506 brq->mrq.data = &brq->data;
1507
1508 brq->cmd.arg = blk_rq_pos(req);
1509 if (!mmc_card_blockaddr(card))
1510 brq->cmd.arg <<= 9;
1511 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1512 brq->data.blksz = 512;
1513 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1514 brq->stop.arg = 0;
1515 brq->data.blocks = blk_rq_sectors(req);
1516
1517 /*
1518 * The block layer doesn't support all sector count
1519 * restrictions, so we need to be prepared for too big
1520 * requests.
1521 */
1522 if (brq->data.blocks > card->host->max_blk_count)
1523 brq->data.blocks = card->host->max_blk_count;
1524
1525 if (brq->data.blocks > 1) {
1526 /*
1527 * After a read error, we redo the request one sector
1528 * at a time in order to accurately determine which
1529 * sectors can be read successfully.
1530 */
1531 if (disable_multi)
1532 brq->data.blocks = 1;
1533
1534 /*
1535 * Some controllers have HW issues while operating
1536 * in multiple I/O mode
1537 */
1538 if (card->host->ops->multi_io_quirk)
1539 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1540 (rq_data_dir(req) == READ) ?
1541 MMC_DATA_READ : MMC_DATA_WRITE,
1542 brq->data.blocks);
1543 }
1544
1545 if (brq->data.blocks > 1 || do_rel_wr) {
1546 /* SPI multiblock writes terminate using a special
1547 * token, not a STOP_TRANSMISSION request.
1548 */
1549 if (!mmc_host_is_spi(card->host) ||
1550 rq_data_dir(req) == READ)
1551 brq->mrq.stop = &brq->stop;
1552 readcmd = MMC_READ_MULTIPLE_BLOCK;
1553 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1554 } else {
1555 brq->mrq.stop = NULL;
1556 readcmd = MMC_READ_SINGLE_BLOCK;
1557 writecmd = MMC_WRITE_BLOCK;
1558 }
1559 if (rq_data_dir(req) == READ) {
1560 brq->cmd.opcode = readcmd;
1561 brq->data.flags = MMC_DATA_READ;
1562 if (brq->mrq.stop)
1563 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1564 MMC_CMD_AC;
1565 } else {
1566 brq->cmd.opcode = writecmd;
1567 brq->data.flags = MMC_DATA_WRITE;
1568 if (brq->mrq.stop)
1569 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1570 MMC_CMD_AC;
1571 }
1572
1573 if (do_rel_wr)
1574 mmc_apply_rel_rw(brq, card, req);
1575
1576 /*
1577 * Data tag is used only during writing meta data to speed
1578 * up write and any subsequent read of this meta data
1579 */
1580 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1581 (req->cmd_flags & REQ_META) &&
1582 (rq_data_dir(req) == WRITE) &&
1583 ((brq->data.blocks * brq->data.blksz) >=
1584 card->ext_csd.data_tag_unit_size);
1585
1586 /*
1587 * Pre-defined multi-block transfers are preferable to
1588 * open ended-ones (and necessary for reliable writes).
1589 * However, it is not sufficient to just send CMD23,
1590 * and avoid the final CMD12, as on an error condition
1591 * CMD12 (stop) needs to be sent anyway. This, coupled
1592 * with Auto-CMD23 enhancements provided by some
1593 * hosts, means that the complexity of dealing
1594 * with this is best left to the host. If CMD23 is
1595 * supported by card and host, we'll fill sbc in and let
1596 * the host deal with handling it correctly. This means
1597 * that for hosts that don't expose MMC_CAP_CMD23, no
1598 * change of behavior will be observed.
1599 *
1600 * N.B: Some MMC cards experience perf degradation.
1601 * We'll avoid using CMD23-bounded multiblock writes for
1602 * these, while retaining features like reliable writes.
1603 */
1604 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1605 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1606 do_data_tag)) {
1607 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1608 brq->sbc.arg = brq->data.blocks |
1609 (do_rel_wr ? (1 << 31) : 0) |
1610 (do_data_tag ? (1 << 29) : 0);
1611 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1612 brq->mrq.sbc = &brq->sbc;
1613 }
1614
1615 mmc_set_data_timeout(&brq->data, card);
1616
1617 brq->data.sg = mqrq->sg;
1618 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1619
1620 /*
1621 * Adjust the sg list so it is the same size as the
1622 * request.
1623 */
1624 if (brq->data.blocks != blk_rq_sectors(req)) {
1625 int i, data_size = brq->data.blocks << 9;
1626 struct scatterlist *sg;
1627
1628 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1629 data_size -= sg->length;
1630 if (data_size <= 0) {
1631 sg->length += data_size;
1632 i++;
1633 break;
1634 }
1635 }
1636 brq->data.sg_len = i;
1637 }
1638
1639 mqrq->mmc_active.mrq = &brq->mrq;
1640 mqrq->mmc_active.err_check = mmc_blk_err_check;
1641
1642 mmc_queue_bounce_pre(mqrq);
1643 }
1644
1645 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1646 struct mmc_card *card)
1647 {
1648 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1649 unsigned int max_seg_sz = queue_max_segment_size(q);
1650 unsigned int len, nr_segs = 0;
1651
1652 do {
1653 len = min(hdr_sz, max_seg_sz);
1654 hdr_sz -= len;
1655 nr_segs++;
1656 } while (hdr_sz);
1657
1658 return nr_segs;
1659 }
1660
1661 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1662 {
1663 struct request_queue *q = mq->queue;
1664 struct mmc_card *card = mq->card;
1665 struct request *cur = req, *next = NULL;
1666 struct mmc_blk_data *md = mq->data;
1667 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1668 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1669 unsigned int req_sectors = 0, phys_segments = 0;
1670 unsigned int max_blk_count, max_phys_segs;
1671 bool put_back = true;
1672 u8 max_packed_rw = 0;
1673 u8 reqs = 0;
1674
1675 if (!(md->flags & MMC_BLK_PACKED_CMD))
1676 goto no_packed;
1677
1678 if ((rq_data_dir(cur) == WRITE) &&
1679 mmc_host_packed_wr(card->host))
1680 max_packed_rw = card->ext_csd.max_packed_writes;
1681
1682 if (max_packed_rw == 0)
1683 goto no_packed;
1684
1685 if (mmc_req_rel_wr(cur) &&
1686 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1687 goto no_packed;
1688
1689 if (mmc_large_sector(card) &&
1690 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1691 goto no_packed;
1692
1693 mmc_blk_clear_packed(mqrq);
1694
1695 max_blk_count = min(card->host->max_blk_count,
1696 card->host->max_req_size >> 9);
1697 if (unlikely(max_blk_count > 0xffff))
1698 max_blk_count = 0xffff;
1699
1700 max_phys_segs = queue_max_segments(q);
1701 req_sectors += blk_rq_sectors(cur);
1702 phys_segments += cur->nr_phys_segments;
1703
1704 if (rq_data_dir(cur) == WRITE) {
1705 req_sectors += mmc_large_sector(card) ? 8 : 1;
1706 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1707 }
1708
1709 do {
1710 if (reqs >= max_packed_rw - 1) {
1711 put_back = false;
1712 break;
1713 }
1714
1715 spin_lock_irq(q->queue_lock);
1716 next = blk_fetch_request(q);
1717 spin_unlock_irq(q->queue_lock);
1718 if (!next) {
1719 put_back = false;
1720 break;
1721 }
1722
1723 if (mmc_large_sector(card) &&
1724 !IS_ALIGNED(blk_rq_sectors(next), 8))
1725 break;
1726
1727 if (next->cmd_flags & REQ_DISCARD ||
1728 next->cmd_flags & REQ_FLUSH)
1729 break;
1730
1731 if (rq_data_dir(cur) != rq_data_dir(next))
1732 break;
1733
1734 if (mmc_req_rel_wr(next) &&
1735 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1736 break;
1737
1738 req_sectors += blk_rq_sectors(next);
1739 if (req_sectors > max_blk_count)
1740 break;
1741
1742 phys_segments += next->nr_phys_segments;
1743 if (phys_segments > max_phys_segs)
1744 break;
1745
1746 list_add_tail(&next->queuelist, &mqrq->packed->list);
1747 cur = next;
1748 reqs++;
1749 } while (1);
1750
1751 if (put_back) {
1752 spin_lock_irq(q->queue_lock);
1753 blk_requeue_request(q, next);
1754 spin_unlock_irq(q->queue_lock);
1755 }
1756
1757 if (reqs > 0) {
1758 list_add(&req->queuelist, &mqrq->packed->list);
1759 mqrq->packed->nr_entries = ++reqs;
1760 mqrq->packed->retries = reqs;
1761 return reqs;
1762 }
1763
1764 no_packed:
1765 mqrq->cmd_type = MMC_PACKED_NONE;
1766 return 0;
1767 }
1768
1769 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1770 struct mmc_card *card,
1771 struct mmc_queue *mq)
1772 {
1773 struct mmc_blk_request *brq = &mqrq->brq;
1774 struct request *req = mqrq->req;
1775 struct request *prq;
1776 struct mmc_blk_data *md = mq->data;
1777 struct mmc_packed *packed = mqrq->packed;
1778 bool do_rel_wr, do_data_tag;
1779 u32 *packed_cmd_hdr;
1780 u8 hdr_blocks;
1781 u8 i = 1;
1782
1783 BUG_ON(!packed);
1784
1785 mqrq->cmd_type = MMC_PACKED_WRITE;
1786 packed->blocks = 0;
1787 packed->idx_failure = MMC_PACKED_NR_IDX;
1788
1789 packed_cmd_hdr = packed->cmd_hdr;
1790 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1791 packed_cmd_hdr[0] = cpu_to_le32((packed->nr_entries << 16) |
1792 (PACKED_CMD_WR << 8) | PACKED_CMD_VER);
1793 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1794
1795 /*
1796 * Argument for each entry of packed group
1797 */
1798 list_for_each_entry(prq, &packed->list, queuelist) {
1799 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1800 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1801 (prq->cmd_flags & REQ_META) &&
1802 (rq_data_dir(prq) == WRITE) &&
1803 ((brq->data.blocks * brq->data.blksz) >=
1804 card->ext_csd.data_tag_unit_size);
1805 /* Argument of CMD23 */
1806 packed_cmd_hdr[(i * 2)] = cpu_to_le32(
1807 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1808 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1809 blk_rq_sectors(prq));
1810 /* Argument of CMD18 or CMD25 */
1811 packed_cmd_hdr[((i * 2)) + 1] = cpu_to_le32(
1812 mmc_card_blockaddr(card) ?
1813 blk_rq_pos(prq) : blk_rq_pos(prq) << 9);
1814 packed->blocks += blk_rq_sectors(prq);
1815 i++;
1816 }
1817
1818 memset(brq, 0, sizeof(struct mmc_blk_request));
1819 brq->mrq.cmd = &brq->cmd;
1820 brq->mrq.data = &brq->data;
1821 brq->mrq.sbc = &brq->sbc;
1822 brq->mrq.stop = &brq->stop;
1823
1824 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1825 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1826 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1827
1828 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1829 brq->cmd.arg = blk_rq_pos(req);
1830 if (!mmc_card_blockaddr(card))
1831 brq->cmd.arg <<= 9;
1832 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1833
1834 brq->data.blksz = 512;
1835 brq->data.blocks = packed->blocks + hdr_blocks;
1836 brq->data.flags = MMC_DATA_WRITE;
1837
1838 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1839 brq->stop.arg = 0;
1840 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1841
1842 mmc_set_data_timeout(&brq->data, card);
1843
1844 brq->data.sg = mqrq->sg;
1845 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1846
1847 mqrq->mmc_active.mrq = &brq->mrq;
1848 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1849
1850 mmc_queue_bounce_pre(mqrq);
1851 }
1852
1853 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1854 struct mmc_blk_request *brq, struct request *req,
1855 int ret)
1856 {
1857 struct mmc_queue_req *mq_rq;
1858 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1859
1860 /*
1861 * If this is an SD card and we're writing, we can first
1862 * mark the known good sectors as ok.
1863 *
1864 * If the card is not SD, we can still ok written sectors
1865 * as reported by the controller (which might be less than
1866 * the real number of written sectors, but never more).
1867 */
1868 if (mmc_card_sd(card)) {
1869 u32 blocks;
1870
1871 blocks = mmc_sd_num_wr_blocks(card);
1872 if (blocks != (u32)-1) {
1873 ret = blk_end_request(req, 0, blocks << 9);
1874 }
1875 } else {
1876 if (!mmc_packed_cmd(mq_rq->cmd_type))
1877 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1878 }
1879 return ret;
1880 }
1881
1882 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1883 {
1884 struct request *prq;
1885 struct mmc_packed *packed = mq_rq->packed;
1886 int idx = packed->idx_failure, i = 0;
1887 int ret = 0;
1888
1889 BUG_ON(!packed);
1890
1891 while (!list_empty(&packed->list)) {
1892 prq = list_entry_rq(packed->list.next);
1893 if (idx == i) {
1894 /* retry from error index */
1895 packed->nr_entries -= idx;
1896 mq_rq->req = prq;
1897 ret = 1;
1898
1899 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1900 list_del_init(&prq->queuelist);
1901 mmc_blk_clear_packed(mq_rq);
1902 }
1903 return ret;
1904 }
1905 list_del_init(&prq->queuelist);
1906 blk_end_request(prq, 0, blk_rq_bytes(prq));
1907 i++;
1908 }
1909
1910 mmc_blk_clear_packed(mq_rq);
1911 return ret;
1912 }
1913
1914 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1915 {
1916 struct request *prq;
1917 struct mmc_packed *packed = mq_rq->packed;
1918
1919 BUG_ON(!packed);
1920
1921 while (!list_empty(&packed->list)) {
1922 prq = list_entry_rq(packed->list.next);
1923 list_del_init(&prq->queuelist);
1924 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1925 }
1926
1927 mmc_blk_clear_packed(mq_rq);
1928 }
1929
1930 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1931 struct mmc_queue_req *mq_rq)
1932 {
1933 struct request *prq;
1934 struct request_queue *q = mq->queue;
1935 struct mmc_packed *packed = mq_rq->packed;
1936
1937 BUG_ON(!packed);
1938
1939 while (!list_empty(&packed->list)) {
1940 prq = list_entry_rq(packed->list.prev);
1941 if (prq->queuelist.prev != &packed->list) {
1942 list_del_init(&prq->queuelist);
1943 spin_lock_irq(q->queue_lock);
1944 blk_requeue_request(mq->queue, prq);
1945 spin_unlock_irq(q->queue_lock);
1946 } else {
1947 list_del_init(&prq->queuelist);
1948 }
1949 }
1950
1951 mmc_blk_clear_packed(mq_rq);
1952 }
1953
1954 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1955 {
1956 struct mmc_blk_data *md = mq->data;
1957 struct mmc_card *card = md->queue.card;
1958 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1959 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1960 enum mmc_blk_status status;
1961 struct mmc_queue_req *mq_rq;
1962 struct request *req = rqc;
1963 struct mmc_async_req *areq;
1964 const u8 packed_nr = 2;
1965 u8 reqs = 0;
1966
1967 if (!rqc && !mq->mqrq_prev->req)
1968 return 0;
1969
1970 if (rqc)
1971 reqs = mmc_blk_prep_packed_list(mq, rqc);
1972
1973 do {
1974 if (rqc) {
1975 /*
1976 * When 4KB native sector is enabled, only 8 blocks
1977 * multiple read or write is allowed
1978 */
1979 if ((brq->data.blocks & 0x07) &&
1980 (card->ext_csd.data_sector_size == 4096)) {
1981 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1982 req->rq_disk->disk_name);
1983 mq_rq = mq->mqrq_cur;
1984 goto cmd_abort;
1985 }
1986
1987 if (reqs >= packed_nr)
1988 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1989 card, mq);
1990 else
1991 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1992 areq = &mq->mqrq_cur->mmc_active;
1993 } else
1994 areq = NULL;
1995 areq = mmc_start_req(card->host, areq, (int *) &status);
1996 if (!areq) {
1997 if (status == MMC_BLK_NEW_REQUEST)
1998 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1999 return 0;
2000 }
2001
2002 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
2003 brq = &mq_rq->brq;
2004 req = mq_rq->req;
2005 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2006 mmc_queue_bounce_post(mq_rq);
2007
2008 switch (status) {
2009 case MMC_BLK_SUCCESS:
2010 case MMC_BLK_PARTIAL:
2011 /*
2012 * A block was successfully transferred.
2013 */
2014 mmc_blk_reset_success(md, type);
2015
2016 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2017 ret = mmc_blk_end_packed_req(mq_rq);
2018 break;
2019 } else {
2020 ret = blk_end_request(req, 0,
2021 brq->data.bytes_xfered);
2022 }
2023
2024 /*
2025 * If the blk_end_request function returns non-zero even
2026 * though all data has been transferred and no errors
2027 * were returned by the host controller, it's a bug.
2028 */
2029 if (status == MMC_BLK_SUCCESS && ret) {
2030 pr_err("%s BUG rq_tot %d d_xfer %d\n",
2031 __func__, blk_rq_bytes(req),
2032 brq->data.bytes_xfered);
2033 rqc = NULL;
2034 goto cmd_abort;
2035 }
2036 break;
2037 case MMC_BLK_CMD_ERR:
2038 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
2039 if (mmc_blk_reset(md, card->host, type))
2040 goto cmd_abort;
2041 if (!ret)
2042 goto start_new_req;
2043 break;
2044 case MMC_BLK_RETRY:
2045 retune_retry_done = brq->retune_retry_done;
2046 if (retry++ < 5)
2047 break;
2048 /* Fall through */
2049 case MMC_BLK_ABORT:
2050 if (!mmc_blk_reset(md, card->host, type))
2051 break;
2052 goto cmd_abort;
2053 case MMC_BLK_DATA_ERR: {
2054 int err;
2055
2056 err = mmc_blk_reset(md, card->host, type);
2057 if (!err)
2058 break;
2059 if (err == -ENODEV ||
2060 mmc_packed_cmd(mq_rq->cmd_type))
2061 goto cmd_abort;
2062 /* Fall through */
2063 }
2064 case MMC_BLK_ECC_ERR:
2065 if (brq->data.blocks > 1) {
2066 /* Redo read one sector at a time */
2067 pr_warn("%s: retrying using single block read\n",
2068 req->rq_disk->disk_name);
2069 disable_multi = 1;
2070 break;
2071 }
2072 /*
2073 * After an error, we redo I/O one sector at a
2074 * time, so we only reach here after trying to
2075 * read a single sector.
2076 */
2077 ret = blk_end_request(req, -EIO,
2078 brq->data.blksz);
2079 if (!ret)
2080 goto start_new_req;
2081 break;
2082 case MMC_BLK_NOMEDIUM:
2083 goto cmd_abort;
2084 default:
2085 pr_err("%s: Unhandled return value (%d)",
2086 req->rq_disk->disk_name, status);
2087 goto cmd_abort;
2088 }
2089
2090 if (ret) {
2091 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2092 if (!mq_rq->packed->retries)
2093 goto cmd_abort;
2094 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
2095 mmc_start_req(card->host,
2096 &mq_rq->mmc_active, NULL);
2097 } else {
2098
2099 /*
2100 * In case of a incomplete request
2101 * prepare it again and resend.
2102 */
2103 mmc_blk_rw_rq_prep(mq_rq, card,
2104 disable_multi, mq);
2105 mmc_start_req(card->host,
2106 &mq_rq->mmc_active, NULL);
2107 }
2108 mq_rq->brq.retune_retry_done = retune_retry_done;
2109 }
2110 } while (ret);
2111
2112 return 1;
2113
2114 cmd_abort:
2115 if (mmc_packed_cmd(mq_rq->cmd_type)) {
2116 mmc_blk_abort_packed_req(mq_rq);
2117 } else {
2118 if (mmc_card_removed(card))
2119 req->cmd_flags |= REQ_QUIET;
2120 while (ret)
2121 ret = blk_end_request(req, -EIO,
2122 blk_rq_cur_bytes(req));
2123 }
2124
2125 start_new_req:
2126 if (rqc) {
2127 if (mmc_card_removed(card)) {
2128 rqc->cmd_flags |= REQ_QUIET;
2129 blk_end_request_all(rqc, -EIO);
2130 } else {
2131 /*
2132 * If current request is packed, it needs to put back.
2133 */
2134 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2135 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2136
2137 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2138 mmc_start_req(card->host,
2139 &mq->mqrq_cur->mmc_active, NULL);
2140 }
2141 }
2142
2143 return 0;
2144 }
2145
2146 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2147 {
2148 int ret;
2149 struct mmc_blk_data *md = mq->data;
2150 struct mmc_card *card = md->queue.card;
2151 struct mmc_host *host = card->host;
2152 unsigned long flags;
2153 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2154
2155 if (req && !mq->mqrq_prev->req)
2156 /* claim host only for the first request */
2157 mmc_get_card(card);
2158
2159 ret = mmc_blk_part_switch(card, md);
2160 if (ret) {
2161 if (req) {
2162 blk_end_request_all(req, -EIO);
2163 }
2164 ret = 0;
2165 goto out;
2166 }
2167
2168 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2169 if (cmd_flags & REQ_DISCARD) {
2170 /* complete ongoing async transfer before issuing discard */
2171 if (card->host->areq)
2172 mmc_blk_issue_rw_rq(mq, NULL);
2173 if (req->cmd_flags & REQ_SECURE)
2174 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2175 else
2176 ret = mmc_blk_issue_discard_rq(mq, req);
2177 } else if (cmd_flags & REQ_FLUSH) {
2178 /* complete ongoing async transfer before issuing flush */
2179 if (card->host->areq)
2180 mmc_blk_issue_rw_rq(mq, NULL);
2181 ret = mmc_blk_issue_flush(mq, req);
2182 } else {
2183 if (!req && host->areq) {
2184 spin_lock_irqsave(&host->context_info.lock, flags);
2185 host->context_info.is_waiting_last_req = true;
2186 spin_unlock_irqrestore(&host->context_info.lock, flags);
2187 }
2188 ret = mmc_blk_issue_rw_rq(mq, req);
2189 }
2190
2191 out:
2192 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2193 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2194 /*
2195 * Release host when there are no more requests
2196 * and after special request(discard, flush) is done.
2197 * In case sepecial request, there is no reentry to
2198 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2199 */
2200 mmc_put_card(card);
2201 return ret;
2202 }
2203
2204 static inline int mmc_blk_readonly(struct mmc_card *card)
2205 {
2206 return mmc_card_readonly(card) ||
2207 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2208 }
2209
2210 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2211 struct device *parent,
2212 sector_t size,
2213 bool default_ro,
2214 const char *subname,
2215 int area_type)
2216 {
2217 struct mmc_blk_data *md;
2218 int devidx, ret;
2219
2220 again:
2221 if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
2222 return ERR_PTR(-ENOMEM);
2223
2224 spin_lock(&mmc_blk_lock);
2225 ret = ida_get_new(&mmc_blk_ida, &devidx);
2226 spin_unlock(&mmc_blk_lock);
2227
2228 if (ret == -EAGAIN)
2229 goto again;
2230 else if (ret)
2231 return ERR_PTR(ret);
2232
2233 if (devidx >= max_devices) {
2234 ret = -ENOSPC;
2235 goto out;
2236 }
2237
2238 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2239 if (!md) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243
2244 md->area_type = area_type;
2245
2246 /*
2247 * Set the read-only status based on the supported commands
2248 * and the write protect switch.
2249 */
2250 md->read_only = mmc_blk_readonly(card);
2251
2252 md->disk = alloc_disk(perdev_minors);
2253 if (md->disk == NULL) {
2254 ret = -ENOMEM;
2255 goto err_kfree;
2256 }
2257
2258 spin_lock_init(&md->lock);
2259 INIT_LIST_HEAD(&md->part);
2260 md->usage = 1;
2261
2262 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2263 if (ret)
2264 goto err_putdisk;
2265
2266 md->queue.issue_fn = mmc_blk_issue_rq;
2267 md->queue.data = md;
2268
2269 md->disk->major = MMC_BLOCK_MAJOR;
2270 md->disk->first_minor = devidx * perdev_minors;
2271 md->disk->fops = &mmc_bdops;
2272 md->disk->private_data = md;
2273 md->disk->queue = md->queue.queue;
2274 md->disk->driverfs_dev = parent;
2275 set_disk_ro(md->disk, md->read_only || default_ro);
2276 md->disk->flags = GENHD_FL_EXT_DEVT;
2277 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2278 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2279
2280 /*
2281 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2282 *
2283 * - be set for removable media with permanent block devices
2284 * - be unset for removable block devices with permanent media
2285 *
2286 * Since MMC block devices clearly fall under the second
2287 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2288 * should use the block device creation/destruction hotplug
2289 * messages to tell when the card is present.
2290 */
2291
2292 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2293 "mmcblk%u%s", card->host->index, subname ? subname : "");
2294
2295 if (mmc_card_mmc(card))
2296 blk_queue_logical_block_size(md->queue.queue,
2297 card->ext_csd.data_sector_size);
2298 else
2299 blk_queue_logical_block_size(md->queue.queue, 512);
2300
2301 set_capacity(md->disk, size);
2302
2303 if (mmc_host_cmd23(card->host)) {
2304 if (mmc_card_mmc(card) ||
2305 (mmc_card_sd(card) &&
2306 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2307 md->flags |= MMC_BLK_CMD23;
2308 }
2309
2310 if (mmc_card_mmc(card) &&
2311 md->flags & MMC_BLK_CMD23 &&
2312 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2313 card->ext_csd.rel_sectors)) {
2314 md->flags |= MMC_BLK_REL_WR;
2315 blk_queue_write_cache(md->queue.queue, true, true);
2316 }
2317
2318 if (mmc_card_mmc(card) &&
2319 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2320 (md->flags & MMC_BLK_CMD23) &&
2321 card->ext_csd.packed_event_en) {
2322 if (!mmc_packed_init(&md->queue, card))
2323 md->flags |= MMC_BLK_PACKED_CMD;
2324 }
2325
2326 return md;
2327
2328 err_putdisk:
2329 put_disk(md->disk);
2330 err_kfree:
2331 kfree(md);
2332 out:
2333 spin_lock(&mmc_blk_lock);
2334 ida_remove(&mmc_blk_ida, devidx);
2335 spin_unlock(&mmc_blk_lock);
2336 return ERR_PTR(ret);
2337 }
2338
2339 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2340 {
2341 sector_t size;
2342
2343 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2344 /*
2345 * The EXT_CSD sector count is in number or 512 byte
2346 * sectors.
2347 */
2348 size = card->ext_csd.sectors;
2349 } else {
2350 /*
2351 * The CSD capacity field is in units of read_blkbits.
2352 * set_capacity takes units of 512 bytes.
2353 */
2354 size = (typeof(sector_t))card->csd.capacity
2355 << (card->csd.read_blkbits - 9);
2356 }
2357
2358 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2359 MMC_BLK_DATA_AREA_MAIN);
2360 }
2361
2362 static int mmc_blk_alloc_part(struct mmc_card *card,
2363 struct mmc_blk_data *md,
2364 unsigned int part_type,
2365 sector_t size,
2366 bool default_ro,
2367 const char *subname,
2368 int area_type)
2369 {
2370 char cap_str[10];
2371 struct mmc_blk_data *part_md;
2372
2373 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2374 subname, area_type);
2375 if (IS_ERR(part_md))
2376 return PTR_ERR(part_md);
2377 part_md->part_type = part_type;
2378 list_add(&part_md->part, &md->part);
2379
2380 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2381 cap_str, sizeof(cap_str));
2382 pr_info("%s: %s %s partition %u %s\n",
2383 part_md->disk->disk_name, mmc_card_id(card),
2384 mmc_card_name(card), part_md->part_type, cap_str);
2385 return 0;
2386 }
2387
2388 /* MMC Physical partitions consist of two boot partitions and
2389 * up to four general purpose partitions.
2390 * For each partition enabled in EXT_CSD a block device will be allocatedi
2391 * to provide access to the partition.
2392 */
2393
2394 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2395 {
2396 int idx, ret = 0;
2397
2398 if (!mmc_card_mmc(card))
2399 return 0;
2400
2401 for (idx = 0; idx < card->nr_parts; idx++) {
2402 if (card->part[idx].size) {
2403 ret = mmc_blk_alloc_part(card, md,
2404 card->part[idx].part_cfg,
2405 card->part[idx].size >> 9,
2406 card->part[idx].force_ro,
2407 card->part[idx].name,
2408 card->part[idx].area_type);
2409 if (ret)
2410 return ret;
2411 }
2412 }
2413
2414 return ret;
2415 }
2416
2417 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2418 {
2419 struct mmc_card *card;
2420
2421 if (md) {
2422 /*
2423 * Flush remaining requests and free queues. It
2424 * is freeing the queue that stops new requests
2425 * from being accepted.
2426 */
2427 card = md->queue.card;
2428 mmc_cleanup_queue(&md->queue);
2429 if (md->flags & MMC_BLK_PACKED_CMD)
2430 mmc_packed_clean(&md->queue);
2431 if (md->disk->flags & GENHD_FL_UP) {
2432 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2433 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2434 card->ext_csd.boot_ro_lockable)
2435 device_remove_file(disk_to_dev(md->disk),
2436 &md->power_ro_lock);
2437
2438 del_gendisk(md->disk);
2439 }
2440 mmc_blk_put(md);
2441 }
2442 }
2443
2444 static void mmc_blk_remove_parts(struct mmc_card *card,
2445 struct mmc_blk_data *md)
2446 {
2447 struct list_head *pos, *q;
2448 struct mmc_blk_data *part_md;
2449
2450 list_for_each_safe(pos, q, &md->part) {
2451 part_md = list_entry(pos, struct mmc_blk_data, part);
2452 list_del(pos);
2453 mmc_blk_remove_req(part_md);
2454 }
2455 }
2456
2457 static int mmc_add_disk(struct mmc_blk_data *md)
2458 {
2459 int ret;
2460 struct mmc_card *card = md->queue.card;
2461
2462 add_disk(md->disk);
2463 md->force_ro.show = force_ro_show;
2464 md->force_ro.store = force_ro_store;
2465 sysfs_attr_init(&md->force_ro.attr);
2466 md->force_ro.attr.name = "force_ro";
2467 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2468 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2469 if (ret)
2470 goto force_ro_fail;
2471
2472 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2473 card->ext_csd.boot_ro_lockable) {
2474 umode_t mode;
2475
2476 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2477 mode = S_IRUGO;
2478 else
2479 mode = S_IRUGO | S_IWUSR;
2480
2481 md->power_ro_lock.show = power_ro_lock_show;
2482 md->power_ro_lock.store = power_ro_lock_store;
2483 sysfs_attr_init(&md->power_ro_lock.attr);
2484 md->power_ro_lock.attr.mode = mode;
2485 md->power_ro_lock.attr.name =
2486 "ro_lock_until_next_power_on";
2487 ret = device_create_file(disk_to_dev(md->disk),
2488 &md->power_ro_lock);
2489 if (ret)
2490 goto power_ro_lock_fail;
2491 }
2492 return ret;
2493
2494 power_ro_lock_fail:
2495 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2496 force_ro_fail:
2497 del_gendisk(md->disk);
2498
2499 return ret;
2500 }
2501
2502 #define CID_MANFID_SANDISK 0x2
2503 #define CID_MANFID_TOSHIBA 0x11
2504 #define CID_MANFID_MICRON 0x13
2505 #define CID_MANFID_SAMSUNG 0x15
2506 #define CID_MANFID_KINGSTON 0x70
2507
2508 static const struct mmc_fixup blk_fixups[] =
2509 {
2510 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2511 MMC_QUIRK_INAND_CMD38),
2512 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2513 MMC_QUIRK_INAND_CMD38),
2514 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2515 MMC_QUIRK_INAND_CMD38),
2516 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2517 MMC_QUIRK_INAND_CMD38),
2518 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2519 MMC_QUIRK_INAND_CMD38),
2520
2521 /*
2522 * Some MMC cards experience performance degradation with CMD23
2523 * instead of CMD12-bounded multiblock transfers. For now we'll
2524 * black list what's bad...
2525 * - Certain Toshiba cards.
2526 *
2527 * N.B. This doesn't affect SD cards.
2528 */
2529 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2530 MMC_QUIRK_BLK_NO_CMD23),
2531 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2532 MMC_QUIRK_BLK_NO_CMD23),
2533 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2534 MMC_QUIRK_BLK_NO_CMD23),
2535 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2536 MMC_QUIRK_BLK_NO_CMD23),
2537 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2538 MMC_QUIRK_BLK_NO_CMD23),
2539
2540 /*
2541 * Some MMC cards need longer data read timeout than indicated in CSD.
2542 */
2543 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2544 MMC_QUIRK_LONG_READ_TIME),
2545 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2546 MMC_QUIRK_LONG_READ_TIME),
2547
2548 /*
2549 * On these Samsung MoviNAND parts, performing secure erase or
2550 * secure trim can result in unrecoverable corruption due to a
2551 * firmware bug.
2552 */
2553 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2554 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2555 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2556 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2557 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2558 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2559 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2560 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2561 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2562 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2563 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2564 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2565 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2566 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2567 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2568 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2569
2570 /*
2571 * On Some Kingston eMMCs, performing trim can result in
2572 * unrecoverable data conrruption occasionally due to a firmware bug.
2573 */
2574 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2575 MMC_QUIRK_TRIM_BROKEN),
2576 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2577 MMC_QUIRK_TRIM_BROKEN),
2578
2579 END_FIXUP
2580 };
2581
2582 static int mmc_blk_probe(struct mmc_card *card)
2583 {
2584 struct mmc_blk_data *md, *part_md;
2585 char cap_str[10];
2586
2587 /*
2588 * Check that the card supports the command class(es) we need.
2589 */
2590 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2591 return -ENODEV;
2592
2593 mmc_fixup_device(card, blk_fixups);
2594
2595 md = mmc_blk_alloc(card);
2596 if (IS_ERR(md))
2597 return PTR_ERR(md);
2598
2599 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2600 cap_str, sizeof(cap_str));
2601 pr_info("%s: %s %s %s %s\n",
2602 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2603 cap_str, md->read_only ? "(ro)" : "");
2604
2605 if (mmc_blk_alloc_parts(card, md))
2606 goto out;
2607
2608 dev_set_drvdata(&card->dev, md);
2609
2610 if (mmc_add_disk(md))
2611 goto out;
2612
2613 list_for_each_entry(part_md, &md->part, part) {
2614 if (mmc_add_disk(part_md))
2615 goto out;
2616 }
2617
2618 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2619 pm_runtime_use_autosuspend(&card->dev);
2620
2621 /*
2622 * Don't enable runtime PM for SD-combo cards here. Leave that
2623 * decision to be taken during the SDIO init sequence instead.
2624 */
2625 if (card->type != MMC_TYPE_SD_COMBO) {
2626 pm_runtime_set_active(&card->dev);
2627 pm_runtime_enable(&card->dev);
2628 }
2629
2630 return 0;
2631
2632 out:
2633 mmc_blk_remove_parts(card, md);
2634 mmc_blk_remove_req(md);
2635 return 0;
2636 }
2637
2638 static void mmc_blk_remove(struct mmc_card *card)
2639 {
2640 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2641
2642 mmc_blk_remove_parts(card, md);
2643 pm_runtime_get_sync(&card->dev);
2644 mmc_claim_host(card->host);
2645 mmc_blk_part_switch(card, md);
2646 mmc_release_host(card->host);
2647 if (card->type != MMC_TYPE_SD_COMBO)
2648 pm_runtime_disable(&card->dev);
2649 pm_runtime_put_noidle(&card->dev);
2650 mmc_blk_remove_req(md);
2651 dev_set_drvdata(&card->dev, NULL);
2652 }
2653
2654 static int _mmc_blk_suspend(struct mmc_card *card)
2655 {
2656 struct mmc_blk_data *part_md;
2657 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2658
2659 if (md) {
2660 mmc_queue_suspend(&md->queue);
2661 list_for_each_entry(part_md, &md->part, part) {
2662 mmc_queue_suspend(&part_md->queue);
2663 }
2664 }
2665 return 0;
2666 }
2667
2668 static void mmc_blk_shutdown(struct mmc_card *card)
2669 {
2670 _mmc_blk_suspend(card);
2671 }
2672
2673 #ifdef CONFIG_PM_SLEEP
2674 static int mmc_blk_suspend(struct device *dev)
2675 {
2676 struct mmc_card *card = mmc_dev_to_card(dev);
2677
2678 return _mmc_blk_suspend(card);
2679 }
2680
2681 static int mmc_blk_resume(struct device *dev)
2682 {
2683 struct mmc_blk_data *part_md;
2684 struct mmc_blk_data *md = dev_get_drvdata(dev);
2685
2686 if (md) {
2687 /*
2688 * Resume involves the card going into idle state,
2689 * so current partition is always the main one.
2690 */
2691 md->part_curr = md->part_type;
2692 mmc_queue_resume(&md->queue);
2693 list_for_each_entry(part_md, &md->part, part) {
2694 mmc_queue_resume(&part_md->queue);
2695 }
2696 }
2697 return 0;
2698 }
2699 #endif
2700
2701 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2702
2703 static struct mmc_driver mmc_driver = {
2704 .drv = {
2705 .name = "mmcblk",
2706 .pm = &mmc_blk_pm_ops,
2707 },
2708 .probe = mmc_blk_probe,
2709 .remove = mmc_blk_remove,
2710 .shutdown = mmc_blk_shutdown,
2711 };
2712
2713 static int __init mmc_blk_init(void)
2714 {
2715 int res;
2716
2717 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2718 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2719
2720 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2721
2722 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2723 if (res)
2724 goto out;
2725
2726 res = mmc_register_driver(&mmc_driver);
2727 if (res)
2728 goto out2;
2729
2730 return 0;
2731 out2:
2732 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2733 out:
2734 return res;
2735 }
2736
2737 static void __exit mmc_blk_exit(void)
2738 {
2739 mmc_unregister_driver(&mmc_driver);
2740 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2741 }
2742
2743 module_init(mmc_blk_init);
2744 module_exit(mmc_blk_exit);
2745
2746 MODULE_LICENSE("GPL");
2747 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2748