]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/card/block.c
Merge tag 'writeback' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
43
44 #include <asm/uaccess.h>
45
46 #include "queue.h"
47
48 MODULE_ALIAS("mmc:block");
49 #ifdef MODULE_PARAM_PREFIX
50 #undef MODULE_PARAM_PREFIX
51 #endif
52 #define MODULE_PARAM_PREFIX "mmcblk."
53
54 #define INAND_CMD38_ARG_EXT_CSD 113
55 #define INAND_CMD38_ARG_ERASE 0x00
56 #define INAND_CMD38_ARG_TRIM 0x01
57 #define INAND_CMD38_ARG_SECERASE 0x80
58 #define INAND_CMD38_ARG_SECTRIM1 0x81
59 #define INAND_CMD38_ARG_SECTRIM2 0x88
60
61 static DEFINE_MUTEX(block_mutex);
62
63 /*
64 * The defaults come from config options but can be overriden by module
65 * or bootarg options.
66 */
67 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
68
69 /*
70 * We've only got one major, so number of mmcblk devices is
71 * limited to 256 / number of minors per device.
72 */
73 static int max_devices;
74
75 /* 256 minors, so at most 256 separate devices */
76 static DECLARE_BITMAP(dev_use, 256);
77 static DECLARE_BITMAP(name_use, 256);
78
79 /*
80 * There is one mmc_blk_data per slot.
81 */
82 struct mmc_blk_data {
83 spinlock_t lock;
84 struct gendisk *disk;
85 struct mmc_queue queue;
86 struct list_head part;
87
88 unsigned int flags;
89 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
90 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
91
92 unsigned int usage;
93 unsigned int read_only;
94 unsigned int part_type;
95 unsigned int name_idx;
96 unsigned int reset_done;
97 #define MMC_BLK_READ BIT(0)
98 #define MMC_BLK_WRITE BIT(1)
99 #define MMC_BLK_DISCARD BIT(2)
100 #define MMC_BLK_SECDISCARD BIT(3)
101
102 /*
103 * Only set in main mmc_blk_data associated
104 * with mmc_card with mmc_set_drvdata, and keeps
105 * track of the current selected device partition.
106 */
107 unsigned int part_curr;
108 struct device_attribute force_ro;
109 struct device_attribute power_ro_lock;
110 int area_type;
111 };
112
113 static DEFINE_MUTEX(open_lock);
114
115 enum mmc_blk_status {
116 MMC_BLK_SUCCESS = 0,
117 MMC_BLK_PARTIAL,
118 MMC_BLK_CMD_ERR,
119 MMC_BLK_RETRY,
120 MMC_BLK_ABORT,
121 MMC_BLK_DATA_ERR,
122 MMC_BLK_ECC_ERR,
123 MMC_BLK_NOMEDIUM,
124 };
125
126 module_param(perdev_minors, int, 0444);
127 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
128
129 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
130 {
131 struct mmc_blk_data *md;
132
133 mutex_lock(&open_lock);
134 md = disk->private_data;
135 if (md && md->usage == 0)
136 md = NULL;
137 if (md)
138 md->usage++;
139 mutex_unlock(&open_lock);
140
141 return md;
142 }
143
144 static inline int mmc_get_devidx(struct gendisk *disk)
145 {
146 int devmaj = MAJOR(disk_devt(disk));
147 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
148
149 if (!devmaj)
150 devidx = disk->first_minor / perdev_minors;
151 return devidx;
152 }
153
154 static void mmc_blk_put(struct mmc_blk_data *md)
155 {
156 mutex_lock(&open_lock);
157 md->usage--;
158 if (md->usage == 0) {
159 int devidx = mmc_get_devidx(md->disk);
160 blk_cleanup_queue(md->queue.queue);
161
162 __clear_bit(devidx, dev_use);
163
164 put_disk(md->disk);
165 kfree(md);
166 }
167 mutex_unlock(&open_lock);
168 }
169
170 static ssize_t power_ro_lock_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 int ret;
174 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
175 struct mmc_card *card = md->queue.card;
176 int locked = 0;
177
178 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
179 locked = 2;
180 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
181 locked = 1;
182
183 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
184
185 return ret;
186 }
187
188 static ssize_t power_ro_lock_store(struct device *dev,
189 struct device_attribute *attr, const char *buf, size_t count)
190 {
191 int ret;
192 struct mmc_blk_data *md, *part_md;
193 struct mmc_card *card;
194 unsigned long set;
195
196 if (kstrtoul(buf, 0, &set))
197 return -EINVAL;
198
199 if (set != 1)
200 return count;
201
202 md = mmc_blk_get(dev_to_disk(dev));
203 card = md->queue.card;
204
205 mmc_claim_host(card->host);
206
207 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
208 card->ext_csd.boot_ro_lock |
209 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
210 card->ext_csd.part_time);
211 if (ret)
212 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
213 else
214 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
215
216 mmc_release_host(card->host);
217
218 if (!ret) {
219 pr_info("%s: Locking boot partition ro until next power on\n",
220 md->disk->disk_name);
221 set_disk_ro(md->disk, 1);
222
223 list_for_each_entry(part_md, &md->part, part)
224 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
225 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
226 set_disk_ro(part_md->disk, 1);
227 }
228 }
229
230 mmc_blk_put(md);
231 return count;
232 }
233
234 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
235 char *buf)
236 {
237 int ret;
238 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
239
240 ret = snprintf(buf, PAGE_SIZE, "%d",
241 get_disk_ro(dev_to_disk(dev)) ^
242 md->read_only);
243 mmc_blk_put(md);
244 return ret;
245 }
246
247 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
248 const char *buf, size_t count)
249 {
250 int ret;
251 char *end;
252 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
253 unsigned long set = simple_strtoul(buf, &end, 0);
254 if (end == buf) {
255 ret = -EINVAL;
256 goto out;
257 }
258
259 set_disk_ro(dev_to_disk(dev), set || md->read_only);
260 ret = count;
261 out:
262 mmc_blk_put(md);
263 return ret;
264 }
265
266 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
267 {
268 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
269 int ret = -ENXIO;
270
271 mutex_lock(&block_mutex);
272 if (md) {
273 if (md->usage == 2)
274 check_disk_change(bdev);
275 ret = 0;
276
277 if ((mode & FMODE_WRITE) && md->read_only) {
278 mmc_blk_put(md);
279 ret = -EROFS;
280 }
281 }
282 mutex_unlock(&block_mutex);
283
284 return ret;
285 }
286
287 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
288 {
289 struct mmc_blk_data *md = disk->private_data;
290
291 mutex_lock(&block_mutex);
292 mmc_blk_put(md);
293 mutex_unlock(&block_mutex);
294 return 0;
295 }
296
297 static int
298 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
299 {
300 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
301 geo->heads = 4;
302 geo->sectors = 16;
303 return 0;
304 }
305
306 struct mmc_blk_ioc_data {
307 struct mmc_ioc_cmd ic;
308 unsigned char *buf;
309 u64 buf_bytes;
310 };
311
312 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
313 struct mmc_ioc_cmd __user *user)
314 {
315 struct mmc_blk_ioc_data *idata;
316 int err;
317
318 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
319 if (!idata) {
320 err = -ENOMEM;
321 goto out;
322 }
323
324 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
325 err = -EFAULT;
326 goto idata_err;
327 }
328
329 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
330 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
331 err = -EOVERFLOW;
332 goto idata_err;
333 }
334
335 if (!idata->buf_bytes)
336 return idata;
337
338 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
339 if (!idata->buf) {
340 err = -ENOMEM;
341 goto idata_err;
342 }
343
344 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345 idata->ic.data_ptr, idata->buf_bytes)) {
346 err = -EFAULT;
347 goto copy_err;
348 }
349
350 return idata;
351
352 copy_err:
353 kfree(idata->buf);
354 idata_err:
355 kfree(idata);
356 out:
357 return ERR_PTR(err);
358 }
359
360 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
361 struct mmc_ioc_cmd __user *ic_ptr)
362 {
363 struct mmc_blk_ioc_data *idata;
364 struct mmc_blk_data *md;
365 struct mmc_card *card;
366 struct mmc_command cmd = {0};
367 struct mmc_data data = {0};
368 struct mmc_request mrq = {NULL};
369 struct scatterlist sg;
370 int err;
371
372 /*
373 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
374 * whole block device, not on a partition. This prevents overspray
375 * between sibling partitions.
376 */
377 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
378 return -EPERM;
379
380 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
381 if (IS_ERR(idata))
382 return PTR_ERR(idata);
383
384 md = mmc_blk_get(bdev->bd_disk);
385 if (!md) {
386 err = -EINVAL;
387 goto cmd_err;
388 }
389
390 card = md->queue.card;
391 if (IS_ERR(card)) {
392 err = PTR_ERR(card);
393 goto cmd_done;
394 }
395
396 cmd.opcode = idata->ic.opcode;
397 cmd.arg = idata->ic.arg;
398 cmd.flags = idata->ic.flags;
399
400 if (idata->buf_bytes) {
401 data.sg = &sg;
402 data.sg_len = 1;
403 data.blksz = idata->ic.blksz;
404 data.blocks = idata->ic.blocks;
405
406 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
407
408 if (idata->ic.write_flag)
409 data.flags = MMC_DATA_WRITE;
410 else
411 data.flags = MMC_DATA_READ;
412
413 /* data.flags must already be set before doing this. */
414 mmc_set_data_timeout(&data, card);
415
416 /* Allow overriding the timeout_ns for empirical tuning. */
417 if (idata->ic.data_timeout_ns)
418 data.timeout_ns = idata->ic.data_timeout_ns;
419
420 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
421 /*
422 * Pretend this is a data transfer and rely on the
423 * host driver to compute timeout. When all host
424 * drivers support cmd.cmd_timeout for R1B, this
425 * can be changed to:
426 *
427 * mrq.data = NULL;
428 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
429 */
430 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
431 }
432
433 mrq.data = &data;
434 }
435
436 mrq.cmd = &cmd;
437
438 mmc_claim_host(card->host);
439
440 if (idata->ic.is_acmd) {
441 err = mmc_app_cmd(card->host, card);
442 if (err)
443 goto cmd_rel_host;
444 }
445
446 mmc_wait_for_req(card->host, &mrq);
447
448 if (cmd.error) {
449 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
450 __func__, cmd.error);
451 err = cmd.error;
452 goto cmd_rel_host;
453 }
454 if (data.error) {
455 dev_err(mmc_dev(card->host), "%s: data error %d\n",
456 __func__, data.error);
457 err = data.error;
458 goto cmd_rel_host;
459 }
460
461 /*
462 * According to the SD specs, some commands require a delay after
463 * issuing the command.
464 */
465 if (idata->ic.postsleep_min_us)
466 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
467
468 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
469 err = -EFAULT;
470 goto cmd_rel_host;
471 }
472
473 if (!idata->ic.write_flag) {
474 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
475 idata->buf, idata->buf_bytes)) {
476 err = -EFAULT;
477 goto cmd_rel_host;
478 }
479 }
480
481 cmd_rel_host:
482 mmc_release_host(card->host);
483
484 cmd_done:
485 mmc_blk_put(md);
486 cmd_err:
487 kfree(idata->buf);
488 kfree(idata);
489 return err;
490 }
491
492 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493 unsigned int cmd, unsigned long arg)
494 {
495 int ret = -EINVAL;
496 if (cmd == MMC_IOC_CMD)
497 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498 return ret;
499 }
500
501 #ifdef CONFIG_COMPAT
502 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
504 {
505 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
506 }
507 #endif
508
509 static const struct block_device_operations mmc_bdops = {
510 .open = mmc_blk_open,
511 .release = mmc_blk_release,
512 .getgeo = mmc_blk_getgeo,
513 .owner = THIS_MODULE,
514 .ioctl = mmc_blk_ioctl,
515 #ifdef CONFIG_COMPAT
516 .compat_ioctl = mmc_blk_compat_ioctl,
517 #endif
518 };
519
520 static inline int mmc_blk_part_switch(struct mmc_card *card,
521 struct mmc_blk_data *md)
522 {
523 int ret;
524 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
525
526 if (main_md->part_curr == md->part_type)
527 return 0;
528
529 if (mmc_card_mmc(card)) {
530 u8 part_config = card->ext_csd.part_config;
531
532 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533 part_config |= md->part_type;
534
535 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
536 EXT_CSD_PART_CONFIG, part_config,
537 card->ext_csd.part_time);
538 if (ret)
539 return ret;
540
541 card->ext_csd.part_config = part_config;
542 }
543
544 main_md->part_curr = md->part_type;
545 return 0;
546 }
547
548 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
549 {
550 int err;
551 u32 result;
552 __be32 *blocks;
553
554 struct mmc_request mrq = {NULL};
555 struct mmc_command cmd = {0};
556 struct mmc_data data = {0};
557 unsigned int timeout_us;
558
559 struct scatterlist sg;
560
561 cmd.opcode = MMC_APP_CMD;
562 cmd.arg = card->rca << 16;
563 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
564
565 err = mmc_wait_for_cmd(card->host, &cmd, 0);
566 if (err)
567 return (u32)-1;
568 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
569 return (u32)-1;
570
571 memset(&cmd, 0, sizeof(struct mmc_command));
572
573 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
574 cmd.arg = 0;
575 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
576
577 data.timeout_ns = card->csd.tacc_ns * 100;
578 data.timeout_clks = card->csd.tacc_clks * 100;
579
580 timeout_us = data.timeout_ns / 1000;
581 timeout_us += data.timeout_clks * 1000 /
582 (card->host->ios.clock / 1000);
583
584 if (timeout_us > 100000) {
585 data.timeout_ns = 100000000;
586 data.timeout_clks = 0;
587 }
588
589 data.blksz = 4;
590 data.blocks = 1;
591 data.flags = MMC_DATA_READ;
592 data.sg = &sg;
593 data.sg_len = 1;
594
595 mrq.cmd = &cmd;
596 mrq.data = &data;
597
598 blocks = kmalloc(4, GFP_KERNEL);
599 if (!blocks)
600 return (u32)-1;
601
602 sg_init_one(&sg, blocks, 4);
603
604 mmc_wait_for_req(card->host, &mrq);
605
606 result = ntohl(*blocks);
607 kfree(blocks);
608
609 if (cmd.error || data.error)
610 result = (u32)-1;
611
612 return result;
613 }
614
615 static int send_stop(struct mmc_card *card, u32 *status)
616 {
617 struct mmc_command cmd = {0};
618 int err;
619
620 cmd.opcode = MMC_STOP_TRANSMISSION;
621 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
622 err = mmc_wait_for_cmd(card->host, &cmd, 5);
623 if (err == 0)
624 *status = cmd.resp[0];
625 return err;
626 }
627
628 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
629 {
630 struct mmc_command cmd = {0};
631 int err;
632
633 cmd.opcode = MMC_SEND_STATUS;
634 if (!mmc_host_is_spi(card->host))
635 cmd.arg = card->rca << 16;
636 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
637 err = mmc_wait_for_cmd(card->host, &cmd, retries);
638 if (err == 0)
639 *status = cmd.resp[0];
640 return err;
641 }
642
643 #define ERR_NOMEDIUM 3
644 #define ERR_RETRY 2
645 #define ERR_ABORT 1
646 #define ERR_CONTINUE 0
647
648 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
649 bool status_valid, u32 status)
650 {
651 switch (error) {
652 case -EILSEQ:
653 /* response crc error, retry the r/w cmd */
654 pr_err("%s: %s sending %s command, card status %#x\n",
655 req->rq_disk->disk_name, "response CRC error",
656 name, status);
657 return ERR_RETRY;
658
659 case -ETIMEDOUT:
660 pr_err("%s: %s sending %s command, card status %#x\n",
661 req->rq_disk->disk_name, "timed out", name, status);
662
663 /* If the status cmd initially failed, retry the r/w cmd */
664 if (!status_valid)
665 return ERR_RETRY;
666
667 /*
668 * If it was a r/w cmd crc error, or illegal command
669 * (eg, issued in wrong state) then retry - we should
670 * have corrected the state problem above.
671 */
672 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
673 return ERR_RETRY;
674
675 /* Otherwise abort the command */
676 return ERR_ABORT;
677
678 default:
679 /* We don't understand the error code the driver gave us */
680 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
681 req->rq_disk->disk_name, error, status);
682 return ERR_ABORT;
683 }
684 }
685
686 /*
687 * Initial r/w and stop cmd error recovery.
688 * We don't know whether the card received the r/w cmd or not, so try to
689 * restore things back to a sane state. Essentially, we do this as follows:
690 * - Obtain card status. If the first attempt to obtain card status fails,
691 * the status word will reflect the failed status cmd, not the failed
692 * r/w cmd. If we fail to obtain card status, it suggests we can no
693 * longer communicate with the card.
694 * - Check the card state. If the card received the cmd but there was a
695 * transient problem with the response, it might still be in a data transfer
696 * mode. Try to send it a stop command. If this fails, we can't recover.
697 * - If the r/w cmd failed due to a response CRC error, it was probably
698 * transient, so retry the cmd.
699 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
700 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
701 * illegal cmd, retry.
702 * Otherwise we don't understand what happened, so abort.
703 */
704 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
705 struct mmc_blk_request *brq, int *ecc_err)
706 {
707 bool prev_cmd_status_valid = true;
708 u32 status, stop_status = 0;
709 int err, retry;
710
711 if (mmc_card_removed(card))
712 return ERR_NOMEDIUM;
713
714 /*
715 * Try to get card status which indicates both the card state
716 * and why there was no response. If the first attempt fails,
717 * we can't be sure the returned status is for the r/w command.
718 */
719 for (retry = 2; retry >= 0; retry--) {
720 err = get_card_status(card, &status, 0);
721 if (!err)
722 break;
723
724 prev_cmd_status_valid = false;
725 pr_err("%s: error %d sending status command, %sing\n",
726 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
727 }
728
729 /* We couldn't get a response from the card. Give up. */
730 if (err) {
731 /* Check if the card is removed */
732 if (mmc_detect_card_removed(card->host))
733 return ERR_NOMEDIUM;
734 return ERR_ABORT;
735 }
736
737 /* Flag ECC errors */
738 if ((status & R1_CARD_ECC_FAILED) ||
739 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
740 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
741 *ecc_err = 1;
742
743 /*
744 * Check the current card state. If it is in some data transfer
745 * mode, tell it to stop (and hopefully transition back to TRAN.)
746 */
747 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
748 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
749 err = send_stop(card, &stop_status);
750 if (err)
751 pr_err("%s: error %d sending stop command\n",
752 req->rq_disk->disk_name, err);
753
754 /*
755 * If the stop cmd also timed out, the card is probably
756 * not present, so abort. Other errors are bad news too.
757 */
758 if (err)
759 return ERR_ABORT;
760 if (stop_status & R1_CARD_ECC_FAILED)
761 *ecc_err = 1;
762 }
763
764 /* Check for set block count errors */
765 if (brq->sbc.error)
766 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
767 prev_cmd_status_valid, status);
768
769 /* Check for r/w command errors */
770 if (brq->cmd.error)
771 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
772 prev_cmd_status_valid, status);
773
774 /* Data errors */
775 if (!brq->stop.error)
776 return ERR_CONTINUE;
777
778 /* Now for stop errors. These aren't fatal to the transfer. */
779 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
780 req->rq_disk->disk_name, brq->stop.error,
781 brq->cmd.resp[0], status);
782
783 /*
784 * Subsitute in our own stop status as this will give the error
785 * state which happened during the execution of the r/w command.
786 */
787 if (stop_status) {
788 brq->stop.resp[0] = stop_status;
789 brq->stop.error = 0;
790 }
791 return ERR_CONTINUE;
792 }
793
794 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
795 int type)
796 {
797 int err;
798
799 if (md->reset_done & type)
800 return -EEXIST;
801
802 md->reset_done |= type;
803 err = mmc_hw_reset(host);
804 /* Ensure we switch back to the correct partition */
805 if (err != -EOPNOTSUPP) {
806 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
807 int part_err;
808
809 main_md->part_curr = main_md->part_type;
810 part_err = mmc_blk_part_switch(host->card, md);
811 if (part_err) {
812 /*
813 * We have failed to get back into the correct
814 * partition, so we need to abort the whole request.
815 */
816 return -ENODEV;
817 }
818 }
819 return err;
820 }
821
822 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
823 {
824 md->reset_done &= ~type;
825 }
826
827 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
828 {
829 struct mmc_blk_data *md = mq->data;
830 struct mmc_card *card = md->queue.card;
831 unsigned int from, nr, arg;
832 int err = 0, type = MMC_BLK_DISCARD;
833
834 if (!mmc_can_erase(card)) {
835 err = -EOPNOTSUPP;
836 goto out;
837 }
838
839 from = blk_rq_pos(req);
840 nr = blk_rq_sectors(req);
841
842 if (mmc_can_discard(card))
843 arg = MMC_DISCARD_ARG;
844 else if (mmc_can_trim(card))
845 arg = MMC_TRIM_ARG;
846 else
847 arg = MMC_ERASE_ARG;
848 retry:
849 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
850 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851 INAND_CMD38_ARG_EXT_CSD,
852 arg == MMC_TRIM_ARG ?
853 INAND_CMD38_ARG_TRIM :
854 INAND_CMD38_ARG_ERASE,
855 0);
856 if (err)
857 goto out;
858 }
859 err = mmc_erase(card, from, nr, arg);
860 out:
861 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
862 goto retry;
863 if (!err)
864 mmc_blk_reset_success(md, type);
865 spin_lock_irq(&md->lock);
866 __blk_end_request(req, err, blk_rq_bytes(req));
867 spin_unlock_irq(&md->lock);
868
869 return err ? 0 : 1;
870 }
871
872 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
873 struct request *req)
874 {
875 struct mmc_blk_data *md = mq->data;
876 struct mmc_card *card = md->queue.card;
877 unsigned int from, nr, arg, trim_arg, erase_arg;
878 int err = 0, type = MMC_BLK_SECDISCARD;
879
880 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
881 err = -EOPNOTSUPP;
882 goto out;
883 }
884
885 from = blk_rq_pos(req);
886 nr = blk_rq_sectors(req);
887
888 /* The sanitize operation is supported at v4.5 only */
889 if (mmc_can_sanitize(card)) {
890 erase_arg = MMC_ERASE_ARG;
891 trim_arg = MMC_TRIM_ARG;
892 } else {
893 erase_arg = MMC_SECURE_ERASE_ARG;
894 trim_arg = MMC_SECURE_TRIM1_ARG;
895 }
896
897 if (mmc_erase_group_aligned(card, from, nr))
898 arg = erase_arg;
899 else if (mmc_can_trim(card))
900 arg = trim_arg;
901 else {
902 err = -EINVAL;
903 goto out;
904 }
905 retry:
906 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
907 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
908 INAND_CMD38_ARG_EXT_CSD,
909 arg == MMC_SECURE_TRIM1_ARG ?
910 INAND_CMD38_ARG_SECTRIM1 :
911 INAND_CMD38_ARG_SECERASE,
912 0);
913 if (err)
914 goto out_retry;
915 }
916
917 err = mmc_erase(card, from, nr, arg);
918 if (err == -EIO)
919 goto out_retry;
920 if (err)
921 goto out;
922
923 if (arg == MMC_SECURE_TRIM1_ARG) {
924 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
925 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
926 INAND_CMD38_ARG_EXT_CSD,
927 INAND_CMD38_ARG_SECTRIM2,
928 0);
929 if (err)
930 goto out_retry;
931 }
932
933 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
934 if (err == -EIO)
935 goto out_retry;
936 if (err)
937 goto out;
938 }
939
940 if (mmc_can_sanitize(card))
941 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
942 EXT_CSD_SANITIZE_START, 1, 0);
943 out_retry:
944 if (err && !mmc_blk_reset(md, card->host, type))
945 goto retry;
946 if (!err)
947 mmc_blk_reset_success(md, type);
948 out:
949 spin_lock_irq(&md->lock);
950 __blk_end_request(req, err, blk_rq_bytes(req));
951 spin_unlock_irq(&md->lock);
952
953 return err ? 0 : 1;
954 }
955
956 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
957 {
958 struct mmc_blk_data *md = mq->data;
959 struct mmc_card *card = md->queue.card;
960 int ret = 0;
961
962 ret = mmc_flush_cache(card);
963 if (ret)
964 ret = -EIO;
965
966 spin_lock_irq(&md->lock);
967 __blk_end_request_all(req, ret);
968 spin_unlock_irq(&md->lock);
969
970 return ret ? 0 : 1;
971 }
972
973 /*
974 * Reformat current write as a reliable write, supporting
975 * both legacy and the enhanced reliable write MMC cards.
976 * In each transfer we'll handle only as much as a single
977 * reliable write can handle, thus finish the request in
978 * partial completions.
979 */
980 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
981 struct mmc_card *card,
982 struct request *req)
983 {
984 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
985 /* Legacy mode imposes restrictions on transfers. */
986 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
987 brq->data.blocks = 1;
988
989 if (brq->data.blocks > card->ext_csd.rel_sectors)
990 brq->data.blocks = card->ext_csd.rel_sectors;
991 else if (brq->data.blocks < card->ext_csd.rel_sectors)
992 brq->data.blocks = 1;
993 }
994 }
995
996 #define CMD_ERRORS \
997 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
998 R1_ADDRESS_ERROR | /* Misaligned address */ \
999 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1000 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1001 R1_CC_ERROR | /* Card controller error */ \
1002 R1_ERROR) /* General/unknown error */
1003
1004 static int mmc_blk_err_check(struct mmc_card *card,
1005 struct mmc_async_req *areq)
1006 {
1007 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1008 mmc_active);
1009 struct mmc_blk_request *brq = &mq_mrq->brq;
1010 struct request *req = mq_mrq->req;
1011 int ecc_err = 0;
1012
1013 /*
1014 * sbc.error indicates a problem with the set block count
1015 * command. No data will have been transferred.
1016 *
1017 * cmd.error indicates a problem with the r/w command. No
1018 * data will have been transferred.
1019 *
1020 * stop.error indicates a problem with the stop command. Data
1021 * may have been transferred, or may still be transferring.
1022 */
1023 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1024 brq->data.error) {
1025 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1026 case ERR_RETRY:
1027 return MMC_BLK_RETRY;
1028 case ERR_ABORT:
1029 return MMC_BLK_ABORT;
1030 case ERR_NOMEDIUM:
1031 return MMC_BLK_NOMEDIUM;
1032 case ERR_CONTINUE:
1033 break;
1034 }
1035 }
1036
1037 /*
1038 * Check for errors relating to the execution of the
1039 * initial command - such as address errors. No data
1040 * has been transferred.
1041 */
1042 if (brq->cmd.resp[0] & CMD_ERRORS) {
1043 pr_err("%s: r/w command failed, status = %#x\n",
1044 req->rq_disk->disk_name, brq->cmd.resp[0]);
1045 return MMC_BLK_ABORT;
1046 }
1047
1048 /*
1049 * Everything else is either success, or a data error of some
1050 * kind. If it was a write, we may have transitioned to
1051 * program mode, which we have to wait for it to complete.
1052 */
1053 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1054 u32 status;
1055 do {
1056 int err = get_card_status(card, &status, 5);
1057 if (err) {
1058 pr_err("%s: error %d requesting status\n",
1059 req->rq_disk->disk_name, err);
1060 return MMC_BLK_CMD_ERR;
1061 }
1062 /*
1063 * Some cards mishandle the status bits,
1064 * so make sure to check both the busy
1065 * indication and the card state.
1066 */
1067 } while (!(status & R1_READY_FOR_DATA) ||
1068 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1069 }
1070
1071 if (brq->data.error) {
1072 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1073 req->rq_disk->disk_name, brq->data.error,
1074 (unsigned)blk_rq_pos(req),
1075 (unsigned)blk_rq_sectors(req),
1076 brq->cmd.resp[0], brq->stop.resp[0]);
1077
1078 if (rq_data_dir(req) == READ) {
1079 if (ecc_err)
1080 return MMC_BLK_ECC_ERR;
1081 return MMC_BLK_DATA_ERR;
1082 } else {
1083 return MMC_BLK_CMD_ERR;
1084 }
1085 }
1086
1087 if (!brq->data.bytes_xfered)
1088 return MMC_BLK_RETRY;
1089
1090 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1091 return MMC_BLK_PARTIAL;
1092
1093 return MMC_BLK_SUCCESS;
1094 }
1095
1096 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1097 struct mmc_card *card,
1098 int disable_multi,
1099 struct mmc_queue *mq)
1100 {
1101 u32 readcmd, writecmd;
1102 struct mmc_blk_request *brq = &mqrq->brq;
1103 struct request *req = mqrq->req;
1104 struct mmc_blk_data *md = mq->data;
1105 bool do_data_tag;
1106
1107 /*
1108 * Reliable writes are used to implement Forced Unit Access and
1109 * REQ_META accesses, and are supported only on MMCs.
1110 *
1111 * XXX: this really needs a good explanation of why REQ_META
1112 * is treated special.
1113 */
1114 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1115 (req->cmd_flags & REQ_META)) &&
1116 (rq_data_dir(req) == WRITE) &&
1117 (md->flags & MMC_BLK_REL_WR);
1118
1119 memset(brq, 0, sizeof(struct mmc_blk_request));
1120 brq->mrq.cmd = &brq->cmd;
1121 brq->mrq.data = &brq->data;
1122
1123 brq->cmd.arg = blk_rq_pos(req);
1124 if (!mmc_card_blockaddr(card))
1125 brq->cmd.arg <<= 9;
1126 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1127 brq->data.blksz = 512;
1128 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1129 brq->stop.arg = 0;
1130 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1131 brq->data.blocks = blk_rq_sectors(req);
1132
1133 /*
1134 * The block layer doesn't support all sector count
1135 * restrictions, so we need to be prepared for too big
1136 * requests.
1137 */
1138 if (brq->data.blocks > card->host->max_blk_count)
1139 brq->data.blocks = card->host->max_blk_count;
1140
1141 if (brq->data.blocks > 1) {
1142 /*
1143 * After a read error, we redo the request one sector
1144 * at a time in order to accurately determine which
1145 * sectors can be read successfully.
1146 */
1147 if (disable_multi)
1148 brq->data.blocks = 1;
1149
1150 /* Some controllers can't do multiblock reads due to hw bugs */
1151 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1152 rq_data_dir(req) == READ)
1153 brq->data.blocks = 1;
1154 }
1155
1156 if (brq->data.blocks > 1 || do_rel_wr) {
1157 /* SPI multiblock writes terminate using a special
1158 * token, not a STOP_TRANSMISSION request.
1159 */
1160 if (!mmc_host_is_spi(card->host) ||
1161 rq_data_dir(req) == READ)
1162 brq->mrq.stop = &brq->stop;
1163 readcmd = MMC_READ_MULTIPLE_BLOCK;
1164 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1165 } else {
1166 brq->mrq.stop = NULL;
1167 readcmd = MMC_READ_SINGLE_BLOCK;
1168 writecmd = MMC_WRITE_BLOCK;
1169 }
1170 if (rq_data_dir(req) == READ) {
1171 brq->cmd.opcode = readcmd;
1172 brq->data.flags |= MMC_DATA_READ;
1173 } else {
1174 brq->cmd.opcode = writecmd;
1175 brq->data.flags |= MMC_DATA_WRITE;
1176 }
1177
1178 if (do_rel_wr)
1179 mmc_apply_rel_rw(brq, card, req);
1180
1181 /*
1182 * Data tag is used only during writing meta data to speed
1183 * up write and any subsequent read of this meta data
1184 */
1185 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1186 (req->cmd_flags & REQ_META) &&
1187 (rq_data_dir(req) == WRITE) &&
1188 ((brq->data.blocks * brq->data.blksz) >=
1189 card->ext_csd.data_tag_unit_size);
1190
1191 /*
1192 * Pre-defined multi-block transfers are preferable to
1193 * open ended-ones (and necessary for reliable writes).
1194 * However, it is not sufficient to just send CMD23,
1195 * and avoid the final CMD12, as on an error condition
1196 * CMD12 (stop) needs to be sent anyway. This, coupled
1197 * with Auto-CMD23 enhancements provided by some
1198 * hosts, means that the complexity of dealing
1199 * with this is best left to the host. If CMD23 is
1200 * supported by card and host, we'll fill sbc in and let
1201 * the host deal with handling it correctly. This means
1202 * that for hosts that don't expose MMC_CAP_CMD23, no
1203 * change of behavior will be observed.
1204 *
1205 * N.B: Some MMC cards experience perf degradation.
1206 * We'll avoid using CMD23-bounded multiblock writes for
1207 * these, while retaining features like reliable writes.
1208 */
1209 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1210 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1211 do_data_tag)) {
1212 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1213 brq->sbc.arg = brq->data.blocks |
1214 (do_rel_wr ? (1 << 31) : 0) |
1215 (do_data_tag ? (1 << 29) : 0);
1216 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1217 brq->mrq.sbc = &brq->sbc;
1218 }
1219
1220 mmc_set_data_timeout(&brq->data, card);
1221
1222 brq->data.sg = mqrq->sg;
1223 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1224
1225 /*
1226 * Adjust the sg list so it is the same size as the
1227 * request.
1228 */
1229 if (brq->data.blocks != blk_rq_sectors(req)) {
1230 int i, data_size = brq->data.blocks << 9;
1231 struct scatterlist *sg;
1232
1233 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1234 data_size -= sg->length;
1235 if (data_size <= 0) {
1236 sg->length += data_size;
1237 i++;
1238 break;
1239 }
1240 }
1241 brq->data.sg_len = i;
1242 }
1243
1244 mqrq->mmc_active.mrq = &brq->mrq;
1245 mqrq->mmc_active.err_check = mmc_blk_err_check;
1246
1247 mmc_queue_bounce_pre(mqrq);
1248 }
1249
1250 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1251 struct mmc_blk_request *brq, struct request *req,
1252 int ret)
1253 {
1254 /*
1255 * If this is an SD card and we're writing, we can first
1256 * mark the known good sectors as ok.
1257 *
1258 * If the card is not SD, we can still ok written sectors
1259 * as reported by the controller (which might be less than
1260 * the real number of written sectors, but never more).
1261 */
1262 if (mmc_card_sd(card)) {
1263 u32 blocks;
1264
1265 blocks = mmc_sd_num_wr_blocks(card);
1266 if (blocks != (u32)-1) {
1267 spin_lock_irq(&md->lock);
1268 ret = __blk_end_request(req, 0, blocks << 9);
1269 spin_unlock_irq(&md->lock);
1270 }
1271 } else {
1272 spin_lock_irq(&md->lock);
1273 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1274 spin_unlock_irq(&md->lock);
1275 }
1276 return ret;
1277 }
1278
1279 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1280 {
1281 struct mmc_blk_data *md = mq->data;
1282 struct mmc_card *card = md->queue.card;
1283 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1284 int ret = 1, disable_multi = 0, retry = 0, type;
1285 enum mmc_blk_status status;
1286 struct mmc_queue_req *mq_rq;
1287 struct request *req = rqc;
1288 struct mmc_async_req *areq;
1289
1290 if (!rqc && !mq->mqrq_prev->req)
1291 return 0;
1292
1293 do {
1294 if (rqc) {
1295 /*
1296 * When 4KB native sector is enabled, only 8 blocks
1297 * multiple read or write is allowed
1298 */
1299 if ((brq->data.blocks & 0x07) &&
1300 (card->ext_csd.data_sector_size == 4096)) {
1301 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1302 req->rq_disk->disk_name);
1303 goto cmd_abort;
1304 }
1305 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1306 areq = &mq->mqrq_cur->mmc_active;
1307 } else
1308 areq = NULL;
1309 areq = mmc_start_req(card->host, areq, (int *) &status);
1310 if (!areq)
1311 return 0;
1312
1313 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1314 brq = &mq_rq->brq;
1315 req = mq_rq->req;
1316 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1317 mmc_queue_bounce_post(mq_rq);
1318
1319 switch (status) {
1320 case MMC_BLK_SUCCESS:
1321 case MMC_BLK_PARTIAL:
1322 /*
1323 * A block was successfully transferred.
1324 */
1325 mmc_blk_reset_success(md, type);
1326 spin_lock_irq(&md->lock);
1327 ret = __blk_end_request(req, 0,
1328 brq->data.bytes_xfered);
1329 spin_unlock_irq(&md->lock);
1330 /*
1331 * If the blk_end_request function returns non-zero even
1332 * though all data has been transferred and no errors
1333 * were returned by the host controller, it's a bug.
1334 */
1335 if (status == MMC_BLK_SUCCESS && ret) {
1336 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1337 __func__, blk_rq_bytes(req),
1338 brq->data.bytes_xfered);
1339 rqc = NULL;
1340 goto cmd_abort;
1341 }
1342 break;
1343 case MMC_BLK_CMD_ERR:
1344 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1345 if (!mmc_blk_reset(md, card->host, type))
1346 break;
1347 goto cmd_abort;
1348 case MMC_BLK_RETRY:
1349 if (retry++ < 5)
1350 break;
1351 /* Fall through */
1352 case MMC_BLK_ABORT:
1353 if (!mmc_blk_reset(md, card->host, type))
1354 break;
1355 goto cmd_abort;
1356 case MMC_BLK_DATA_ERR: {
1357 int err;
1358
1359 err = mmc_blk_reset(md, card->host, type);
1360 if (!err)
1361 break;
1362 if (err == -ENODEV)
1363 goto cmd_abort;
1364 /* Fall through */
1365 }
1366 case MMC_BLK_ECC_ERR:
1367 if (brq->data.blocks > 1) {
1368 /* Redo read one sector at a time */
1369 pr_warning("%s: retrying using single block read\n",
1370 req->rq_disk->disk_name);
1371 disable_multi = 1;
1372 break;
1373 }
1374 /*
1375 * After an error, we redo I/O one sector at a
1376 * time, so we only reach here after trying to
1377 * read a single sector.
1378 */
1379 spin_lock_irq(&md->lock);
1380 ret = __blk_end_request(req, -EIO,
1381 brq->data.blksz);
1382 spin_unlock_irq(&md->lock);
1383 if (!ret)
1384 goto start_new_req;
1385 break;
1386 case MMC_BLK_NOMEDIUM:
1387 goto cmd_abort;
1388 }
1389
1390 if (ret) {
1391 /*
1392 * In case of a incomplete request
1393 * prepare it again and resend.
1394 */
1395 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1396 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1397 }
1398 } while (ret);
1399
1400 return 1;
1401
1402 cmd_abort:
1403 spin_lock_irq(&md->lock);
1404 if (mmc_card_removed(card))
1405 req->cmd_flags |= REQ_QUIET;
1406 while (ret)
1407 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1408 spin_unlock_irq(&md->lock);
1409
1410 start_new_req:
1411 if (rqc) {
1412 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1413 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1414 }
1415
1416 return 0;
1417 }
1418
1419 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1420 {
1421 int ret;
1422 struct mmc_blk_data *md = mq->data;
1423 struct mmc_card *card = md->queue.card;
1424
1425 if (req && !mq->mqrq_prev->req)
1426 /* claim host only for the first request */
1427 mmc_claim_host(card->host);
1428
1429 ret = mmc_blk_part_switch(card, md);
1430 if (ret) {
1431 if (req) {
1432 spin_lock_irq(&md->lock);
1433 __blk_end_request_all(req, -EIO);
1434 spin_unlock_irq(&md->lock);
1435 }
1436 ret = 0;
1437 goto out;
1438 }
1439
1440 if (req && req->cmd_flags & REQ_DISCARD) {
1441 /* complete ongoing async transfer before issuing discard */
1442 if (card->host->areq)
1443 mmc_blk_issue_rw_rq(mq, NULL);
1444 if (req->cmd_flags & REQ_SECURE)
1445 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1446 else
1447 ret = mmc_blk_issue_discard_rq(mq, req);
1448 } else if (req && req->cmd_flags & REQ_FLUSH) {
1449 /* complete ongoing async transfer before issuing flush */
1450 if (card->host->areq)
1451 mmc_blk_issue_rw_rq(mq, NULL);
1452 ret = mmc_blk_issue_flush(mq, req);
1453 } else {
1454 ret = mmc_blk_issue_rw_rq(mq, req);
1455 }
1456
1457 out:
1458 if (!req)
1459 /* release host only when there are no more requests */
1460 mmc_release_host(card->host);
1461 return ret;
1462 }
1463
1464 static inline int mmc_blk_readonly(struct mmc_card *card)
1465 {
1466 return mmc_card_readonly(card) ||
1467 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1468 }
1469
1470 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1471 struct device *parent,
1472 sector_t size,
1473 bool default_ro,
1474 const char *subname,
1475 int area_type)
1476 {
1477 struct mmc_blk_data *md;
1478 int devidx, ret;
1479
1480 devidx = find_first_zero_bit(dev_use, max_devices);
1481 if (devidx >= max_devices)
1482 return ERR_PTR(-ENOSPC);
1483 __set_bit(devidx, dev_use);
1484
1485 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1486 if (!md) {
1487 ret = -ENOMEM;
1488 goto out;
1489 }
1490
1491 /*
1492 * !subname implies we are creating main mmc_blk_data that will be
1493 * associated with mmc_card with mmc_set_drvdata. Due to device
1494 * partitions, devidx will not coincide with a per-physical card
1495 * index anymore so we keep track of a name index.
1496 */
1497 if (!subname) {
1498 md->name_idx = find_first_zero_bit(name_use, max_devices);
1499 __set_bit(md->name_idx, name_use);
1500 } else
1501 md->name_idx = ((struct mmc_blk_data *)
1502 dev_to_disk(parent)->private_data)->name_idx;
1503
1504 md->area_type = area_type;
1505
1506 /*
1507 * Set the read-only status based on the supported commands
1508 * and the write protect switch.
1509 */
1510 md->read_only = mmc_blk_readonly(card);
1511
1512 md->disk = alloc_disk(perdev_minors);
1513 if (md->disk == NULL) {
1514 ret = -ENOMEM;
1515 goto err_kfree;
1516 }
1517
1518 spin_lock_init(&md->lock);
1519 INIT_LIST_HEAD(&md->part);
1520 md->usage = 1;
1521
1522 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1523 if (ret)
1524 goto err_putdisk;
1525
1526 md->queue.issue_fn = mmc_blk_issue_rq;
1527 md->queue.data = md;
1528
1529 md->disk->major = MMC_BLOCK_MAJOR;
1530 md->disk->first_minor = devidx * perdev_minors;
1531 md->disk->fops = &mmc_bdops;
1532 md->disk->private_data = md;
1533 md->disk->queue = md->queue.queue;
1534 md->disk->driverfs_dev = parent;
1535 set_disk_ro(md->disk, md->read_only || default_ro);
1536
1537 /*
1538 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1539 *
1540 * - be set for removable media with permanent block devices
1541 * - be unset for removable block devices with permanent media
1542 *
1543 * Since MMC block devices clearly fall under the second
1544 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1545 * should use the block device creation/destruction hotplug
1546 * messages to tell when the card is present.
1547 */
1548
1549 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1550 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1551
1552 if (mmc_card_mmc(card))
1553 blk_queue_logical_block_size(md->queue.queue,
1554 card->ext_csd.data_sector_size);
1555 else
1556 blk_queue_logical_block_size(md->queue.queue, 512);
1557
1558 set_capacity(md->disk, size);
1559
1560 if (mmc_host_cmd23(card->host)) {
1561 if (mmc_card_mmc(card) ||
1562 (mmc_card_sd(card) &&
1563 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1564 md->flags |= MMC_BLK_CMD23;
1565 }
1566
1567 if (mmc_card_mmc(card) &&
1568 md->flags & MMC_BLK_CMD23 &&
1569 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1570 card->ext_csd.rel_sectors)) {
1571 md->flags |= MMC_BLK_REL_WR;
1572 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1573 }
1574
1575 return md;
1576
1577 err_putdisk:
1578 put_disk(md->disk);
1579 err_kfree:
1580 kfree(md);
1581 out:
1582 return ERR_PTR(ret);
1583 }
1584
1585 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1586 {
1587 sector_t size;
1588 struct mmc_blk_data *md;
1589
1590 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1591 /*
1592 * The EXT_CSD sector count is in number or 512 byte
1593 * sectors.
1594 */
1595 size = card->ext_csd.sectors;
1596 } else {
1597 /*
1598 * The CSD capacity field is in units of read_blkbits.
1599 * set_capacity takes units of 512 bytes.
1600 */
1601 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1602 }
1603
1604 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1605 MMC_BLK_DATA_AREA_MAIN);
1606 return md;
1607 }
1608
1609 static int mmc_blk_alloc_part(struct mmc_card *card,
1610 struct mmc_blk_data *md,
1611 unsigned int part_type,
1612 sector_t size,
1613 bool default_ro,
1614 const char *subname,
1615 int area_type)
1616 {
1617 char cap_str[10];
1618 struct mmc_blk_data *part_md;
1619
1620 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1621 subname, area_type);
1622 if (IS_ERR(part_md))
1623 return PTR_ERR(part_md);
1624 part_md->part_type = part_type;
1625 list_add(&part_md->part, &md->part);
1626
1627 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1628 cap_str, sizeof(cap_str));
1629 pr_info("%s: %s %s partition %u %s\n",
1630 part_md->disk->disk_name, mmc_card_id(card),
1631 mmc_card_name(card), part_md->part_type, cap_str);
1632 return 0;
1633 }
1634
1635 /* MMC Physical partitions consist of two boot partitions and
1636 * up to four general purpose partitions.
1637 * For each partition enabled in EXT_CSD a block device will be allocatedi
1638 * to provide access to the partition.
1639 */
1640
1641 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1642 {
1643 int idx, ret = 0;
1644
1645 if (!mmc_card_mmc(card))
1646 return 0;
1647
1648 for (idx = 0; idx < card->nr_parts; idx++) {
1649 if (card->part[idx].size) {
1650 ret = mmc_blk_alloc_part(card, md,
1651 card->part[idx].part_cfg,
1652 card->part[idx].size >> 9,
1653 card->part[idx].force_ro,
1654 card->part[idx].name,
1655 card->part[idx].area_type);
1656 if (ret)
1657 return ret;
1658 }
1659 }
1660
1661 return ret;
1662 }
1663
1664 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1665 {
1666 struct mmc_card *card;
1667
1668 if (md) {
1669 card = md->queue.card;
1670 if (md->disk->flags & GENHD_FL_UP) {
1671 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1672 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1673 card->ext_csd.boot_ro_lockable)
1674 device_remove_file(disk_to_dev(md->disk),
1675 &md->power_ro_lock);
1676
1677 /* Stop new requests from getting into the queue */
1678 del_gendisk(md->disk);
1679 }
1680
1681 /* Then flush out any already in there */
1682 mmc_cleanup_queue(&md->queue);
1683 mmc_blk_put(md);
1684 }
1685 }
1686
1687 static void mmc_blk_remove_parts(struct mmc_card *card,
1688 struct mmc_blk_data *md)
1689 {
1690 struct list_head *pos, *q;
1691 struct mmc_blk_data *part_md;
1692
1693 __clear_bit(md->name_idx, name_use);
1694 list_for_each_safe(pos, q, &md->part) {
1695 part_md = list_entry(pos, struct mmc_blk_data, part);
1696 list_del(pos);
1697 mmc_blk_remove_req(part_md);
1698 }
1699 }
1700
1701 static int mmc_add_disk(struct mmc_blk_data *md)
1702 {
1703 int ret;
1704 struct mmc_card *card = md->queue.card;
1705
1706 add_disk(md->disk);
1707 md->force_ro.show = force_ro_show;
1708 md->force_ro.store = force_ro_store;
1709 sysfs_attr_init(&md->force_ro.attr);
1710 md->force_ro.attr.name = "force_ro";
1711 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1712 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1713 if (ret)
1714 goto force_ro_fail;
1715
1716 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1717 card->ext_csd.boot_ro_lockable) {
1718 umode_t mode;
1719
1720 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1721 mode = S_IRUGO;
1722 else
1723 mode = S_IRUGO | S_IWUSR;
1724
1725 md->power_ro_lock.show = power_ro_lock_show;
1726 md->power_ro_lock.store = power_ro_lock_store;
1727 sysfs_attr_init(&md->power_ro_lock.attr);
1728 md->power_ro_lock.attr.mode = mode;
1729 md->power_ro_lock.attr.name =
1730 "ro_lock_until_next_power_on";
1731 ret = device_create_file(disk_to_dev(md->disk),
1732 &md->power_ro_lock);
1733 if (ret)
1734 goto power_ro_lock_fail;
1735 }
1736 return ret;
1737
1738 power_ro_lock_fail:
1739 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1740 force_ro_fail:
1741 del_gendisk(md->disk);
1742
1743 return ret;
1744 }
1745
1746 #define CID_MANFID_SANDISK 0x2
1747 #define CID_MANFID_TOSHIBA 0x11
1748 #define CID_MANFID_MICRON 0x13
1749
1750 static const struct mmc_fixup blk_fixups[] =
1751 {
1752 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1753 MMC_QUIRK_INAND_CMD38),
1754 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1755 MMC_QUIRK_INAND_CMD38),
1756 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1757 MMC_QUIRK_INAND_CMD38),
1758 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1759 MMC_QUIRK_INAND_CMD38),
1760 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1761 MMC_QUIRK_INAND_CMD38),
1762
1763 /*
1764 * Some MMC cards experience performance degradation with CMD23
1765 * instead of CMD12-bounded multiblock transfers. For now we'll
1766 * black list what's bad...
1767 * - Certain Toshiba cards.
1768 *
1769 * N.B. This doesn't affect SD cards.
1770 */
1771 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1772 MMC_QUIRK_BLK_NO_CMD23),
1773 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1774 MMC_QUIRK_BLK_NO_CMD23),
1775 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1776 MMC_QUIRK_BLK_NO_CMD23),
1777
1778 /*
1779 * Some Micron MMC cards needs longer data read timeout than
1780 * indicated in CSD.
1781 */
1782 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1783 MMC_QUIRK_LONG_READ_TIME),
1784
1785 END_FIXUP
1786 };
1787
1788 static int mmc_blk_probe(struct mmc_card *card)
1789 {
1790 struct mmc_blk_data *md, *part_md;
1791 char cap_str[10];
1792
1793 /*
1794 * Check that the card supports the command class(es) we need.
1795 */
1796 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1797 return -ENODEV;
1798
1799 md = mmc_blk_alloc(card);
1800 if (IS_ERR(md))
1801 return PTR_ERR(md);
1802
1803 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1804 cap_str, sizeof(cap_str));
1805 pr_info("%s: %s %s %s %s\n",
1806 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1807 cap_str, md->read_only ? "(ro)" : "");
1808
1809 if (mmc_blk_alloc_parts(card, md))
1810 goto out;
1811
1812 mmc_set_drvdata(card, md);
1813 mmc_fixup_device(card, blk_fixups);
1814
1815 if (mmc_add_disk(md))
1816 goto out;
1817
1818 list_for_each_entry(part_md, &md->part, part) {
1819 if (mmc_add_disk(part_md))
1820 goto out;
1821 }
1822 return 0;
1823
1824 out:
1825 mmc_blk_remove_parts(card, md);
1826 mmc_blk_remove_req(md);
1827 return 0;
1828 }
1829
1830 static void mmc_blk_remove(struct mmc_card *card)
1831 {
1832 struct mmc_blk_data *md = mmc_get_drvdata(card);
1833
1834 mmc_blk_remove_parts(card, md);
1835 mmc_claim_host(card->host);
1836 mmc_blk_part_switch(card, md);
1837 mmc_release_host(card->host);
1838 mmc_blk_remove_req(md);
1839 mmc_set_drvdata(card, NULL);
1840 }
1841
1842 #ifdef CONFIG_PM
1843 static int mmc_blk_suspend(struct mmc_card *card)
1844 {
1845 struct mmc_blk_data *part_md;
1846 struct mmc_blk_data *md = mmc_get_drvdata(card);
1847
1848 if (md) {
1849 mmc_queue_suspend(&md->queue);
1850 list_for_each_entry(part_md, &md->part, part) {
1851 mmc_queue_suspend(&part_md->queue);
1852 }
1853 }
1854 return 0;
1855 }
1856
1857 static int mmc_blk_resume(struct mmc_card *card)
1858 {
1859 struct mmc_blk_data *part_md;
1860 struct mmc_blk_data *md = mmc_get_drvdata(card);
1861
1862 if (md) {
1863 /*
1864 * Resume involves the card going into idle state,
1865 * so current partition is always the main one.
1866 */
1867 md->part_curr = md->part_type;
1868 mmc_queue_resume(&md->queue);
1869 list_for_each_entry(part_md, &md->part, part) {
1870 mmc_queue_resume(&part_md->queue);
1871 }
1872 }
1873 return 0;
1874 }
1875 #else
1876 #define mmc_blk_suspend NULL
1877 #define mmc_blk_resume NULL
1878 #endif
1879
1880 static struct mmc_driver mmc_driver = {
1881 .drv = {
1882 .name = "mmcblk",
1883 },
1884 .probe = mmc_blk_probe,
1885 .remove = mmc_blk_remove,
1886 .suspend = mmc_blk_suspend,
1887 .resume = mmc_blk_resume,
1888 };
1889
1890 static int __init mmc_blk_init(void)
1891 {
1892 int res;
1893
1894 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1895 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1896
1897 max_devices = 256 / perdev_minors;
1898
1899 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1900 if (res)
1901 goto out;
1902
1903 res = mmc_register_driver(&mmc_driver);
1904 if (res)
1905 goto out2;
1906
1907 return 0;
1908 out2:
1909 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1910 out:
1911 return res;
1912 }
1913
1914 static void __exit mmc_blk_exit(void)
1915 {
1916 mmc_unregister_driver(&mmc_driver);
1917 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1918 }
1919
1920 module_init(mmc_blk_init);
1921 module_exit(mmc_blk_exit);
1922
1923 MODULE_LICENSE("GPL");
1924 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1925