]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/card/block.c
Merge remote-tracking branch 'regulator/fix/core' into regulator-linus
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
44
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
54
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
64
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to 256 / number of minors per device.
82 */
83 static int max_devices;
84
85 /* 256 minors, so at most 256 separate devices */
86 static DECLARE_BITMAP(dev_use, 256);
87 static DECLARE_BITMAP(name_use, 256);
88
89 /*
90 * There is one mmc_blk_data per slot.
91 */
92 struct mmc_blk_data {
93 spinlock_t lock;
94 struct gendisk *disk;
95 struct mmc_queue queue;
96 struct list_head part;
97
98 unsigned int flags;
99 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
100 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
101 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
102
103 unsigned int usage;
104 unsigned int read_only;
105 unsigned int part_type;
106 unsigned int name_idx;
107 unsigned int reset_done;
108 #define MMC_BLK_READ BIT(0)
109 #define MMC_BLK_WRITE BIT(1)
110 #define MMC_BLK_DISCARD BIT(2)
111 #define MMC_BLK_SECDISCARD BIT(3)
112
113 /*
114 * Only set in main mmc_blk_data associated
115 * with mmc_card with mmc_set_drvdata, and keeps
116 * track of the current selected device partition.
117 */
118 unsigned int part_curr;
119 struct device_attribute force_ro;
120 struct device_attribute power_ro_lock;
121 int area_type;
122 };
123
124 static DEFINE_MUTEX(open_lock);
125
126 enum {
127 MMC_PACKED_NR_IDX = -1,
128 MMC_PACKED_NR_ZERO,
129 MMC_PACKED_NR_SINGLE,
130 };
131
132 module_param(perdev_minors, int, 0444);
133 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
134
135 static inline int mmc_blk_part_switch(struct mmc_card *card,
136 struct mmc_blk_data *md);
137 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
138
139 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
140 {
141 struct mmc_packed *packed = mqrq->packed;
142
143 BUG_ON(!packed);
144
145 mqrq->cmd_type = MMC_PACKED_NONE;
146 packed->nr_entries = MMC_PACKED_NR_ZERO;
147 packed->idx_failure = MMC_PACKED_NR_IDX;
148 packed->retries = 0;
149 packed->blocks = 0;
150 }
151
152 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
153 {
154 struct mmc_blk_data *md;
155
156 mutex_lock(&open_lock);
157 md = disk->private_data;
158 if (md && md->usage == 0)
159 md = NULL;
160 if (md)
161 md->usage++;
162 mutex_unlock(&open_lock);
163
164 return md;
165 }
166
167 static inline int mmc_get_devidx(struct gendisk *disk)
168 {
169 int devmaj = MAJOR(disk_devt(disk));
170 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
171
172 if (!devmaj)
173 devidx = disk->first_minor / perdev_minors;
174 return devidx;
175 }
176
177 static void mmc_blk_put(struct mmc_blk_data *md)
178 {
179 mutex_lock(&open_lock);
180 md->usage--;
181 if (md->usage == 0) {
182 int devidx = mmc_get_devidx(md->disk);
183 blk_cleanup_queue(md->queue.queue);
184
185 __clear_bit(devidx, dev_use);
186
187 put_disk(md->disk);
188 kfree(md);
189 }
190 mutex_unlock(&open_lock);
191 }
192
193 static ssize_t power_ro_lock_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 int ret;
197 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
198 struct mmc_card *card = md->queue.card;
199 int locked = 0;
200
201 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
202 locked = 2;
203 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
204 locked = 1;
205
206 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
207
208 return ret;
209 }
210
211 static ssize_t power_ro_lock_store(struct device *dev,
212 struct device_attribute *attr, const char *buf, size_t count)
213 {
214 int ret;
215 struct mmc_blk_data *md, *part_md;
216 struct mmc_card *card;
217 unsigned long set;
218
219 if (kstrtoul(buf, 0, &set))
220 return -EINVAL;
221
222 if (set != 1)
223 return count;
224
225 md = mmc_blk_get(dev_to_disk(dev));
226 card = md->queue.card;
227
228 mmc_get_card(card);
229
230 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
231 card->ext_csd.boot_ro_lock |
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
233 card->ext_csd.part_time);
234 if (ret)
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
236 else
237 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
238
239 mmc_put_card(card);
240
241 if (!ret) {
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md->disk->disk_name);
244 set_disk_ro(md->disk, 1);
245
246 list_for_each_entry(part_md, &md->part, part)
247 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
249 set_disk_ro(part_md->disk, 1);
250 }
251 }
252
253 mmc_blk_put(md);
254 return count;
255 }
256
257 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
258 char *buf)
259 {
260 int ret;
261 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
262
263 ret = snprintf(buf, PAGE_SIZE, "%d",
264 get_disk_ro(dev_to_disk(dev)) ^
265 md->read_only);
266 mmc_blk_put(md);
267 return ret;
268 }
269
270 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
272 {
273 int ret;
274 char *end;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 unsigned long set = simple_strtoul(buf, &end, 0);
277 if (end == buf) {
278 ret = -EINVAL;
279 goto out;
280 }
281
282 set_disk_ro(dev_to_disk(dev), set || md->read_only);
283 ret = count;
284 out:
285 mmc_blk_put(md);
286 return ret;
287 }
288
289 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
290 {
291 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
292 int ret = -ENXIO;
293
294 mutex_lock(&block_mutex);
295 if (md) {
296 if (md->usage == 2)
297 check_disk_change(bdev);
298 ret = 0;
299
300 if ((mode & FMODE_WRITE) && md->read_only) {
301 mmc_blk_put(md);
302 ret = -EROFS;
303 }
304 }
305 mutex_unlock(&block_mutex);
306
307 return ret;
308 }
309
310 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
311 {
312 struct mmc_blk_data *md = disk->private_data;
313
314 mutex_lock(&block_mutex);
315 mmc_blk_put(md);
316 mutex_unlock(&block_mutex);
317 }
318
319 static int
320 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
321 {
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
326 }
327
328 struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
332 };
333
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
336 {
337 struct mmc_blk_ioc_data *idata;
338 int err;
339
340 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
344 }
345
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
349 }
350
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
353 err = -EOVERFLOW;
354 goto idata_err;
355 }
356
357 if (!idata->buf_bytes)
358 return idata;
359
360 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
361 if (!idata->buf) {
362 err = -ENOMEM;
363 goto idata_err;
364 }
365
366 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
367 idata->ic.data_ptr, idata->buf_bytes)) {
368 err = -EFAULT;
369 goto copy_err;
370 }
371
372 return idata;
373
374 copy_err:
375 kfree(idata->buf);
376 idata_err:
377 kfree(idata);
378 out:
379 return ERR_PTR(err);
380 }
381
382 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
383 u32 retries_max)
384 {
385 int err;
386 u32 retry_count = 0;
387
388 if (!status || !retries_max)
389 return -EINVAL;
390
391 do {
392 err = get_card_status(card, status, 5);
393 if (err)
394 break;
395
396 if (!R1_STATUS(*status) &&
397 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
398 break; /* RPMB programming operation complete */
399
400 /*
401 * Rechedule to give the MMC device a chance to continue
402 * processing the previous command without being polled too
403 * frequently.
404 */
405 usleep_range(1000, 5000);
406 } while (++retry_count < retries_max);
407
408 if (retry_count == retries_max)
409 err = -EPERM;
410
411 return err;
412 }
413
414 static int ioctl_do_sanitize(struct mmc_card *card)
415 {
416 int err;
417
418 if (!mmc_can_sanitize(card)) {
419 pr_warn("%s: %s - SANITIZE is not supported\n",
420 mmc_hostname(card->host), __func__);
421 err = -EOPNOTSUPP;
422 goto out;
423 }
424
425 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
426 mmc_hostname(card->host), __func__);
427
428 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
429 EXT_CSD_SANITIZE_START, 1,
430 MMC_SANITIZE_REQ_TIMEOUT);
431
432 if (err)
433 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
434 mmc_hostname(card->host), __func__, err);
435
436 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
437 __func__);
438 out:
439 return err;
440 }
441
442 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
443 struct mmc_ioc_cmd __user *ic_ptr)
444 {
445 struct mmc_blk_ioc_data *idata;
446 struct mmc_blk_data *md;
447 struct mmc_card *card;
448 struct mmc_command cmd = {0};
449 struct mmc_data data = {0};
450 struct mmc_request mrq = {NULL};
451 struct scatterlist sg;
452 int err;
453 int is_rpmb = false;
454 u32 status = 0;
455
456 /*
457 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
458 * whole block device, not on a partition. This prevents overspray
459 * between sibling partitions.
460 */
461 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
462 return -EPERM;
463
464 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
465 if (IS_ERR(idata))
466 return PTR_ERR(idata);
467
468 md = mmc_blk_get(bdev->bd_disk);
469 if (!md) {
470 err = -EINVAL;
471 goto cmd_err;
472 }
473
474 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
475 is_rpmb = true;
476
477 card = md->queue.card;
478 if (IS_ERR(card)) {
479 err = PTR_ERR(card);
480 goto cmd_done;
481 }
482
483 cmd.opcode = idata->ic.opcode;
484 cmd.arg = idata->ic.arg;
485 cmd.flags = idata->ic.flags;
486
487 if (idata->buf_bytes) {
488 data.sg = &sg;
489 data.sg_len = 1;
490 data.blksz = idata->ic.blksz;
491 data.blocks = idata->ic.blocks;
492
493 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
494
495 if (idata->ic.write_flag)
496 data.flags = MMC_DATA_WRITE;
497 else
498 data.flags = MMC_DATA_READ;
499
500 /* data.flags must already be set before doing this. */
501 mmc_set_data_timeout(&data, card);
502
503 /* Allow overriding the timeout_ns for empirical tuning. */
504 if (idata->ic.data_timeout_ns)
505 data.timeout_ns = idata->ic.data_timeout_ns;
506
507 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
508 /*
509 * Pretend this is a data transfer and rely on the
510 * host driver to compute timeout. When all host
511 * drivers support cmd.cmd_timeout for R1B, this
512 * can be changed to:
513 *
514 * mrq.data = NULL;
515 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
516 */
517 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
518 }
519
520 mrq.data = &data;
521 }
522
523 mrq.cmd = &cmd;
524
525 mmc_get_card(card);
526
527 err = mmc_blk_part_switch(card, md);
528 if (err)
529 goto cmd_rel_host;
530
531 if (idata->ic.is_acmd) {
532 err = mmc_app_cmd(card->host, card);
533 if (err)
534 goto cmd_rel_host;
535 }
536
537 if (is_rpmb) {
538 err = mmc_set_blockcount(card, data.blocks,
539 idata->ic.write_flag & (1 << 31));
540 if (err)
541 goto cmd_rel_host;
542 }
543
544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
545 (cmd.opcode == MMC_SWITCH)) {
546 err = ioctl_do_sanitize(card);
547
548 if (err)
549 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
550 __func__, err);
551
552 goto cmd_rel_host;
553 }
554
555 mmc_wait_for_req(card->host, &mrq);
556
557 if (cmd.error) {
558 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
559 __func__, cmd.error);
560 err = cmd.error;
561 goto cmd_rel_host;
562 }
563 if (data.error) {
564 dev_err(mmc_dev(card->host), "%s: data error %d\n",
565 __func__, data.error);
566 err = data.error;
567 goto cmd_rel_host;
568 }
569
570 /*
571 * According to the SD specs, some commands require a delay after
572 * issuing the command.
573 */
574 if (idata->ic.postsleep_min_us)
575 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
576
577 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
578 err = -EFAULT;
579 goto cmd_rel_host;
580 }
581
582 if (!idata->ic.write_flag) {
583 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
584 idata->buf, idata->buf_bytes)) {
585 err = -EFAULT;
586 goto cmd_rel_host;
587 }
588 }
589
590 if (is_rpmb) {
591 /*
592 * Ensure RPMB command has completed by polling CMD13
593 * "Send Status".
594 */
595 err = ioctl_rpmb_card_status_poll(card, &status, 5);
596 if (err)
597 dev_err(mmc_dev(card->host),
598 "%s: Card Status=0x%08X, error %d\n",
599 __func__, status, err);
600 }
601
602 cmd_rel_host:
603 mmc_put_card(card);
604
605 cmd_done:
606 mmc_blk_put(md);
607 cmd_err:
608 kfree(idata->buf);
609 kfree(idata);
610 return err;
611 }
612
613 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
614 unsigned int cmd, unsigned long arg)
615 {
616 int ret = -EINVAL;
617 if (cmd == MMC_IOC_CMD)
618 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
619 return ret;
620 }
621
622 #ifdef CONFIG_COMPAT
623 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
624 unsigned int cmd, unsigned long arg)
625 {
626 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
627 }
628 #endif
629
630 static const struct block_device_operations mmc_bdops = {
631 .open = mmc_blk_open,
632 .release = mmc_blk_release,
633 .getgeo = mmc_blk_getgeo,
634 .owner = THIS_MODULE,
635 .ioctl = mmc_blk_ioctl,
636 #ifdef CONFIG_COMPAT
637 .compat_ioctl = mmc_blk_compat_ioctl,
638 #endif
639 };
640
641 static inline int mmc_blk_part_switch(struct mmc_card *card,
642 struct mmc_blk_data *md)
643 {
644 int ret;
645 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
646
647 if (main_md->part_curr == md->part_type)
648 return 0;
649
650 if (mmc_card_mmc(card)) {
651 u8 part_config = card->ext_csd.part_config;
652
653 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
654 part_config |= md->part_type;
655
656 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
657 EXT_CSD_PART_CONFIG, part_config,
658 card->ext_csd.part_time);
659 if (ret)
660 return ret;
661
662 card->ext_csd.part_config = part_config;
663 }
664
665 main_md->part_curr = md->part_type;
666 return 0;
667 }
668
669 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
670 {
671 int err;
672 u32 result;
673 __be32 *blocks;
674
675 struct mmc_request mrq = {NULL};
676 struct mmc_command cmd = {0};
677 struct mmc_data data = {0};
678
679 struct scatterlist sg;
680
681 cmd.opcode = MMC_APP_CMD;
682 cmd.arg = card->rca << 16;
683 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
684
685 err = mmc_wait_for_cmd(card->host, &cmd, 0);
686 if (err)
687 return (u32)-1;
688 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
689 return (u32)-1;
690
691 memset(&cmd, 0, sizeof(struct mmc_command));
692
693 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
694 cmd.arg = 0;
695 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
696
697 data.blksz = 4;
698 data.blocks = 1;
699 data.flags = MMC_DATA_READ;
700 data.sg = &sg;
701 data.sg_len = 1;
702 mmc_set_data_timeout(&data, card);
703
704 mrq.cmd = &cmd;
705 mrq.data = &data;
706
707 blocks = kmalloc(4, GFP_KERNEL);
708 if (!blocks)
709 return (u32)-1;
710
711 sg_init_one(&sg, blocks, 4);
712
713 mmc_wait_for_req(card->host, &mrq);
714
715 result = ntohl(*blocks);
716 kfree(blocks);
717
718 if (cmd.error || data.error)
719 result = (u32)-1;
720
721 return result;
722 }
723
724 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
725 {
726 struct mmc_command cmd = {0};
727 int err;
728
729 cmd.opcode = MMC_SEND_STATUS;
730 if (!mmc_host_is_spi(card->host))
731 cmd.arg = card->rca << 16;
732 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
733 err = mmc_wait_for_cmd(card->host, &cmd, retries);
734 if (err == 0)
735 *status = cmd.resp[0];
736 return err;
737 }
738
739 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
740 bool hw_busy_detect, struct request *req, int *gen_err)
741 {
742 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
743 int err = 0;
744 u32 status;
745
746 do {
747 err = get_card_status(card, &status, 5);
748 if (err) {
749 pr_err("%s: error %d requesting status\n",
750 req->rq_disk->disk_name, err);
751 return err;
752 }
753
754 if (status & R1_ERROR) {
755 pr_err("%s: %s: error sending status cmd, status %#x\n",
756 req->rq_disk->disk_name, __func__, status);
757 *gen_err = 1;
758 }
759
760 /* We may rely on the host hw to handle busy detection.*/
761 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
762 hw_busy_detect)
763 break;
764
765 /*
766 * Timeout if the device never becomes ready for data and never
767 * leaves the program state.
768 */
769 if (time_after(jiffies, timeout)) {
770 pr_err("%s: Card stuck in programming state! %s %s\n",
771 mmc_hostname(card->host),
772 req->rq_disk->disk_name, __func__);
773 return -ETIMEDOUT;
774 }
775
776 /*
777 * Some cards mishandle the status bits,
778 * so make sure to check both the busy
779 * indication and the card state.
780 */
781 } while (!(status & R1_READY_FOR_DATA) ||
782 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
783
784 return err;
785 }
786
787 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
788 struct request *req, int *gen_err, u32 *stop_status)
789 {
790 struct mmc_host *host = card->host;
791 struct mmc_command cmd = {0};
792 int err;
793 bool use_r1b_resp = rq_data_dir(req) == WRITE;
794
795 /*
796 * Normally we use R1B responses for WRITE, but in cases where the host
797 * has specified a max_busy_timeout we need to validate it. A failure
798 * means we need to prevent the host from doing hw busy detection, which
799 * is done by converting to a R1 response instead.
800 */
801 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
802 use_r1b_resp = false;
803
804 cmd.opcode = MMC_STOP_TRANSMISSION;
805 if (use_r1b_resp) {
806 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
807 cmd.busy_timeout = timeout_ms;
808 } else {
809 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
810 }
811
812 err = mmc_wait_for_cmd(host, &cmd, 5);
813 if (err)
814 return err;
815
816 *stop_status = cmd.resp[0];
817
818 /* No need to check card status in case of READ. */
819 if (rq_data_dir(req) == READ)
820 return 0;
821
822 if (!mmc_host_is_spi(host) &&
823 (*stop_status & R1_ERROR)) {
824 pr_err("%s: %s: general error sending stop command, resp %#x\n",
825 req->rq_disk->disk_name, __func__, *stop_status);
826 *gen_err = 1;
827 }
828
829 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
830 }
831
832 #define ERR_NOMEDIUM 3
833 #define ERR_RETRY 2
834 #define ERR_ABORT 1
835 #define ERR_CONTINUE 0
836
837 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
838 bool status_valid, u32 status)
839 {
840 switch (error) {
841 case -EILSEQ:
842 /* response crc error, retry the r/w cmd */
843 pr_err("%s: %s sending %s command, card status %#x\n",
844 req->rq_disk->disk_name, "response CRC error",
845 name, status);
846 return ERR_RETRY;
847
848 case -ETIMEDOUT:
849 pr_err("%s: %s sending %s command, card status %#x\n",
850 req->rq_disk->disk_name, "timed out", name, status);
851
852 /* If the status cmd initially failed, retry the r/w cmd */
853 if (!status_valid)
854 return ERR_RETRY;
855
856 /*
857 * If it was a r/w cmd crc error, or illegal command
858 * (eg, issued in wrong state) then retry - we should
859 * have corrected the state problem above.
860 */
861 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
862 return ERR_RETRY;
863
864 /* Otherwise abort the command */
865 return ERR_ABORT;
866
867 default:
868 /* We don't understand the error code the driver gave us */
869 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
870 req->rq_disk->disk_name, error, status);
871 return ERR_ABORT;
872 }
873 }
874
875 /*
876 * Initial r/w and stop cmd error recovery.
877 * We don't know whether the card received the r/w cmd or not, so try to
878 * restore things back to a sane state. Essentially, we do this as follows:
879 * - Obtain card status. If the first attempt to obtain card status fails,
880 * the status word will reflect the failed status cmd, not the failed
881 * r/w cmd. If we fail to obtain card status, it suggests we can no
882 * longer communicate with the card.
883 * - Check the card state. If the card received the cmd but there was a
884 * transient problem with the response, it might still be in a data transfer
885 * mode. Try to send it a stop command. If this fails, we can't recover.
886 * - If the r/w cmd failed due to a response CRC error, it was probably
887 * transient, so retry the cmd.
888 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
889 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
890 * illegal cmd, retry.
891 * Otherwise we don't understand what happened, so abort.
892 */
893 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
894 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
895 {
896 bool prev_cmd_status_valid = true;
897 u32 status, stop_status = 0;
898 int err, retry;
899
900 if (mmc_card_removed(card))
901 return ERR_NOMEDIUM;
902
903 /*
904 * Try to get card status which indicates both the card state
905 * and why there was no response. If the first attempt fails,
906 * we can't be sure the returned status is for the r/w command.
907 */
908 for (retry = 2; retry >= 0; retry--) {
909 err = get_card_status(card, &status, 0);
910 if (!err)
911 break;
912
913 prev_cmd_status_valid = false;
914 pr_err("%s: error %d sending status command, %sing\n",
915 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
916 }
917
918 /* We couldn't get a response from the card. Give up. */
919 if (err) {
920 /* Check if the card is removed */
921 if (mmc_detect_card_removed(card->host))
922 return ERR_NOMEDIUM;
923 return ERR_ABORT;
924 }
925
926 /* Flag ECC errors */
927 if ((status & R1_CARD_ECC_FAILED) ||
928 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
929 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
930 *ecc_err = 1;
931
932 /* Flag General errors */
933 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
934 if ((status & R1_ERROR) ||
935 (brq->stop.resp[0] & R1_ERROR)) {
936 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
937 req->rq_disk->disk_name, __func__,
938 brq->stop.resp[0], status);
939 *gen_err = 1;
940 }
941
942 /*
943 * Check the current card state. If it is in some data transfer
944 * mode, tell it to stop (and hopefully transition back to TRAN.)
945 */
946 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
947 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
948 err = send_stop(card,
949 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
950 req, gen_err, &stop_status);
951 if (err) {
952 pr_err("%s: error %d sending stop command\n",
953 req->rq_disk->disk_name, err);
954 /*
955 * If the stop cmd also timed out, the card is probably
956 * not present, so abort. Other errors are bad news too.
957 */
958 return ERR_ABORT;
959 }
960
961 if (stop_status & R1_CARD_ECC_FAILED)
962 *ecc_err = 1;
963 }
964
965 /* Check for set block count errors */
966 if (brq->sbc.error)
967 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
968 prev_cmd_status_valid, status);
969
970 /* Check for r/w command errors */
971 if (brq->cmd.error)
972 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
973 prev_cmd_status_valid, status);
974
975 /* Data errors */
976 if (!brq->stop.error)
977 return ERR_CONTINUE;
978
979 /* Now for stop errors. These aren't fatal to the transfer. */
980 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
981 req->rq_disk->disk_name, brq->stop.error,
982 brq->cmd.resp[0], status);
983
984 /*
985 * Subsitute in our own stop status as this will give the error
986 * state which happened during the execution of the r/w command.
987 */
988 if (stop_status) {
989 brq->stop.resp[0] = stop_status;
990 brq->stop.error = 0;
991 }
992 return ERR_CONTINUE;
993 }
994
995 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
996 int type)
997 {
998 int err;
999
1000 if (md->reset_done & type)
1001 return -EEXIST;
1002
1003 md->reset_done |= type;
1004 err = mmc_hw_reset(host);
1005 /* Ensure we switch back to the correct partition */
1006 if (err != -EOPNOTSUPP) {
1007 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
1008 int part_err;
1009
1010 main_md->part_curr = main_md->part_type;
1011 part_err = mmc_blk_part_switch(host->card, md);
1012 if (part_err) {
1013 /*
1014 * We have failed to get back into the correct
1015 * partition, so we need to abort the whole request.
1016 */
1017 return -ENODEV;
1018 }
1019 }
1020 return err;
1021 }
1022
1023 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1024 {
1025 md->reset_done &= ~type;
1026 }
1027
1028 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1029 {
1030 struct mmc_blk_data *md = mq->data;
1031 struct mmc_card *card = md->queue.card;
1032 unsigned int from, nr, arg;
1033 int err = 0, type = MMC_BLK_DISCARD;
1034
1035 if (!mmc_can_erase(card)) {
1036 err = -EOPNOTSUPP;
1037 goto out;
1038 }
1039
1040 from = blk_rq_pos(req);
1041 nr = blk_rq_sectors(req);
1042
1043 if (mmc_can_discard(card))
1044 arg = MMC_DISCARD_ARG;
1045 else if (mmc_can_trim(card))
1046 arg = MMC_TRIM_ARG;
1047 else
1048 arg = MMC_ERASE_ARG;
1049 retry:
1050 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1051 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1052 INAND_CMD38_ARG_EXT_CSD,
1053 arg == MMC_TRIM_ARG ?
1054 INAND_CMD38_ARG_TRIM :
1055 INAND_CMD38_ARG_ERASE,
1056 0);
1057 if (err)
1058 goto out;
1059 }
1060 err = mmc_erase(card, from, nr, arg);
1061 out:
1062 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1063 goto retry;
1064 if (!err)
1065 mmc_blk_reset_success(md, type);
1066 blk_end_request(req, err, blk_rq_bytes(req));
1067
1068 return err ? 0 : 1;
1069 }
1070
1071 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1072 struct request *req)
1073 {
1074 struct mmc_blk_data *md = mq->data;
1075 struct mmc_card *card = md->queue.card;
1076 unsigned int from, nr, arg;
1077 int err = 0, type = MMC_BLK_SECDISCARD;
1078
1079 if (!(mmc_can_secure_erase_trim(card))) {
1080 err = -EOPNOTSUPP;
1081 goto out;
1082 }
1083
1084 from = blk_rq_pos(req);
1085 nr = blk_rq_sectors(req);
1086
1087 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1088 arg = MMC_SECURE_TRIM1_ARG;
1089 else
1090 arg = MMC_SECURE_ERASE_ARG;
1091
1092 retry:
1093 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1094 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1095 INAND_CMD38_ARG_EXT_CSD,
1096 arg == MMC_SECURE_TRIM1_ARG ?
1097 INAND_CMD38_ARG_SECTRIM1 :
1098 INAND_CMD38_ARG_SECERASE,
1099 0);
1100 if (err)
1101 goto out_retry;
1102 }
1103
1104 err = mmc_erase(card, from, nr, arg);
1105 if (err == -EIO)
1106 goto out_retry;
1107 if (err)
1108 goto out;
1109
1110 if (arg == MMC_SECURE_TRIM1_ARG) {
1111 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1112 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1113 INAND_CMD38_ARG_EXT_CSD,
1114 INAND_CMD38_ARG_SECTRIM2,
1115 0);
1116 if (err)
1117 goto out_retry;
1118 }
1119
1120 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1121 if (err == -EIO)
1122 goto out_retry;
1123 if (err)
1124 goto out;
1125 }
1126
1127 out_retry:
1128 if (err && !mmc_blk_reset(md, card->host, type))
1129 goto retry;
1130 if (!err)
1131 mmc_blk_reset_success(md, type);
1132 out:
1133 blk_end_request(req, err, blk_rq_bytes(req));
1134
1135 return err ? 0 : 1;
1136 }
1137
1138 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1139 {
1140 struct mmc_blk_data *md = mq->data;
1141 struct mmc_card *card = md->queue.card;
1142 int ret = 0;
1143
1144 ret = mmc_flush_cache(card);
1145 if (ret)
1146 ret = -EIO;
1147
1148 blk_end_request_all(req, ret);
1149
1150 return ret ? 0 : 1;
1151 }
1152
1153 /*
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1159 */
1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 struct mmc_card *card,
1162 struct request *req)
1163 {
1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1167 brq->data.blocks = 1;
1168
1169 if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 brq->data.blocks = card->ext_csd.rel_sectors;
1171 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 brq->data.blocks = 1;
1173 }
1174 }
1175
1176 #define CMD_ERRORS \
1177 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1178 R1_ADDRESS_ERROR | /* Misaligned address */ \
1179 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1180 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1183
1184 static int mmc_blk_err_check(struct mmc_card *card,
1185 struct mmc_async_req *areq)
1186 {
1187 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1188 mmc_active);
1189 struct mmc_blk_request *brq = &mq_mrq->brq;
1190 struct request *req = mq_mrq->req;
1191 int ecc_err = 0, gen_err = 0;
1192
1193 /*
1194 * sbc.error indicates a problem with the set block count
1195 * command. No data will have been transferred.
1196 *
1197 * cmd.error indicates a problem with the r/w command. No
1198 * data will have been transferred.
1199 *
1200 * stop.error indicates a problem with the stop command. Data
1201 * may have been transferred, or may still be transferring.
1202 */
1203 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1204 brq->data.error) {
1205 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1206 case ERR_RETRY:
1207 return MMC_BLK_RETRY;
1208 case ERR_ABORT:
1209 return MMC_BLK_ABORT;
1210 case ERR_NOMEDIUM:
1211 return MMC_BLK_NOMEDIUM;
1212 case ERR_CONTINUE:
1213 break;
1214 }
1215 }
1216
1217 /*
1218 * Check for errors relating to the execution of the
1219 * initial command - such as address errors. No data
1220 * has been transferred.
1221 */
1222 if (brq->cmd.resp[0] & CMD_ERRORS) {
1223 pr_err("%s: r/w command failed, status = %#x\n",
1224 req->rq_disk->disk_name, brq->cmd.resp[0]);
1225 return MMC_BLK_ABORT;
1226 }
1227
1228 /*
1229 * Everything else is either success, or a data error of some
1230 * kind. If it was a write, we may have transitioned to
1231 * program mode, which we have to wait for it to complete.
1232 */
1233 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1234 int err;
1235
1236 /* Check stop command response */
1237 if (brq->stop.resp[0] & R1_ERROR) {
1238 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1239 req->rq_disk->disk_name, __func__,
1240 brq->stop.resp[0]);
1241 gen_err = 1;
1242 }
1243
1244 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1245 &gen_err);
1246 if (err)
1247 return MMC_BLK_CMD_ERR;
1248 }
1249
1250 /* if general error occurs, retry the write operation. */
1251 if (gen_err) {
1252 pr_warn("%s: retrying write for general error\n",
1253 req->rq_disk->disk_name);
1254 return MMC_BLK_RETRY;
1255 }
1256
1257 if (brq->data.error) {
1258 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1259 req->rq_disk->disk_name, brq->data.error,
1260 (unsigned)blk_rq_pos(req),
1261 (unsigned)blk_rq_sectors(req),
1262 brq->cmd.resp[0], brq->stop.resp[0]);
1263
1264 if (rq_data_dir(req) == READ) {
1265 if (ecc_err)
1266 return MMC_BLK_ECC_ERR;
1267 return MMC_BLK_DATA_ERR;
1268 } else {
1269 return MMC_BLK_CMD_ERR;
1270 }
1271 }
1272
1273 if (!brq->data.bytes_xfered)
1274 return MMC_BLK_RETRY;
1275
1276 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1277 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1278 return MMC_BLK_PARTIAL;
1279 else
1280 return MMC_BLK_SUCCESS;
1281 }
1282
1283 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1284 return MMC_BLK_PARTIAL;
1285
1286 return MMC_BLK_SUCCESS;
1287 }
1288
1289 static int mmc_blk_packed_err_check(struct mmc_card *card,
1290 struct mmc_async_req *areq)
1291 {
1292 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1293 mmc_active);
1294 struct request *req = mq_rq->req;
1295 struct mmc_packed *packed = mq_rq->packed;
1296 int err, check, status;
1297 u8 *ext_csd;
1298
1299 BUG_ON(!packed);
1300
1301 packed->retries--;
1302 check = mmc_blk_err_check(card, areq);
1303 err = get_card_status(card, &status, 0);
1304 if (err) {
1305 pr_err("%s: error %d sending status command\n",
1306 req->rq_disk->disk_name, err);
1307 return MMC_BLK_ABORT;
1308 }
1309
1310 if (status & R1_EXCEPTION_EVENT) {
1311 ext_csd = kzalloc(512, GFP_KERNEL);
1312 if (!ext_csd) {
1313 pr_err("%s: unable to allocate buffer for ext_csd\n",
1314 req->rq_disk->disk_name);
1315 return -ENOMEM;
1316 }
1317
1318 err = mmc_send_ext_csd(card, ext_csd);
1319 if (err) {
1320 pr_err("%s: error %d sending ext_csd\n",
1321 req->rq_disk->disk_name, err);
1322 check = MMC_BLK_ABORT;
1323 goto free;
1324 }
1325
1326 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1327 EXT_CSD_PACKED_FAILURE) &&
1328 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1329 EXT_CSD_PACKED_GENERIC_ERROR)) {
1330 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1331 EXT_CSD_PACKED_INDEXED_ERROR) {
1332 packed->idx_failure =
1333 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1334 check = MMC_BLK_PARTIAL;
1335 }
1336 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1337 "failure index: %d\n",
1338 req->rq_disk->disk_name, packed->nr_entries,
1339 packed->blocks, packed->idx_failure);
1340 }
1341 free:
1342 kfree(ext_csd);
1343 }
1344
1345 return check;
1346 }
1347
1348 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1349 struct mmc_card *card,
1350 int disable_multi,
1351 struct mmc_queue *mq)
1352 {
1353 u32 readcmd, writecmd;
1354 struct mmc_blk_request *brq = &mqrq->brq;
1355 struct request *req = mqrq->req;
1356 struct mmc_blk_data *md = mq->data;
1357 bool do_data_tag;
1358
1359 /*
1360 * Reliable writes are used to implement Forced Unit Access and
1361 * REQ_META accesses, and are supported only on MMCs.
1362 *
1363 * XXX: this really needs a good explanation of why REQ_META
1364 * is treated special.
1365 */
1366 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1367 (req->cmd_flags & REQ_META)) &&
1368 (rq_data_dir(req) == WRITE) &&
1369 (md->flags & MMC_BLK_REL_WR);
1370
1371 memset(brq, 0, sizeof(struct mmc_blk_request));
1372 brq->mrq.cmd = &brq->cmd;
1373 brq->mrq.data = &brq->data;
1374
1375 brq->cmd.arg = blk_rq_pos(req);
1376 if (!mmc_card_blockaddr(card))
1377 brq->cmd.arg <<= 9;
1378 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1379 brq->data.blksz = 512;
1380 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1381 brq->stop.arg = 0;
1382 brq->data.blocks = blk_rq_sectors(req);
1383
1384 /*
1385 * The block layer doesn't support all sector count
1386 * restrictions, so we need to be prepared for too big
1387 * requests.
1388 */
1389 if (brq->data.blocks > card->host->max_blk_count)
1390 brq->data.blocks = card->host->max_blk_count;
1391
1392 if (brq->data.blocks > 1) {
1393 /*
1394 * After a read error, we redo the request one sector
1395 * at a time in order to accurately determine which
1396 * sectors can be read successfully.
1397 */
1398 if (disable_multi)
1399 brq->data.blocks = 1;
1400
1401 /*
1402 * Some controllers have HW issues while operating
1403 * in multiple I/O mode
1404 */
1405 if (card->host->ops->multi_io_quirk)
1406 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1407 (rq_data_dir(req) == READ) ?
1408 MMC_DATA_READ : MMC_DATA_WRITE,
1409 brq->data.blocks);
1410 }
1411
1412 if (brq->data.blocks > 1 || do_rel_wr) {
1413 /* SPI multiblock writes terminate using a special
1414 * token, not a STOP_TRANSMISSION request.
1415 */
1416 if (!mmc_host_is_spi(card->host) ||
1417 rq_data_dir(req) == READ)
1418 brq->mrq.stop = &brq->stop;
1419 readcmd = MMC_READ_MULTIPLE_BLOCK;
1420 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1421 } else {
1422 brq->mrq.stop = NULL;
1423 readcmd = MMC_READ_SINGLE_BLOCK;
1424 writecmd = MMC_WRITE_BLOCK;
1425 }
1426 if (rq_data_dir(req) == READ) {
1427 brq->cmd.opcode = readcmd;
1428 brq->data.flags |= MMC_DATA_READ;
1429 if (brq->mrq.stop)
1430 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1431 MMC_CMD_AC;
1432 } else {
1433 brq->cmd.opcode = writecmd;
1434 brq->data.flags |= MMC_DATA_WRITE;
1435 if (brq->mrq.stop)
1436 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1437 MMC_CMD_AC;
1438 }
1439
1440 if (do_rel_wr)
1441 mmc_apply_rel_rw(brq, card, req);
1442
1443 /*
1444 * Data tag is used only during writing meta data to speed
1445 * up write and any subsequent read of this meta data
1446 */
1447 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1448 (req->cmd_flags & REQ_META) &&
1449 (rq_data_dir(req) == WRITE) &&
1450 ((brq->data.blocks * brq->data.blksz) >=
1451 card->ext_csd.data_tag_unit_size);
1452
1453 /*
1454 * Pre-defined multi-block transfers are preferable to
1455 * open ended-ones (and necessary for reliable writes).
1456 * However, it is not sufficient to just send CMD23,
1457 * and avoid the final CMD12, as on an error condition
1458 * CMD12 (stop) needs to be sent anyway. This, coupled
1459 * with Auto-CMD23 enhancements provided by some
1460 * hosts, means that the complexity of dealing
1461 * with this is best left to the host. If CMD23 is
1462 * supported by card and host, we'll fill sbc in and let
1463 * the host deal with handling it correctly. This means
1464 * that for hosts that don't expose MMC_CAP_CMD23, no
1465 * change of behavior will be observed.
1466 *
1467 * N.B: Some MMC cards experience perf degradation.
1468 * We'll avoid using CMD23-bounded multiblock writes for
1469 * these, while retaining features like reliable writes.
1470 */
1471 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1472 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1473 do_data_tag)) {
1474 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1475 brq->sbc.arg = brq->data.blocks |
1476 (do_rel_wr ? (1 << 31) : 0) |
1477 (do_data_tag ? (1 << 29) : 0);
1478 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1479 brq->mrq.sbc = &brq->sbc;
1480 }
1481
1482 mmc_set_data_timeout(&brq->data, card);
1483
1484 brq->data.sg = mqrq->sg;
1485 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1486
1487 /*
1488 * Adjust the sg list so it is the same size as the
1489 * request.
1490 */
1491 if (brq->data.blocks != blk_rq_sectors(req)) {
1492 int i, data_size = brq->data.blocks << 9;
1493 struct scatterlist *sg;
1494
1495 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1496 data_size -= sg->length;
1497 if (data_size <= 0) {
1498 sg->length += data_size;
1499 i++;
1500 break;
1501 }
1502 }
1503 brq->data.sg_len = i;
1504 }
1505
1506 mqrq->mmc_active.mrq = &brq->mrq;
1507 mqrq->mmc_active.err_check = mmc_blk_err_check;
1508
1509 mmc_queue_bounce_pre(mqrq);
1510 }
1511
1512 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1513 struct mmc_card *card)
1514 {
1515 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1516 unsigned int max_seg_sz = queue_max_segment_size(q);
1517 unsigned int len, nr_segs = 0;
1518
1519 do {
1520 len = min(hdr_sz, max_seg_sz);
1521 hdr_sz -= len;
1522 nr_segs++;
1523 } while (hdr_sz);
1524
1525 return nr_segs;
1526 }
1527
1528 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1529 {
1530 struct request_queue *q = mq->queue;
1531 struct mmc_card *card = mq->card;
1532 struct request *cur = req, *next = NULL;
1533 struct mmc_blk_data *md = mq->data;
1534 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1535 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1536 unsigned int req_sectors = 0, phys_segments = 0;
1537 unsigned int max_blk_count, max_phys_segs;
1538 bool put_back = true;
1539 u8 max_packed_rw = 0;
1540 u8 reqs = 0;
1541
1542 if (!(md->flags & MMC_BLK_PACKED_CMD))
1543 goto no_packed;
1544
1545 if ((rq_data_dir(cur) == WRITE) &&
1546 mmc_host_packed_wr(card->host))
1547 max_packed_rw = card->ext_csd.max_packed_writes;
1548
1549 if (max_packed_rw == 0)
1550 goto no_packed;
1551
1552 if (mmc_req_rel_wr(cur) &&
1553 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1554 goto no_packed;
1555
1556 if (mmc_large_sector(card) &&
1557 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1558 goto no_packed;
1559
1560 mmc_blk_clear_packed(mqrq);
1561
1562 max_blk_count = min(card->host->max_blk_count,
1563 card->host->max_req_size >> 9);
1564 if (unlikely(max_blk_count > 0xffff))
1565 max_blk_count = 0xffff;
1566
1567 max_phys_segs = queue_max_segments(q);
1568 req_sectors += blk_rq_sectors(cur);
1569 phys_segments += cur->nr_phys_segments;
1570
1571 if (rq_data_dir(cur) == WRITE) {
1572 req_sectors += mmc_large_sector(card) ? 8 : 1;
1573 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1574 }
1575
1576 do {
1577 if (reqs >= max_packed_rw - 1) {
1578 put_back = false;
1579 break;
1580 }
1581
1582 spin_lock_irq(q->queue_lock);
1583 next = blk_fetch_request(q);
1584 spin_unlock_irq(q->queue_lock);
1585 if (!next) {
1586 put_back = false;
1587 break;
1588 }
1589
1590 if (mmc_large_sector(card) &&
1591 !IS_ALIGNED(blk_rq_sectors(next), 8))
1592 break;
1593
1594 if (next->cmd_flags & REQ_DISCARD ||
1595 next->cmd_flags & REQ_FLUSH)
1596 break;
1597
1598 if (rq_data_dir(cur) != rq_data_dir(next))
1599 break;
1600
1601 if (mmc_req_rel_wr(next) &&
1602 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1603 break;
1604
1605 req_sectors += blk_rq_sectors(next);
1606 if (req_sectors > max_blk_count)
1607 break;
1608
1609 phys_segments += next->nr_phys_segments;
1610 if (phys_segments > max_phys_segs)
1611 break;
1612
1613 list_add_tail(&next->queuelist, &mqrq->packed->list);
1614 cur = next;
1615 reqs++;
1616 } while (1);
1617
1618 if (put_back) {
1619 spin_lock_irq(q->queue_lock);
1620 blk_requeue_request(q, next);
1621 spin_unlock_irq(q->queue_lock);
1622 }
1623
1624 if (reqs > 0) {
1625 list_add(&req->queuelist, &mqrq->packed->list);
1626 mqrq->packed->nr_entries = ++reqs;
1627 mqrq->packed->retries = reqs;
1628 return reqs;
1629 }
1630
1631 no_packed:
1632 mqrq->cmd_type = MMC_PACKED_NONE;
1633 return 0;
1634 }
1635
1636 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1637 struct mmc_card *card,
1638 struct mmc_queue *mq)
1639 {
1640 struct mmc_blk_request *brq = &mqrq->brq;
1641 struct request *req = mqrq->req;
1642 struct request *prq;
1643 struct mmc_blk_data *md = mq->data;
1644 struct mmc_packed *packed = mqrq->packed;
1645 bool do_rel_wr, do_data_tag;
1646 u32 *packed_cmd_hdr;
1647 u8 hdr_blocks;
1648 u8 i = 1;
1649
1650 BUG_ON(!packed);
1651
1652 mqrq->cmd_type = MMC_PACKED_WRITE;
1653 packed->blocks = 0;
1654 packed->idx_failure = MMC_PACKED_NR_IDX;
1655
1656 packed_cmd_hdr = packed->cmd_hdr;
1657 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1658 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1659 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1660 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1661
1662 /*
1663 * Argument for each entry of packed group
1664 */
1665 list_for_each_entry(prq, &packed->list, queuelist) {
1666 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1667 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1668 (prq->cmd_flags & REQ_META) &&
1669 (rq_data_dir(prq) == WRITE) &&
1670 ((brq->data.blocks * brq->data.blksz) >=
1671 card->ext_csd.data_tag_unit_size);
1672 /* Argument of CMD23 */
1673 packed_cmd_hdr[(i * 2)] =
1674 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1675 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1676 blk_rq_sectors(prq);
1677 /* Argument of CMD18 or CMD25 */
1678 packed_cmd_hdr[((i * 2)) + 1] =
1679 mmc_card_blockaddr(card) ?
1680 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1681 packed->blocks += blk_rq_sectors(prq);
1682 i++;
1683 }
1684
1685 memset(brq, 0, sizeof(struct mmc_blk_request));
1686 brq->mrq.cmd = &brq->cmd;
1687 brq->mrq.data = &brq->data;
1688 brq->mrq.sbc = &brq->sbc;
1689 brq->mrq.stop = &brq->stop;
1690
1691 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1692 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1693 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1694
1695 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1696 brq->cmd.arg = blk_rq_pos(req);
1697 if (!mmc_card_blockaddr(card))
1698 brq->cmd.arg <<= 9;
1699 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1700
1701 brq->data.blksz = 512;
1702 brq->data.blocks = packed->blocks + hdr_blocks;
1703 brq->data.flags |= MMC_DATA_WRITE;
1704
1705 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1706 brq->stop.arg = 0;
1707 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1708
1709 mmc_set_data_timeout(&brq->data, card);
1710
1711 brq->data.sg = mqrq->sg;
1712 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1713
1714 mqrq->mmc_active.mrq = &brq->mrq;
1715 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1716
1717 mmc_queue_bounce_pre(mqrq);
1718 }
1719
1720 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1721 struct mmc_blk_request *brq, struct request *req,
1722 int ret)
1723 {
1724 struct mmc_queue_req *mq_rq;
1725 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1726
1727 /*
1728 * If this is an SD card and we're writing, we can first
1729 * mark the known good sectors as ok.
1730 *
1731 * If the card is not SD, we can still ok written sectors
1732 * as reported by the controller (which might be less than
1733 * the real number of written sectors, but never more).
1734 */
1735 if (mmc_card_sd(card)) {
1736 u32 blocks;
1737
1738 blocks = mmc_sd_num_wr_blocks(card);
1739 if (blocks != (u32)-1) {
1740 ret = blk_end_request(req, 0, blocks << 9);
1741 }
1742 } else {
1743 if (!mmc_packed_cmd(mq_rq->cmd_type))
1744 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1745 }
1746 return ret;
1747 }
1748
1749 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1750 {
1751 struct request *prq;
1752 struct mmc_packed *packed = mq_rq->packed;
1753 int idx = packed->idx_failure, i = 0;
1754 int ret = 0;
1755
1756 BUG_ON(!packed);
1757
1758 while (!list_empty(&packed->list)) {
1759 prq = list_entry_rq(packed->list.next);
1760 if (idx == i) {
1761 /* retry from error index */
1762 packed->nr_entries -= idx;
1763 mq_rq->req = prq;
1764 ret = 1;
1765
1766 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1767 list_del_init(&prq->queuelist);
1768 mmc_blk_clear_packed(mq_rq);
1769 }
1770 return ret;
1771 }
1772 list_del_init(&prq->queuelist);
1773 blk_end_request(prq, 0, blk_rq_bytes(prq));
1774 i++;
1775 }
1776
1777 mmc_blk_clear_packed(mq_rq);
1778 return ret;
1779 }
1780
1781 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1782 {
1783 struct request *prq;
1784 struct mmc_packed *packed = mq_rq->packed;
1785
1786 BUG_ON(!packed);
1787
1788 while (!list_empty(&packed->list)) {
1789 prq = list_entry_rq(packed->list.next);
1790 list_del_init(&prq->queuelist);
1791 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1792 }
1793
1794 mmc_blk_clear_packed(mq_rq);
1795 }
1796
1797 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1798 struct mmc_queue_req *mq_rq)
1799 {
1800 struct request *prq;
1801 struct request_queue *q = mq->queue;
1802 struct mmc_packed *packed = mq_rq->packed;
1803
1804 BUG_ON(!packed);
1805
1806 while (!list_empty(&packed->list)) {
1807 prq = list_entry_rq(packed->list.prev);
1808 if (prq->queuelist.prev != &packed->list) {
1809 list_del_init(&prq->queuelist);
1810 spin_lock_irq(q->queue_lock);
1811 blk_requeue_request(mq->queue, prq);
1812 spin_unlock_irq(q->queue_lock);
1813 } else {
1814 list_del_init(&prq->queuelist);
1815 }
1816 }
1817
1818 mmc_blk_clear_packed(mq_rq);
1819 }
1820
1821 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1822 {
1823 struct mmc_blk_data *md = mq->data;
1824 struct mmc_card *card = md->queue.card;
1825 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1826 int ret = 1, disable_multi = 0, retry = 0, type;
1827 enum mmc_blk_status status;
1828 struct mmc_queue_req *mq_rq;
1829 struct request *req = rqc;
1830 struct mmc_async_req *areq;
1831 const u8 packed_nr = 2;
1832 u8 reqs = 0;
1833
1834 if (!rqc && !mq->mqrq_prev->req)
1835 return 0;
1836
1837 if (rqc)
1838 reqs = mmc_blk_prep_packed_list(mq, rqc);
1839
1840 do {
1841 if (rqc) {
1842 /*
1843 * When 4KB native sector is enabled, only 8 blocks
1844 * multiple read or write is allowed
1845 */
1846 if ((brq->data.blocks & 0x07) &&
1847 (card->ext_csd.data_sector_size == 4096)) {
1848 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1849 req->rq_disk->disk_name);
1850 mq_rq = mq->mqrq_cur;
1851 goto cmd_abort;
1852 }
1853
1854 if (reqs >= packed_nr)
1855 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1856 card, mq);
1857 else
1858 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1859 areq = &mq->mqrq_cur->mmc_active;
1860 } else
1861 areq = NULL;
1862 areq = mmc_start_req(card->host, areq, (int *) &status);
1863 if (!areq) {
1864 if (status == MMC_BLK_NEW_REQUEST)
1865 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1866 return 0;
1867 }
1868
1869 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1870 brq = &mq_rq->brq;
1871 req = mq_rq->req;
1872 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1873 mmc_queue_bounce_post(mq_rq);
1874
1875 switch (status) {
1876 case MMC_BLK_SUCCESS:
1877 case MMC_BLK_PARTIAL:
1878 /*
1879 * A block was successfully transferred.
1880 */
1881 mmc_blk_reset_success(md, type);
1882
1883 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1884 ret = mmc_blk_end_packed_req(mq_rq);
1885 break;
1886 } else {
1887 ret = blk_end_request(req, 0,
1888 brq->data.bytes_xfered);
1889 }
1890
1891 /*
1892 * If the blk_end_request function returns non-zero even
1893 * though all data has been transferred and no errors
1894 * were returned by the host controller, it's a bug.
1895 */
1896 if (status == MMC_BLK_SUCCESS && ret) {
1897 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1898 __func__, blk_rq_bytes(req),
1899 brq->data.bytes_xfered);
1900 rqc = NULL;
1901 goto cmd_abort;
1902 }
1903 break;
1904 case MMC_BLK_CMD_ERR:
1905 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1906 if (!mmc_blk_reset(md, card->host, type))
1907 break;
1908 goto cmd_abort;
1909 case MMC_BLK_RETRY:
1910 if (retry++ < 5)
1911 break;
1912 /* Fall through */
1913 case MMC_BLK_ABORT:
1914 if (!mmc_blk_reset(md, card->host, type))
1915 break;
1916 goto cmd_abort;
1917 case MMC_BLK_DATA_ERR: {
1918 int err;
1919
1920 err = mmc_blk_reset(md, card->host, type);
1921 if (!err)
1922 break;
1923 if (err == -ENODEV ||
1924 mmc_packed_cmd(mq_rq->cmd_type))
1925 goto cmd_abort;
1926 /* Fall through */
1927 }
1928 case MMC_BLK_ECC_ERR:
1929 if (brq->data.blocks > 1) {
1930 /* Redo read one sector at a time */
1931 pr_warn("%s: retrying using single block read\n",
1932 req->rq_disk->disk_name);
1933 disable_multi = 1;
1934 break;
1935 }
1936 /*
1937 * After an error, we redo I/O one sector at a
1938 * time, so we only reach here after trying to
1939 * read a single sector.
1940 */
1941 ret = blk_end_request(req, -EIO,
1942 brq->data.blksz);
1943 if (!ret)
1944 goto start_new_req;
1945 break;
1946 case MMC_BLK_NOMEDIUM:
1947 goto cmd_abort;
1948 default:
1949 pr_err("%s: Unhandled return value (%d)",
1950 req->rq_disk->disk_name, status);
1951 goto cmd_abort;
1952 }
1953
1954 if (ret) {
1955 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1956 if (!mq_rq->packed->retries)
1957 goto cmd_abort;
1958 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1959 mmc_start_req(card->host,
1960 &mq_rq->mmc_active, NULL);
1961 } else {
1962
1963 /*
1964 * In case of a incomplete request
1965 * prepare it again and resend.
1966 */
1967 mmc_blk_rw_rq_prep(mq_rq, card,
1968 disable_multi, mq);
1969 mmc_start_req(card->host,
1970 &mq_rq->mmc_active, NULL);
1971 }
1972 }
1973 } while (ret);
1974
1975 return 1;
1976
1977 cmd_abort:
1978 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1979 mmc_blk_abort_packed_req(mq_rq);
1980 } else {
1981 if (mmc_card_removed(card))
1982 req->cmd_flags |= REQ_QUIET;
1983 while (ret)
1984 ret = blk_end_request(req, -EIO,
1985 blk_rq_cur_bytes(req));
1986 }
1987
1988 start_new_req:
1989 if (rqc) {
1990 if (mmc_card_removed(card)) {
1991 rqc->cmd_flags |= REQ_QUIET;
1992 blk_end_request_all(rqc, -EIO);
1993 } else {
1994 /*
1995 * If current request is packed, it needs to put back.
1996 */
1997 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1998 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1999
2000 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2001 mmc_start_req(card->host,
2002 &mq->mqrq_cur->mmc_active, NULL);
2003 }
2004 }
2005
2006 return 0;
2007 }
2008
2009 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2010 {
2011 int ret;
2012 struct mmc_blk_data *md = mq->data;
2013 struct mmc_card *card = md->queue.card;
2014 struct mmc_host *host = card->host;
2015 unsigned long flags;
2016 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2017
2018 if (req && !mq->mqrq_prev->req)
2019 /* claim host only for the first request */
2020 mmc_get_card(card);
2021
2022 ret = mmc_blk_part_switch(card, md);
2023 if (ret) {
2024 if (req) {
2025 blk_end_request_all(req, -EIO);
2026 }
2027 ret = 0;
2028 goto out;
2029 }
2030
2031 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2032 if (cmd_flags & REQ_DISCARD) {
2033 /* complete ongoing async transfer before issuing discard */
2034 if (card->host->areq)
2035 mmc_blk_issue_rw_rq(mq, NULL);
2036 if (req->cmd_flags & REQ_SECURE)
2037 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2038 else
2039 ret = mmc_blk_issue_discard_rq(mq, req);
2040 } else if (cmd_flags & REQ_FLUSH) {
2041 /* complete ongoing async transfer before issuing flush */
2042 if (card->host->areq)
2043 mmc_blk_issue_rw_rq(mq, NULL);
2044 ret = mmc_blk_issue_flush(mq, req);
2045 } else {
2046 if (!req && host->areq) {
2047 spin_lock_irqsave(&host->context_info.lock, flags);
2048 host->context_info.is_waiting_last_req = true;
2049 spin_unlock_irqrestore(&host->context_info.lock, flags);
2050 }
2051 ret = mmc_blk_issue_rw_rq(mq, req);
2052 }
2053
2054 out:
2055 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2056 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2057 /*
2058 * Release host when there are no more requests
2059 * and after special request(discard, flush) is done.
2060 * In case sepecial request, there is no reentry to
2061 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2062 */
2063 mmc_put_card(card);
2064 return ret;
2065 }
2066
2067 static inline int mmc_blk_readonly(struct mmc_card *card)
2068 {
2069 return mmc_card_readonly(card) ||
2070 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2071 }
2072
2073 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2074 struct device *parent,
2075 sector_t size,
2076 bool default_ro,
2077 const char *subname,
2078 int area_type)
2079 {
2080 struct mmc_blk_data *md;
2081 int devidx, ret;
2082
2083 devidx = find_first_zero_bit(dev_use, max_devices);
2084 if (devidx >= max_devices)
2085 return ERR_PTR(-ENOSPC);
2086 __set_bit(devidx, dev_use);
2087
2088 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2089 if (!md) {
2090 ret = -ENOMEM;
2091 goto out;
2092 }
2093
2094 /*
2095 * !subname implies we are creating main mmc_blk_data that will be
2096 * associated with mmc_card with mmc_set_drvdata. Due to device
2097 * partitions, devidx will not coincide with a per-physical card
2098 * index anymore so we keep track of a name index.
2099 */
2100 if (!subname) {
2101 md->name_idx = find_first_zero_bit(name_use, max_devices);
2102 __set_bit(md->name_idx, name_use);
2103 } else
2104 md->name_idx = ((struct mmc_blk_data *)
2105 dev_to_disk(parent)->private_data)->name_idx;
2106
2107 md->area_type = area_type;
2108
2109 /*
2110 * Set the read-only status based on the supported commands
2111 * and the write protect switch.
2112 */
2113 md->read_only = mmc_blk_readonly(card);
2114
2115 md->disk = alloc_disk(perdev_minors);
2116 if (md->disk == NULL) {
2117 ret = -ENOMEM;
2118 goto err_kfree;
2119 }
2120
2121 spin_lock_init(&md->lock);
2122 INIT_LIST_HEAD(&md->part);
2123 md->usage = 1;
2124
2125 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2126 if (ret)
2127 goto err_putdisk;
2128
2129 md->queue.issue_fn = mmc_blk_issue_rq;
2130 md->queue.data = md;
2131
2132 md->disk->major = MMC_BLOCK_MAJOR;
2133 md->disk->first_minor = devidx * perdev_minors;
2134 md->disk->fops = &mmc_bdops;
2135 md->disk->private_data = md;
2136 md->disk->queue = md->queue.queue;
2137 md->disk->driverfs_dev = parent;
2138 set_disk_ro(md->disk, md->read_only || default_ro);
2139 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2140 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2141
2142 /*
2143 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2144 *
2145 * - be set for removable media with permanent block devices
2146 * - be unset for removable block devices with permanent media
2147 *
2148 * Since MMC block devices clearly fall under the second
2149 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2150 * should use the block device creation/destruction hotplug
2151 * messages to tell when the card is present.
2152 */
2153
2154 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2155 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2156
2157 if (mmc_card_mmc(card))
2158 blk_queue_logical_block_size(md->queue.queue,
2159 card->ext_csd.data_sector_size);
2160 else
2161 blk_queue_logical_block_size(md->queue.queue, 512);
2162
2163 set_capacity(md->disk, size);
2164
2165 if (mmc_host_cmd23(card->host)) {
2166 if (mmc_card_mmc(card) ||
2167 (mmc_card_sd(card) &&
2168 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2169 md->flags |= MMC_BLK_CMD23;
2170 }
2171
2172 if (mmc_card_mmc(card) &&
2173 md->flags & MMC_BLK_CMD23 &&
2174 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2175 card->ext_csd.rel_sectors)) {
2176 md->flags |= MMC_BLK_REL_WR;
2177 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2178 }
2179
2180 if (mmc_card_mmc(card) &&
2181 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2182 (md->flags & MMC_BLK_CMD23) &&
2183 card->ext_csd.packed_event_en) {
2184 if (!mmc_packed_init(&md->queue, card))
2185 md->flags |= MMC_BLK_PACKED_CMD;
2186 }
2187
2188 return md;
2189
2190 err_putdisk:
2191 put_disk(md->disk);
2192 err_kfree:
2193 kfree(md);
2194 out:
2195 return ERR_PTR(ret);
2196 }
2197
2198 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2199 {
2200 sector_t size;
2201 struct mmc_blk_data *md;
2202
2203 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2204 /*
2205 * The EXT_CSD sector count is in number or 512 byte
2206 * sectors.
2207 */
2208 size = card->ext_csd.sectors;
2209 } else {
2210 /*
2211 * The CSD capacity field is in units of read_blkbits.
2212 * set_capacity takes units of 512 bytes.
2213 */
2214 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2215 }
2216
2217 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2218 MMC_BLK_DATA_AREA_MAIN);
2219 return md;
2220 }
2221
2222 static int mmc_blk_alloc_part(struct mmc_card *card,
2223 struct mmc_blk_data *md,
2224 unsigned int part_type,
2225 sector_t size,
2226 bool default_ro,
2227 const char *subname,
2228 int area_type)
2229 {
2230 char cap_str[10];
2231 struct mmc_blk_data *part_md;
2232
2233 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2234 subname, area_type);
2235 if (IS_ERR(part_md))
2236 return PTR_ERR(part_md);
2237 part_md->part_type = part_type;
2238 list_add(&part_md->part, &md->part);
2239
2240 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2241 cap_str, sizeof(cap_str));
2242 pr_info("%s: %s %s partition %u %s\n",
2243 part_md->disk->disk_name, mmc_card_id(card),
2244 mmc_card_name(card), part_md->part_type, cap_str);
2245 return 0;
2246 }
2247
2248 /* MMC Physical partitions consist of two boot partitions and
2249 * up to four general purpose partitions.
2250 * For each partition enabled in EXT_CSD a block device will be allocatedi
2251 * to provide access to the partition.
2252 */
2253
2254 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2255 {
2256 int idx, ret = 0;
2257
2258 if (!mmc_card_mmc(card))
2259 return 0;
2260
2261 for (idx = 0; idx < card->nr_parts; idx++) {
2262 if (card->part[idx].size) {
2263 ret = mmc_blk_alloc_part(card, md,
2264 card->part[idx].part_cfg,
2265 card->part[idx].size >> 9,
2266 card->part[idx].force_ro,
2267 card->part[idx].name,
2268 card->part[idx].area_type);
2269 if (ret)
2270 return ret;
2271 }
2272 }
2273
2274 return ret;
2275 }
2276
2277 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2278 {
2279 struct mmc_card *card;
2280
2281 if (md) {
2282 /*
2283 * Flush remaining requests and free queues. It
2284 * is freeing the queue that stops new requests
2285 * from being accepted.
2286 */
2287 card = md->queue.card;
2288 mmc_cleanup_queue(&md->queue);
2289 if (md->flags & MMC_BLK_PACKED_CMD)
2290 mmc_packed_clean(&md->queue);
2291 if (md->disk->flags & GENHD_FL_UP) {
2292 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2293 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2294 card->ext_csd.boot_ro_lockable)
2295 device_remove_file(disk_to_dev(md->disk),
2296 &md->power_ro_lock);
2297
2298 del_gendisk(md->disk);
2299 }
2300 mmc_blk_put(md);
2301 }
2302 }
2303
2304 static void mmc_blk_remove_parts(struct mmc_card *card,
2305 struct mmc_blk_data *md)
2306 {
2307 struct list_head *pos, *q;
2308 struct mmc_blk_data *part_md;
2309
2310 __clear_bit(md->name_idx, name_use);
2311 list_for_each_safe(pos, q, &md->part) {
2312 part_md = list_entry(pos, struct mmc_blk_data, part);
2313 list_del(pos);
2314 mmc_blk_remove_req(part_md);
2315 }
2316 }
2317
2318 static int mmc_add_disk(struct mmc_blk_data *md)
2319 {
2320 int ret;
2321 struct mmc_card *card = md->queue.card;
2322
2323 add_disk(md->disk);
2324 md->force_ro.show = force_ro_show;
2325 md->force_ro.store = force_ro_store;
2326 sysfs_attr_init(&md->force_ro.attr);
2327 md->force_ro.attr.name = "force_ro";
2328 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2329 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2330 if (ret)
2331 goto force_ro_fail;
2332
2333 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2334 card->ext_csd.boot_ro_lockable) {
2335 umode_t mode;
2336
2337 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2338 mode = S_IRUGO;
2339 else
2340 mode = S_IRUGO | S_IWUSR;
2341
2342 md->power_ro_lock.show = power_ro_lock_show;
2343 md->power_ro_lock.store = power_ro_lock_store;
2344 sysfs_attr_init(&md->power_ro_lock.attr);
2345 md->power_ro_lock.attr.mode = mode;
2346 md->power_ro_lock.attr.name =
2347 "ro_lock_until_next_power_on";
2348 ret = device_create_file(disk_to_dev(md->disk),
2349 &md->power_ro_lock);
2350 if (ret)
2351 goto power_ro_lock_fail;
2352 }
2353 return ret;
2354
2355 power_ro_lock_fail:
2356 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2357 force_ro_fail:
2358 del_gendisk(md->disk);
2359
2360 return ret;
2361 }
2362
2363 #define CID_MANFID_SANDISK 0x2
2364 #define CID_MANFID_TOSHIBA 0x11
2365 #define CID_MANFID_MICRON 0x13
2366 #define CID_MANFID_SAMSUNG 0x15
2367
2368 static const struct mmc_fixup blk_fixups[] =
2369 {
2370 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2371 MMC_QUIRK_INAND_CMD38),
2372 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2373 MMC_QUIRK_INAND_CMD38),
2374 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2375 MMC_QUIRK_INAND_CMD38),
2376 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2377 MMC_QUIRK_INAND_CMD38),
2378 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2379 MMC_QUIRK_INAND_CMD38),
2380
2381 /*
2382 * Some MMC cards experience performance degradation with CMD23
2383 * instead of CMD12-bounded multiblock transfers. For now we'll
2384 * black list what's bad...
2385 * - Certain Toshiba cards.
2386 *
2387 * N.B. This doesn't affect SD cards.
2388 */
2389 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2390 MMC_QUIRK_BLK_NO_CMD23),
2391 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2392 MMC_QUIRK_BLK_NO_CMD23),
2393 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2394 MMC_QUIRK_BLK_NO_CMD23),
2395
2396 /*
2397 * Some Micron MMC cards needs longer data read timeout than
2398 * indicated in CSD.
2399 */
2400 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2401 MMC_QUIRK_LONG_READ_TIME),
2402
2403 /*
2404 * On these Samsung MoviNAND parts, performing secure erase or
2405 * secure trim can result in unrecoverable corruption due to a
2406 * firmware bug.
2407 */
2408 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2409 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2410 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2411 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2412 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2413 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2414 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2415 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2416 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2417 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2418 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2419 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2420 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2421 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2422 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2423 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2424
2425 END_FIXUP
2426 };
2427
2428 static int mmc_blk_probe(struct mmc_card *card)
2429 {
2430 struct mmc_blk_data *md, *part_md;
2431 char cap_str[10];
2432
2433 /*
2434 * Check that the card supports the command class(es) we need.
2435 */
2436 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2437 return -ENODEV;
2438
2439 mmc_fixup_device(card, blk_fixups);
2440
2441 md = mmc_blk_alloc(card);
2442 if (IS_ERR(md))
2443 return PTR_ERR(md);
2444
2445 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2446 cap_str, sizeof(cap_str));
2447 pr_info("%s: %s %s %s %s\n",
2448 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2449 cap_str, md->read_only ? "(ro)" : "");
2450
2451 if (mmc_blk_alloc_parts(card, md))
2452 goto out;
2453
2454 mmc_set_drvdata(card, md);
2455
2456 if (mmc_add_disk(md))
2457 goto out;
2458
2459 list_for_each_entry(part_md, &md->part, part) {
2460 if (mmc_add_disk(part_md))
2461 goto out;
2462 }
2463
2464 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2465 pm_runtime_use_autosuspend(&card->dev);
2466
2467 /*
2468 * Don't enable runtime PM for SD-combo cards here. Leave that
2469 * decision to be taken during the SDIO init sequence instead.
2470 */
2471 if (card->type != MMC_TYPE_SD_COMBO) {
2472 pm_runtime_set_active(&card->dev);
2473 pm_runtime_enable(&card->dev);
2474 }
2475
2476 return 0;
2477
2478 out:
2479 mmc_blk_remove_parts(card, md);
2480 mmc_blk_remove_req(md);
2481 return 0;
2482 }
2483
2484 static void mmc_blk_remove(struct mmc_card *card)
2485 {
2486 struct mmc_blk_data *md = mmc_get_drvdata(card);
2487
2488 mmc_blk_remove_parts(card, md);
2489 pm_runtime_get_sync(&card->dev);
2490 mmc_claim_host(card->host);
2491 mmc_blk_part_switch(card, md);
2492 mmc_release_host(card->host);
2493 if (card->type != MMC_TYPE_SD_COMBO)
2494 pm_runtime_disable(&card->dev);
2495 pm_runtime_put_noidle(&card->dev);
2496 mmc_blk_remove_req(md);
2497 mmc_set_drvdata(card, NULL);
2498 }
2499
2500 static int _mmc_blk_suspend(struct mmc_card *card)
2501 {
2502 struct mmc_blk_data *part_md;
2503 struct mmc_blk_data *md = mmc_get_drvdata(card);
2504
2505 if (md) {
2506 mmc_queue_suspend(&md->queue);
2507 list_for_each_entry(part_md, &md->part, part) {
2508 mmc_queue_suspend(&part_md->queue);
2509 }
2510 }
2511 return 0;
2512 }
2513
2514 static void mmc_blk_shutdown(struct mmc_card *card)
2515 {
2516 _mmc_blk_suspend(card);
2517 }
2518
2519 #ifdef CONFIG_PM
2520 static int mmc_blk_suspend(struct mmc_card *card)
2521 {
2522 return _mmc_blk_suspend(card);
2523 }
2524
2525 static int mmc_blk_resume(struct mmc_card *card)
2526 {
2527 struct mmc_blk_data *part_md;
2528 struct mmc_blk_data *md = mmc_get_drvdata(card);
2529
2530 if (md) {
2531 /*
2532 * Resume involves the card going into idle state,
2533 * so current partition is always the main one.
2534 */
2535 md->part_curr = md->part_type;
2536 mmc_queue_resume(&md->queue);
2537 list_for_each_entry(part_md, &md->part, part) {
2538 mmc_queue_resume(&part_md->queue);
2539 }
2540 }
2541 return 0;
2542 }
2543 #else
2544 #define mmc_blk_suspend NULL
2545 #define mmc_blk_resume NULL
2546 #endif
2547
2548 static struct mmc_driver mmc_driver = {
2549 .drv = {
2550 .name = "mmcblk",
2551 },
2552 .probe = mmc_blk_probe,
2553 .remove = mmc_blk_remove,
2554 .suspend = mmc_blk_suspend,
2555 .resume = mmc_blk_resume,
2556 .shutdown = mmc_blk_shutdown,
2557 };
2558
2559 static int __init mmc_blk_init(void)
2560 {
2561 int res;
2562
2563 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2564 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2565
2566 max_devices = 256 / perdev_minors;
2567
2568 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2569 if (res)
2570 goto out;
2571
2572 res = mmc_register_driver(&mmc_driver);
2573 if (res)
2574 goto out2;
2575
2576 return 0;
2577 out2:
2578 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2579 out:
2580 return res;
2581 }
2582
2583 static void __exit mmc_blk_exit(void)
2584 {
2585 mmc_unregister_driver(&mmc_driver);
2586 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2587 }
2588
2589 module_init(mmc_blk_init);
2590 module_exit(mmc_blk_exit);
2591
2592 MODULE_LICENSE("GPL");
2593 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2594