]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/card/block.c
Merge tag 'pci-v3.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
44
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
54
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
64
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * currently limited by the size of the static bitmaps below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 /* TODO: Replace these with struct ida */
89 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
90 static DECLARE_BITMAP(name_use, MAX_DEVICES);
91
92 /*
93 * There is one mmc_blk_data per slot.
94 */
95 struct mmc_blk_data {
96 spinlock_t lock;
97 struct gendisk *disk;
98 struct mmc_queue queue;
99 struct list_head part;
100
101 unsigned int flags;
102 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
103 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
104 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
105
106 unsigned int usage;
107 unsigned int read_only;
108 unsigned int part_type;
109 unsigned int name_idx;
110 unsigned int reset_done;
111 #define MMC_BLK_READ BIT(0)
112 #define MMC_BLK_WRITE BIT(1)
113 #define MMC_BLK_DISCARD BIT(2)
114 #define MMC_BLK_SECDISCARD BIT(3)
115
116 /*
117 * Only set in main mmc_blk_data associated
118 * with mmc_card with dev_set_drvdata, and keeps
119 * track of the current selected device partition.
120 */
121 unsigned int part_curr;
122 struct device_attribute force_ro;
123 struct device_attribute power_ro_lock;
124 int area_type;
125 };
126
127 static DEFINE_MUTEX(open_lock);
128
129 enum {
130 MMC_PACKED_NR_IDX = -1,
131 MMC_PACKED_NR_ZERO,
132 MMC_PACKED_NR_SINGLE,
133 };
134
135 module_param(perdev_minors, int, 0444);
136 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
137
138 static inline int mmc_blk_part_switch(struct mmc_card *card,
139 struct mmc_blk_data *md);
140 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
141
142 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
143 {
144 struct mmc_packed *packed = mqrq->packed;
145
146 BUG_ON(!packed);
147
148 mqrq->cmd_type = MMC_PACKED_NONE;
149 packed->nr_entries = MMC_PACKED_NR_ZERO;
150 packed->idx_failure = MMC_PACKED_NR_IDX;
151 packed->retries = 0;
152 packed->blocks = 0;
153 }
154
155 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
156 {
157 struct mmc_blk_data *md;
158
159 mutex_lock(&open_lock);
160 md = disk->private_data;
161 if (md && md->usage == 0)
162 md = NULL;
163 if (md)
164 md->usage++;
165 mutex_unlock(&open_lock);
166
167 return md;
168 }
169
170 static inline int mmc_get_devidx(struct gendisk *disk)
171 {
172 int devmaj = MAJOR(disk_devt(disk));
173 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
174
175 if (!devmaj)
176 devidx = disk->first_minor / perdev_minors;
177 return devidx;
178 }
179
180 static void mmc_blk_put(struct mmc_blk_data *md)
181 {
182 mutex_lock(&open_lock);
183 md->usage--;
184 if (md->usage == 0) {
185 int devidx = mmc_get_devidx(md->disk);
186 blk_cleanup_queue(md->queue.queue);
187
188 __clear_bit(devidx, dev_use);
189
190 put_disk(md->disk);
191 kfree(md);
192 }
193 mutex_unlock(&open_lock);
194 }
195
196 static ssize_t power_ro_lock_show(struct device *dev,
197 struct device_attribute *attr, char *buf)
198 {
199 int ret;
200 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
201 struct mmc_card *card = md->queue.card;
202 int locked = 0;
203
204 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
205 locked = 2;
206 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
207 locked = 1;
208
209 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
210
211 return ret;
212 }
213
214 static ssize_t power_ro_lock_store(struct device *dev,
215 struct device_attribute *attr, const char *buf, size_t count)
216 {
217 int ret;
218 struct mmc_blk_data *md, *part_md;
219 struct mmc_card *card;
220 unsigned long set;
221
222 if (kstrtoul(buf, 0, &set))
223 return -EINVAL;
224
225 if (set != 1)
226 return count;
227
228 md = mmc_blk_get(dev_to_disk(dev));
229 card = md->queue.card;
230
231 mmc_get_card(card);
232
233 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
234 card->ext_csd.boot_ro_lock |
235 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
236 card->ext_csd.part_time);
237 if (ret)
238 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
239 else
240 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
241
242 mmc_put_card(card);
243
244 if (!ret) {
245 pr_info("%s: Locking boot partition ro until next power on\n",
246 md->disk->disk_name);
247 set_disk_ro(md->disk, 1);
248
249 list_for_each_entry(part_md, &md->part, part)
250 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
251 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
252 set_disk_ro(part_md->disk, 1);
253 }
254 }
255
256 mmc_blk_put(md);
257 return count;
258 }
259
260 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
261 char *buf)
262 {
263 int ret;
264 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
265
266 ret = snprintf(buf, PAGE_SIZE, "%d\n",
267 get_disk_ro(dev_to_disk(dev)) ^
268 md->read_only);
269 mmc_blk_put(md);
270 return ret;
271 }
272
273 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
274 const char *buf, size_t count)
275 {
276 int ret;
277 char *end;
278 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
279 unsigned long set = simple_strtoul(buf, &end, 0);
280 if (end == buf) {
281 ret = -EINVAL;
282 goto out;
283 }
284
285 set_disk_ro(dev_to_disk(dev), set || md->read_only);
286 ret = count;
287 out:
288 mmc_blk_put(md);
289 return ret;
290 }
291
292 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
293 {
294 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
295 int ret = -ENXIO;
296
297 mutex_lock(&block_mutex);
298 if (md) {
299 if (md->usage == 2)
300 check_disk_change(bdev);
301 ret = 0;
302
303 if ((mode & FMODE_WRITE) && md->read_only) {
304 mmc_blk_put(md);
305 ret = -EROFS;
306 }
307 }
308 mutex_unlock(&block_mutex);
309
310 return ret;
311 }
312
313 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
314 {
315 struct mmc_blk_data *md = disk->private_data;
316
317 mutex_lock(&block_mutex);
318 mmc_blk_put(md);
319 mutex_unlock(&block_mutex);
320 }
321
322 static int
323 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
324 {
325 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
326 geo->heads = 4;
327 geo->sectors = 16;
328 return 0;
329 }
330
331 struct mmc_blk_ioc_data {
332 struct mmc_ioc_cmd ic;
333 unsigned char *buf;
334 u64 buf_bytes;
335 };
336
337 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
338 struct mmc_ioc_cmd __user *user)
339 {
340 struct mmc_blk_ioc_data *idata;
341 int err;
342
343 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
344 if (!idata) {
345 err = -ENOMEM;
346 goto out;
347 }
348
349 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
350 err = -EFAULT;
351 goto idata_err;
352 }
353
354 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
355 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
356 err = -EOVERFLOW;
357 goto idata_err;
358 }
359
360 if (!idata->buf_bytes)
361 return idata;
362
363 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
364 if (!idata->buf) {
365 err = -ENOMEM;
366 goto idata_err;
367 }
368
369 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
370 idata->ic.data_ptr, idata->buf_bytes)) {
371 err = -EFAULT;
372 goto copy_err;
373 }
374
375 return idata;
376
377 copy_err:
378 kfree(idata->buf);
379 idata_err:
380 kfree(idata);
381 out:
382 return ERR_PTR(err);
383 }
384
385 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
386 u32 retries_max)
387 {
388 int err;
389 u32 retry_count = 0;
390
391 if (!status || !retries_max)
392 return -EINVAL;
393
394 do {
395 err = get_card_status(card, status, 5);
396 if (err)
397 break;
398
399 if (!R1_STATUS(*status) &&
400 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
401 break; /* RPMB programming operation complete */
402
403 /*
404 * Rechedule to give the MMC device a chance to continue
405 * processing the previous command without being polled too
406 * frequently.
407 */
408 usleep_range(1000, 5000);
409 } while (++retry_count < retries_max);
410
411 if (retry_count == retries_max)
412 err = -EPERM;
413
414 return err;
415 }
416
417 static int ioctl_do_sanitize(struct mmc_card *card)
418 {
419 int err;
420
421 if (!mmc_can_sanitize(card)) {
422 pr_warn("%s: %s - SANITIZE is not supported\n",
423 mmc_hostname(card->host), __func__);
424 err = -EOPNOTSUPP;
425 goto out;
426 }
427
428 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
429 mmc_hostname(card->host), __func__);
430
431 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
432 EXT_CSD_SANITIZE_START, 1,
433 MMC_SANITIZE_REQ_TIMEOUT);
434
435 if (err)
436 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
437 mmc_hostname(card->host), __func__, err);
438
439 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
440 __func__);
441 out:
442 return err;
443 }
444
445 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
446 struct mmc_ioc_cmd __user *ic_ptr)
447 {
448 struct mmc_blk_ioc_data *idata;
449 struct mmc_blk_data *md;
450 struct mmc_card *card;
451 struct mmc_command cmd = {0};
452 struct mmc_data data = {0};
453 struct mmc_request mrq = {NULL};
454 struct scatterlist sg;
455 int err;
456 int is_rpmb = false;
457 u32 status = 0;
458
459 /*
460 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
461 * whole block device, not on a partition. This prevents overspray
462 * between sibling partitions.
463 */
464 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
465 return -EPERM;
466
467 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
468 if (IS_ERR(idata))
469 return PTR_ERR(idata);
470
471 md = mmc_blk_get(bdev->bd_disk);
472 if (!md) {
473 err = -EINVAL;
474 goto cmd_err;
475 }
476
477 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
478 is_rpmb = true;
479
480 card = md->queue.card;
481 if (IS_ERR(card)) {
482 err = PTR_ERR(card);
483 goto cmd_done;
484 }
485
486 cmd.opcode = idata->ic.opcode;
487 cmd.arg = idata->ic.arg;
488 cmd.flags = idata->ic.flags;
489
490 if (idata->buf_bytes) {
491 data.sg = &sg;
492 data.sg_len = 1;
493 data.blksz = idata->ic.blksz;
494 data.blocks = idata->ic.blocks;
495
496 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
497
498 if (idata->ic.write_flag)
499 data.flags = MMC_DATA_WRITE;
500 else
501 data.flags = MMC_DATA_READ;
502
503 /* data.flags must already be set before doing this. */
504 mmc_set_data_timeout(&data, card);
505
506 /* Allow overriding the timeout_ns for empirical tuning. */
507 if (idata->ic.data_timeout_ns)
508 data.timeout_ns = idata->ic.data_timeout_ns;
509
510 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
511 /*
512 * Pretend this is a data transfer and rely on the
513 * host driver to compute timeout. When all host
514 * drivers support cmd.cmd_timeout for R1B, this
515 * can be changed to:
516 *
517 * mrq.data = NULL;
518 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
519 */
520 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
521 }
522
523 mrq.data = &data;
524 }
525
526 mrq.cmd = &cmd;
527
528 mmc_get_card(card);
529
530 err = mmc_blk_part_switch(card, md);
531 if (err)
532 goto cmd_rel_host;
533
534 if (idata->ic.is_acmd) {
535 err = mmc_app_cmd(card->host, card);
536 if (err)
537 goto cmd_rel_host;
538 }
539
540 if (is_rpmb) {
541 err = mmc_set_blockcount(card, data.blocks,
542 idata->ic.write_flag & (1 << 31));
543 if (err)
544 goto cmd_rel_host;
545 }
546
547 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
548 (cmd.opcode == MMC_SWITCH)) {
549 err = ioctl_do_sanitize(card);
550
551 if (err)
552 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
553 __func__, err);
554
555 goto cmd_rel_host;
556 }
557
558 mmc_wait_for_req(card->host, &mrq);
559
560 if (cmd.error) {
561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 __func__, cmd.error);
563 err = cmd.error;
564 goto cmd_rel_host;
565 }
566 if (data.error) {
567 dev_err(mmc_dev(card->host), "%s: data error %d\n",
568 __func__, data.error);
569 err = data.error;
570 goto cmd_rel_host;
571 }
572
573 /*
574 * According to the SD specs, some commands require a delay after
575 * issuing the command.
576 */
577 if (idata->ic.postsleep_min_us)
578 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
579
580 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
581 err = -EFAULT;
582 goto cmd_rel_host;
583 }
584
585 if (!idata->ic.write_flag) {
586 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
587 idata->buf, idata->buf_bytes)) {
588 err = -EFAULT;
589 goto cmd_rel_host;
590 }
591 }
592
593 if (is_rpmb) {
594 /*
595 * Ensure RPMB command has completed by polling CMD13
596 * "Send Status".
597 */
598 err = ioctl_rpmb_card_status_poll(card, &status, 5);
599 if (err)
600 dev_err(mmc_dev(card->host),
601 "%s: Card Status=0x%08X, error %d\n",
602 __func__, status, err);
603 }
604
605 cmd_rel_host:
606 mmc_put_card(card);
607
608 cmd_done:
609 mmc_blk_put(md);
610 cmd_err:
611 kfree(idata->buf);
612 kfree(idata);
613 return err;
614 }
615
616 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
617 unsigned int cmd, unsigned long arg)
618 {
619 int ret = -EINVAL;
620 if (cmd == MMC_IOC_CMD)
621 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
622 return ret;
623 }
624
625 #ifdef CONFIG_COMPAT
626 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
627 unsigned int cmd, unsigned long arg)
628 {
629 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
630 }
631 #endif
632
633 static const struct block_device_operations mmc_bdops = {
634 .open = mmc_blk_open,
635 .release = mmc_blk_release,
636 .getgeo = mmc_blk_getgeo,
637 .owner = THIS_MODULE,
638 .ioctl = mmc_blk_ioctl,
639 #ifdef CONFIG_COMPAT
640 .compat_ioctl = mmc_blk_compat_ioctl,
641 #endif
642 };
643
644 static inline int mmc_blk_part_switch(struct mmc_card *card,
645 struct mmc_blk_data *md)
646 {
647 int ret;
648 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
649
650 if (main_md->part_curr == md->part_type)
651 return 0;
652
653 if (mmc_card_mmc(card)) {
654 u8 part_config = card->ext_csd.part_config;
655
656 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
657 part_config |= md->part_type;
658
659 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
660 EXT_CSD_PART_CONFIG, part_config,
661 card->ext_csd.part_time);
662 if (ret)
663 return ret;
664
665 card->ext_csd.part_config = part_config;
666 }
667
668 main_md->part_curr = md->part_type;
669 return 0;
670 }
671
672 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
673 {
674 int err;
675 u32 result;
676 __be32 *blocks;
677
678 struct mmc_request mrq = {NULL};
679 struct mmc_command cmd = {0};
680 struct mmc_data data = {0};
681
682 struct scatterlist sg;
683
684 cmd.opcode = MMC_APP_CMD;
685 cmd.arg = card->rca << 16;
686 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
687
688 err = mmc_wait_for_cmd(card->host, &cmd, 0);
689 if (err)
690 return (u32)-1;
691 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
692 return (u32)-1;
693
694 memset(&cmd, 0, sizeof(struct mmc_command));
695
696 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
697 cmd.arg = 0;
698 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
699
700 data.blksz = 4;
701 data.blocks = 1;
702 data.flags = MMC_DATA_READ;
703 data.sg = &sg;
704 data.sg_len = 1;
705 mmc_set_data_timeout(&data, card);
706
707 mrq.cmd = &cmd;
708 mrq.data = &data;
709
710 blocks = kmalloc(4, GFP_KERNEL);
711 if (!blocks)
712 return (u32)-1;
713
714 sg_init_one(&sg, blocks, 4);
715
716 mmc_wait_for_req(card->host, &mrq);
717
718 result = ntohl(*blocks);
719 kfree(blocks);
720
721 if (cmd.error || data.error)
722 result = (u32)-1;
723
724 return result;
725 }
726
727 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
728 {
729 struct mmc_command cmd = {0};
730 int err;
731
732 cmd.opcode = MMC_SEND_STATUS;
733 if (!mmc_host_is_spi(card->host))
734 cmd.arg = card->rca << 16;
735 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
736 err = mmc_wait_for_cmd(card->host, &cmd, retries);
737 if (err == 0)
738 *status = cmd.resp[0];
739 return err;
740 }
741
742 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
743 bool hw_busy_detect, struct request *req, int *gen_err)
744 {
745 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
746 int err = 0;
747 u32 status;
748
749 do {
750 err = get_card_status(card, &status, 5);
751 if (err) {
752 pr_err("%s: error %d requesting status\n",
753 req->rq_disk->disk_name, err);
754 return err;
755 }
756
757 if (status & R1_ERROR) {
758 pr_err("%s: %s: error sending status cmd, status %#x\n",
759 req->rq_disk->disk_name, __func__, status);
760 *gen_err = 1;
761 }
762
763 /* We may rely on the host hw to handle busy detection.*/
764 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
765 hw_busy_detect)
766 break;
767
768 /*
769 * Timeout if the device never becomes ready for data and never
770 * leaves the program state.
771 */
772 if (time_after(jiffies, timeout)) {
773 pr_err("%s: Card stuck in programming state! %s %s\n",
774 mmc_hostname(card->host),
775 req->rq_disk->disk_name, __func__);
776 return -ETIMEDOUT;
777 }
778
779 /*
780 * Some cards mishandle the status bits,
781 * so make sure to check both the busy
782 * indication and the card state.
783 */
784 } while (!(status & R1_READY_FOR_DATA) ||
785 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
786
787 return err;
788 }
789
790 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
791 struct request *req, int *gen_err, u32 *stop_status)
792 {
793 struct mmc_host *host = card->host;
794 struct mmc_command cmd = {0};
795 int err;
796 bool use_r1b_resp = rq_data_dir(req) == WRITE;
797
798 /*
799 * Normally we use R1B responses for WRITE, but in cases where the host
800 * has specified a max_busy_timeout we need to validate it. A failure
801 * means we need to prevent the host from doing hw busy detection, which
802 * is done by converting to a R1 response instead.
803 */
804 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
805 use_r1b_resp = false;
806
807 cmd.opcode = MMC_STOP_TRANSMISSION;
808 if (use_r1b_resp) {
809 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
810 cmd.busy_timeout = timeout_ms;
811 } else {
812 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
813 }
814
815 err = mmc_wait_for_cmd(host, &cmd, 5);
816 if (err)
817 return err;
818
819 *stop_status = cmd.resp[0];
820
821 /* No need to check card status in case of READ. */
822 if (rq_data_dir(req) == READ)
823 return 0;
824
825 if (!mmc_host_is_spi(host) &&
826 (*stop_status & R1_ERROR)) {
827 pr_err("%s: %s: general error sending stop command, resp %#x\n",
828 req->rq_disk->disk_name, __func__, *stop_status);
829 *gen_err = 1;
830 }
831
832 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
833 }
834
835 #define ERR_NOMEDIUM 3
836 #define ERR_RETRY 2
837 #define ERR_ABORT 1
838 #define ERR_CONTINUE 0
839
840 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
841 bool status_valid, u32 status)
842 {
843 switch (error) {
844 case -EILSEQ:
845 /* response crc error, retry the r/w cmd */
846 pr_err("%s: %s sending %s command, card status %#x\n",
847 req->rq_disk->disk_name, "response CRC error",
848 name, status);
849 return ERR_RETRY;
850
851 case -ETIMEDOUT:
852 pr_err("%s: %s sending %s command, card status %#x\n",
853 req->rq_disk->disk_name, "timed out", name, status);
854
855 /* If the status cmd initially failed, retry the r/w cmd */
856 if (!status_valid)
857 return ERR_RETRY;
858
859 /*
860 * If it was a r/w cmd crc error, or illegal command
861 * (eg, issued in wrong state) then retry - we should
862 * have corrected the state problem above.
863 */
864 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
865 return ERR_RETRY;
866
867 /* Otherwise abort the command */
868 return ERR_ABORT;
869
870 default:
871 /* We don't understand the error code the driver gave us */
872 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
873 req->rq_disk->disk_name, error, status);
874 return ERR_ABORT;
875 }
876 }
877
878 /*
879 * Initial r/w and stop cmd error recovery.
880 * We don't know whether the card received the r/w cmd or not, so try to
881 * restore things back to a sane state. Essentially, we do this as follows:
882 * - Obtain card status. If the first attempt to obtain card status fails,
883 * the status word will reflect the failed status cmd, not the failed
884 * r/w cmd. If we fail to obtain card status, it suggests we can no
885 * longer communicate with the card.
886 * - Check the card state. If the card received the cmd but there was a
887 * transient problem with the response, it might still be in a data transfer
888 * mode. Try to send it a stop command. If this fails, we can't recover.
889 * - If the r/w cmd failed due to a response CRC error, it was probably
890 * transient, so retry the cmd.
891 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
892 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
893 * illegal cmd, retry.
894 * Otherwise we don't understand what happened, so abort.
895 */
896 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
897 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
898 {
899 bool prev_cmd_status_valid = true;
900 u32 status, stop_status = 0;
901 int err, retry;
902
903 if (mmc_card_removed(card))
904 return ERR_NOMEDIUM;
905
906 /*
907 * Try to get card status which indicates both the card state
908 * and why there was no response. If the first attempt fails,
909 * we can't be sure the returned status is for the r/w command.
910 */
911 for (retry = 2; retry >= 0; retry--) {
912 err = get_card_status(card, &status, 0);
913 if (!err)
914 break;
915
916 prev_cmd_status_valid = false;
917 pr_err("%s: error %d sending status command, %sing\n",
918 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
919 }
920
921 /* We couldn't get a response from the card. Give up. */
922 if (err) {
923 /* Check if the card is removed */
924 if (mmc_detect_card_removed(card->host))
925 return ERR_NOMEDIUM;
926 return ERR_ABORT;
927 }
928
929 /* Flag ECC errors */
930 if ((status & R1_CARD_ECC_FAILED) ||
931 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
932 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
933 *ecc_err = 1;
934
935 /* Flag General errors */
936 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
937 if ((status & R1_ERROR) ||
938 (brq->stop.resp[0] & R1_ERROR)) {
939 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
940 req->rq_disk->disk_name, __func__,
941 brq->stop.resp[0], status);
942 *gen_err = 1;
943 }
944
945 /*
946 * Check the current card state. If it is in some data transfer
947 * mode, tell it to stop (and hopefully transition back to TRAN.)
948 */
949 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
950 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
951 err = send_stop(card,
952 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
953 req, gen_err, &stop_status);
954 if (err) {
955 pr_err("%s: error %d sending stop command\n",
956 req->rq_disk->disk_name, err);
957 /*
958 * If the stop cmd also timed out, the card is probably
959 * not present, so abort. Other errors are bad news too.
960 */
961 return ERR_ABORT;
962 }
963
964 if (stop_status & R1_CARD_ECC_FAILED)
965 *ecc_err = 1;
966 }
967
968 /* Check for set block count errors */
969 if (brq->sbc.error)
970 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
971 prev_cmd_status_valid, status);
972
973 /* Check for r/w command errors */
974 if (brq->cmd.error)
975 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
976 prev_cmd_status_valid, status);
977
978 /* Data errors */
979 if (!brq->stop.error)
980 return ERR_CONTINUE;
981
982 /* Now for stop errors. These aren't fatal to the transfer. */
983 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
984 req->rq_disk->disk_name, brq->stop.error,
985 brq->cmd.resp[0], status);
986
987 /*
988 * Subsitute in our own stop status as this will give the error
989 * state which happened during the execution of the r/w command.
990 */
991 if (stop_status) {
992 brq->stop.resp[0] = stop_status;
993 brq->stop.error = 0;
994 }
995 return ERR_CONTINUE;
996 }
997
998 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
999 int type)
1000 {
1001 int err;
1002
1003 if (md->reset_done & type)
1004 return -EEXIST;
1005
1006 md->reset_done |= type;
1007 err = mmc_hw_reset(host);
1008 /* Ensure we switch back to the correct partition */
1009 if (err != -EOPNOTSUPP) {
1010 struct mmc_blk_data *main_md =
1011 dev_get_drvdata(&host->card->dev);
1012 int part_err;
1013
1014 main_md->part_curr = main_md->part_type;
1015 part_err = mmc_blk_part_switch(host->card, md);
1016 if (part_err) {
1017 /*
1018 * We have failed to get back into the correct
1019 * partition, so we need to abort the whole request.
1020 */
1021 return -ENODEV;
1022 }
1023 }
1024 return err;
1025 }
1026
1027 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1028 {
1029 md->reset_done &= ~type;
1030 }
1031
1032 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1033 {
1034 struct mmc_blk_data *md = mq->data;
1035 struct mmc_card *card = md->queue.card;
1036 unsigned int from, nr, arg;
1037 int err = 0, type = MMC_BLK_DISCARD;
1038
1039 if (!mmc_can_erase(card)) {
1040 err = -EOPNOTSUPP;
1041 goto out;
1042 }
1043
1044 from = blk_rq_pos(req);
1045 nr = blk_rq_sectors(req);
1046
1047 if (mmc_can_discard(card))
1048 arg = MMC_DISCARD_ARG;
1049 else if (mmc_can_trim(card))
1050 arg = MMC_TRIM_ARG;
1051 else
1052 arg = MMC_ERASE_ARG;
1053 retry:
1054 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 INAND_CMD38_ARG_EXT_CSD,
1057 arg == MMC_TRIM_ARG ?
1058 INAND_CMD38_ARG_TRIM :
1059 INAND_CMD38_ARG_ERASE,
1060 0);
1061 if (err)
1062 goto out;
1063 }
1064 err = mmc_erase(card, from, nr, arg);
1065 out:
1066 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1067 goto retry;
1068 if (!err)
1069 mmc_blk_reset_success(md, type);
1070 blk_end_request(req, err, blk_rq_bytes(req));
1071
1072 return err ? 0 : 1;
1073 }
1074
1075 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1076 struct request *req)
1077 {
1078 struct mmc_blk_data *md = mq->data;
1079 struct mmc_card *card = md->queue.card;
1080 unsigned int from, nr, arg;
1081 int err = 0, type = MMC_BLK_SECDISCARD;
1082
1083 if (!(mmc_can_secure_erase_trim(card))) {
1084 err = -EOPNOTSUPP;
1085 goto out;
1086 }
1087
1088 from = blk_rq_pos(req);
1089 nr = blk_rq_sectors(req);
1090
1091 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1092 arg = MMC_SECURE_TRIM1_ARG;
1093 else
1094 arg = MMC_SECURE_ERASE_ARG;
1095
1096 retry:
1097 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1098 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1099 INAND_CMD38_ARG_EXT_CSD,
1100 arg == MMC_SECURE_TRIM1_ARG ?
1101 INAND_CMD38_ARG_SECTRIM1 :
1102 INAND_CMD38_ARG_SECERASE,
1103 0);
1104 if (err)
1105 goto out_retry;
1106 }
1107
1108 err = mmc_erase(card, from, nr, arg);
1109 if (err == -EIO)
1110 goto out_retry;
1111 if (err)
1112 goto out;
1113
1114 if (arg == MMC_SECURE_TRIM1_ARG) {
1115 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 INAND_CMD38_ARG_EXT_CSD,
1118 INAND_CMD38_ARG_SECTRIM2,
1119 0);
1120 if (err)
1121 goto out_retry;
1122 }
1123
1124 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1125 if (err == -EIO)
1126 goto out_retry;
1127 if (err)
1128 goto out;
1129 }
1130
1131 out_retry:
1132 if (err && !mmc_blk_reset(md, card->host, type))
1133 goto retry;
1134 if (!err)
1135 mmc_blk_reset_success(md, type);
1136 out:
1137 blk_end_request(req, err, blk_rq_bytes(req));
1138
1139 return err ? 0 : 1;
1140 }
1141
1142 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1143 {
1144 struct mmc_blk_data *md = mq->data;
1145 struct mmc_card *card = md->queue.card;
1146 int ret = 0;
1147
1148 ret = mmc_flush_cache(card);
1149 if (ret)
1150 ret = -EIO;
1151
1152 blk_end_request_all(req, ret);
1153
1154 return ret ? 0 : 1;
1155 }
1156
1157 /*
1158 * Reformat current write as a reliable write, supporting
1159 * both legacy and the enhanced reliable write MMC cards.
1160 * In each transfer we'll handle only as much as a single
1161 * reliable write can handle, thus finish the request in
1162 * partial completions.
1163 */
1164 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1165 struct mmc_card *card,
1166 struct request *req)
1167 {
1168 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1169 /* Legacy mode imposes restrictions on transfers. */
1170 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1171 brq->data.blocks = 1;
1172
1173 if (brq->data.blocks > card->ext_csd.rel_sectors)
1174 brq->data.blocks = card->ext_csd.rel_sectors;
1175 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1176 brq->data.blocks = 1;
1177 }
1178 }
1179
1180 #define CMD_ERRORS \
1181 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1182 R1_ADDRESS_ERROR | /* Misaligned address */ \
1183 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1184 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1185 R1_CC_ERROR | /* Card controller error */ \
1186 R1_ERROR) /* General/unknown error */
1187
1188 static int mmc_blk_err_check(struct mmc_card *card,
1189 struct mmc_async_req *areq)
1190 {
1191 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1192 mmc_active);
1193 struct mmc_blk_request *brq = &mq_mrq->brq;
1194 struct request *req = mq_mrq->req;
1195 int ecc_err = 0, gen_err = 0;
1196
1197 /*
1198 * sbc.error indicates a problem with the set block count
1199 * command. No data will have been transferred.
1200 *
1201 * cmd.error indicates a problem with the r/w command. No
1202 * data will have been transferred.
1203 *
1204 * stop.error indicates a problem with the stop command. Data
1205 * may have been transferred, or may still be transferring.
1206 */
1207 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1208 brq->data.error) {
1209 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1210 case ERR_RETRY:
1211 return MMC_BLK_RETRY;
1212 case ERR_ABORT:
1213 return MMC_BLK_ABORT;
1214 case ERR_NOMEDIUM:
1215 return MMC_BLK_NOMEDIUM;
1216 case ERR_CONTINUE:
1217 break;
1218 }
1219 }
1220
1221 /*
1222 * Check for errors relating to the execution of the
1223 * initial command - such as address errors. No data
1224 * has been transferred.
1225 */
1226 if (brq->cmd.resp[0] & CMD_ERRORS) {
1227 pr_err("%s: r/w command failed, status = %#x\n",
1228 req->rq_disk->disk_name, brq->cmd.resp[0]);
1229 return MMC_BLK_ABORT;
1230 }
1231
1232 /*
1233 * Everything else is either success, or a data error of some
1234 * kind. If it was a write, we may have transitioned to
1235 * program mode, which we have to wait for it to complete.
1236 */
1237 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1238 int err;
1239
1240 /* Check stop command response */
1241 if (brq->stop.resp[0] & R1_ERROR) {
1242 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1243 req->rq_disk->disk_name, __func__,
1244 brq->stop.resp[0]);
1245 gen_err = 1;
1246 }
1247
1248 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1249 &gen_err);
1250 if (err)
1251 return MMC_BLK_CMD_ERR;
1252 }
1253
1254 /* if general error occurs, retry the write operation. */
1255 if (gen_err) {
1256 pr_warn("%s: retrying write for general error\n",
1257 req->rq_disk->disk_name);
1258 return MMC_BLK_RETRY;
1259 }
1260
1261 if (brq->data.error) {
1262 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1263 req->rq_disk->disk_name, brq->data.error,
1264 (unsigned)blk_rq_pos(req),
1265 (unsigned)blk_rq_sectors(req),
1266 brq->cmd.resp[0], brq->stop.resp[0]);
1267
1268 if (rq_data_dir(req) == READ) {
1269 if (ecc_err)
1270 return MMC_BLK_ECC_ERR;
1271 return MMC_BLK_DATA_ERR;
1272 } else {
1273 return MMC_BLK_CMD_ERR;
1274 }
1275 }
1276
1277 if (!brq->data.bytes_xfered)
1278 return MMC_BLK_RETRY;
1279
1280 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1281 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1282 return MMC_BLK_PARTIAL;
1283 else
1284 return MMC_BLK_SUCCESS;
1285 }
1286
1287 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1288 return MMC_BLK_PARTIAL;
1289
1290 return MMC_BLK_SUCCESS;
1291 }
1292
1293 static int mmc_blk_packed_err_check(struct mmc_card *card,
1294 struct mmc_async_req *areq)
1295 {
1296 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1297 mmc_active);
1298 struct request *req = mq_rq->req;
1299 struct mmc_packed *packed = mq_rq->packed;
1300 int err, check, status;
1301 u8 *ext_csd;
1302
1303 BUG_ON(!packed);
1304
1305 packed->retries--;
1306 check = mmc_blk_err_check(card, areq);
1307 err = get_card_status(card, &status, 0);
1308 if (err) {
1309 pr_err("%s: error %d sending status command\n",
1310 req->rq_disk->disk_name, err);
1311 return MMC_BLK_ABORT;
1312 }
1313
1314 if (status & R1_EXCEPTION_EVENT) {
1315 err = mmc_get_ext_csd(card, &ext_csd);
1316 if (err) {
1317 pr_err("%s: error %d sending ext_csd\n",
1318 req->rq_disk->disk_name, err);
1319 return MMC_BLK_ABORT;
1320 }
1321
1322 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1323 EXT_CSD_PACKED_FAILURE) &&
1324 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1325 EXT_CSD_PACKED_GENERIC_ERROR)) {
1326 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1327 EXT_CSD_PACKED_INDEXED_ERROR) {
1328 packed->idx_failure =
1329 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1330 check = MMC_BLK_PARTIAL;
1331 }
1332 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1333 "failure index: %d\n",
1334 req->rq_disk->disk_name, packed->nr_entries,
1335 packed->blocks, packed->idx_failure);
1336 }
1337 kfree(ext_csd);
1338 }
1339
1340 return check;
1341 }
1342
1343 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1344 struct mmc_card *card,
1345 int disable_multi,
1346 struct mmc_queue *mq)
1347 {
1348 u32 readcmd, writecmd;
1349 struct mmc_blk_request *brq = &mqrq->brq;
1350 struct request *req = mqrq->req;
1351 struct mmc_blk_data *md = mq->data;
1352 bool do_data_tag;
1353
1354 /*
1355 * Reliable writes are used to implement Forced Unit Access and
1356 * REQ_META accesses, and are supported only on MMCs.
1357 *
1358 * XXX: this really needs a good explanation of why REQ_META
1359 * is treated special.
1360 */
1361 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1362 (req->cmd_flags & REQ_META)) &&
1363 (rq_data_dir(req) == WRITE) &&
1364 (md->flags & MMC_BLK_REL_WR);
1365
1366 memset(brq, 0, sizeof(struct mmc_blk_request));
1367 brq->mrq.cmd = &brq->cmd;
1368 brq->mrq.data = &brq->data;
1369
1370 brq->cmd.arg = blk_rq_pos(req);
1371 if (!mmc_card_blockaddr(card))
1372 brq->cmd.arg <<= 9;
1373 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1374 brq->data.blksz = 512;
1375 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1376 brq->stop.arg = 0;
1377 brq->data.blocks = blk_rq_sectors(req);
1378
1379 /*
1380 * The block layer doesn't support all sector count
1381 * restrictions, so we need to be prepared for too big
1382 * requests.
1383 */
1384 if (brq->data.blocks > card->host->max_blk_count)
1385 brq->data.blocks = card->host->max_blk_count;
1386
1387 if (brq->data.blocks > 1) {
1388 /*
1389 * After a read error, we redo the request one sector
1390 * at a time in order to accurately determine which
1391 * sectors can be read successfully.
1392 */
1393 if (disable_multi)
1394 brq->data.blocks = 1;
1395
1396 /*
1397 * Some controllers have HW issues while operating
1398 * in multiple I/O mode
1399 */
1400 if (card->host->ops->multi_io_quirk)
1401 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1402 (rq_data_dir(req) == READ) ?
1403 MMC_DATA_READ : MMC_DATA_WRITE,
1404 brq->data.blocks);
1405 }
1406
1407 if (brq->data.blocks > 1 || do_rel_wr) {
1408 /* SPI multiblock writes terminate using a special
1409 * token, not a STOP_TRANSMISSION request.
1410 */
1411 if (!mmc_host_is_spi(card->host) ||
1412 rq_data_dir(req) == READ)
1413 brq->mrq.stop = &brq->stop;
1414 readcmd = MMC_READ_MULTIPLE_BLOCK;
1415 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1416 } else {
1417 brq->mrq.stop = NULL;
1418 readcmd = MMC_READ_SINGLE_BLOCK;
1419 writecmd = MMC_WRITE_BLOCK;
1420 }
1421 if (rq_data_dir(req) == READ) {
1422 brq->cmd.opcode = readcmd;
1423 brq->data.flags |= MMC_DATA_READ;
1424 if (brq->mrq.stop)
1425 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1426 MMC_CMD_AC;
1427 } else {
1428 brq->cmd.opcode = writecmd;
1429 brq->data.flags |= MMC_DATA_WRITE;
1430 if (brq->mrq.stop)
1431 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1432 MMC_CMD_AC;
1433 }
1434
1435 if (do_rel_wr)
1436 mmc_apply_rel_rw(brq, card, req);
1437
1438 /*
1439 * Data tag is used only during writing meta data to speed
1440 * up write and any subsequent read of this meta data
1441 */
1442 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1443 (req->cmd_flags & REQ_META) &&
1444 (rq_data_dir(req) == WRITE) &&
1445 ((brq->data.blocks * brq->data.blksz) >=
1446 card->ext_csd.data_tag_unit_size);
1447
1448 /*
1449 * Pre-defined multi-block transfers are preferable to
1450 * open ended-ones (and necessary for reliable writes).
1451 * However, it is not sufficient to just send CMD23,
1452 * and avoid the final CMD12, as on an error condition
1453 * CMD12 (stop) needs to be sent anyway. This, coupled
1454 * with Auto-CMD23 enhancements provided by some
1455 * hosts, means that the complexity of dealing
1456 * with this is best left to the host. If CMD23 is
1457 * supported by card and host, we'll fill sbc in and let
1458 * the host deal with handling it correctly. This means
1459 * that for hosts that don't expose MMC_CAP_CMD23, no
1460 * change of behavior will be observed.
1461 *
1462 * N.B: Some MMC cards experience perf degradation.
1463 * We'll avoid using CMD23-bounded multiblock writes for
1464 * these, while retaining features like reliable writes.
1465 */
1466 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1467 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1468 do_data_tag)) {
1469 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1470 brq->sbc.arg = brq->data.blocks |
1471 (do_rel_wr ? (1 << 31) : 0) |
1472 (do_data_tag ? (1 << 29) : 0);
1473 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1474 brq->mrq.sbc = &brq->sbc;
1475 }
1476
1477 mmc_set_data_timeout(&brq->data, card);
1478
1479 brq->data.sg = mqrq->sg;
1480 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1481
1482 /*
1483 * Adjust the sg list so it is the same size as the
1484 * request.
1485 */
1486 if (brq->data.blocks != blk_rq_sectors(req)) {
1487 int i, data_size = brq->data.blocks << 9;
1488 struct scatterlist *sg;
1489
1490 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1491 data_size -= sg->length;
1492 if (data_size <= 0) {
1493 sg->length += data_size;
1494 i++;
1495 break;
1496 }
1497 }
1498 brq->data.sg_len = i;
1499 }
1500
1501 mqrq->mmc_active.mrq = &brq->mrq;
1502 mqrq->mmc_active.err_check = mmc_blk_err_check;
1503
1504 mmc_queue_bounce_pre(mqrq);
1505 }
1506
1507 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1508 struct mmc_card *card)
1509 {
1510 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1511 unsigned int max_seg_sz = queue_max_segment_size(q);
1512 unsigned int len, nr_segs = 0;
1513
1514 do {
1515 len = min(hdr_sz, max_seg_sz);
1516 hdr_sz -= len;
1517 nr_segs++;
1518 } while (hdr_sz);
1519
1520 return nr_segs;
1521 }
1522
1523 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1524 {
1525 struct request_queue *q = mq->queue;
1526 struct mmc_card *card = mq->card;
1527 struct request *cur = req, *next = NULL;
1528 struct mmc_blk_data *md = mq->data;
1529 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1530 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1531 unsigned int req_sectors = 0, phys_segments = 0;
1532 unsigned int max_blk_count, max_phys_segs;
1533 bool put_back = true;
1534 u8 max_packed_rw = 0;
1535 u8 reqs = 0;
1536
1537 if (!(md->flags & MMC_BLK_PACKED_CMD))
1538 goto no_packed;
1539
1540 if ((rq_data_dir(cur) == WRITE) &&
1541 mmc_host_packed_wr(card->host))
1542 max_packed_rw = card->ext_csd.max_packed_writes;
1543
1544 if (max_packed_rw == 0)
1545 goto no_packed;
1546
1547 if (mmc_req_rel_wr(cur) &&
1548 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1549 goto no_packed;
1550
1551 if (mmc_large_sector(card) &&
1552 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1553 goto no_packed;
1554
1555 mmc_blk_clear_packed(mqrq);
1556
1557 max_blk_count = min(card->host->max_blk_count,
1558 card->host->max_req_size >> 9);
1559 if (unlikely(max_blk_count > 0xffff))
1560 max_blk_count = 0xffff;
1561
1562 max_phys_segs = queue_max_segments(q);
1563 req_sectors += blk_rq_sectors(cur);
1564 phys_segments += cur->nr_phys_segments;
1565
1566 if (rq_data_dir(cur) == WRITE) {
1567 req_sectors += mmc_large_sector(card) ? 8 : 1;
1568 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1569 }
1570
1571 do {
1572 if (reqs >= max_packed_rw - 1) {
1573 put_back = false;
1574 break;
1575 }
1576
1577 spin_lock_irq(q->queue_lock);
1578 next = blk_fetch_request(q);
1579 spin_unlock_irq(q->queue_lock);
1580 if (!next) {
1581 put_back = false;
1582 break;
1583 }
1584
1585 if (mmc_large_sector(card) &&
1586 !IS_ALIGNED(blk_rq_sectors(next), 8))
1587 break;
1588
1589 if (next->cmd_flags & REQ_DISCARD ||
1590 next->cmd_flags & REQ_FLUSH)
1591 break;
1592
1593 if (rq_data_dir(cur) != rq_data_dir(next))
1594 break;
1595
1596 if (mmc_req_rel_wr(next) &&
1597 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1598 break;
1599
1600 req_sectors += blk_rq_sectors(next);
1601 if (req_sectors > max_blk_count)
1602 break;
1603
1604 phys_segments += next->nr_phys_segments;
1605 if (phys_segments > max_phys_segs)
1606 break;
1607
1608 list_add_tail(&next->queuelist, &mqrq->packed->list);
1609 cur = next;
1610 reqs++;
1611 } while (1);
1612
1613 if (put_back) {
1614 spin_lock_irq(q->queue_lock);
1615 blk_requeue_request(q, next);
1616 spin_unlock_irq(q->queue_lock);
1617 }
1618
1619 if (reqs > 0) {
1620 list_add(&req->queuelist, &mqrq->packed->list);
1621 mqrq->packed->nr_entries = ++reqs;
1622 mqrq->packed->retries = reqs;
1623 return reqs;
1624 }
1625
1626 no_packed:
1627 mqrq->cmd_type = MMC_PACKED_NONE;
1628 return 0;
1629 }
1630
1631 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1632 struct mmc_card *card,
1633 struct mmc_queue *mq)
1634 {
1635 struct mmc_blk_request *brq = &mqrq->brq;
1636 struct request *req = mqrq->req;
1637 struct request *prq;
1638 struct mmc_blk_data *md = mq->data;
1639 struct mmc_packed *packed = mqrq->packed;
1640 bool do_rel_wr, do_data_tag;
1641 u32 *packed_cmd_hdr;
1642 u8 hdr_blocks;
1643 u8 i = 1;
1644
1645 BUG_ON(!packed);
1646
1647 mqrq->cmd_type = MMC_PACKED_WRITE;
1648 packed->blocks = 0;
1649 packed->idx_failure = MMC_PACKED_NR_IDX;
1650
1651 packed_cmd_hdr = packed->cmd_hdr;
1652 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1653 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1654 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1655 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1656
1657 /*
1658 * Argument for each entry of packed group
1659 */
1660 list_for_each_entry(prq, &packed->list, queuelist) {
1661 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1662 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1663 (prq->cmd_flags & REQ_META) &&
1664 (rq_data_dir(prq) == WRITE) &&
1665 ((brq->data.blocks * brq->data.blksz) >=
1666 card->ext_csd.data_tag_unit_size);
1667 /* Argument of CMD23 */
1668 packed_cmd_hdr[(i * 2)] =
1669 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1670 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1671 blk_rq_sectors(prq);
1672 /* Argument of CMD18 or CMD25 */
1673 packed_cmd_hdr[((i * 2)) + 1] =
1674 mmc_card_blockaddr(card) ?
1675 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1676 packed->blocks += blk_rq_sectors(prq);
1677 i++;
1678 }
1679
1680 memset(brq, 0, sizeof(struct mmc_blk_request));
1681 brq->mrq.cmd = &brq->cmd;
1682 brq->mrq.data = &brq->data;
1683 brq->mrq.sbc = &brq->sbc;
1684 brq->mrq.stop = &brq->stop;
1685
1686 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1687 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1688 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1689
1690 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1691 brq->cmd.arg = blk_rq_pos(req);
1692 if (!mmc_card_blockaddr(card))
1693 brq->cmd.arg <<= 9;
1694 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1695
1696 brq->data.blksz = 512;
1697 brq->data.blocks = packed->blocks + hdr_blocks;
1698 brq->data.flags |= MMC_DATA_WRITE;
1699
1700 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1701 brq->stop.arg = 0;
1702 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1703
1704 mmc_set_data_timeout(&brq->data, card);
1705
1706 brq->data.sg = mqrq->sg;
1707 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1708
1709 mqrq->mmc_active.mrq = &brq->mrq;
1710 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1711
1712 mmc_queue_bounce_pre(mqrq);
1713 }
1714
1715 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1716 struct mmc_blk_request *brq, struct request *req,
1717 int ret)
1718 {
1719 struct mmc_queue_req *mq_rq;
1720 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1721
1722 /*
1723 * If this is an SD card and we're writing, we can first
1724 * mark the known good sectors as ok.
1725 *
1726 * If the card is not SD, we can still ok written sectors
1727 * as reported by the controller (which might be less than
1728 * the real number of written sectors, but never more).
1729 */
1730 if (mmc_card_sd(card)) {
1731 u32 blocks;
1732
1733 blocks = mmc_sd_num_wr_blocks(card);
1734 if (blocks != (u32)-1) {
1735 ret = blk_end_request(req, 0, blocks << 9);
1736 }
1737 } else {
1738 if (!mmc_packed_cmd(mq_rq->cmd_type))
1739 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1740 }
1741 return ret;
1742 }
1743
1744 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1745 {
1746 struct request *prq;
1747 struct mmc_packed *packed = mq_rq->packed;
1748 int idx = packed->idx_failure, i = 0;
1749 int ret = 0;
1750
1751 BUG_ON(!packed);
1752
1753 while (!list_empty(&packed->list)) {
1754 prq = list_entry_rq(packed->list.next);
1755 if (idx == i) {
1756 /* retry from error index */
1757 packed->nr_entries -= idx;
1758 mq_rq->req = prq;
1759 ret = 1;
1760
1761 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1762 list_del_init(&prq->queuelist);
1763 mmc_blk_clear_packed(mq_rq);
1764 }
1765 return ret;
1766 }
1767 list_del_init(&prq->queuelist);
1768 blk_end_request(prq, 0, blk_rq_bytes(prq));
1769 i++;
1770 }
1771
1772 mmc_blk_clear_packed(mq_rq);
1773 return ret;
1774 }
1775
1776 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1777 {
1778 struct request *prq;
1779 struct mmc_packed *packed = mq_rq->packed;
1780
1781 BUG_ON(!packed);
1782
1783 while (!list_empty(&packed->list)) {
1784 prq = list_entry_rq(packed->list.next);
1785 list_del_init(&prq->queuelist);
1786 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1787 }
1788
1789 mmc_blk_clear_packed(mq_rq);
1790 }
1791
1792 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1793 struct mmc_queue_req *mq_rq)
1794 {
1795 struct request *prq;
1796 struct request_queue *q = mq->queue;
1797 struct mmc_packed *packed = mq_rq->packed;
1798
1799 BUG_ON(!packed);
1800
1801 while (!list_empty(&packed->list)) {
1802 prq = list_entry_rq(packed->list.prev);
1803 if (prq->queuelist.prev != &packed->list) {
1804 list_del_init(&prq->queuelist);
1805 spin_lock_irq(q->queue_lock);
1806 blk_requeue_request(mq->queue, prq);
1807 spin_unlock_irq(q->queue_lock);
1808 } else {
1809 list_del_init(&prq->queuelist);
1810 }
1811 }
1812
1813 mmc_blk_clear_packed(mq_rq);
1814 }
1815
1816 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1817 {
1818 struct mmc_blk_data *md = mq->data;
1819 struct mmc_card *card = md->queue.card;
1820 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1821 int ret = 1, disable_multi = 0, retry = 0, type;
1822 enum mmc_blk_status status;
1823 struct mmc_queue_req *mq_rq;
1824 struct request *req = rqc;
1825 struct mmc_async_req *areq;
1826 const u8 packed_nr = 2;
1827 u8 reqs = 0;
1828
1829 if (!rqc && !mq->mqrq_prev->req)
1830 return 0;
1831
1832 if (rqc)
1833 reqs = mmc_blk_prep_packed_list(mq, rqc);
1834
1835 do {
1836 if (rqc) {
1837 /*
1838 * When 4KB native sector is enabled, only 8 blocks
1839 * multiple read or write is allowed
1840 */
1841 if ((brq->data.blocks & 0x07) &&
1842 (card->ext_csd.data_sector_size == 4096)) {
1843 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1844 req->rq_disk->disk_name);
1845 mq_rq = mq->mqrq_cur;
1846 goto cmd_abort;
1847 }
1848
1849 if (reqs >= packed_nr)
1850 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1851 card, mq);
1852 else
1853 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1854 areq = &mq->mqrq_cur->mmc_active;
1855 } else
1856 areq = NULL;
1857 areq = mmc_start_req(card->host, areq, (int *) &status);
1858 if (!areq) {
1859 if (status == MMC_BLK_NEW_REQUEST)
1860 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1861 return 0;
1862 }
1863
1864 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1865 brq = &mq_rq->brq;
1866 req = mq_rq->req;
1867 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1868 mmc_queue_bounce_post(mq_rq);
1869
1870 switch (status) {
1871 case MMC_BLK_SUCCESS:
1872 case MMC_BLK_PARTIAL:
1873 /*
1874 * A block was successfully transferred.
1875 */
1876 mmc_blk_reset_success(md, type);
1877
1878 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1879 ret = mmc_blk_end_packed_req(mq_rq);
1880 break;
1881 } else {
1882 ret = blk_end_request(req, 0,
1883 brq->data.bytes_xfered);
1884 }
1885
1886 /*
1887 * If the blk_end_request function returns non-zero even
1888 * though all data has been transferred and no errors
1889 * were returned by the host controller, it's a bug.
1890 */
1891 if (status == MMC_BLK_SUCCESS && ret) {
1892 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1893 __func__, blk_rq_bytes(req),
1894 brq->data.bytes_xfered);
1895 rqc = NULL;
1896 goto cmd_abort;
1897 }
1898 break;
1899 case MMC_BLK_CMD_ERR:
1900 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1901 if (!mmc_blk_reset(md, card->host, type))
1902 break;
1903 goto cmd_abort;
1904 case MMC_BLK_RETRY:
1905 if (retry++ < 5)
1906 break;
1907 /* Fall through */
1908 case MMC_BLK_ABORT:
1909 if (!mmc_blk_reset(md, card->host, type))
1910 break;
1911 goto cmd_abort;
1912 case MMC_BLK_DATA_ERR: {
1913 int err;
1914
1915 err = mmc_blk_reset(md, card->host, type);
1916 if (!err)
1917 break;
1918 if (err == -ENODEV ||
1919 mmc_packed_cmd(mq_rq->cmd_type))
1920 goto cmd_abort;
1921 /* Fall through */
1922 }
1923 case MMC_BLK_ECC_ERR:
1924 if (brq->data.blocks > 1) {
1925 /* Redo read one sector at a time */
1926 pr_warn("%s: retrying using single block read\n",
1927 req->rq_disk->disk_name);
1928 disable_multi = 1;
1929 break;
1930 }
1931 /*
1932 * After an error, we redo I/O one sector at a
1933 * time, so we only reach here after trying to
1934 * read a single sector.
1935 */
1936 ret = blk_end_request(req, -EIO,
1937 brq->data.blksz);
1938 if (!ret)
1939 goto start_new_req;
1940 break;
1941 case MMC_BLK_NOMEDIUM:
1942 goto cmd_abort;
1943 default:
1944 pr_err("%s: Unhandled return value (%d)",
1945 req->rq_disk->disk_name, status);
1946 goto cmd_abort;
1947 }
1948
1949 if (ret) {
1950 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1951 if (!mq_rq->packed->retries)
1952 goto cmd_abort;
1953 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1954 mmc_start_req(card->host,
1955 &mq_rq->mmc_active, NULL);
1956 } else {
1957
1958 /*
1959 * In case of a incomplete request
1960 * prepare it again and resend.
1961 */
1962 mmc_blk_rw_rq_prep(mq_rq, card,
1963 disable_multi, mq);
1964 mmc_start_req(card->host,
1965 &mq_rq->mmc_active, NULL);
1966 }
1967 }
1968 } while (ret);
1969
1970 return 1;
1971
1972 cmd_abort:
1973 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1974 mmc_blk_abort_packed_req(mq_rq);
1975 } else {
1976 if (mmc_card_removed(card))
1977 req->cmd_flags |= REQ_QUIET;
1978 while (ret)
1979 ret = blk_end_request(req, -EIO,
1980 blk_rq_cur_bytes(req));
1981 }
1982
1983 start_new_req:
1984 if (rqc) {
1985 if (mmc_card_removed(card)) {
1986 rqc->cmd_flags |= REQ_QUIET;
1987 blk_end_request_all(rqc, -EIO);
1988 } else {
1989 /*
1990 * If current request is packed, it needs to put back.
1991 */
1992 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1993 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1994
1995 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1996 mmc_start_req(card->host,
1997 &mq->mqrq_cur->mmc_active, NULL);
1998 }
1999 }
2000
2001 return 0;
2002 }
2003
2004 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2005 {
2006 int ret;
2007 struct mmc_blk_data *md = mq->data;
2008 struct mmc_card *card = md->queue.card;
2009 struct mmc_host *host = card->host;
2010 unsigned long flags;
2011 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2012
2013 if (req && !mq->mqrq_prev->req)
2014 /* claim host only for the first request */
2015 mmc_get_card(card);
2016
2017 ret = mmc_blk_part_switch(card, md);
2018 if (ret) {
2019 if (req) {
2020 blk_end_request_all(req, -EIO);
2021 }
2022 ret = 0;
2023 goto out;
2024 }
2025
2026 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2027 if (cmd_flags & REQ_DISCARD) {
2028 /* complete ongoing async transfer before issuing discard */
2029 if (card->host->areq)
2030 mmc_blk_issue_rw_rq(mq, NULL);
2031 if (req->cmd_flags & REQ_SECURE)
2032 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2033 else
2034 ret = mmc_blk_issue_discard_rq(mq, req);
2035 } else if (cmd_flags & REQ_FLUSH) {
2036 /* complete ongoing async transfer before issuing flush */
2037 if (card->host->areq)
2038 mmc_blk_issue_rw_rq(mq, NULL);
2039 ret = mmc_blk_issue_flush(mq, req);
2040 } else {
2041 if (!req && host->areq) {
2042 spin_lock_irqsave(&host->context_info.lock, flags);
2043 host->context_info.is_waiting_last_req = true;
2044 spin_unlock_irqrestore(&host->context_info.lock, flags);
2045 }
2046 ret = mmc_blk_issue_rw_rq(mq, req);
2047 }
2048
2049 out:
2050 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2051 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2052 /*
2053 * Release host when there are no more requests
2054 * and after special request(discard, flush) is done.
2055 * In case sepecial request, there is no reentry to
2056 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2057 */
2058 mmc_put_card(card);
2059 return ret;
2060 }
2061
2062 static inline int mmc_blk_readonly(struct mmc_card *card)
2063 {
2064 return mmc_card_readonly(card) ||
2065 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2066 }
2067
2068 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2069 struct device *parent,
2070 sector_t size,
2071 bool default_ro,
2072 const char *subname,
2073 int area_type)
2074 {
2075 struct mmc_blk_data *md;
2076 int devidx, ret;
2077
2078 devidx = find_first_zero_bit(dev_use, max_devices);
2079 if (devidx >= max_devices)
2080 return ERR_PTR(-ENOSPC);
2081 __set_bit(devidx, dev_use);
2082
2083 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2084 if (!md) {
2085 ret = -ENOMEM;
2086 goto out;
2087 }
2088
2089 /*
2090 * !subname implies we are creating main mmc_blk_data that will be
2091 * associated with mmc_card with dev_set_drvdata. Due to device
2092 * partitions, devidx will not coincide with a per-physical card
2093 * index anymore so we keep track of a name index.
2094 */
2095 if (!subname) {
2096 md->name_idx = find_first_zero_bit(name_use, max_devices);
2097 __set_bit(md->name_idx, name_use);
2098 } else
2099 md->name_idx = ((struct mmc_blk_data *)
2100 dev_to_disk(parent)->private_data)->name_idx;
2101
2102 md->area_type = area_type;
2103
2104 /*
2105 * Set the read-only status based on the supported commands
2106 * and the write protect switch.
2107 */
2108 md->read_only = mmc_blk_readonly(card);
2109
2110 md->disk = alloc_disk(perdev_minors);
2111 if (md->disk == NULL) {
2112 ret = -ENOMEM;
2113 goto err_kfree;
2114 }
2115
2116 spin_lock_init(&md->lock);
2117 INIT_LIST_HEAD(&md->part);
2118 md->usage = 1;
2119
2120 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2121 if (ret)
2122 goto err_putdisk;
2123
2124 md->queue.issue_fn = mmc_blk_issue_rq;
2125 md->queue.data = md;
2126
2127 md->disk->major = MMC_BLOCK_MAJOR;
2128 md->disk->first_minor = devidx * perdev_minors;
2129 md->disk->fops = &mmc_bdops;
2130 md->disk->private_data = md;
2131 md->disk->queue = md->queue.queue;
2132 md->disk->driverfs_dev = parent;
2133 set_disk_ro(md->disk, md->read_only || default_ro);
2134 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2135 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2136
2137 /*
2138 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2139 *
2140 * - be set for removable media with permanent block devices
2141 * - be unset for removable block devices with permanent media
2142 *
2143 * Since MMC block devices clearly fall under the second
2144 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2145 * should use the block device creation/destruction hotplug
2146 * messages to tell when the card is present.
2147 */
2148
2149 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2150 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2151
2152 if (mmc_card_mmc(card))
2153 blk_queue_logical_block_size(md->queue.queue,
2154 card->ext_csd.data_sector_size);
2155 else
2156 blk_queue_logical_block_size(md->queue.queue, 512);
2157
2158 set_capacity(md->disk, size);
2159
2160 if (mmc_host_cmd23(card->host)) {
2161 if (mmc_card_mmc(card) ||
2162 (mmc_card_sd(card) &&
2163 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2164 md->flags |= MMC_BLK_CMD23;
2165 }
2166
2167 if (mmc_card_mmc(card) &&
2168 md->flags & MMC_BLK_CMD23 &&
2169 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2170 card->ext_csd.rel_sectors)) {
2171 md->flags |= MMC_BLK_REL_WR;
2172 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2173 }
2174
2175 if (mmc_card_mmc(card) &&
2176 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2177 (md->flags & MMC_BLK_CMD23) &&
2178 card->ext_csd.packed_event_en) {
2179 if (!mmc_packed_init(&md->queue, card))
2180 md->flags |= MMC_BLK_PACKED_CMD;
2181 }
2182
2183 return md;
2184
2185 err_putdisk:
2186 put_disk(md->disk);
2187 err_kfree:
2188 kfree(md);
2189 out:
2190 return ERR_PTR(ret);
2191 }
2192
2193 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2194 {
2195 sector_t size;
2196 struct mmc_blk_data *md;
2197
2198 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2199 /*
2200 * The EXT_CSD sector count is in number or 512 byte
2201 * sectors.
2202 */
2203 size = card->ext_csd.sectors;
2204 } else {
2205 /*
2206 * The CSD capacity field is in units of read_blkbits.
2207 * set_capacity takes units of 512 bytes.
2208 */
2209 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2210 }
2211
2212 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2213 MMC_BLK_DATA_AREA_MAIN);
2214 return md;
2215 }
2216
2217 static int mmc_blk_alloc_part(struct mmc_card *card,
2218 struct mmc_blk_data *md,
2219 unsigned int part_type,
2220 sector_t size,
2221 bool default_ro,
2222 const char *subname,
2223 int area_type)
2224 {
2225 char cap_str[10];
2226 struct mmc_blk_data *part_md;
2227
2228 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2229 subname, area_type);
2230 if (IS_ERR(part_md))
2231 return PTR_ERR(part_md);
2232 part_md->part_type = part_type;
2233 list_add(&part_md->part, &md->part);
2234
2235 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2236 cap_str, sizeof(cap_str));
2237 pr_info("%s: %s %s partition %u %s\n",
2238 part_md->disk->disk_name, mmc_card_id(card),
2239 mmc_card_name(card), part_md->part_type, cap_str);
2240 return 0;
2241 }
2242
2243 /* MMC Physical partitions consist of two boot partitions and
2244 * up to four general purpose partitions.
2245 * For each partition enabled in EXT_CSD a block device will be allocatedi
2246 * to provide access to the partition.
2247 */
2248
2249 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2250 {
2251 int idx, ret = 0;
2252
2253 if (!mmc_card_mmc(card))
2254 return 0;
2255
2256 for (idx = 0; idx < card->nr_parts; idx++) {
2257 if (card->part[idx].size) {
2258 ret = mmc_blk_alloc_part(card, md,
2259 card->part[idx].part_cfg,
2260 card->part[idx].size >> 9,
2261 card->part[idx].force_ro,
2262 card->part[idx].name,
2263 card->part[idx].area_type);
2264 if (ret)
2265 return ret;
2266 }
2267 }
2268
2269 return ret;
2270 }
2271
2272 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2273 {
2274 struct mmc_card *card;
2275
2276 if (md) {
2277 /*
2278 * Flush remaining requests and free queues. It
2279 * is freeing the queue that stops new requests
2280 * from being accepted.
2281 */
2282 card = md->queue.card;
2283 mmc_cleanup_queue(&md->queue);
2284 if (md->flags & MMC_BLK_PACKED_CMD)
2285 mmc_packed_clean(&md->queue);
2286 if (md->disk->flags & GENHD_FL_UP) {
2287 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2288 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2289 card->ext_csd.boot_ro_lockable)
2290 device_remove_file(disk_to_dev(md->disk),
2291 &md->power_ro_lock);
2292
2293 del_gendisk(md->disk);
2294 }
2295 mmc_blk_put(md);
2296 }
2297 }
2298
2299 static void mmc_blk_remove_parts(struct mmc_card *card,
2300 struct mmc_blk_data *md)
2301 {
2302 struct list_head *pos, *q;
2303 struct mmc_blk_data *part_md;
2304
2305 __clear_bit(md->name_idx, name_use);
2306 list_for_each_safe(pos, q, &md->part) {
2307 part_md = list_entry(pos, struct mmc_blk_data, part);
2308 list_del(pos);
2309 mmc_blk_remove_req(part_md);
2310 }
2311 }
2312
2313 static int mmc_add_disk(struct mmc_blk_data *md)
2314 {
2315 int ret;
2316 struct mmc_card *card = md->queue.card;
2317
2318 add_disk(md->disk);
2319 md->force_ro.show = force_ro_show;
2320 md->force_ro.store = force_ro_store;
2321 sysfs_attr_init(&md->force_ro.attr);
2322 md->force_ro.attr.name = "force_ro";
2323 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2324 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2325 if (ret)
2326 goto force_ro_fail;
2327
2328 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2329 card->ext_csd.boot_ro_lockable) {
2330 umode_t mode;
2331
2332 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2333 mode = S_IRUGO;
2334 else
2335 mode = S_IRUGO | S_IWUSR;
2336
2337 md->power_ro_lock.show = power_ro_lock_show;
2338 md->power_ro_lock.store = power_ro_lock_store;
2339 sysfs_attr_init(&md->power_ro_lock.attr);
2340 md->power_ro_lock.attr.mode = mode;
2341 md->power_ro_lock.attr.name =
2342 "ro_lock_until_next_power_on";
2343 ret = device_create_file(disk_to_dev(md->disk),
2344 &md->power_ro_lock);
2345 if (ret)
2346 goto power_ro_lock_fail;
2347 }
2348 return ret;
2349
2350 power_ro_lock_fail:
2351 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2352 force_ro_fail:
2353 del_gendisk(md->disk);
2354
2355 return ret;
2356 }
2357
2358 #define CID_MANFID_SANDISK 0x2
2359 #define CID_MANFID_TOSHIBA 0x11
2360 #define CID_MANFID_MICRON 0x13
2361 #define CID_MANFID_SAMSUNG 0x15
2362
2363 static const struct mmc_fixup blk_fixups[] =
2364 {
2365 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2366 MMC_QUIRK_INAND_CMD38),
2367 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2368 MMC_QUIRK_INAND_CMD38),
2369 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2370 MMC_QUIRK_INAND_CMD38),
2371 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2372 MMC_QUIRK_INAND_CMD38),
2373 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2374 MMC_QUIRK_INAND_CMD38),
2375
2376 /*
2377 * Some MMC cards experience performance degradation with CMD23
2378 * instead of CMD12-bounded multiblock transfers. For now we'll
2379 * black list what's bad...
2380 * - Certain Toshiba cards.
2381 *
2382 * N.B. This doesn't affect SD cards.
2383 */
2384 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2385 MMC_QUIRK_BLK_NO_CMD23),
2386 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2387 MMC_QUIRK_BLK_NO_CMD23),
2388 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2389 MMC_QUIRK_BLK_NO_CMD23),
2390
2391 /*
2392 * Some Micron MMC cards needs longer data read timeout than
2393 * indicated in CSD.
2394 */
2395 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2396 MMC_QUIRK_LONG_READ_TIME),
2397
2398 /*
2399 * On these Samsung MoviNAND parts, performing secure erase or
2400 * secure trim can result in unrecoverable corruption due to a
2401 * firmware bug.
2402 */
2403 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2404 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2405 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2406 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2407 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2408 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2409 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2410 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2411 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2412 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2413 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2414 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2415 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2416 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2417 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2418 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2419
2420 END_FIXUP
2421 };
2422
2423 static int mmc_blk_probe(struct device *dev)
2424 {
2425 struct mmc_card *card = mmc_dev_to_card(dev);
2426 struct mmc_blk_data *md, *part_md;
2427 char cap_str[10];
2428
2429 /*
2430 * Check that the card supports the command class(es) we need.
2431 */
2432 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2433 return -ENODEV;
2434
2435 mmc_fixup_device(card, blk_fixups);
2436
2437 md = mmc_blk_alloc(card);
2438 if (IS_ERR(md))
2439 return PTR_ERR(md);
2440
2441 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2442 cap_str, sizeof(cap_str));
2443 pr_info("%s: %s %s %s %s\n",
2444 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2445 cap_str, md->read_only ? "(ro)" : "");
2446
2447 if (mmc_blk_alloc_parts(card, md))
2448 goto out;
2449
2450 dev_set_drvdata(dev, md);
2451
2452 if (mmc_add_disk(md))
2453 goto out;
2454
2455 list_for_each_entry(part_md, &md->part, part) {
2456 if (mmc_add_disk(part_md))
2457 goto out;
2458 }
2459
2460 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2461 pm_runtime_use_autosuspend(&card->dev);
2462
2463 /*
2464 * Don't enable runtime PM for SD-combo cards here. Leave that
2465 * decision to be taken during the SDIO init sequence instead.
2466 */
2467 if (card->type != MMC_TYPE_SD_COMBO) {
2468 pm_runtime_set_active(&card->dev);
2469 pm_runtime_enable(&card->dev);
2470 }
2471
2472 return 0;
2473
2474 out:
2475 mmc_blk_remove_parts(card, md);
2476 mmc_blk_remove_req(md);
2477 return 0;
2478 }
2479
2480 static int mmc_blk_remove(struct device *dev)
2481 {
2482 struct mmc_card *card = mmc_dev_to_card(dev);
2483 struct mmc_blk_data *md = dev_get_drvdata(dev);
2484
2485 mmc_blk_remove_parts(card, md);
2486 pm_runtime_get_sync(&card->dev);
2487 mmc_claim_host(card->host);
2488 mmc_blk_part_switch(card, md);
2489 mmc_release_host(card->host);
2490 if (card->type != MMC_TYPE_SD_COMBO)
2491 pm_runtime_disable(&card->dev);
2492 pm_runtime_put_noidle(&card->dev);
2493 mmc_blk_remove_req(md);
2494 dev_set_drvdata(dev, NULL);
2495
2496 return 0;
2497 }
2498
2499 static int _mmc_blk_suspend(struct device *dev)
2500 {
2501 struct mmc_blk_data *part_md;
2502 struct mmc_blk_data *md = dev_get_drvdata(dev);
2503
2504 if (md) {
2505 mmc_queue_suspend(&md->queue);
2506 list_for_each_entry(part_md, &md->part, part) {
2507 mmc_queue_suspend(&part_md->queue);
2508 }
2509 }
2510 return 0;
2511 }
2512
2513 static void mmc_blk_shutdown(struct device *dev)
2514 {
2515 _mmc_blk_suspend(dev);
2516 }
2517
2518 #ifdef CONFIG_PM_SLEEP
2519 static int mmc_blk_suspend(struct device *dev)
2520 {
2521 return _mmc_blk_suspend(dev);
2522 }
2523
2524 static int mmc_blk_resume(struct device *dev)
2525 {
2526 struct mmc_blk_data *part_md;
2527 struct mmc_blk_data *md = dev_get_drvdata(dev);
2528
2529 if (md) {
2530 /*
2531 * Resume involves the card going into idle state,
2532 * so current partition is always the main one.
2533 */
2534 md->part_curr = md->part_type;
2535 mmc_queue_resume(&md->queue);
2536 list_for_each_entry(part_md, &md->part, part) {
2537 mmc_queue_resume(&part_md->queue);
2538 }
2539 }
2540 return 0;
2541 }
2542 #endif
2543
2544 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2545
2546 static struct device_driver mmc_driver = {
2547 .name = "mmcblk",
2548 .pm = &mmc_blk_pm_ops,
2549 .probe = mmc_blk_probe,
2550 .remove = mmc_blk_remove,
2551 .shutdown = mmc_blk_shutdown,
2552 };
2553
2554 static int __init mmc_blk_init(void)
2555 {
2556 int res;
2557
2558 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2559 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2560
2561 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2562
2563 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2564 if (res)
2565 goto out;
2566
2567 res = mmc_register_driver(&mmc_driver);
2568 if (res)
2569 goto out2;
2570
2571 return 0;
2572 out2:
2573 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2574 out:
2575 return res;
2576 }
2577
2578 static void __exit mmc_blk_exit(void)
2579 {
2580 mmc_unregister_driver(&mmc_driver);
2581 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2582 }
2583
2584 module_init(mmc_blk_init);
2585 module_exit(mmc_blk_exit);
2586
2587 MODULE_LICENSE("GPL");
2588 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2589