]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/mmc/card/mmc_test.c
ACPI / Fan: Use bus id as the name for non PNP0C0B (Fan) devices
[mirror_ubuntu-focal-kernel.git] / drivers / mmc / card / mmc_test.c
1 /*
2 * linux/drivers/mmc/card/mmc_test.c
3 *
4 * Copyright 2007-2008 Pierre Ossman
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or (at
9 * your option) any later version.
10 */
11
12 #include <linux/mmc/core.h>
13 #include <linux/mmc/card.h>
14 #include <linux/mmc/host.h>
15 #include <linux/mmc/mmc.h>
16 #include <linux/slab.h>
17
18 #include <linux/scatterlist.h>
19 #include <linux/swap.h> /* For nr_free_buffer_pages() */
20 #include <linux/list.h>
21
22 #include <linux/debugfs.h>
23 #include <linux/uaccess.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26
27 #define RESULT_OK 0
28 #define RESULT_FAIL 1
29 #define RESULT_UNSUP_HOST 2
30 #define RESULT_UNSUP_CARD 3
31
32 #define BUFFER_ORDER 2
33 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
34
35 /*
36 * Limit the test area size to the maximum MMC HC erase group size. Note that
37 * the maximum SD allocation unit size is just 4MiB.
38 */
39 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
40
41 /**
42 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
43 * @page: first page in the allocation
44 * @order: order of the number of pages allocated
45 */
46 struct mmc_test_pages {
47 struct page *page;
48 unsigned int order;
49 };
50
51 /**
52 * struct mmc_test_mem - allocated memory.
53 * @arr: array of allocations
54 * @cnt: number of allocations
55 */
56 struct mmc_test_mem {
57 struct mmc_test_pages *arr;
58 unsigned int cnt;
59 };
60
61 /**
62 * struct mmc_test_area - information for performance tests.
63 * @max_sz: test area size (in bytes)
64 * @dev_addr: address on card at which to do performance tests
65 * @max_tfr: maximum transfer size allowed by driver (in bytes)
66 * @max_segs: maximum segments allowed by driver in scatterlist @sg
67 * @max_seg_sz: maximum segment size allowed by driver
68 * @blocks: number of (512 byte) blocks currently mapped by @sg
69 * @sg_len: length of currently mapped scatterlist @sg
70 * @mem: allocated memory
71 * @sg: scatterlist
72 */
73 struct mmc_test_area {
74 unsigned long max_sz;
75 unsigned int dev_addr;
76 unsigned int max_tfr;
77 unsigned int max_segs;
78 unsigned int max_seg_sz;
79 unsigned int blocks;
80 unsigned int sg_len;
81 struct mmc_test_mem *mem;
82 struct scatterlist *sg;
83 };
84
85 /**
86 * struct mmc_test_transfer_result - transfer results for performance tests.
87 * @link: double-linked list
88 * @count: amount of group of sectors to check
89 * @sectors: amount of sectors to check in one group
90 * @ts: time values of transfer
91 * @rate: calculated transfer rate
92 * @iops: I/O operations per second (times 100)
93 */
94 struct mmc_test_transfer_result {
95 struct list_head link;
96 unsigned int count;
97 unsigned int sectors;
98 struct timespec ts;
99 unsigned int rate;
100 unsigned int iops;
101 };
102
103 /**
104 * struct mmc_test_general_result - results for tests.
105 * @link: double-linked list
106 * @card: card under test
107 * @testcase: number of test case
108 * @result: result of test run
109 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
110 */
111 struct mmc_test_general_result {
112 struct list_head link;
113 struct mmc_card *card;
114 int testcase;
115 int result;
116 struct list_head tr_lst;
117 };
118
119 /**
120 * struct mmc_test_dbgfs_file - debugfs related file.
121 * @link: double-linked list
122 * @card: card under test
123 * @file: file created under debugfs
124 */
125 struct mmc_test_dbgfs_file {
126 struct list_head link;
127 struct mmc_card *card;
128 struct dentry *file;
129 };
130
131 /**
132 * struct mmc_test_card - test information.
133 * @card: card under test
134 * @scratch: transfer buffer
135 * @buffer: transfer buffer
136 * @highmem: buffer for highmem tests
137 * @area: information for performance tests
138 * @gr: pointer to results of current testcase
139 */
140 struct mmc_test_card {
141 struct mmc_card *card;
142
143 u8 scratch[BUFFER_SIZE];
144 u8 *buffer;
145 #ifdef CONFIG_HIGHMEM
146 struct page *highmem;
147 #endif
148 struct mmc_test_area area;
149 struct mmc_test_general_result *gr;
150 };
151
152 enum mmc_test_prep_media {
153 MMC_TEST_PREP_NONE = 0,
154 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
155 MMC_TEST_PREP_ERASE = 1 << 1,
156 };
157
158 struct mmc_test_multiple_rw {
159 unsigned int *sg_len;
160 unsigned int *bs;
161 unsigned int len;
162 unsigned int size;
163 bool do_write;
164 bool do_nonblock_req;
165 enum mmc_test_prep_media prepare;
166 };
167
168 struct mmc_test_async_req {
169 struct mmc_async_req areq;
170 struct mmc_test_card *test;
171 };
172
173 /*******************************************************************/
174 /* General helper functions */
175 /*******************************************************************/
176
177 /*
178 * Configure correct block size in card
179 */
180 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
181 {
182 return mmc_set_blocklen(test->card, size);
183 }
184
185 /*
186 * Fill in the mmc_request structure given a set of transfer parameters.
187 */
188 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
189 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
190 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
191 {
192 BUG_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop);
193
194 if (blocks > 1) {
195 mrq->cmd->opcode = write ?
196 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
197 } else {
198 mrq->cmd->opcode = write ?
199 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
200 }
201
202 mrq->cmd->arg = dev_addr;
203 if (!mmc_card_blockaddr(test->card))
204 mrq->cmd->arg <<= 9;
205
206 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
207
208 if (blocks == 1)
209 mrq->stop = NULL;
210 else {
211 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
212 mrq->stop->arg = 0;
213 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
214 }
215
216 mrq->data->blksz = blksz;
217 mrq->data->blocks = blocks;
218 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
219 mrq->data->sg = sg;
220 mrq->data->sg_len = sg_len;
221
222 mmc_set_data_timeout(mrq->data, test->card);
223 }
224
225 static int mmc_test_busy(struct mmc_command *cmd)
226 {
227 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
228 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
229 }
230
231 /*
232 * Wait for the card to finish the busy state
233 */
234 static int mmc_test_wait_busy(struct mmc_test_card *test)
235 {
236 int ret, busy;
237 struct mmc_command cmd = {0};
238
239 busy = 0;
240 do {
241 memset(&cmd, 0, sizeof(struct mmc_command));
242
243 cmd.opcode = MMC_SEND_STATUS;
244 cmd.arg = test->card->rca << 16;
245 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
246
247 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
248 if (ret)
249 break;
250
251 if (!busy && mmc_test_busy(&cmd)) {
252 busy = 1;
253 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
254 pr_info("%s: Warning: Host did not "
255 "wait for busy state to end.\n",
256 mmc_hostname(test->card->host));
257 }
258 } while (mmc_test_busy(&cmd));
259
260 return ret;
261 }
262
263 /*
264 * Transfer a single sector of kernel addressable data
265 */
266 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
267 u8 *buffer, unsigned addr, unsigned blksz, int write)
268 {
269 int ret;
270
271 struct mmc_request mrq = {0};
272 struct mmc_command cmd = {0};
273 struct mmc_command stop = {0};
274 struct mmc_data data = {0};
275
276 struct scatterlist sg;
277
278 mrq.cmd = &cmd;
279 mrq.data = &data;
280 mrq.stop = &stop;
281
282 sg_init_one(&sg, buffer, blksz);
283
284 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
285
286 mmc_wait_for_req(test->card->host, &mrq);
287
288 if (cmd.error)
289 return cmd.error;
290 if (data.error)
291 return data.error;
292
293 ret = mmc_test_wait_busy(test);
294 if (ret)
295 return ret;
296
297 return 0;
298 }
299
300 static void mmc_test_free_mem(struct mmc_test_mem *mem)
301 {
302 if (!mem)
303 return;
304 while (mem->cnt--)
305 __free_pages(mem->arr[mem->cnt].page,
306 mem->arr[mem->cnt].order);
307 kfree(mem->arr);
308 kfree(mem);
309 }
310
311 /*
312 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
313 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
314 * not exceed a maximum number of segments and try not to make segments much
315 * bigger than maximum segment size.
316 */
317 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
318 unsigned long max_sz,
319 unsigned int max_segs,
320 unsigned int max_seg_sz)
321 {
322 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
323 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
324 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
325 unsigned long page_cnt = 0;
326 unsigned long limit = nr_free_buffer_pages() >> 4;
327 struct mmc_test_mem *mem;
328
329 if (max_page_cnt > limit)
330 max_page_cnt = limit;
331 if (min_page_cnt > max_page_cnt)
332 min_page_cnt = max_page_cnt;
333
334 if (max_seg_page_cnt > max_page_cnt)
335 max_seg_page_cnt = max_page_cnt;
336
337 if (max_segs > max_page_cnt)
338 max_segs = max_page_cnt;
339
340 mem = kzalloc(sizeof(struct mmc_test_mem), GFP_KERNEL);
341 if (!mem)
342 return NULL;
343
344 mem->arr = kzalloc(sizeof(struct mmc_test_pages) * max_segs,
345 GFP_KERNEL);
346 if (!mem->arr)
347 goto out_free;
348
349 while (max_page_cnt) {
350 struct page *page;
351 unsigned int order;
352 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
353 __GFP_NORETRY;
354
355 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
356 while (1) {
357 page = alloc_pages(flags, order);
358 if (page || !order)
359 break;
360 order -= 1;
361 }
362 if (!page) {
363 if (page_cnt < min_page_cnt)
364 goto out_free;
365 break;
366 }
367 mem->arr[mem->cnt].page = page;
368 mem->arr[mem->cnt].order = order;
369 mem->cnt += 1;
370 if (max_page_cnt <= (1UL << order))
371 break;
372 max_page_cnt -= 1UL << order;
373 page_cnt += 1UL << order;
374 if (mem->cnt >= max_segs) {
375 if (page_cnt < min_page_cnt)
376 goto out_free;
377 break;
378 }
379 }
380
381 return mem;
382
383 out_free:
384 mmc_test_free_mem(mem);
385 return NULL;
386 }
387
388 /*
389 * Map memory into a scatterlist. Optionally allow the same memory to be
390 * mapped more than once.
391 */
392 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
393 struct scatterlist *sglist, int repeat,
394 unsigned int max_segs, unsigned int max_seg_sz,
395 unsigned int *sg_len, int min_sg_len)
396 {
397 struct scatterlist *sg = NULL;
398 unsigned int i;
399 unsigned long sz = size;
400
401 sg_init_table(sglist, max_segs);
402 if (min_sg_len > max_segs)
403 min_sg_len = max_segs;
404
405 *sg_len = 0;
406 do {
407 for (i = 0; i < mem->cnt; i++) {
408 unsigned long len = PAGE_SIZE << mem->arr[i].order;
409
410 if (min_sg_len && (size / min_sg_len < len))
411 len = ALIGN(size / min_sg_len, 512);
412 if (len > sz)
413 len = sz;
414 if (len > max_seg_sz)
415 len = max_seg_sz;
416 if (sg)
417 sg = sg_next(sg);
418 else
419 sg = sglist;
420 if (!sg)
421 return -EINVAL;
422 sg_set_page(sg, mem->arr[i].page, len, 0);
423 sz -= len;
424 *sg_len += 1;
425 if (!sz)
426 break;
427 }
428 } while (sz && repeat);
429
430 if (sz)
431 return -EINVAL;
432
433 if (sg)
434 sg_mark_end(sg);
435
436 return 0;
437 }
438
439 /*
440 * Map memory into a scatterlist so that no pages are contiguous. Allow the
441 * same memory to be mapped more than once.
442 */
443 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
444 unsigned long sz,
445 struct scatterlist *sglist,
446 unsigned int max_segs,
447 unsigned int max_seg_sz,
448 unsigned int *sg_len)
449 {
450 struct scatterlist *sg = NULL;
451 unsigned int i = mem->cnt, cnt;
452 unsigned long len;
453 void *base, *addr, *last_addr = NULL;
454
455 sg_init_table(sglist, max_segs);
456
457 *sg_len = 0;
458 while (sz) {
459 base = page_address(mem->arr[--i].page);
460 cnt = 1 << mem->arr[i].order;
461 while (sz && cnt) {
462 addr = base + PAGE_SIZE * --cnt;
463 if (last_addr && last_addr + PAGE_SIZE == addr)
464 continue;
465 last_addr = addr;
466 len = PAGE_SIZE;
467 if (len > max_seg_sz)
468 len = max_seg_sz;
469 if (len > sz)
470 len = sz;
471 if (sg)
472 sg = sg_next(sg);
473 else
474 sg = sglist;
475 if (!sg)
476 return -EINVAL;
477 sg_set_page(sg, virt_to_page(addr), len, 0);
478 sz -= len;
479 *sg_len += 1;
480 }
481 if (i == 0)
482 i = mem->cnt;
483 }
484
485 if (sg)
486 sg_mark_end(sg);
487
488 return 0;
489 }
490
491 /*
492 * Calculate transfer rate in bytes per second.
493 */
494 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec *ts)
495 {
496 uint64_t ns;
497
498 ns = ts->tv_sec;
499 ns *= 1000000000;
500 ns += ts->tv_nsec;
501
502 bytes *= 1000000000;
503
504 while (ns > UINT_MAX) {
505 bytes >>= 1;
506 ns >>= 1;
507 }
508
509 if (!ns)
510 return 0;
511
512 do_div(bytes, (uint32_t)ns);
513
514 return bytes;
515 }
516
517 /*
518 * Save transfer results for future usage
519 */
520 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
521 unsigned int count, unsigned int sectors, struct timespec ts,
522 unsigned int rate, unsigned int iops)
523 {
524 struct mmc_test_transfer_result *tr;
525
526 if (!test->gr)
527 return;
528
529 tr = kmalloc(sizeof(struct mmc_test_transfer_result), GFP_KERNEL);
530 if (!tr)
531 return;
532
533 tr->count = count;
534 tr->sectors = sectors;
535 tr->ts = ts;
536 tr->rate = rate;
537 tr->iops = iops;
538
539 list_add_tail(&tr->link, &test->gr->tr_lst);
540 }
541
542 /*
543 * Print the transfer rate.
544 */
545 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
546 struct timespec *ts1, struct timespec *ts2)
547 {
548 unsigned int rate, iops, sectors = bytes >> 9;
549 struct timespec ts;
550
551 ts = timespec_sub(*ts2, *ts1);
552
553 rate = mmc_test_rate(bytes, &ts);
554 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
555
556 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %lu.%09lu "
557 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
558 mmc_hostname(test->card->host), sectors, sectors >> 1,
559 (sectors & 1 ? ".5" : ""), (unsigned long)ts.tv_sec,
560 (unsigned long)ts.tv_nsec, rate / 1000, rate / 1024,
561 iops / 100, iops % 100);
562
563 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
564 }
565
566 /*
567 * Print the average transfer rate.
568 */
569 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
570 unsigned int count, struct timespec *ts1,
571 struct timespec *ts2)
572 {
573 unsigned int rate, iops, sectors = bytes >> 9;
574 uint64_t tot = bytes * count;
575 struct timespec ts;
576
577 ts = timespec_sub(*ts2, *ts1);
578
579 rate = mmc_test_rate(tot, &ts);
580 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
581
582 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
583 "%lu.%09lu seconds (%u kB/s, %u KiB/s, "
584 "%u.%02u IOPS, sg_len %d)\n",
585 mmc_hostname(test->card->host), count, sectors, count,
586 sectors >> 1, (sectors & 1 ? ".5" : ""),
587 (unsigned long)ts.tv_sec, (unsigned long)ts.tv_nsec,
588 rate / 1000, rate / 1024, iops / 100, iops % 100,
589 test->area.sg_len);
590
591 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
592 }
593
594 /*
595 * Return the card size in sectors.
596 */
597 static unsigned int mmc_test_capacity(struct mmc_card *card)
598 {
599 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
600 return card->ext_csd.sectors;
601 else
602 return card->csd.capacity << (card->csd.read_blkbits - 9);
603 }
604
605 /*******************************************************************/
606 /* Test preparation and cleanup */
607 /*******************************************************************/
608
609 /*
610 * Fill the first couple of sectors of the card with known data
611 * so that bad reads/writes can be detected
612 */
613 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
614 {
615 int ret, i;
616
617 ret = mmc_test_set_blksize(test, 512);
618 if (ret)
619 return ret;
620
621 if (write)
622 memset(test->buffer, 0xDF, 512);
623 else {
624 for (i = 0;i < 512;i++)
625 test->buffer[i] = i;
626 }
627
628 for (i = 0;i < BUFFER_SIZE / 512;i++) {
629 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
630 if (ret)
631 return ret;
632 }
633
634 return 0;
635 }
636
637 static int mmc_test_prepare_write(struct mmc_test_card *test)
638 {
639 return __mmc_test_prepare(test, 1);
640 }
641
642 static int mmc_test_prepare_read(struct mmc_test_card *test)
643 {
644 return __mmc_test_prepare(test, 0);
645 }
646
647 static int mmc_test_cleanup(struct mmc_test_card *test)
648 {
649 int ret, i;
650
651 ret = mmc_test_set_blksize(test, 512);
652 if (ret)
653 return ret;
654
655 memset(test->buffer, 0, 512);
656
657 for (i = 0;i < BUFFER_SIZE / 512;i++) {
658 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
659 if (ret)
660 return ret;
661 }
662
663 return 0;
664 }
665
666 /*******************************************************************/
667 /* Test execution helpers */
668 /*******************************************************************/
669
670 /*
671 * Modifies the mmc_request to perform the "short transfer" tests
672 */
673 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
674 struct mmc_request *mrq, int write)
675 {
676 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
677
678 if (mrq->data->blocks > 1) {
679 mrq->cmd->opcode = write ?
680 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 mrq->stop = NULL;
682 } else {
683 mrq->cmd->opcode = MMC_SEND_STATUS;
684 mrq->cmd->arg = test->card->rca << 16;
685 }
686 }
687
688 /*
689 * Checks that a normal transfer didn't have any errors
690 */
691 static int mmc_test_check_result(struct mmc_test_card *test,
692 struct mmc_request *mrq)
693 {
694 int ret;
695
696 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
697
698 ret = 0;
699
700 if (!ret && mrq->cmd->error)
701 ret = mrq->cmd->error;
702 if (!ret && mrq->data->error)
703 ret = mrq->data->error;
704 if (!ret && mrq->stop && mrq->stop->error)
705 ret = mrq->stop->error;
706 if (!ret && mrq->data->bytes_xfered !=
707 mrq->data->blocks * mrq->data->blksz)
708 ret = RESULT_FAIL;
709
710 if (ret == -EINVAL)
711 ret = RESULT_UNSUP_HOST;
712
713 return ret;
714 }
715
716 static int mmc_test_check_result_async(struct mmc_card *card,
717 struct mmc_async_req *areq)
718 {
719 struct mmc_test_async_req *test_async =
720 container_of(areq, struct mmc_test_async_req, areq);
721
722 mmc_test_wait_busy(test_async->test);
723
724 return mmc_test_check_result(test_async->test, areq->mrq);
725 }
726
727 /*
728 * Checks that a "short transfer" behaved as expected
729 */
730 static int mmc_test_check_broken_result(struct mmc_test_card *test,
731 struct mmc_request *mrq)
732 {
733 int ret;
734
735 BUG_ON(!mrq || !mrq->cmd || !mrq->data);
736
737 ret = 0;
738
739 if (!ret && mrq->cmd->error)
740 ret = mrq->cmd->error;
741 if (!ret && mrq->data->error == 0)
742 ret = RESULT_FAIL;
743 if (!ret && mrq->data->error != -ETIMEDOUT)
744 ret = mrq->data->error;
745 if (!ret && mrq->stop && mrq->stop->error)
746 ret = mrq->stop->error;
747 if (mrq->data->blocks > 1) {
748 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
749 ret = RESULT_FAIL;
750 } else {
751 if (!ret && mrq->data->bytes_xfered > 0)
752 ret = RESULT_FAIL;
753 }
754
755 if (ret == -EINVAL)
756 ret = RESULT_UNSUP_HOST;
757
758 return ret;
759 }
760
761 /*
762 * Tests nonblock transfer with certain parameters
763 */
764 static void mmc_test_nonblock_reset(struct mmc_request *mrq,
765 struct mmc_command *cmd,
766 struct mmc_command *stop,
767 struct mmc_data *data)
768 {
769 memset(mrq, 0, sizeof(struct mmc_request));
770 memset(cmd, 0, sizeof(struct mmc_command));
771 memset(data, 0, sizeof(struct mmc_data));
772 memset(stop, 0, sizeof(struct mmc_command));
773
774 mrq->cmd = cmd;
775 mrq->data = data;
776 mrq->stop = stop;
777 }
778 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
779 struct scatterlist *sg, unsigned sg_len,
780 unsigned dev_addr, unsigned blocks,
781 unsigned blksz, int write, int count)
782 {
783 struct mmc_request mrq1;
784 struct mmc_command cmd1;
785 struct mmc_command stop1;
786 struct mmc_data data1;
787
788 struct mmc_request mrq2;
789 struct mmc_command cmd2;
790 struct mmc_command stop2;
791 struct mmc_data data2;
792
793 struct mmc_test_async_req test_areq[2];
794 struct mmc_async_req *done_areq;
795 struct mmc_async_req *cur_areq = &test_areq[0].areq;
796 struct mmc_async_req *other_areq = &test_areq[1].areq;
797 int i;
798 int ret;
799
800 test_areq[0].test = test;
801 test_areq[1].test = test;
802
803 mmc_test_nonblock_reset(&mrq1, &cmd1, &stop1, &data1);
804 mmc_test_nonblock_reset(&mrq2, &cmd2, &stop2, &data2);
805
806 cur_areq->mrq = &mrq1;
807 cur_areq->err_check = mmc_test_check_result_async;
808 other_areq->mrq = &mrq2;
809 other_areq->err_check = mmc_test_check_result_async;
810
811 for (i = 0; i < count; i++) {
812 mmc_test_prepare_mrq(test, cur_areq->mrq, sg, sg_len, dev_addr,
813 blocks, blksz, write);
814 done_areq = mmc_start_req(test->card->host, cur_areq, &ret);
815
816 if (ret || (!done_areq && i > 0))
817 goto err;
818
819 if (done_areq) {
820 if (done_areq->mrq == &mrq2)
821 mmc_test_nonblock_reset(&mrq2, &cmd2,
822 &stop2, &data2);
823 else
824 mmc_test_nonblock_reset(&mrq1, &cmd1,
825 &stop1, &data1);
826 }
827 done_areq = cur_areq;
828 cur_areq = other_areq;
829 other_areq = done_areq;
830 dev_addr += blocks;
831 }
832
833 done_areq = mmc_start_req(test->card->host, NULL, &ret);
834
835 return ret;
836 err:
837 return ret;
838 }
839
840 /*
841 * Tests a basic transfer with certain parameters
842 */
843 static int mmc_test_simple_transfer(struct mmc_test_card *test,
844 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
845 unsigned blocks, unsigned blksz, int write)
846 {
847 struct mmc_request mrq = {0};
848 struct mmc_command cmd = {0};
849 struct mmc_command stop = {0};
850 struct mmc_data data = {0};
851
852 mrq.cmd = &cmd;
853 mrq.data = &data;
854 mrq.stop = &stop;
855
856 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
857 blocks, blksz, write);
858
859 mmc_wait_for_req(test->card->host, &mrq);
860
861 mmc_test_wait_busy(test);
862
863 return mmc_test_check_result(test, &mrq);
864 }
865
866 /*
867 * Tests a transfer where the card will fail completely or partly
868 */
869 static int mmc_test_broken_transfer(struct mmc_test_card *test,
870 unsigned blocks, unsigned blksz, int write)
871 {
872 struct mmc_request mrq = {0};
873 struct mmc_command cmd = {0};
874 struct mmc_command stop = {0};
875 struct mmc_data data = {0};
876
877 struct scatterlist sg;
878
879 mrq.cmd = &cmd;
880 mrq.data = &data;
881 mrq.stop = &stop;
882
883 sg_init_one(&sg, test->buffer, blocks * blksz);
884
885 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
886 mmc_test_prepare_broken_mrq(test, &mrq, write);
887
888 mmc_wait_for_req(test->card->host, &mrq);
889
890 mmc_test_wait_busy(test);
891
892 return mmc_test_check_broken_result(test, &mrq);
893 }
894
895 /*
896 * Does a complete transfer test where data is also validated
897 *
898 * Note: mmc_test_prepare() must have been done before this call
899 */
900 static int mmc_test_transfer(struct mmc_test_card *test,
901 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
902 unsigned blocks, unsigned blksz, int write)
903 {
904 int ret, i;
905 unsigned long flags;
906
907 if (write) {
908 for (i = 0;i < blocks * blksz;i++)
909 test->scratch[i] = i;
910 } else {
911 memset(test->scratch, 0, BUFFER_SIZE);
912 }
913 local_irq_save(flags);
914 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
915 local_irq_restore(flags);
916
917 ret = mmc_test_set_blksize(test, blksz);
918 if (ret)
919 return ret;
920
921 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
922 blocks, blksz, write);
923 if (ret)
924 return ret;
925
926 if (write) {
927 int sectors;
928
929 ret = mmc_test_set_blksize(test, 512);
930 if (ret)
931 return ret;
932
933 sectors = (blocks * blksz + 511) / 512;
934 if ((sectors * 512) == (blocks * blksz))
935 sectors++;
936
937 if ((sectors * 512) > BUFFER_SIZE)
938 return -EINVAL;
939
940 memset(test->buffer, 0, sectors * 512);
941
942 for (i = 0;i < sectors;i++) {
943 ret = mmc_test_buffer_transfer(test,
944 test->buffer + i * 512,
945 dev_addr + i, 512, 0);
946 if (ret)
947 return ret;
948 }
949
950 for (i = 0;i < blocks * blksz;i++) {
951 if (test->buffer[i] != (u8)i)
952 return RESULT_FAIL;
953 }
954
955 for (;i < sectors * 512;i++) {
956 if (test->buffer[i] != 0xDF)
957 return RESULT_FAIL;
958 }
959 } else {
960 local_irq_save(flags);
961 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
962 local_irq_restore(flags);
963 for (i = 0;i < blocks * blksz;i++) {
964 if (test->scratch[i] != (u8)i)
965 return RESULT_FAIL;
966 }
967 }
968
969 return 0;
970 }
971
972 /*******************************************************************/
973 /* Tests */
974 /*******************************************************************/
975
976 struct mmc_test_case {
977 const char *name;
978
979 int (*prepare)(struct mmc_test_card *);
980 int (*run)(struct mmc_test_card *);
981 int (*cleanup)(struct mmc_test_card *);
982 };
983
984 static int mmc_test_basic_write(struct mmc_test_card *test)
985 {
986 int ret;
987 struct scatterlist sg;
988
989 ret = mmc_test_set_blksize(test, 512);
990 if (ret)
991 return ret;
992
993 sg_init_one(&sg, test->buffer, 512);
994
995 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
996 if (ret)
997 return ret;
998
999 return 0;
1000 }
1001
1002 static int mmc_test_basic_read(struct mmc_test_card *test)
1003 {
1004 int ret;
1005 struct scatterlist sg;
1006
1007 ret = mmc_test_set_blksize(test, 512);
1008 if (ret)
1009 return ret;
1010
1011 sg_init_one(&sg, test->buffer, 512);
1012
1013 ret = mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1014 if (ret)
1015 return ret;
1016
1017 return 0;
1018 }
1019
1020 static int mmc_test_verify_write(struct mmc_test_card *test)
1021 {
1022 int ret;
1023 struct scatterlist sg;
1024
1025 sg_init_one(&sg, test->buffer, 512);
1026
1027 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1028 if (ret)
1029 return ret;
1030
1031 return 0;
1032 }
1033
1034 static int mmc_test_verify_read(struct mmc_test_card *test)
1035 {
1036 int ret;
1037 struct scatterlist sg;
1038
1039 sg_init_one(&sg, test->buffer, 512);
1040
1041 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1042 if (ret)
1043 return ret;
1044
1045 return 0;
1046 }
1047
1048 static int mmc_test_multi_write(struct mmc_test_card *test)
1049 {
1050 int ret;
1051 unsigned int size;
1052 struct scatterlist sg;
1053
1054 if (test->card->host->max_blk_count == 1)
1055 return RESULT_UNSUP_HOST;
1056
1057 size = PAGE_SIZE * 2;
1058 size = min(size, test->card->host->max_req_size);
1059 size = min(size, test->card->host->max_seg_size);
1060 size = min(size, test->card->host->max_blk_count * 512);
1061
1062 if (size < 1024)
1063 return RESULT_UNSUP_HOST;
1064
1065 sg_init_one(&sg, test->buffer, size);
1066
1067 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072 }
1073
1074 static int mmc_test_multi_read(struct mmc_test_card *test)
1075 {
1076 int ret;
1077 unsigned int size;
1078 struct scatterlist sg;
1079
1080 if (test->card->host->max_blk_count == 1)
1081 return RESULT_UNSUP_HOST;
1082
1083 size = PAGE_SIZE * 2;
1084 size = min(size, test->card->host->max_req_size);
1085 size = min(size, test->card->host->max_seg_size);
1086 size = min(size, test->card->host->max_blk_count * 512);
1087
1088 if (size < 1024)
1089 return RESULT_UNSUP_HOST;
1090
1091 sg_init_one(&sg, test->buffer, size);
1092
1093 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1094 if (ret)
1095 return ret;
1096
1097 return 0;
1098 }
1099
1100 static int mmc_test_pow2_write(struct mmc_test_card *test)
1101 {
1102 int ret, i;
1103 struct scatterlist sg;
1104
1105 if (!test->card->csd.write_partial)
1106 return RESULT_UNSUP_CARD;
1107
1108 for (i = 1; i < 512;i <<= 1) {
1109 sg_init_one(&sg, test->buffer, i);
1110 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1111 if (ret)
1112 return ret;
1113 }
1114
1115 return 0;
1116 }
1117
1118 static int mmc_test_pow2_read(struct mmc_test_card *test)
1119 {
1120 int ret, i;
1121 struct scatterlist sg;
1122
1123 if (!test->card->csd.read_partial)
1124 return RESULT_UNSUP_CARD;
1125
1126 for (i = 1; i < 512;i <<= 1) {
1127 sg_init_one(&sg, test->buffer, i);
1128 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static int mmc_test_weird_write(struct mmc_test_card *test)
1137 {
1138 int ret, i;
1139 struct scatterlist sg;
1140
1141 if (!test->card->csd.write_partial)
1142 return RESULT_UNSUP_CARD;
1143
1144 for (i = 3; i < 512;i += 7) {
1145 sg_init_one(&sg, test->buffer, i);
1146 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1147 if (ret)
1148 return ret;
1149 }
1150
1151 return 0;
1152 }
1153
1154 static int mmc_test_weird_read(struct mmc_test_card *test)
1155 {
1156 int ret, i;
1157 struct scatterlist sg;
1158
1159 if (!test->card->csd.read_partial)
1160 return RESULT_UNSUP_CARD;
1161
1162 for (i = 3; i < 512;i += 7) {
1163 sg_init_one(&sg, test->buffer, i);
1164 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1165 if (ret)
1166 return ret;
1167 }
1168
1169 return 0;
1170 }
1171
1172 static int mmc_test_align_write(struct mmc_test_card *test)
1173 {
1174 int ret, i;
1175 struct scatterlist sg;
1176
1177 for (i = 1;i < 4;i++) {
1178 sg_init_one(&sg, test->buffer + i, 512);
1179 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1180 if (ret)
1181 return ret;
1182 }
1183
1184 return 0;
1185 }
1186
1187 static int mmc_test_align_read(struct mmc_test_card *test)
1188 {
1189 int ret, i;
1190 struct scatterlist sg;
1191
1192 for (i = 1;i < 4;i++) {
1193 sg_init_one(&sg, test->buffer + i, 512);
1194 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1195 if (ret)
1196 return ret;
1197 }
1198
1199 return 0;
1200 }
1201
1202 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1203 {
1204 int ret, i;
1205 unsigned int size;
1206 struct scatterlist sg;
1207
1208 if (test->card->host->max_blk_count == 1)
1209 return RESULT_UNSUP_HOST;
1210
1211 size = PAGE_SIZE * 2;
1212 size = min(size, test->card->host->max_req_size);
1213 size = min(size, test->card->host->max_seg_size);
1214 size = min(size, test->card->host->max_blk_count * 512);
1215
1216 if (size < 1024)
1217 return RESULT_UNSUP_HOST;
1218
1219 for (i = 1;i < 4;i++) {
1220 sg_init_one(&sg, test->buffer + i, size);
1221 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1222 if (ret)
1223 return ret;
1224 }
1225
1226 return 0;
1227 }
1228
1229 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1230 {
1231 int ret, i;
1232 unsigned int size;
1233 struct scatterlist sg;
1234
1235 if (test->card->host->max_blk_count == 1)
1236 return RESULT_UNSUP_HOST;
1237
1238 size = PAGE_SIZE * 2;
1239 size = min(size, test->card->host->max_req_size);
1240 size = min(size, test->card->host->max_seg_size);
1241 size = min(size, test->card->host->max_blk_count * 512);
1242
1243 if (size < 1024)
1244 return RESULT_UNSUP_HOST;
1245
1246 for (i = 1;i < 4;i++) {
1247 sg_init_one(&sg, test->buffer + i, size);
1248 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1249 if (ret)
1250 return ret;
1251 }
1252
1253 return 0;
1254 }
1255
1256 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1257 {
1258 int ret;
1259
1260 ret = mmc_test_set_blksize(test, 512);
1261 if (ret)
1262 return ret;
1263
1264 ret = mmc_test_broken_transfer(test, 1, 512, 1);
1265 if (ret)
1266 return ret;
1267
1268 return 0;
1269 }
1270
1271 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1272 {
1273 int ret;
1274
1275 ret = mmc_test_set_blksize(test, 512);
1276 if (ret)
1277 return ret;
1278
1279 ret = mmc_test_broken_transfer(test, 1, 512, 0);
1280 if (ret)
1281 return ret;
1282
1283 return 0;
1284 }
1285
1286 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1287 {
1288 int ret;
1289
1290 if (test->card->host->max_blk_count == 1)
1291 return RESULT_UNSUP_HOST;
1292
1293 ret = mmc_test_set_blksize(test, 512);
1294 if (ret)
1295 return ret;
1296
1297 ret = mmc_test_broken_transfer(test, 2, 512, 1);
1298 if (ret)
1299 return ret;
1300
1301 return 0;
1302 }
1303
1304 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305 {
1306 int ret;
1307
1308 if (test->card->host->max_blk_count == 1)
1309 return RESULT_UNSUP_HOST;
1310
1311 ret = mmc_test_set_blksize(test, 512);
1312 if (ret)
1313 return ret;
1314
1315 ret = mmc_test_broken_transfer(test, 2, 512, 0);
1316 if (ret)
1317 return ret;
1318
1319 return 0;
1320 }
1321
1322 #ifdef CONFIG_HIGHMEM
1323
1324 static int mmc_test_write_high(struct mmc_test_card *test)
1325 {
1326 int ret;
1327 struct scatterlist sg;
1328
1329 sg_init_table(&sg, 1);
1330 sg_set_page(&sg, test->highmem, 512, 0);
1331
1332 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1333 if (ret)
1334 return ret;
1335
1336 return 0;
1337 }
1338
1339 static int mmc_test_read_high(struct mmc_test_card *test)
1340 {
1341 int ret;
1342 struct scatterlist sg;
1343
1344 sg_init_table(&sg, 1);
1345 sg_set_page(&sg, test->highmem, 512, 0);
1346
1347 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1348 if (ret)
1349 return ret;
1350
1351 return 0;
1352 }
1353
1354 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1355 {
1356 int ret;
1357 unsigned int size;
1358 struct scatterlist sg;
1359
1360 if (test->card->host->max_blk_count == 1)
1361 return RESULT_UNSUP_HOST;
1362
1363 size = PAGE_SIZE * 2;
1364 size = min(size, test->card->host->max_req_size);
1365 size = min(size, test->card->host->max_seg_size);
1366 size = min(size, test->card->host->max_blk_count * 512);
1367
1368 if (size < 1024)
1369 return RESULT_UNSUP_HOST;
1370
1371 sg_init_table(&sg, 1);
1372 sg_set_page(&sg, test->highmem, size, 0);
1373
1374 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 1);
1375 if (ret)
1376 return ret;
1377
1378 return 0;
1379 }
1380
1381 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1382 {
1383 int ret;
1384 unsigned int size;
1385 struct scatterlist sg;
1386
1387 if (test->card->host->max_blk_count == 1)
1388 return RESULT_UNSUP_HOST;
1389
1390 size = PAGE_SIZE * 2;
1391 size = min(size, test->card->host->max_req_size);
1392 size = min(size, test->card->host->max_seg_size);
1393 size = min(size, test->card->host->max_blk_count * 512);
1394
1395 if (size < 1024)
1396 return RESULT_UNSUP_HOST;
1397
1398 sg_init_table(&sg, 1);
1399 sg_set_page(&sg, test->highmem, size, 0);
1400
1401 ret = mmc_test_transfer(test, &sg, 1, 0, size/512, 512, 0);
1402 if (ret)
1403 return ret;
1404
1405 return 0;
1406 }
1407
1408 #else
1409
1410 static int mmc_test_no_highmem(struct mmc_test_card *test)
1411 {
1412 pr_info("%s: Highmem not configured - test skipped\n",
1413 mmc_hostname(test->card->host));
1414 return 0;
1415 }
1416
1417 #endif /* CONFIG_HIGHMEM */
1418
1419 /*
1420 * Map sz bytes so that it can be transferred.
1421 */
1422 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1423 int max_scatter, int min_sg_len)
1424 {
1425 struct mmc_test_area *t = &test->area;
1426 int err;
1427
1428 t->blocks = sz >> 9;
1429
1430 if (max_scatter) {
1431 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1432 t->max_segs, t->max_seg_sz,
1433 &t->sg_len);
1434 } else {
1435 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1436 t->max_seg_sz, &t->sg_len, min_sg_len);
1437 }
1438 if (err)
1439 pr_info("%s: Failed to map sg list\n",
1440 mmc_hostname(test->card->host));
1441 return err;
1442 }
1443
1444 /*
1445 * Transfer bytes mapped by mmc_test_area_map().
1446 */
1447 static int mmc_test_area_transfer(struct mmc_test_card *test,
1448 unsigned int dev_addr, int write)
1449 {
1450 struct mmc_test_area *t = &test->area;
1451
1452 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1453 t->blocks, 512, write);
1454 }
1455
1456 /*
1457 * Map and transfer bytes for multiple transfers.
1458 */
1459 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1460 unsigned int dev_addr, int write,
1461 int max_scatter, int timed, int count,
1462 bool nonblock, int min_sg_len)
1463 {
1464 struct timespec ts1, ts2;
1465 int ret = 0;
1466 int i;
1467 struct mmc_test_area *t = &test->area;
1468
1469 /*
1470 * In the case of a maximally scattered transfer, the maximum transfer
1471 * size is further limited by using PAGE_SIZE segments.
1472 */
1473 if (max_scatter) {
1474 struct mmc_test_area *t = &test->area;
1475 unsigned long max_tfr;
1476
1477 if (t->max_seg_sz >= PAGE_SIZE)
1478 max_tfr = t->max_segs * PAGE_SIZE;
1479 else
1480 max_tfr = t->max_segs * t->max_seg_sz;
1481 if (sz > max_tfr)
1482 sz = max_tfr;
1483 }
1484
1485 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1486 if (ret)
1487 return ret;
1488
1489 if (timed)
1490 getnstimeofday(&ts1);
1491 if (nonblock)
1492 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1493 dev_addr, t->blocks, 512, write, count);
1494 else
1495 for (i = 0; i < count && ret == 0; i++) {
1496 ret = mmc_test_area_transfer(test, dev_addr, write);
1497 dev_addr += sz >> 9;
1498 }
1499
1500 if (ret)
1501 return ret;
1502
1503 if (timed)
1504 getnstimeofday(&ts2);
1505
1506 if (timed)
1507 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1508
1509 return 0;
1510 }
1511
1512 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1513 unsigned int dev_addr, int write, int max_scatter,
1514 int timed)
1515 {
1516 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1517 timed, 1, false, 0);
1518 }
1519
1520 /*
1521 * Write the test area entirely.
1522 */
1523 static int mmc_test_area_fill(struct mmc_test_card *test)
1524 {
1525 struct mmc_test_area *t = &test->area;
1526
1527 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1528 }
1529
1530 /*
1531 * Erase the test area entirely.
1532 */
1533 static int mmc_test_area_erase(struct mmc_test_card *test)
1534 {
1535 struct mmc_test_area *t = &test->area;
1536
1537 if (!mmc_can_erase(test->card))
1538 return 0;
1539
1540 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1541 MMC_ERASE_ARG);
1542 }
1543
1544 /*
1545 * Cleanup struct mmc_test_area.
1546 */
1547 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1548 {
1549 struct mmc_test_area *t = &test->area;
1550
1551 kfree(t->sg);
1552 mmc_test_free_mem(t->mem);
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Initialize an area for testing large transfers. The test area is set to the
1559 * middle of the card because cards may have different charateristics at the
1560 * front (for FAT file system optimization). Optionally, the area is erased
1561 * (if the card supports it) which may improve write performance. Optionally,
1562 * the area is filled with data for subsequent read tests.
1563 */
1564 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1565 {
1566 struct mmc_test_area *t = &test->area;
1567 unsigned long min_sz = 64 * 1024, sz;
1568 int ret;
1569
1570 ret = mmc_test_set_blksize(test, 512);
1571 if (ret)
1572 return ret;
1573
1574 /* Make the test area size about 4MiB */
1575 sz = (unsigned long)test->card->pref_erase << 9;
1576 t->max_sz = sz;
1577 while (t->max_sz < 4 * 1024 * 1024)
1578 t->max_sz += sz;
1579 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1580 t->max_sz -= sz;
1581
1582 t->max_segs = test->card->host->max_segs;
1583 t->max_seg_sz = test->card->host->max_seg_size;
1584 t->max_seg_sz -= t->max_seg_sz % 512;
1585
1586 t->max_tfr = t->max_sz;
1587 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1588 t->max_tfr = test->card->host->max_blk_count << 9;
1589 if (t->max_tfr > test->card->host->max_req_size)
1590 t->max_tfr = test->card->host->max_req_size;
1591 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1592 t->max_tfr = t->max_segs * t->max_seg_sz;
1593
1594 /*
1595 * Try to allocate enough memory for a max. sized transfer. Less is OK
1596 * because the same memory can be mapped into the scatterlist more than
1597 * once. Also, take into account the limits imposed on scatterlist
1598 * segments by the host driver.
1599 */
1600 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1601 t->max_seg_sz);
1602 if (!t->mem)
1603 return -ENOMEM;
1604
1605 t->sg = kmalloc(sizeof(struct scatterlist) * t->max_segs, GFP_KERNEL);
1606 if (!t->sg) {
1607 ret = -ENOMEM;
1608 goto out_free;
1609 }
1610
1611 t->dev_addr = mmc_test_capacity(test->card) / 2;
1612 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1613
1614 if (erase) {
1615 ret = mmc_test_area_erase(test);
1616 if (ret)
1617 goto out_free;
1618 }
1619
1620 if (fill) {
1621 ret = mmc_test_area_fill(test);
1622 if (ret)
1623 goto out_free;
1624 }
1625
1626 return 0;
1627
1628 out_free:
1629 mmc_test_area_cleanup(test);
1630 return ret;
1631 }
1632
1633 /*
1634 * Prepare for large transfers. Do not erase the test area.
1635 */
1636 static int mmc_test_area_prepare(struct mmc_test_card *test)
1637 {
1638 return mmc_test_area_init(test, 0, 0);
1639 }
1640
1641 /*
1642 * Prepare for large transfers. Do erase the test area.
1643 */
1644 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1645 {
1646 return mmc_test_area_init(test, 1, 0);
1647 }
1648
1649 /*
1650 * Prepare for large transfers. Erase and fill the test area.
1651 */
1652 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1653 {
1654 return mmc_test_area_init(test, 1, 1);
1655 }
1656
1657 /*
1658 * Test best-case performance. Best-case performance is expected from
1659 * a single large transfer.
1660 *
1661 * An additional option (max_scatter) allows the measurement of the same
1662 * transfer but with no contiguous pages in the scatter list. This tests
1663 * the efficiency of DMA to handle scattered pages.
1664 */
1665 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1666 int max_scatter)
1667 {
1668 struct mmc_test_area *t = &test->area;
1669
1670 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1671 max_scatter, 1);
1672 }
1673
1674 /*
1675 * Best-case read performance.
1676 */
1677 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1678 {
1679 return mmc_test_best_performance(test, 0, 0);
1680 }
1681
1682 /*
1683 * Best-case write performance.
1684 */
1685 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1686 {
1687 return mmc_test_best_performance(test, 1, 0);
1688 }
1689
1690 /*
1691 * Best-case read performance into scattered pages.
1692 */
1693 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1694 {
1695 return mmc_test_best_performance(test, 0, 1);
1696 }
1697
1698 /*
1699 * Best-case write performance from scattered pages.
1700 */
1701 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1702 {
1703 return mmc_test_best_performance(test, 1, 1);
1704 }
1705
1706 /*
1707 * Single read performance by transfer size.
1708 */
1709 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1710 {
1711 struct mmc_test_area *t = &test->area;
1712 unsigned long sz;
1713 unsigned int dev_addr;
1714 int ret;
1715
1716 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1717 dev_addr = t->dev_addr + (sz >> 9);
1718 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1719 if (ret)
1720 return ret;
1721 }
1722 sz = t->max_tfr;
1723 dev_addr = t->dev_addr;
1724 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1725 }
1726
1727 /*
1728 * Single write performance by transfer size.
1729 */
1730 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1731 {
1732 struct mmc_test_area *t = &test->area;
1733 unsigned long sz;
1734 unsigned int dev_addr;
1735 int ret;
1736
1737 ret = mmc_test_area_erase(test);
1738 if (ret)
1739 return ret;
1740 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1741 dev_addr = t->dev_addr + (sz >> 9);
1742 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1743 if (ret)
1744 return ret;
1745 }
1746 ret = mmc_test_area_erase(test);
1747 if (ret)
1748 return ret;
1749 sz = t->max_tfr;
1750 dev_addr = t->dev_addr;
1751 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1752 }
1753
1754 /*
1755 * Single trim performance by transfer size.
1756 */
1757 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1758 {
1759 struct mmc_test_area *t = &test->area;
1760 unsigned long sz;
1761 unsigned int dev_addr;
1762 struct timespec ts1, ts2;
1763 int ret;
1764
1765 if (!mmc_can_trim(test->card))
1766 return RESULT_UNSUP_CARD;
1767
1768 if (!mmc_can_erase(test->card))
1769 return RESULT_UNSUP_HOST;
1770
1771 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1772 dev_addr = t->dev_addr + (sz >> 9);
1773 getnstimeofday(&ts1);
1774 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1775 if (ret)
1776 return ret;
1777 getnstimeofday(&ts2);
1778 mmc_test_print_rate(test, sz, &ts1, &ts2);
1779 }
1780 dev_addr = t->dev_addr;
1781 getnstimeofday(&ts1);
1782 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1783 if (ret)
1784 return ret;
1785 getnstimeofday(&ts2);
1786 mmc_test_print_rate(test, sz, &ts1, &ts2);
1787 return 0;
1788 }
1789
1790 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1791 {
1792 struct mmc_test_area *t = &test->area;
1793 unsigned int dev_addr, i, cnt;
1794 struct timespec ts1, ts2;
1795 int ret;
1796
1797 cnt = t->max_sz / sz;
1798 dev_addr = t->dev_addr;
1799 getnstimeofday(&ts1);
1800 for (i = 0; i < cnt; i++) {
1801 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1802 if (ret)
1803 return ret;
1804 dev_addr += (sz >> 9);
1805 }
1806 getnstimeofday(&ts2);
1807 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1808 return 0;
1809 }
1810
1811 /*
1812 * Consecutive read performance by transfer size.
1813 */
1814 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1815 {
1816 struct mmc_test_area *t = &test->area;
1817 unsigned long sz;
1818 int ret;
1819
1820 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1821 ret = mmc_test_seq_read_perf(test, sz);
1822 if (ret)
1823 return ret;
1824 }
1825 sz = t->max_tfr;
1826 return mmc_test_seq_read_perf(test, sz);
1827 }
1828
1829 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1830 {
1831 struct mmc_test_area *t = &test->area;
1832 unsigned int dev_addr, i, cnt;
1833 struct timespec ts1, ts2;
1834 int ret;
1835
1836 ret = mmc_test_area_erase(test);
1837 if (ret)
1838 return ret;
1839 cnt = t->max_sz / sz;
1840 dev_addr = t->dev_addr;
1841 getnstimeofday(&ts1);
1842 for (i = 0; i < cnt; i++) {
1843 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1844 if (ret)
1845 return ret;
1846 dev_addr += (sz >> 9);
1847 }
1848 getnstimeofday(&ts2);
1849 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1850 return 0;
1851 }
1852
1853 /*
1854 * Consecutive write performance by transfer size.
1855 */
1856 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1857 {
1858 struct mmc_test_area *t = &test->area;
1859 unsigned long sz;
1860 int ret;
1861
1862 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1863 ret = mmc_test_seq_write_perf(test, sz);
1864 if (ret)
1865 return ret;
1866 }
1867 sz = t->max_tfr;
1868 return mmc_test_seq_write_perf(test, sz);
1869 }
1870
1871 /*
1872 * Consecutive trim performance by transfer size.
1873 */
1874 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1875 {
1876 struct mmc_test_area *t = &test->area;
1877 unsigned long sz;
1878 unsigned int dev_addr, i, cnt;
1879 struct timespec ts1, ts2;
1880 int ret;
1881
1882 if (!mmc_can_trim(test->card))
1883 return RESULT_UNSUP_CARD;
1884
1885 if (!mmc_can_erase(test->card))
1886 return RESULT_UNSUP_HOST;
1887
1888 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1889 ret = mmc_test_area_erase(test);
1890 if (ret)
1891 return ret;
1892 ret = mmc_test_area_fill(test);
1893 if (ret)
1894 return ret;
1895 cnt = t->max_sz / sz;
1896 dev_addr = t->dev_addr;
1897 getnstimeofday(&ts1);
1898 for (i = 0; i < cnt; i++) {
1899 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1900 MMC_TRIM_ARG);
1901 if (ret)
1902 return ret;
1903 dev_addr += (sz >> 9);
1904 }
1905 getnstimeofday(&ts2);
1906 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1907 }
1908 return 0;
1909 }
1910
1911 static unsigned int rnd_next = 1;
1912
1913 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1914 {
1915 uint64_t r;
1916
1917 rnd_next = rnd_next * 1103515245 + 12345;
1918 r = (rnd_next >> 16) & 0x7fff;
1919 return (r * rnd_cnt) >> 15;
1920 }
1921
1922 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1923 unsigned long sz)
1924 {
1925 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1926 unsigned int ssz;
1927 struct timespec ts1, ts2, ts;
1928 int ret;
1929
1930 ssz = sz >> 9;
1931
1932 rnd_addr = mmc_test_capacity(test->card) / 4;
1933 range1 = rnd_addr / test->card->pref_erase;
1934 range2 = range1 / ssz;
1935
1936 getnstimeofday(&ts1);
1937 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1938 getnstimeofday(&ts2);
1939 ts = timespec_sub(ts2, ts1);
1940 if (ts.tv_sec >= 10)
1941 break;
1942 ea = mmc_test_rnd_num(range1);
1943 if (ea == last_ea)
1944 ea -= 1;
1945 last_ea = ea;
1946 dev_addr = rnd_addr + test->card->pref_erase * ea +
1947 ssz * mmc_test_rnd_num(range2);
1948 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1949 if (ret)
1950 return ret;
1951 }
1952 if (print)
1953 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1954 return 0;
1955 }
1956
1957 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1958 {
1959 struct mmc_test_area *t = &test->area;
1960 unsigned int next;
1961 unsigned long sz;
1962 int ret;
1963
1964 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1965 /*
1966 * When writing, try to get more consistent results by running
1967 * the test twice with exactly the same I/O but outputting the
1968 * results only for the 2nd run.
1969 */
1970 if (write) {
1971 next = rnd_next;
1972 ret = mmc_test_rnd_perf(test, write, 0, sz);
1973 if (ret)
1974 return ret;
1975 rnd_next = next;
1976 }
1977 ret = mmc_test_rnd_perf(test, write, 1, sz);
1978 if (ret)
1979 return ret;
1980 }
1981 sz = t->max_tfr;
1982 if (write) {
1983 next = rnd_next;
1984 ret = mmc_test_rnd_perf(test, write, 0, sz);
1985 if (ret)
1986 return ret;
1987 rnd_next = next;
1988 }
1989 return mmc_test_rnd_perf(test, write, 1, sz);
1990 }
1991
1992 /*
1993 * Random read performance by transfer size.
1994 */
1995 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1996 {
1997 return mmc_test_random_perf(test, 0);
1998 }
1999
2000 /*
2001 * Random write performance by transfer size.
2002 */
2003 static int mmc_test_random_write_perf(struct mmc_test_card *test)
2004 {
2005 return mmc_test_random_perf(test, 1);
2006 }
2007
2008 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
2009 unsigned int tot_sz, int max_scatter)
2010 {
2011 struct mmc_test_area *t = &test->area;
2012 unsigned int dev_addr, i, cnt, sz, ssz;
2013 struct timespec ts1, ts2;
2014 int ret;
2015
2016 sz = t->max_tfr;
2017
2018 /*
2019 * In the case of a maximally scattered transfer, the maximum transfer
2020 * size is further limited by using PAGE_SIZE segments.
2021 */
2022 if (max_scatter) {
2023 unsigned long max_tfr;
2024
2025 if (t->max_seg_sz >= PAGE_SIZE)
2026 max_tfr = t->max_segs * PAGE_SIZE;
2027 else
2028 max_tfr = t->max_segs * t->max_seg_sz;
2029 if (sz > max_tfr)
2030 sz = max_tfr;
2031 }
2032
2033 ssz = sz >> 9;
2034 dev_addr = mmc_test_capacity(test->card) / 4;
2035 if (tot_sz > dev_addr << 9)
2036 tot_sz = dev_addr << 9;
2037 cnt = tot_sz / sz;
2038 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2039
2040 getnstimeofday(&ts1);
2041 for (i = 0; i < cnt; i++) {
2042 ret = mmc_test_area_io(test, sz, dev_addr, write,
2043 max_scatter, 0);
2044 if (ret)
2045 return ret;
2046 dev_addr += ssz;
2047 }
2048 getnstimeofday(&ts2);
2049
2050 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2051
2052 return 0;
2053 }
2054
2055 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2056 {
2057 int ret, i;
2058
2059 for (i = 0; i < 10; i++) {
2060 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2061 if (ret)
2062 return ret;
2063 }
2064 for (i = 0; i < 5; i++) {
2065 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2066 if (ret)
2067 return ret;
2068 }
2069 for (i = 0; i < 3; i++) {
2070 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2071 if (ret)
2072 return ret;
2073 }
2074
2075 return ret;
2076 }
2077
2078 /*
2079 * Large sequential read performance.
2080 */
2081 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2082 {
2083 return mmc_test_large_seq_perf(test, 0);
2084 }
2085
2086 /*
2087 * Large sequential write performance.
2088 */
2089 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2090 {
2091 return mmc_test_large_seq_perf(test, 1);
2092 }
2093
2094 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2095 struct mmc_test_multiple_rw *tdata,
2096 unsigned int reqsize, unsigned int size,
2097 int min_sg_len)
2098 {
2099 unsigned int dev_addr;
2100 struct mmc_test_area *t = &test->area;
2101 int ret = 0;
2102
2103 /* Set up test area */
2104 if (size > mmc_test_capacity(test->card) / 2 * 512)
2105 size = mmc_test_capacity(test->card) / 2 * 512;
2106 if (reqsize > t->max_tfr)
2107 reqsize = t->max_tfr;
2108 dev_addr = mmc_test_capacity(test->card) / 4;
2109 if ((dev_addr & 0xffff0000))
2110 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2111 else
2112 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2113 if (!dev_addr)
2114 goto err;
2115
2116 if (reqsize > size)
2117 return 0;
2118
2119 /* prepare test area */
2120 if (mmc_can_erase(test->card) &&
2121 tdata->prepare & MMC_TEST_PREP_ERASE) {
2122 ret = mmc_erase(test->card, dev_addr,
2123 size / 512, MMC_SECURE_ERASE_ARG);
2124 if (ret)
2125 ret = mmc_erase(test->card, dev_addr,
2126 size / 512, MMC_ERASE_ARG);
2127 if (ret)
2128 goto err;
2129 }
2130
2131 /* Run test */
2132 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2133 tdata->do_write, 0, 1, size / reqsize,
2134 tdata->do_nonblock_req, min_sg_len);
2135 if (ret)
2136 goto err;
2137
2138 return ret;
2139 err:
2140 pr_info("[%s] error\n", __func__);
2141 return ret;
2142 }
2143
2144 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2145 struct mmc_test_multiple_rw *rw)
2146 {
2147 int ret = 0;
2148 int i;
2149 void *pre_req = test->card->host->ops->pre_req;
2150 void *post_req = test->card->host->ops->post_req;
2151
2152 if (rw->do_nonblock_req &&
2153 ((!pre_req && post_req) || (pre_req && !post_req))) {
2154 pr_info("error: only one of pre/post is defined\n");
2155 return -EINVAL;
2156 }
2157
2158 for (i = 0 ; i < rw->len && ret == 0; i++) {
2159 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2160 if (ret)
2161 break;
2162 }
2163 return ret;
2164 }
2165
2166 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2167 struct mmc_test_multiple_rw *rw)
2168 {
2169 int ret = 0;
2170 int i;
2171
2172 for (i = 0 ; i < rw->len && ret == 0; i++) {
2173 ret = mmc_test_rw_multiple(test, rw, 512*1024, rw->size,
2174 rw->sg_len[i]);
2175 if (ret)
2176 break;
2177 }
2178 return ret;
2179 }
2180
2181 /*
2182 * Multiple blocking write 4k to 4 MB chunks
2183 */
2184 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2185 {
2186 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2187 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2188 struct mmc_test_multiple_rw test_data = {
2189 .bs = bs,
2190 .size = TEST_AREA_MAX_SIZE,
2191 .len = ARRAY_SIZE(bs),
2192 .do_write = true,
2193 .do_nonblock_req = false,
2194 .prepare = MMC_TEST_PREP_ERASE,
2195 };
2196
2197 return mmc_test_rw_multiple_size(test, &test_data);
2198 };
2199
2200 /*
2201 * Multiple non-blocking write 4k to 4 MB chunks
2202 */
2203 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2204 {
2205 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2206 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2207 struct mmc_test_multiple_rw test_data = {
2208 .bs = bs,
2209 .size = TEST_AREA_MAX_SIZE,
2210 .len = ARRAY_SIZE(bs),
2211 .do_write = true,
2212 .do_nonblock_req = true,
2213 .prepare = MMC_TEST_PREP_ERASE,
2214 };
2215
2216 return mmc_test_rw_multiple_size(test, &test_data);
2217 }
2218
2219 /*
2220 * Multiple blocking read 4k to 4 MB chunks
2221 */
2222 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2223 {
2224 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2225 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2226 struct mmc_test_multiple_rw test_data = {
2227 .bs = bs,
2228 .size = TEST_AREA_MAX_SIZE,
2229 .len = ARRAY_SIZE(bs),
2230 .do_write = false,
2231 .do_nonblock_req = false,
2232 .prepare = MMC_TEST_PREP_NONE,
2233 };
2234
2235 return mmc_test_rw_multiple_size(test, &test_data);
2236 }
2237
2238 /*
2239 * Multiple non-blocking read 4k to 4 MB chunks
2240 */
2241 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2242 {
2243 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2244 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2245 struct mmc_test_multiple_rw test_data = {
2246 .bs = bs,
2247 .size = TEST_AREA_MAX_SIZE,
2248 .len = ARRAY_SIZE(bs),
2249 .do_write = false,
2250 .do_nonblock_req = true,
2251 .prepare = MMC_TEST_PREP_NONE,
2252 };
2253
2254 return mmc_test_rw_multiple_size(test, &test_data);
2255 }
2256
2257 /*
2258 * Multiple blocking write 1 to 512 sg elements
2259 */
2260 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2261 {
2262 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2263 1 << 7, 1 << 8, 1 << 9};
2264 struct mmc_test_multiple_rw test_data = {
2265 .sg_len = sg_len,
2266 .size = TEST_AREA_MAX_SIZE,
2267 .len = ARRAY_SIZE(sg_len),
2268 .do_write = true,
2269 .do_nonblock_req = false,
2270 .prepare = MMC_TEST_PREP_ERASE,
2271 };
2272
2273 return mmc_test_rw_multiple_sg_len(test, &test_data);
2274 };
2275
2276 /*
2277 * Multiple non-blocking write 1 to 512 sg elements
2278 */
2279 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2280 {
2281 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2282 1 << 7, 1 << 8, 1 << 9};
2283 struct mmc_test_multiple_rw test_data = {
2284 .sg_len = sg_len,
2285 .size = TEST_AREA_MAX_SIZE,
2286 .len = ARRAY_SIZE(sg_len),
2287 .do_write = true,
2288 .do_nonblock_req = true,
2289 .prepare = MMC_TEST_PREP_ERASE,
2290 };
2291
2292 return mmc_test_rw_multiple_sg_len(test, &test_data);
2293 }
2294
2295 /*
2296 * Multiple blocking read 1 to 512 sg elements
2297 */
2298 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2299 {
2300 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2301 1 << 7, 1 << 8, 1 << 9};
2302 struct mmc_test_multiple_rw test_data = {
2303 .sg_len = sg_len,
2304 .size = TEST_AREA_MAX_SIZE,
2305 .len = ARRAY_SIZE(sg_len),
2306 .do_write = false,
2307 .do_nonblock_req = false,
2308 .prepare = MMC_TEST_PREP_NONE,
2309 };
2310
2311 return mmc_test_rw_multiple_sg_len(test, &test_data);
2312 }
2313
2314 /*
2315 * Multiple non-blocking read 1 to 512 sg elements
2316 */
2317 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2318 {
2319 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2320 1 << 7, 1 << 8, 1 << 9};
2321 struct mmc_test_multiple_rw test_data = {
2322 .sg_len = sg_len,
2323 .size = TEST_AREA_MAX_SIZE,
2324 .len = ARRAY_SIZE(sg_len),
2325 .do_write = false,
2326 .do_nonblock_req = true,
2327 .prepare = MMC_TEST_PREP_NONE,
2328 };
2329
2330 return mmc_test_rw_multiple_sg_len(test, &test_data);
2331 }
2332
2333 /*
2334 * eMMC hardware reset.
2335 */
2336 static int mmc_test_hw_reset(struct mmc_test_card *test)
2337 {
2338 struct mmc_card *card = test->card;
2339 struct mmc_host *host = card->host;
2340 int err;
2341
2342 err = mmc_hw_reset_check(host);
2343 if (!err)
2344 return RESULT_OK;
2345
2346 if (err == -ENOSYS)
2347 return RESULT_FAIL;
2348
2349 if (err != -EOPNOTSUPP)
2350 return err;
2351
2352 if (!mmc_can_reset(card))
2353 return RESULT_UNSUP_CARD;
2354
2355 return RESULT_UNSUP_HOST;
2356 }
2357
2358 static const struct mmc_test_case mmc_test_cases[] = {
2359 {
2360 .name = "Basic write (no data verification)",
2361 .run = mmc_test_basic_write,
2362 },
2363
2364 {
2365 .name = "Basic read (no data verification)",
2366 .run = mmc_test_basic_read,
2367 },
2368
2369 {
2370 .name = "Basic write (with data verification)",
2371 .prepare = mmc_test_prepare_write,
2372 .run = mmc_test_verify_write,
2373 .cleanup = mmc_test_cleanup,
2374 },
2375
2376 {
2377 .name = "Basic read (with data verification)",
2378 .prepare = mmc_test_prepare_read,
2379 .run = mmc_test_verify_read,
2380 .cleanup = mmc_test_cleanup,
2381 },
2382
2383 {
2384 .name = "Multi-block write",
2385 .prepare = mmc_test_prepare_write,
2386 .run = mmc_test_multi_write,
2387 .cleanup = mmc_test_cleanup,
2388 },
2389
2390 {
2391 .name = "Multi-block read",
2392 .prepare = mmc_test_prepare_read,
2393 .run = mmc_test_multi_read,
2394 .cleanup = mmc_test_cleanup,
2395 },
2396
2397 {
2398 .name = "Power of two block writes",
2399 .prepare = mmc_test_prepare_write,
2400 .run = mmc_test_pow2_write,
2401 .cleanup = mmc_test_cleanup,
2402 },
2403
2404 {
2405 .name = "Power of two block reads",
2406 .prepare = mmc_test_prepare_read,
2407 .run = mmc_test_pow2_read,
2408 .cleanup = mmc_test_cleanup,
2409 },
2410
2411 {
2412 .name = "Weird sized block writes",
2413 .prepare = mmc_test_prepare_write,
2414 .run = mmc_test_weird_write,
2415 .cleanup = mmc_test_cleanup,
2416 },
2417
2418 {
2419 .name = "Weird sized block reads",
2420 .prepare = mmc_test_prepare_read,
2421 .run = mmc_test_weird_read,
2422 .cleanup = mmc_test_cleanup,
2423 },
2424
2425 {
2426 .name = "Badly aligned write",
2427 .prepare = mmc_test_prepare_write,
2428 .run = mmc_test_align_write,
2429 .cleanup = mmc_test_cleanup,
2430 },
2431
2432 {
2433 .name = "Badly aligned read",
2434 .prepare = mmc_test_prepare_read,
2435 .run = mmc_test_align_read,
2436 .cleanup = mmc_test_cleanup,
2437 },
2438
2439 {
2440 .name = "Badly aligned multi-block write",
2441 .prepare = mmc_test_prepare_write,
2442 .run = mmc_test_align_multi_write,
2443 .cleanup = mmc_test_cleanup,
2444 },
2445
2446 {
2447 .name = "Badly aligned multi-block read",
2448 .prepare = mmc_test_prepare_read,
2449 .run = mmc_test_align_multi_read,
2450 .cleanup = mmc_test_cleanup,
2451 },
2452
2453 {
2454 .name = "Correct xfer_size at write (start failure)",
2455 .run = mmc_test_xfersize_write,
2456 },
2457
2458 {
2459 .name = "Correct xfer_size at read (start failure)",
2460 .run = mmc_test_xfersize_read,
2461 },
2462
2463 {
2464 .name = "Correct xfer_size at write (midway failure)",
2465 .run = mmc_test_multi_xfersize_write,
2466 },
2467
2468 {
2469 .name = "Correct xfer_size at read (midway failure)",
2470 .run = mmc_test_multi_xfersize_read,
2471 },
2472
2473 #ifdef CONFIG_HIGHMEM
2474
2475 {
2476 .name = "Highmem write",
2477 .prepare = mmc_test_prepare_write,
2478 .run = mmc_test_write_high,
2479 .cleanup = mmc_test_cleanup,
2480 },
2481
2482 {
2483 .name = "Highmem read",
2484 .prepare = mmc_test_prepare_read,
2485 .run = mmc_test_read_high,
2486 .cleanup = mmc_test_cleanup,
2487 },
2488
2489 {
2490 .name = "Multi-block highmem write",
2491 .prepare = mmc_test_prepare_write,
2492 .run = mmc_test_multi_write_high,
2493 .cleanup = mmc_test_cleanup,
2494 },
2495
2496 {
2497 .name = "Multi-block highmem read",
2498 .prepare = mmc_test_prepare_read,
2499 .run = mmc_test_multi_read_high,
2500 .cleanup = mmc_test_cleanup,
2501 },
2502
2503 #else
2504
2505 {
2506 .name = "Highmem write",
2507 .run = mmc_test_no_highmem,
2508 },
2509
2510 {
2511 .name = "Highmem read",
2512 .run = mmc_test_no_highmem,
2513 },
2514
2515 {
2516 .name = "Multi-block highmem write",
2517 .run = mmc_test_no_highmem,
2518 },
2519
2520 {
2521 .name = "Multi-block highmem read",
2522 .run = mmc_test_no_highmem,
2523 },
2524
2525 #endif /* CONFIG_HIGHMEM */
2526
2527 {
2528 .name = "Best-case read performance",
2529 .prepare = mmc_test_area_prepare_fill,
2530 .run = mmc_test_best_read_performance,
2531 .cleanup = mmc_test_area_cleanup,
2532 },
2533
2534 {
2535 .name = "Best-case write performance",
2536 .prepare = mmc_test_area_prepare_erase,
2537 .run = mmc_test_best_write_performance,
2538 .cleanup = mmc_test_area_cleanup,
2539 },
2540
2541 {
2542 .name = "Best-case read performance into scattered pages",
2543 .prepare = mmc_test_area_prepare_fill,
2544 .run = mmc_test_best_read_perf_max_scatter,
2545 .cleanup = mmc_test_area_cleanup,
2546 },
2547
2548 {
2549 .name = "Best-case write performance from scattered pages",
2550 .prepare = mmc_test_area_prepare_erase,
2551 .run = mmc_test_best_write_perf_max_scatter,
2552 .cleanup = mmc_test_area_cleanup,
2553 },
2554
2555 {
2556 .name = "Single read performance by transfer size",
2557 .prepare = mmc_test_area_prepare_fill,
2558 .run = mmc_test_profile_read_perf,
2559 .cleanup = mmc_test_area_cleanup,
2560 },
2561
2562 {
2563 .name = "Single write performance by transfer size",
2564 .prepare = mmc_test_area_prepare,
2565 .run = mmc_test_profile_write_perf,
2566 .cleanup = mmc_test_area_cleanup,
2567 },
2568
2569 {
2570 .name = "Single trim performance by transfer size",
2571 .prepare = mmc_test_area_prepare_fill,
2572 .run = mmc_test_profile_trim_perf,
2573 .cleanup = mmc_test_area_cleanup,
2574 },
2575
2576 {
2577 .name = "Consecutive read performance by transfer size",
2578 .prepare = mmc_test_area_prepare_fill,
2579 .run = mmc_test_profile_seq_read_perf,
2580 .cleanup = mmc_test_area_cleanup,
2581 },
2582
2583 {
2584 .name = "Consecutive write performance by transfer size",
2585 .prepare = mmc_test_area_prepare,
2586 .run = mmc_test_profile_seq_write_perf,
2587 .cleanup = mmc_test_area_cleanup,
2588 },
2589
2590 {
2591 .name = "Consecutive trim performance by transfer size",
2592 .prepare = mmc_test_area_prepare,
2593 .run = mmc_test_profile_seq_trim_perf,
2594 .cleanup = mmc_test_area_cleanup,
2595 },
2596
2597 {
2598 .name = "Random read performance by transfer size",
2599 .prepare = mmc_test_area_prepare,
2600 .run = mmc_test_random_read_perf,
2601 .cleanup = mmc_test_area_cleanup,
2602 },
2603
2604 {
2605 .name = "Random write performance by transfer size",
2606 .prepare = mmc_test_area_prepare,
2607 .run = mmc_test_random_write_perf,
2608 .cleanup = mmc_test_area_cleanup,
2609 },
2610
2611 {
2612 .name = "Large sequential read into scattered pages",
2613 .prepare = mmc_test_area_prepare,
2614 .run = mmc_test_large_seq_read_perf,
2615 .cleanup = mmc_test_area_cleanup,
2616 },
2617
2618 {
2619 .name = "Large sequential write from scattered pages",
2620 .prepare = mmc_test_area_prepare,
2621 .run = mmc_test_large_seq_write_perf,
2622 .cleanup = mmc_test_area_cleanup,
2623 },
2624
2625 {
2626 .name = "Write performance with blocking req 4k to 4MB",
2627 .prepare = mmc_test_area_prepare,
2628 .run = mmc_test_profile_mult_write_blocking_perf,
2629 .cleanup = mmc_test_area_cleanup,
2630 },
2631
2632 {
2633 .name = "Write performance with non-blocking req 4k to 4MB",
2634 .prepare = mmc_test_area_prepare,
2635 .run = mmc_test_profile_mult_write_nonblock_perf,
2636 .cleanup = mmc_test_area_cleanup,
2637 },
2638
2639 {
2640 .name = "Read performance with blocking req 4k to 4MB",
2641 .prepare = mmc_test_area_prepare,
2642 .run = mmc_test_profile_mult_read_blocking_perf,
2643 .cleanup = mmc_test_area_cleanup,
2644 },
2645
2646 {
2647 .name = "Read performance with non-blocking req 4k to 4MB",
2648 .prepare = mmc_test_area_prepare,
2649 .run = mmc_test_profile_mult_read_nonblock_perf,
2650 .cleanup = mmc_test_area_cleanup,
2651 },
2652
2653 {
2654 .name = "Write performance blocking req 1 to 512 sg elems",
2655 .prepare = mmc_test_area_prepare,
2656 .run = mmc_test_profile_sglen_wr_blocking_perf,
2657 .cleanup = mmc_test_area_cleanup,
2658 },
2659
2660 {
2661 .name = "Write performance non-blocking req 1 to 512 sg elems",
2662 .prepare = mmc_test_area_prepare,
2663 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2664 .cleanup = mmc_test_area_cleanup,
2665 },
2666
2667 {
2668 .name = "Read performance blocking req 1 to 512 sg elems",
2669 .prepare = mmc_test_area_prepare,
2670 .run = mmc_test_profile_sglen_r_blocking_perf,
2671 .cleanup = mmc_test_area_cleanup,
2672 },
2673
2674 {
2675 .name = "Read performance non-blocking req 1 to 512 sg elems",
2676 .prepare = mmc_test_area_prepare,
2677 .run = mmc_test_profile_sglen_r_nonblock_perf,
2678 .cleanup = mmc_test_area_cleanup,
2679 },
2680
2681 {
2682 .name = "eMMC hardware reset",
2683 .run = mmc_test_hw_reset,
2684 },
2685 };
2686
2687 static DEFINE_MUTEX(mmc_test_lock);
2688
2689 static LIST_HEAD(mmc_test_result);
2690
2691 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2692 {
2693 int i, ret;
2694
2695 pr_info("%s: Starting tests of card %s...\n",
2696 mmc_hostname(test->card->host), mmc_card_id(test->card));
2697
2698 mmc_claim_host(test->card->host);
2699
2700 for (i = 0;i < ARRAY_SIZE(mmc_test_cases);i++) {
2701 struct mmc_test_general_result *gr;
2702
2703 if (testcase && ((i + 1) != testcase))
2704 continue;
2705
2706 pr_info("%s: Test case %d. %s...\n",
2707 mmc_hostname(test->card->host), i + 1,
2708 mmc_test_cases[i].name);
2709
2710 if (mmc_test_cases[i].prepare) {
2711 ret = mmc_test_cases[i].prepare(test);
2712 if (ret) {
2713 pr_info("%s: Result: Prepare "
2714 "stage failed! (%d)\n",
2715 mmc_hostname(test->card->host),
2716 ret);
2717 continue;
2718 }
2719 }
2720
2721 gr = kzalloc(sizeof(struct mmc_test_general_result),
2722 GFP_KERNEL);
2723 if (gr) {
2724 INIT_LIST_HEAD(&gr->tr_lst);
2725
2726 /* Assign data what we know already */
2727 gr->card = test->card;
2728 gr->testcase = i;
2729
2730 /* Append container to global one */
2731 list_add_tail(&gr->link, &mmc_test_result);
2732
2733 /*
2734 * Save the pointer to created container in our private
2735 * structure.
2736 */
2737 test->gr = gr;
2738 }
2739
2740 ret = mmc_test_cases[i].run(test);
2741 switch (ret) {
2742 case RESULT_OK:
2743 pr_info("%s: Result: OK\n",
2744 mmc_hostname(test->card->host));
2745 break;
2746 case RESULT_FAIL:
2747 pr_info("%s: Result: FAILED\n",
2748 mmc_hostname(test->card->host));
2749 break;
2750 case RESULT_UNSUP_HOST:
2751 pr_info("%s: Result: UNSUPPORTED "
2752 "(by host)\n",
2753 mmc_hostname(test->card->host));
2754 break;
2755 case RESULT_UNSUP_CARD:
2756 pr_info("%s: Result: UNSUPPORTED "
2757 "(by card)\n",
2758 mmc_hostname(test->card->host));
2759 break;
2760 default:
2761 pr_info("%s: Result: ERROR (%d)\n",
2762 mmc_hostname(test->card->host), ret);
2763 }
2764
2765 /* Save the result */
2766 if (gr)
2767 gr->result = ret;
2768
2769 if (mmc_test_cases[i].cleanup) {
2770 ret = mmc_test_cases[i].cleanup(test);
2771 if (ret) {
2772 pr_info("%s: Warning: Cleanup "
2773 "stage failed! (%d)\n",
2774 mmc_hostname(test->card->host),
2775 ret);
2776 }
2777 }
2778 }
2779
2780 mmc_release_host(test->card->host);
2781
2782 pr_info("%s: Tests completed.\n",
2783 mmc_hostname(test->card->host));
2784 }
2785
2786 static void mmc_test_free_result(struct mmc_card *card)
2787 {
2788 struct mmc_test_general_result *gr, *grs;
2789
2790 mutex_lock(&mmc_test_lock);
2791
2792 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
2793 struct mmc_test_transfer_result *tr, *trs;
2794
2795 if (card && gr->card != card)
2796 continue;
2797
2798 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
2799 list_del(&tr->link);
2800 kfree(tr);
2801 }
2802
2803 list_del(&gr->link);
2804 kfree(gr);
2805 }
2806
2807 mutex_unlock(&mmc_test_lock);
2808 }
2809
2810 static LIST_HEAD(mmc_test_file_test);
2811
2812 static int mtf_test_show(struct seq_file *sf, void *data)
2813 {
2814 struct mmc_card *card = (struct mmc_card *)sf->private;
2815 struct mmc_test_general_result *gr;
2816
2817 mutex_lock(&mmc_test_lock);
2818
2819 list_for_each_entry(gr, &mmc_test_result, link) {
2820 struct mmc_test_transfer_result *tr;
2821
2822 if (gr->card != card)
2823 continue;
2824
2825 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
2826
2827 list_for_each_entry(tr, &gr->tr_lst, link) {
2828 seq_printf(sf, "%u %d %lu.%09lu %u %u.%02u\n",
2829 tr->count, tr->sectors,
2830 (unsigned long)tr->ts.tv_sec,
2831 (unsigned long)tr->ts.tv_nsec,
2832 tr->rate, tr->iops / 100, tr->iops % 100);
2833 }
2834 }
2835
2836 mutex_unlock(&mmc_test_lock);
2837
2838 return 0;
2839 }
2840
2841 static int mtf_test_open(struct inode *inode, struct file *file)
2842 {
2843 return single_open(file, mtf_test_show, inode->i_private);
2844 }
2845
2846 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
2847 size_t count, loff_t *pos)
2848 {
2849 struct seq_file *sf = (struct seq_file *)file->private_data;
2850 struct mmc_card *card = (struct mmc_card *)sf->private;
2851 struct mmc_test_card *test;
2852 long testcase;
2853 int ret;
2854
2855 ret = kstrtol_from_user(buf, count, 10, &testcase);
2856 if (ret)
2857 return ret;
2858
2859 test = kzalloc(sizeof(struct mmc_test_card), GFP_KERNEL);
2860 if (!test)
2861 return -ENOMEM;
2862
2863 /*
2864 * Remove all test cases associated with given card. Thus we have only
2865 * actual data of the last run.
2866 */
2867 mmc_test_free_result(card);
2868
2869 test->card = card;
2870
2871 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
2872 #ifdef CONFIG_HIGHMEM
2873 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
2874 #endif
2875
2876 #ifdef CONFIG_HIGHMEM
2877 if (test->buffer && test->highmem) {
2878 #else
2879 if (test->buffer) {
2880 #endif
2881 mutex_lock(&mmc_test_lock);
2882 mmc_test_run(test, testcase);
2883 mutex_unlock(&mmc_test_lock);
2884 }
2885
2886 #ifdef CONFIG_HIGHMEM
2887 __free_pages(test->highmem, BUFFER_ORDER);
2888 #endif
2889 kfree(test->buffer);
2890 kfree(test);
2891
2892 return count;
2893 }
2894
2895 static const struct file_operations mmc_test_fops_test = {
2896 .open = mtf_test_open,
2897 .read = seq_read,
2898 .write = mtf_test_write,
2899 .llseek = seq_lseek,
2900 .release = single_release,
2901 };
2902
2903 static int mtf_testlist_show(struct seq_file *sf, void *data)
2904 {
2905 int i;
2906
2907 mutex_lock(&mmc_test_lock);
2908
2909 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
2910 seq_printf(sf, "%d:\t%s\n", i+1, mmc_test_cases[i].name);
2911
2912 mutex_unlock(&mmc_test_lock);
2913
2914 return 0;
2915 }
2916
2917 static int mtf_testlist_open(struct inode *inode, struct file *file)
2918 {
2919 return single_open(file, mtf_testlist_show, inode->i_private);
2920 }
2921
2922 static const struct file_operations mmc_test_fops_testlist = {
2923 .open = mtf_testlist_open,
2924 .read = seq_read,
2925 .llseek = seq_lseek,
2926 .release = single_release,
2927 };
2928
2929 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
2930 {
2931 struct mmc_test_dbgfs_file *df, *dfs;
2932
2933 mutex_lock(&mmc_test_lock);
2934
2935 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
2936 if (card && df->card != card)
2937 continue;
2938 debugfs_remove(df->file);
2939 list_del(&df->link);
2940 kfree(df);
2941 }
2942
2943 mutex_unlock(&mmc_test_lock);
2944 }
2945
2946 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
2947 const char *name, umode_t mode, const struct file_operations *fops)
2948 {
2949 struct dentry *file = NULL;
2950 struct mmc_test_dbgfs_file *df;
2951
2952 if (card->debugfs_root)
2953 file = debugfs_create_file(name, mode, card->debugfs_root,
2954 card, fops);
2955
2956 if (IS_ERR_OR_NULL(file)) {
2957 dev_err(&card->dev,
2958 "Can't create %s. Perhaps debugfs is disabled.\n",
2959 name);
2960 return -ENODEV;
2961 }
2962
2963 df = kmalloc(sizeof(struct mmc_test_dbgfs_file), GFP_KERNEL);
2964 if (!df) {
2965 debugfs_remove(file);
2966 dev_err(&card->dev,
2967 "Can't allocate memory for internal usage.\n");
2968 return -ENOMEM;
2969 }
2970
2971 df->card = card;
2972 df->file = file;
2973
2974 list_add(&df->link, &mmc_test_file_test);
2975 return 0;
2976 }
2977
2978 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
2979 {
2980 int ret;
2981
2982 mutex_lock(&mmc_test_lock);
2983
2984 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
2985 &mmc_test_fops_test);
2986 if (ret)
2987 goto err;
2988
2989 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
2990 &mmc_test_fops_testlist);
2991 if (ret)
2992 goto err;
2993
2994 err:
2995 mutex_unlock(&mmc_test_lock);
2996
2997 return ret;
2998 }
2999
3000 static int mmc_test_probe(struct mmc_card *card)
3001 {
3002 int ret;
3003
3004 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3005 return -ENODEV;
3006
3007 ret = mmc_test_register_dbgfs_file(card);
3008 if (ret)
3009 return ret;
3010
3011 dev_info(&card->dev, "Card claimed for testing.\n");
3012
3013 return 0;
3014 }
3015
3016 static void mmc_test_remove(struct mmc_card *card)
3017 {
3018 mmc_test_free_result(card);
3019 mmc_test_free_dbgfs_file(card);
3020 }
3021
3022 static void mmc_test_shutdown(struct mmc_card *card)
3023 {
3024 }
3025
3026 static struct mmc_driver mmc_driver = {
3027 .drv = {
3028 .name = "mmc_test",
3029 },
3030 .probe = mmc_test_probe,
3031 .remove = mmc_test_remove,
3032 .shutdown = mmc_test_shutdown,
3033 };
3034
3035 static int __init mmc_test_init(void)
3036 {
3037 return mmc_register_driver(&mmc_driver);
3038 }
3039
3040 static void __exit mmc_test_exit(void)
3041 {
3042 /* Clear stalled data if card is still plugged */
3043 mmc_test_free_result(NULL);
3044 mmc_test_free_dbgfs_file(NULL);
3045
3046 mmc_unregister_driver(&mmc_driver);
3047 }
3048
3049 module_init(mmc_test_init);
3050 module_exit(mmc_test_exit);
3051
3052 MODULE_LICENSE("GPL");
3053 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3054 MODULE_AUTHOR("Pierre Ossman");