]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/block.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <linux/uaccess.h>
47
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63
64 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67
68 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
69 (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71
72 /*
73 * The defaults come from config options but can be overriden by module
74 * or bootarg options.
75 */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77
78 /*
79 * We've only got one major, so number of mmcblk devices is
80 * limited to (1 << 20) / number of minors per device. It is also
81 * limited by the MAX_DEVICES below.
82 */
83 static int max_devices;
84
85 #define MAX_DEVICES 256
86
87 static DEFINE_IDA(mmc_blk_ida);
88
89 /*
90 * There is one mmc_blk_data per slot.
91 */
92 struct mmc_blk_data {
93 spinlock_t lock;
94 struct device *parent;
95 struct gendisk *disk;
96 struct mmc_queue queue;
97 struct list_head part;
98
99 unsigned int flags;
100 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
102
103 unsigned int usage;
104 unsigned int read_only;
105 unsigned int part_type;
106 unsigned int reset_done;
107 #define MMC_BLK_READ BIT(0)
108 #define MMC_BLK_WRITE BIT(1)
109 #define MMC_BLK_DISCARD BIT(2)
110 #define MMC_BLK_SECDISCARD BIT(3)
111
112 /*
113 * Only set in main mmc_blk_data associated
114 * with mmc_card with dev_set_drvdata, and keeps
115 * track of the current selected device partition.
116 */
117 unsigned int part_curr;
118 struct device_attribute force_ro;
119 struct device_attribute power_ro_lock;
120 int area_type;
121 };
122
123 static DEFINE_MUTEX(open_lock);
124
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 struct mmc_blk_data *md);
130
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133 struct mmc_blk_data *md;
134
135 mutex_lock(&open_lock);
136 md = disk->private_data;
137 if (md && md->usage == 0)
138 md = NULL;
139 if (md)
140 md->usage++;
141 mutex_unlock(&open_lock);
142
143 return md;
144 }
145
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148 int devidx = disk->first_minor / perdev_minors;
149 return devidx;
150 }
151
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 mutex_lock(&open_lock);
155 md->usage--;
156 if (md->usage == 0) {
157 int devidx = mmc_get_devidx(md->disk);
158 blk_cleanup_queue(md->queue.queue);
159 ida_simple_remove(&mmc_blk_ida, devidx);
160 put_disk(md->disk);
161 kfree(md);
162 }
163 mutex_unlock(&open_lock);
164 }
165
166 static ssize_t power_ro_lock_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168 {
169 int ret;
170 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171 struct mmc_card *card = md->queue.card;
172 int locked = 0;
173
174 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175 locked = 2;
176 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177 locked = 1;
178
179 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180
181 mmc_blk_put(md);
182
183 return ret;
184 }
185
186 static ssize_t power_ro_lock_store(struct device *dev,
187 struct device_attribute *attr, const char *buf, size_t count)
188 {
189 int ret;
190 struct mmc_blk_data *md, *part_md;
191 struct mmc_card *card;
192 struct mmc_queue *mq;
193 struct request *req;
194 unsigned long set;
195
196 if (kstrtoul(buf, 0, &set))
197 return -EINVAL;
198
199 if (set != 1)
200 return count;
201
202 md = mmc_blk_get(dev_to_disk(dev));
203 mq = &md->queue;
204 card = md->queue.card;
205
206 /* Dispatch locking to the block layer */
207 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209 blk_execute_rq(mq->queue, NULL, req, 0);
210 ret = req_to_mmc_queue_req(req)->drv_op_result;
211
212 if (!ret) {
213 pr_info("%s: Locking boot partition ro until next power on\n",
214 md->disk->disk_name);
215 set_disk_ro(md->disk, 1);
216
217 list_for_each_entry(part_md, &md->part, part)
218 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220 set_disk_ro(part_md->disk, 1);
221 }
222 }
223
224 mmc_blk_put(md);
225 return count;
226 }
227
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229 char *buf)
230 {
231 int ret;
232 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233
234 ret = snprintf(buf, PAGE_SIZE, "%d\n",
235 get_disk_ro(dev_to_disk(dev)) ^
236 md->read_only);
237 mmc_blk_put(md);
238 return ret;
239 }
240
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242 const char *buf, size_t count)
243 {
244 int ret;
245 char *end;
246 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247 unsigned long set = simple_strtoul(buf, &end, 0);
248 if (end == buf) {
249 ret = -EINVAL;
250 goto out;
251 }
252
253 set_disk_ro(dev_to_disk(dev), set || md->read_only);
254 ret = count;
255 out:
256 mmc_blk_put(md);
257 return ret;
258 }
259
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263 int ret = -ENXIO;
264
265 mutex_lock(&block_mutex);
266 if (md) {
267 if (md->usage == 2)
268 check_disk_change(bdev);
269 ret = 0;
270
271 if ((mode & FMODE_WRITE) && md->read_only) {
272 mmc_blk_put(md);
273 ret = -EROFS;
274 }
275 }
276 mutex_unlock(&block_mutex);
277
278 return ret;
279 }
280
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283 struct mmc_blk_data *md = disk->private_data;
284
285 mutex_lock(&block_mutex);
286 mmc_blk_put(md);
287 mutex_unlock(&block_mutex);
288 }
289
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294 geo->heads = 4;
295 geo->sectors = 16;
296 return 0;
297 }
298
299 struct mmc_blk_ioc_data {
300 struct mmc_ioc_cmd ic;
301 unsigned char *buf;
302 u64 buf_bytes;
303 };
304
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306 struct mmc_ioc_cmd __user *user)
307 {
308 struct mmc_blk_ioc_data *idata;
309 int err;
310
311 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312 if (!idata) {
313 err = -ENOMEM;
314 goto out;
315 }
316
317 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318 err = -EFAULT;
319 goto idata_err;
320 }
321
322 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324 err = -EOVERFLOW;
325 goto idata_err;
326 }
327
328 if (!idata->buf_bytes) {
329 idata->buf = NULL;
330 return idata;
331 }
332
333 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334 if (!idata->buf) {
335 err = -ENOMEM;
336 goto idata_err;
337 }
338
339 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340 idata->ic.data_ptr, idata->buf_bytes)) {
341 err = -EFAULT;
342 goto copy_err;
343 }
344
345 return idata;
346
347 copy_err:
348 kfree(idata->buf);
349 idata_err:
350 kfree(idata);
351 out:
352 return ERR_PTR(err);
353 }
354
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356 struct mmc_blk_ioc_data *idata)
357 {
358 struct mmc_ioc_cmd *ic = &idata->ic;
359
360 if (copy_to_user(&(ic_ptr->response), ic->response,
361 sizeof(ic->response)))
362 return -EFAULT;
363
364 if (!idata->ic.write_flag) {
365 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366 idata->buf, idata->buf_bytes))
367 return -EFAULT;
368 }
369
370 return 0;
371 }
372
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374 u32 retries_max)
375 {
376 int err;
377 u32 retry_count = 0;
378
379 if (!status || !retries_max)
380 return -EINVAL;
381
382 do {
383 err = __mmc_send_status(card, status, 5);
384 if (err)
385 break;
386
387 if (!R1_STATUS(*status) &&
388 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389 break; /* RPMB programming operation complete */
390
391 /*
392 * Rechedule to give the MMC device a chance to continue
393 * processing the previous command without being polled too
394 * frequently.
395 */
396 usleep_range(1000, 5000);
397 } while (++retry_count < retries_max);
398
399 if (retry_count == retries_max)
400 err = -EPERM;
401
402 return err;
403 }
404
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407 int err;
408
409 if (!mmc_can_sanitize(card)) {
410 pr_warn("%s: %s - SANITIZE is not supported\n",
411 mmc_hostname(card->host), __func__);
412 err = -EOPNOTSUPP;
413 goto out;
414 }
415
416 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417 mmc_hostname(card->host), __func__);
418
419 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420 EXT_CSD_SANITIZE_START, 1,
421 MMC_SANITIZE_REQ_TIMEOUT);
422
423 if (err)
424 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425 mmc_hostname(card->host), __func__, err);
426
427 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428 __func__);
429 out:
430 return err;
431 }
432
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434 struct mmc_blk_ioc_data *idata)
435 {
436 struct mmc_command cmd = {};
437 struct mmc_data data = {};
438 struct mmc_request mrq = {};
439 struct scatterlist sg;
440 int err;
441 bool is_rpmb = false;
442 u32 status = 0;
443
444 if (!card || !md || !idata)
445 return -EINVAL;
446
447 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448 is_rpmb = true;
449
450 cmd.opcode = idata->ic.opcode;
451 cmd.arg = idata->ic.arg;
452 cmd.flags = idata->ic.flags;
453
454 if (idata->buf_bytes) {
455 data.sg = &sg;
456 data.sg_len = 1;
457 data.blksz = idata->ic.blksz;
458 data.blocks = idata->ic.blocks;
459
460 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461
462 if (idata->ic.write_flag)
463 data.flags = MMC_DATA_WRITE;
464 else
465 data.flags = MMC_DATA_READ;
466
467 /* data.flags must already be set before doing this. */
468 mmc_set_data_timeout(&data, card);
469
470 /* Allow overriding the timeout_ns for empirical tuning. */
471 if (idata->ic.data_timeout_ns)
472 data.timeout_ns = idata->ic.data_timeout_ns;
473
474 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475 /*
476 * Pretend this is a data transfer and rely on the
477 * host driver to compute timeout. When all host
478 * drivers support cmd.cmd_timeout for R1B, this
479 * can be changed to:
480 *
481 * mrq.data = NULL;
482 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483 */
484 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485 }
486
487 mrq.data = &data;
488 }
489
490 mrq.cmd = &cmd;
491
492 err = mmc_blk_part_switch(card, md);
493 if (err)
494 return err;
495
496 if (idata->ic.is_acmd) {
497 err = mmc_app_cmd(card->host, card);
498 if (err)
499 return err;
500 }
501
502 if (is_rpmb) {
503 err = mmc_set_blockcount(card, data.blocks,
504 idata->ic.write_flag & (1 << 31));
505 if (err)
506 return err;
507 }
508
509 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510 (cmd.opcode == MMC_SWITCH)) {
511 err = ioctl_do_sanitize(card);
512
513 if (err)
514 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515 __func__, err);
516
517 return err;
518 }
519
520 mmc_wait_for_req(card->host, &mrq);
521
522 if (cmd.error) {
523 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524 __func__, cmd.error);
525 return cmd.error;
526 }
527 if (data.error) {
528 dev_err(mmc_dev(card->host), "%s: data error %d\n",
529 __func__, data.error);
530 return data.error;
531 }
532
533 /*
534 * According to the SD specs, some commands require a delay after
535 * issuing the command.
536 */
537 if (idata->ic.postsleep_min_us)
538 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539
540 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541
542 if (is_rpmb) {
543 /*
544 * Ensure RPMB command has completed by polling CMD13
545 * "Send Status".
546 */
547 err = ioctl_rpmb_card_status_poll(card, &status, 5);
548 if (err)
549 dev_err(mmc_dev(card->host),
550 "%s: Card Status=0x%08X, error %d\n",
551 __func__, status, err);
552 }
553
554 return err;
555 }
556
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558 struct mmc_ioc_cmd __user *ic_ptr)
559 {
560 struct mmc_blk_ioc_data *idata;
561 struct mmc_blk_ioc_data *idatas[1];
562 struct mmc_blk_data *md;
563 struct mmc_queue *mq;
564 struct mmc_card *card;
565 int err = 0, ioc_err = 0;
566 struct request *req;
567
568 /*
569 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570 * whole block device, not on a partition. This prevents overspray
571 * between sibling partitions.
572 */
573 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574 return -EPERM;
575
576 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577 if (IS_ERR(idata))
578 return PTR_ERR(idata);
579
580 md = mmc_blk_get(bdev->bd_disk);
581 if (!md) {
582 err = -EINVAL;
583 goto cmd_err;
584 }
585
586 card = md->queue.card;
587 if (IS_ERR(card)) {
588 err = PTR_ERR(card);
589 goto cmd_done;
590 }
591
592 /*
593 * Dispatch the ioctl() into the block request queue.
594 */
595 mq = &md->queue;
596 req = blk_get_request(mq->queue,
597 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598 __GFP_RECLAIM);
599 idatas[0] = idata;
600 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601 req_to_mmc_queue_req(req)->idata = idatas;
602 req_to_mmc_queue_req(req)->ioc_count = 1;
603 blk_execute_rq(mq->queue, NULL, req, 0);
604 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606 blk_put_request(req);
607
608 cmd_done:
609 mmc_blk_put(md);
610 cmd_err:
611 kfree(idata->buf);
612 kfree(idata);
613 return ioc_err ? ioc_err : err;
614 }
615
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617 struct mmc_ioc_multi_cmd __user *user)
618 {
619 struct mmc_blk_ioc_data **idata = NULL;
620 struct mmc_ioc_cmd __user *cmds = user->cmds;
621 struct mmc_card *card;
622 struct mmc_blk_data *md;
623 struct mmc_queue *mq;
624 int i, err = 0, ioc_err = 0;
625 __u64 num_of_cmds;
626 struct request *req;
627
628 /*
629 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 * whole block device, not on a partition. This prevents overspray
631 * between sibling partitions.
632 */
633 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 return -EPERM;
635
636 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 sizeof(num_of_cmds)))
638 return -EFAULT;
639
640 if (!num_of_cmds)
641 return 0;
642
643 if (num_of_cmds > MMC_IOC_MAX_CMDS)
644 return -EINVAL;
645
646 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
647 if (!idata)
648 return -ENOMEM;
649
650 for (i = 0; i < num_of_cmds; i++) {
651 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
652 if (IS_ERR(idata[i])) {
653 err = PTR_ERR(idata[i]);
654 num_of_cmds = i;
655 goto cmd_err;
656 }
657 }
658
659 md = mmc_blk_get(bdev->bd_disk);
660 if (!md) {
661 err = -EINVAL;
662 goto cmd_err;
663 }
664
665 card = md->queue.card;
666 if (IS_ERR(card)) {
667 err = PTR_ERR(card);
668 goto cmd_done;
669 }
670
671
672 /*
673 * Dispatch the ioctl()s into the block request queue.
674 */
675 mq = &md->queue;
676 req = blk_get_request(mq->queue,
677 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
678 __GFP_RECLAIM);
679 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
680 req_to_mmc_queue_req(req)->idata = idata;
681 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
682 blk_execute_rq(mq->queue, NULL, req, 0);
683 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684
685 /* copy to user if data and response */
686 for (i = 0; i < num_of_cmds && !err; i++)
687 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688
689 blk_put_request(req);
690
691 cmd_done:
692 mmc_blk_put(md);
693 cmd_err:
694 for (i = 0; i < num_of_cmds; i++) {
695 kfree(idata[i]->buf);
696 kfree(idata[i]);
697 }
698 kfree(idata);
699 return ioc_err ? ioc_err : err;
700 }
701
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703 unsigned int cmd, unsigned long arg)
704 {
705 switch (cmd) {
706 case MMC_IOC_CMD:
707 return mmc_blk_ioctl_cmd(bdev,
708 (struct mmc_ioc_cmd __user *)arg);
709 case MMC_IOC_MULTI_CMD:
710 return mmc_blk_ioctl_multi_cmd(bdev,
711 (struct mmc_ioc_multi_cmd __user *)arg);
712 default:
713 return -EINVAL;
714 }
715 }
716
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719 unsigned int cmd, unsigned long arg)
720 {
721 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
722 }
723 #endif
724
725 static const struct block_device_operations mmc_bdops = {
726 .open = mmc_blk_open,
727 .release = mmc_blk_release,
728 .getgeo = mmc_blk_getgeo,
729 .owner = THIS_MODULE,
730 .ioctl = mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732 .compat_ioctl = mmc_blk_compat_ioctl,
733 #endif
734 };
735
736 static int mmc_blk_part_switch_pre(struct mmc_card *card,
737 unsigned int part_type)
738 {
739 int ret = 0;
740
741 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
742 if (card->ext_csd.cmdq_en) {
743 ret = mmc_cmdq_disable(card);
744 if (ret)
745 return ret;
746 }
747 mmc_retune_pause(card->host);
748 }
749
750 return ret;
751 }
752
753 static int mmc_blk_part_switch_post(struct mmc_card *card,
754 unsigned int part_type)
755 {
756 int ret = 0;
757
758 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
759 mmc_retune_unpause(card->host);
760 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
761 ret = mmc_cmdq_enable(card);
762 }
763
764 return ret;
765 }
766
767 static inline int mmc_blk_part_switch(struct mmc_card *card,
768 struct mmc_blk_data *md)
769 {
770 int ret = 0;
771 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
772
773 if (main_md->part_curr == md->part_type)
774 return 0;
775
776 if (mmc_card_mmc(card)) {
777 u8 part_config = card->ext_csd.part_config;
778
779 ret = mmc_blk_part_switch_pre(card, md->part_type);
780 if (ret)
781 return ret;
782
783 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
784 part_config |= md->part_type;
785
786 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
787 EXT_CSD_PART_CONFIG, part_config,
788 card->ext_csd.part_time);
789 if (ret) {
790 mmc_blk_part_switch_post(card, md->part_type);
791 return ret;
792 }
793
794 card->ext_csd.part_config = part_config;
795
796 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
797 }
798
799 main_md->part_curr = md->part_type;
800 return ret;
801 }
802
803 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
804 {
805 int err;
806 u32 result;
807 __be32 *blocks;
808
809 struct mmc_request mrq = {};
810 struct mmc_command cmd = {};
811 struct mmc_data data = {};
812
813 struct scatterlist sg;
814
815 cmd.opcode = MMC_APP_CMD;
816 cmd.arg = card->rca << 16;
817 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
818
819 err = mmc_wait_for_cmd(card->host, &cmd, 0);
820 if (err)
821 return err;
822 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
823 return -EIO;
824
825 memset(&cmd, 0, sizeof(struct mmc_command));
826
827 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
828 cmd.arg = 0;
829 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
830
831 data.blksz = 4;
832 data.blocks = 1;
833 data.flags = MMC_DATA_READ;
834 data.sg = &sg;
835 data.sg_len = 1;
836 mmc_set_data_timeout(&data, card);
837
838 mrq.cmd = &cmd;
839 mrq.data = &data;
840
841 blocks = kmalloc(4, GFP_KERNEL);
842 if (!blocks)
843 return -ENOMEM;
844
845 sg_init_one(&sg, blocks, 4);
846
847 mmc_wait_for_req(card->host, &mrq);
848
849 result = ntohl(*blocks);
850 kfree(blocks);
851
852 if (cmd.error || data.error)
853 return -EIO;
854
855 *written_blocks = result;
856
857 return 0;
858 }
859
860 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
861 bool hw_busy_detect, struct request *req, bool *gen_err)
862 {
863 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
864 int err = 0;
865 u32 status;
866
867 do {
868 err = __mmc_send_status(card, &status, 5);
869 if (err) {
870 pr_err("%s: error %d requesting status\n",
871 req->rq_disk->disk_name, err);
872 return err;
873 }
874
875 if (status & R1_ERROR) {
876 pr_err("%s: %s: error sending status cmd, status %#x\n",
877 req->rq_disk->disk_name, __func__, status);
878 *gen_err = true;
879 }
880
881 /* We may rely on the host hw to handle busy detection.*/
882 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
883 hw_busy_detect)
884 break;
885
886 /*
887 * Timeout if the device never becomes ready for data and never
888 * leaves the program state.
889 */
890 if (time_after(jiffies, timeout)) {
891 pr_err("%s: Card stuck in programming state! %s %s\n",
892 mmc_hostname(card->host),
893 req->rq_disk->disk_name, __func__);
894 return -ETIMEDOUT;
895 }
896
897 /*
898 * Some cards mishandle the status bits,
899 * so make sure to check both the busy
900 * indication and the card state.
901 */
902 } while (!(status & R1_READY_FOR_DATA) ||
903 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
904
905 return err;
906 }
907
908 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
909 struct request *req, bool *gen_err, u32 *stop_status)
910 {
911 struct mmc_host *host = card->host;
912 struct mmc_command cmd = {};
913 int err;
914 bool use_r1b_resp = rq_data_dir(req) == WRITE;
915
916 /*
917 * Normally we use R1B responses for WRITE, but in cases where the host
918 * has specified a max_busy_timeout we need to validate it. A failure
919 * means we need to prevent the host from doing hw busy detection, which
920 * is done by converting to a R1 response instead.
921 */
922 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
923 use_r1b_resp = false;
924
925 cmd.opcode = MMC_STOP_TRANSMISSION;
926 if (use_r1b_resp) {
927 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
928 cmd.busy_timeout = timeout_ms;
929 } else {
930 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
931 }
932
933 err = mmc_wait_for_cmd(host, &cmd, 5);
934 if (err)
935 return err;
936
937 *stop_status = cmd.resp[0];
938
939 /* No need to check card status in case of READ. */
940 if (rq_data_dir(req) == READ)
941 return 0;
942
943 if (!mmc_host_is_spi(host) &&
944 (*stop_status & R1_ERROR)) {
945 pr_err("%s: %s: general error sending stop command, resp %#x\n",
946 req->rq_disk->disk_name, __func__, *stop_status);
947 *gen_err = true;
948 }
949
950 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
951 }
952
953 #define ERR_NOMEDIUM 3
954 #define ERR_RETRY 2
955 #define ERR_ABORT 1
956 #define ERR_CONTINUE 0
957
958 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
959 bool status_valid, u32 status)
960 {
961 switch (error) {
962 case -EILSEQ:
963 /* response crc error, retry the r/w cmd */
964 pr_err("%s: %s sending %s command, card status %#x\n",
965 req->rq_disk->disk_name, "response CRC error",
966 name, status);
967 return ERR_RETRY;
968
969 case -ETIMEDOUT:
970 pr_err("%s: %s sending %s command, card status %#x\n",
971 req->rq_disk->disk_name, "timed out", name, status);
972
973 /* If the status cmd initially failed, retry the r/w cmd */
974 if (!status_valid) {
975 pr_err("%s: status not valid, retrying timeout\n",
976 req->rq_disk->disk_name);
977 return ERR_RETRY;
978 }
979
980 /*
981 * If it was a r/w cmd crc error, or illegal command
982 * (eg, issued in wrong state) then retry - we should
983 * have corrected the state problem above.
984 */
985 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
986 pr_err("%s: command error, retrying timeout\n",
987 req->rq_disk->disk_name);
988 return ERR_RETRY;
989 }
990
991 /* Otherwise abort the command */
992 return ERR_ABORT;
993
994 default:
995 /* We don't understand the error code the driver gave us */
996 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
997 req->rq_disk->disk_name, error, status);
998 return ERR_ABORT;
999 }
1000 }
1001
1002 /*
1003 * Initial r/w and stop cmd error recovery.
1004 * We don't know whether the card received the r/w cmd or not, so try to
1005 * restore things back to a sane state. Essentially, we do this as follows:
1006 * - Obtain card status. If the first attempt to obtain card status fails,
1007 * the status word will reflect the failed status cmd, not the failed
1008 * r/w cmd. If we fail to obtain card status, it suggests we can no
1009 * longer communicate with the card.
1010 * - Check the card state. If the card received the cmd but there was a
1011 * transient problem with the response, it might still be in a data transfer
1012 * mode. Try to send it a stop command. If this fails, we can't recover.
1013 * - If the r/w cmd failed due to a response CRC error, it was probably
1014 * transient, so retry the cmd.
1015 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1016 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1017 * illegal cmd, retry.
1018 * Otherwise we don't understand what happened, so abort.
1019 */
1020 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1021 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1022 {
1023 bool prev_cmd_status_valid = true;
1024 u32 status, stop_status = 0;
1025 int err, retry;
1026
1027 if (mmc_card_removed(card))
1028 return ERR_NOMEDIUM;
1029
1030 /*
1031 * Try to get card status which indicates both the card state
1032 * and why there was no response. If the first attempt fails,
1033 * we can't be sure the returned status is for the r/w command.
1034 */
1035 for (retry = 2; retry >= 0; retry--) {
1036 err = __mmc_send_status(card, &status, 0);
1037 if (!err)
1038 break;
1039
1040 /* Re-tune if needed */
1041 mmc_retune_recheck(card->host);
1042
1043 prev_cmd_status_valid = false;
1044 pr_err("%s: error %d sending status command, %sing\n",
1045 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1046 }
1047
1048 /* We couldn't get a response from the card. Give up. */
1049 if (err) {
1050 /* Check if the card is removed */
1051 if (mmc_detect_card_removed(card->host))
1052 return ERR_NOMEDIUM;
1053 return ERR_ABORT;
1054 }
1055
1056 /* Flag ECC errors */
1057 if ((status & R1_CARD_ECC_FAILED) ||
1058 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1059 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1060 *ecc_err = true;
1061
1062 /* Flag General errors */
1063 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1064 if ((status & R1_ERROR) ||
1065 (brq->stop.resp[0] & R1_ERROR)) {
1066 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1067 req->rq_disk->disk_name, __func__,
1068 brq->stop.resp[0], status);
1069 *gen_err = true;
1070 }
1071
1072 /*
1073 * Check the current card state. If it is in some data transfer
1074 * mode, tell it to stop (and hopefully transition back to TRAN.)
1075 */
1076 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1077 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1078 err = send_stop(card,
1079 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1080 req, gen_err, &stop_status);
1081 if (err) {
1082 pr_err("%s: error %d sending stop command\n",
1083 req->rq_disk->disk_name, err);
1084 /*
1085 * If the stop cmd also timed out, the card is probably
1086 * not present, so abort. Other errors are bad news too.
1087 */
1088 return ERR_ABORT;
1089 }
1090
1091 if (stop_status & R1_CARD_ECC_FAILED)
1092 *ecc_err = true;
1093 }
1094
1095 /* Check for set block count errors */
1096 if (brq->sbc.error)
1097 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1098 prev_cmd_status_valid, status);
1099
1100 /* Check for r/w command errors */
1101 if (brq->cmd.error)
1102 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1103 prev_cmd_status_valid, status);
1104
1105 /* Data errors */
1106 if (!brq->stop.error)
1107 return ERR_CONTINUE;
1108
1109 /* Now for stop errors. These aren't fatal to the transfer. */
1110 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1111 req->rq_disk->disk_name, brq->stop.error,
1112 brq->cmd.resp[0], status);
1113
1114 /*
1115 * Subsitute in our own stop status as this will give the error
1116 * state which happened during the execution of the r/w command.
1117 */
1118 if (stop_status) {
1119 brq->stop.resp[0] = stop_status;
1120 brq->stop.error = 0;
1121 }
1122 return ERR_CONTINUE;
1123 }
1124
1125 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1126 int type)
1127 {
1128 int err;
1129
1130 if (md->reset_done & type)
1131 return -EEXIST;
1132
1133 md->reset_done |= type;
1134 err = mmc_hw_reset(host);
1135 /* Ensure we switch back to the correct partition */
1136 if (err != -EOPNOTSUPP) {
1137 struct mmc_blk_data *main_md =
1138 dev_get_drvdata(&host->card->dev);
1139 int part_err;
1140
1141 main_md->part_curr = main_md->part_type;
1142 part_err = mmc_blk_part_switch(host->card, md);
1143 if (part_err) {
1144 /*
1145 * We have failed to get back into the correct
1146 * partition, so we need to abort the whole request.
1147 */
1148 return -ENODEV;
1149 }
1150 }
1151 return err;
1152 }
1153
1154 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1155 {
1156 md->reset_done &= ~type;
1157 }
1158
1159 int mmc_access_rpmb(struct mmc_queue *mq)
1160 {
1161 struct mmc_blk_data *md = mq->blkdata;
1162 /*
1163 * If this is a RPMB partition access, return ture
1164 */
1165 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1166 return true;
1167
1168 return false;
1169 }
1170
1171 /*
1172 * The non-block commands come back from the block layer after it queued it and
1173 * processed it with all other requests and then they get issued in this
1174 * function.
1175 */
1176 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1177 {
1178 struct mmc_queue_req *mq_rq;
1179 struct mmc_card *card = mq->card;
1180 struct mmc_blk_data *md = mq->blkdata;
1181 int ret;
1182 int i;
1183
1184 mq_rq = req_to_mmc_queue_req(req);
1185
1186 switch (mq_rq->drv_op) {
1187 case MMC_DRV_OP_IOCTL:
1188 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1189 ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1190 if (ret)
1191 break;
1192 }
1193 /* Always switch back to main area after RPMB access */
1194 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1195 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1196 break;
1197 case MMC_DRV_OP_BOOT_WP:
1198 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1199 card->ext_csd.boot_ro_lock |
1200 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1201 card->ext_csd.part_time);
1202 if (ret)
1203 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1204 md->disk->disk_name, ret);
1205 else
1206 card->ext_csd.boot_ro_lock |=
1207 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1208 break;
1209 default:
1210 pr_err("%s: unknown driver specific operation\n",
1211 md->disk->disk_name);
1212 ret = -EINVAL;
1213 break;
1214 }
1215 mq_rq->drv_op_result = ret;
1216 blk_end_request_all(req, ret);
1217 }
1218
1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221 struct mmc_blk_data *md = mq->blkdata;
1222 struct mmc_card *card = md->queue.card;
1223 unsigned int from, nr, arg;
1224 int err = 0, type = MMC_BLK_DISCARD;
1225 blk_status_t status = BLK_STS_OK;
1226
1227 if (!mmc_can_erase(card)) {
1228 status = BLK_STS_NOTSUPP;
1229 goto fail;
1230 }
1231
1232 from = blk_rq_pos(req);
1233 nr = blk_rq_sectors(req);
1234
1235 if (mmc_can_discard(card))
1236 arg = MMC_DISCARD_ARG;
1237 else if (mmc_can_trim(card))
1238 arg = MMC_TRIM_ARG;
1239 else
1240 arg = MMC_ERASE_ARG;
1241 do {
1242 err = 0;
1243 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1244 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1245 INAND_CMD38_ARG_EXT_CSD,
1246 arg == MMC_TRIM_ARG ?
1247 INAND_CMD38_ARG_TRIM :
1248 INAND_CMD38_ARG_ERASE,
1249 0);
1250 }
1251 if (!err)
1252 err = mmc_erase(card, from, nr, arg);
1253 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1254 if (err)
1255 status = BLK_STS_IOERR;
1256 else
1257 mmc_blk_reset_success(md, type);
1258 fail:
1259 blk_end_request(req, status, blk_rq_bytes(req));
1260 }
1261
1262 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1263 struct request *req)
1264 {
1265 struct mmc_blk_data *md = mq->blkdata;
1266 struct mmc_card *card = md->queue.card;
1267 unsigned int from, nr, arg;
1268 int err = 0, type = MMC_BLK_SECDISCARD;
1269 blk_status_t status = BLK_STS_OK;
1270
1271 if (!(mmc_can_secure_erase_trim(card))) {
1272 status = BLK_STS_NOTSUPP;
1273 goto out;
1274 }
1275
1276 from = blk_rq_pos(req);
1277 nr = blk_rq_sectors(req);
1278
1279 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1280 arg = MMC_SECURE_TRIM1_ARG;
1281 else
1282 arg = MMC_SECURE_ERASE_ARG;
1283
1284 retry:
1285 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1286 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1287 INAND_CMD38_ARG_EXT_CSD,
1288 arg == MMC_SECURE_TRIM1_ARG ?
1289 INAND_CMD38_ARG_SECTRIM1 :
1290 INAND_CMD38_ARG_SECERASE,
1291 0);
1292 if (err)
1293 goto out_retry;
1294 }
1295
1296 err = mmc_erase(card, from, nr, arg);
1297 if (err == -EIO)
1298 goto out_retry;
1299 if (err) {
1300 status = BLK_STS_IOERR;
1301 goto out;
1302 }
1303
1304 if (arg == MMC_SECURE_TRIM1_ARG) {
1305 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1306 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1307 INAND_CMD38_ARG_EXT_CSD,
1308 INAND_CMD38_ARG_SECTRIM2,
1309 0);
1310 if (err)
1311 goto out_retry;
1312 }
1313
1314 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1315 if (err == -EIO)
1316 goto out_retry;
1317 if (err) {
1318 status = BLK_STS_IOERR;
1319 goto out;
1320 }
1321 }
1322
1323 out_retry:
1324 if (err && !mmc_blk_reset(md, card->host, type))
1325 goto retry;
1326 if (!err)
1327 mmc_blk_reset_success(md, type);
1328 out:
1329 blk_end_request(req, status, blk_rq_bytes(req));
1330 }
1331
1332 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1333 {
1334 struct mmc_blk_data *md = mq->blkdata;
1335 struct mmc_card *card = md->queue.card;
1336 int ret = 0;
1337
1338 ret = mmc_flush_cache(card);
1339 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1340 }
1341
1342 /*
1343 * Reformat current write as a reliable write, supporting
1344 * both legacy and the enhanced reliable write MMC cards.
1345 * In each transfer we'll handle only as much as a single
1346 * reliable write can handle, thus finish the request in
1347 * partial completions.
1348 */
1349 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1350 struct mmc_card *card,
1351 struct request *req)
1352 {
1353 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1354 /* Legacy mode imposes restrictions on transfers. */
1355 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1356 brq->data.blocks = 1;
1357
1358 if (brq->data.blocks > card->ext_csd.rel_sectors)
1359 brq->data.blocks = card->ext_csd.rel_sectors;
1360 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1361 brq->data.blocks = 1;
1362 }
1363 }
1364
1365 #define CMD_ERRORS \
1366 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1367 R1_ADDRESS_ERROR | /* Misaligned address */ \
1368 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1369 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1370 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1371 R1_CC_ERROR | /* Card controller error */ \
1372 R1_ERROR) /* General/unknown error */
1373
1374 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1375 {
1376 u32 val;
1377
1378 /*
1379 * Per the SD specification(physical layer version 4.10)[1],
1380 * section 4.3.3, it explicitly states that "When the last
1381 * block of user area is read using CMD18, the host should
1382 * ignore OUT_OF_RANGE error that may occur even the sequence
1383 * is correct". And JESD84-B51 for eMMC also has a similar
1384 * statement on section 6.8.3.
1385 *
1386 * Multiple block read/write could be done by either predefined
1387 * method, namely CMD23, or open-ending mode. For open-ending mode,
1388 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1389 *
1390 * However the spec[1] doesn't tell us whether we should also
1391 * ignore that for predefined method. But per the spec[1], section
1392 * 4.15 Set Block Count Command, it says"If illegal block count
1393 * is set, out of range error will be indicated during read/write
1394 * operation (For example, data transfer is stopped at user area
1395 * boundary)." In another word, we could expect a out of range error
1396 * in the response for the following CMD18/25. And if argument of
1397 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1398 * we could also expect to get a -ETIMEDOUT or any error number from
1399 * the host drivers due to missing data response(for write)/data(for
1400 * read), as the cards will stop the data transfer by itself per the
1401 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1402 */
1403
1404 if (!brq->stop.error) {
1405 bool oor_with_open_end;
1406 /* If there is no error yet, check R1 response */
1407
1408 val = brq->stop.resp[0] & CMD_ERRORS;
1409 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1410
1411 if (val && !oor_with_open_end)
1412 brq->stop.error = -EIO;
1413 }
1414 }
1415
1416 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1417 struct mmc_async_req *areq)
1418 {
1419 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1420 areq);
1421 struct mmc_blk_request *brq = &mq_mrq->brq;
1422 struct request *req = mmc_queue_req_to_req(mq_mrq);
1423 int need_retune = card->host->need_retune;
1424 bool ecc_err = false;
1425 bool gen_err = false;
1426
1427 /*
1428 * sbc.error indicates a problem with the set block count
1429 * command. No data will have been transferred.
1430 *
1431 * cmd.error indicates a problem with the r/w command. No
1432 * data will have been transferred.
1433 *
1434 * stop.error indicates a problem with the stop command. Data
1435 * may have been transferred, or may still be transferring.
1436 */
1437
1438 mmc_blk_eval_resp_error(brq);
1439
1440 if (brq->sbc.error || brq->cmd.error ||
1441 brq->stop.error || brq->data.error) {
1442 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1443 case ERR_RETRY:
1444 return MMC_BLK_RETRY;
1445 case ERR_ABORT:
1446 return MMC_BLK_ABORT;
1447 case ERR_NOMEDIUM:
1448 return MMC_BLK_NOMEDIUM;
1449 case ERR_CONTINUE:
1450 break;
1451 }
1452 }
1453
1454 /*
1455 * Check for errors relating to the execution of the
1456 * initial command - such as address errors. No data
1457 * has been transferred.
1458 */
1459 if (brq->cmd.resp[0] & CMD_ERRORS) {
1460 pr_err("%s: r/w command failed, status = %#x\n",
1461 req->rq_disk->disk_name, brq->cmd.resp[0]);
1462 return MMC_BLK_ABORT;
1463 }
1464
1465 /*
1466 * Everything else is either success, or a data error of some
1467 * kind. If it was a write, we may have transitioned to
1468 * program mode, which we have to wait for it to complete.
1469 */
1470 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1471 int err;
1472
1473 /* Check stop command response */
1474 if (brq->stop.resp[0] & R1_ERROR) {
1475 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1476 req->rq_disk->disk_name, __func__,
1477 brq->stop.resp[0]);
1478 gen_err = true;
1479 }
1480
1481 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1482 &gen_err);
1483 if (err)
1484 return MMC_BLK_CMD_ERR;
1485 }
1486
1487 /* if general error occurs, retry the write operation. */
1488 if (gen_err) {
1489 pr_warn("%s: retrying write for general error\n",
1490 req->rq_disk->disk_name);
1491 return MMC_BLK_RETRY;
1492 }
1493
1494 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1495 if (brq->data.error || brq->stop.error) {
1496 if (need_retune && !brq->retune_retry_done) {
1497 pr_debug("%s: retrying because a re-tune was needed\n",
1498 req->rq_disk->disk_name);
1499 brq->retune_retry_done = 1;
1500 return MMC_BLK_RETRY;
1501 }
1502 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1503 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1504 (unsigned)blk_rq_pos(req),
1505 (unsigned)blk_rq_sectors(req),
1506 brq->cmd.resp[0], brq->stop.resp[0]);
1507
1508 if (rq_data_dir(req) == READ) {
1509 if (ecc_err)
1510 return MMC_BLK_ECC_ERR;
1511 return MMC_BLK_DATA_ERR;
1512 } else {
1513 return MMC_BLK_CMD_ERR;
1514 }
1515 }
1516
1517 if (!brq->data.bytes_xfered)
1518 return MMC_BLK_RETRY;
1519
1520 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1521 return MMC_BLK_PARTIAL;
1522
1523 return MMC_BLK_SUCCESS;
1524 }
1525
1526 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1527 int disable_multi, bool *do_rel_wr,
1528 bool *do_data_tag)
1529 {
1530 struct mmc_blk_data *md = mq->blkdata;
1531 struct mmc_card *card = md->queue.card;
1532 struct mmc_blk_request *brq = &mqrq->brq;
1533 struct request *req = mmc_queue_req_to_req(mqrq);
1534
1535 /*
1536 * Reliable writes are used to implement Forced Unit Access and
1537 * are supported only on MMCs.
1538 */
1539 *do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1540 rq_data_dir(req) == WRITE &&
1541 (md->flags & MMC_BLK_REL_WR);
1542
1543 memset(brq, 0, sizeof(struct mmc_blk_request));
1544
1545 brq->mrq.data = &brq->data;
1546
1547 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1548 brq->stop.arg = 0;
1549
1550 if (rq_data_dir(req) == READ) {
1551 brq->data.flags = MMC_DATA_READ;
1552 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1553 } else {
1554 brq->data.flags = MMC_DATA_WRITE;
1555 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1556 }
1557
1558 brq->data.blksz = 512;
1559 brq->data.blocks = blk_rq_sectors(req);
1560
1561 /*
1562 * The block layer doesn't support all sector count
1563 * restrictions, so we need to be prepared for too big
1564 * requests.
1565 */
1566 if (brq->data.blocks > card->host->max_blk_count)
1567 brq->data.blocks = card->host->max_blk_count;
1568
1569 if (brq->data.blocks > 1) {
1570 /*
1571 * After a read error, we redo the request one sector
1572 * at a time in order to accurately determine which
1573 * sectors can be read successfully.
1574 */
1575 if (disable_multi)
1576 brq->data.blocks = 1;
1577
1578 /*
1579 * Some controllers have HW issues while operating
1580 * in multiple I/O mode
1581 */
1582 if (card->host->ops->multi_io_quirk)
1583 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1584 (rq_data_dir(req) == READ) ?
1585 MMC_DATA_READ : MMC_DATA_WRITE,
1586 brq->data.blocks);
1587 }
1588
1589 if (*do_rel_wr)
1590 mmc_apply_rel_rw(brq, card, req);
1591
1592 /*
1593 * Data tag is used only during writing meta data to speed
1594 * up write and any subsequent read of this meta data
1595 */
1596 *do_data_tag = card->ext_csd.data_tag_unit_size &&
1597 (req->cmd_flags & REQ_META) &&
1598 (rq_data_dir(req) == WRITE) &&
1599 ((brq->data.blocks * brq->data.blksz) >=
1600 card->ext_csd.data_tag_unit_size);
1601
1602 mmc_set_data_timeout(&brq->data, card);
1603
1604 brq->data.sg = mqrq->sg;
1605 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1606
1607 /*
1608 * Adjust the sg list so it is the same size as the
1609 * request.
1610 */
1611 if (brq->data.blocks != blk_rq_sectors(req)) {
1612 int i, data_size = brq->data.blocks << 9;
1613 struct scatterlist *sg;
1614
1615 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1616 data_size -= sg->length;
1617 if (data_size <= 0) {
1618 sg->length += data_size;
1619 i++;
1620 break;
1621 }
1622 }
1623 brq->data.sg_len = i;
1624 }
1625
1626 mqrq->areq.mrq = &brq->mrq;
1627
1628 mmc_queue_bounce_pre(mqrq);
1629 }
1630
1631 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1632 struct mmc_card *card,
1633 int disable_multi,
1634 struct mmc_queue *mq)
1635 {
1636 u32 readcmd, writecmd;
1637 struct mmc_blk_request *brq = &mqrq->brq;
1638 struct request *req = mmc_queue_req_to_req(mqrq);
1639 struct mmc_blk_data *md = mq->blkdata;
1640 bool do_rel_wr, do_data_tag;
1641
1642 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1643
1644 brq->mrq.cmd = &brq->cmd;
1645
1646 brq->cmd.arg = blk_rq_pos(req);
1647 if (!mmc_card_blockaddr(card))
1648 brq->cmd.arg <<= 9;
1649 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1650
1651 if (brq->data.blocks > 1 || do_rel_wr) {
1652 /* SPI multiblock writes terminate using a special
1653 * token, not a STOP_TRANSMISSION request.
1654 */
1655 if (!mmc_host_is_spi(card->host) ||
1656 rq_data_dir(req) == READ)
1657 brq->mrq.stop = &brq->stop;
1658 readcmd = MMC_READ_MULTIPLE_BLOCK;
1659 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1660 } else {
1661 brq->mrq.stop = NULL;
1662 readcmd = MMC_READ_SINGLE_BLOCK;
1663 writecmd = MMC_WRITE_BLOCK;
1664 }
1665 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1666
1667 /*
1668 * Pre-defined multi-block transfers are preferable to
1669 * open ended-ones (and necessary for reliable writes).
1670 * However, it is not sufficient to just send CMD23,
1671 * and avoid the final CMD12, as on an error condition
1672 * CMD12 (stop) needs to be sent anyway. This, coupled
1673 * with Auto-CMD23 enhancements provided by some
1674 * hosts, means that the complexity of dealing
1675 * with this is best left to the host. If CMD23 is
1676 * supported by card and host, we'll fill sbc in and let
1677 * the host deal with handling it correctly. This means
1678 * that for hosts that don't expose MMC_CAP_CMD23, no
1679 * change of behavior will be observed.
1680 *
1681 * N.B: Some MMC cards experience perf degradation.
1682 * We'll avoid using CMD23-bounded multiblock writes for
1683 * these, while retaining features like reliable writes.
1684 */
1685 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1686 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1687 do_data_tag)) {
1688 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1689 brq->sbc.arg = brq->data.blocks |
1690 (do_rel_wr ? (1 << 31) : 0) |
1691 (do_data_tag ? (1 << 29) : 0);
1692 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1693 brq->mrq.sbc = &brq->sbc;
1694 }
1695
1696 mqrq->areq.err_check = mmc_blk_err_check;
1697 }
1698
1699 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1700 struct mmc_blk_request *brq, struct request *req,
1701 bool old_req_pending)
1702 {
1703 bool req_pending;
1704
1705 /*
1706 * If this is an SD card and we're writing, we can first
1707 * mark the known good sectors as ok.
1708 *
1709 * If the card is not SD, we can still ok written sectors
1710 * as reported by the controller (which might be less than
1711 * the real number of written sectors, but never more).
1712 */
1713 if (mmc_card_sd(card)) {
1714 u32 blocks;
1715 int err;
1716
1717 err = mmc_sd_num_wr_blocks(card, &blocks);
1718 if (err)
1719 req_pending = old_req_pending;
1720 else
1721 req_pending = blk_end_request(req, 0, blocks << 9);
1722 } else {
1723 req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1724 }
1725 return req_pending;
1726 }
1727
1728 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1729 struct request *req,
1730 struct mmc_queue_req *mqrq)
1731 {
1732 if (mmc_card_removed(card))
1733 req->rq_flags |= RQF_QUIET;
1734 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1735 mq->qcnt--;
1736 }
1737
1738 /**
1739 * mmc_blk_rw_try_restart() - tries to restart the current async request
1740 * @mq: the queue with the card and host to restart
1741 * @req: a new request that want to be started after the current one
1742 */
1743 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1744 struct mmc_queue_req *mqrq)
1745 {
1746 if (!req)
1747 return;
1748
1749 /*
1750 * If the card was removed, just cancel everything and return.
1751 */
1752 if (mmc_card_removed(mq->card)) {
1753 req->rq_flags |= RQF_QUIET;
1754 blk_end_request_all(req, BLK_STS_IOERR);
1755 mq->qcnt--; /* FIXME: just set to 0? */
1756 return;
1757 }
1758 /* Else proceed and try to restart the current async request */
1759 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1760 mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1761 }
1762
1763 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1764 {
1765 struct mmc_blk_data *md = mq->blkdata;
1766 struct mmc_card *card = md->queue.card;
1767 struct mmc_blk_request *brq;
1768 int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1769 enum mmc_blk_status status;
1770 struct mmc_queue_req *mqrq_cur = NULL;
1771 struct mmc_queue_req *mq_rq;
1772 struct request *old_req;
1773 struct mmc_async_req *new_areq;
1774 struct mmc_async_req *old_areq;
1775 bool req_pending = true;
1776
1777 if (new_req) {
1778 mqrq_cur = req_to_mmc_queue_req(new_req);
1779 mq->qcnt++;
1780 }
1781
1782 if (!mq->qcnt)
1783 return;
1784
1785 do {
1786 if (new_req) {
1787 /*
1788 * When 4KB native sector is enabled, only 8 blocks
1789 * multiple read or write is allowed
1790 */
1791 if (mmc_large_sector(card) &&
1792 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1793 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1794 new_req->rq_disk->disk_name);
1795 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1796 return;
1797 }
1798
1799 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1800 new_areq = &mqrq_cur->areq;
1801 } else
1802 new_areq = NULL;
1803
1804 old_areq = mmc_start_areq(card->host, new_areq, &status);
1805 if (!old_areq) {
1806 /*
1807 * We have just put the first request into the pipeline
1808 * and there is nothing more to do until it is
1809 * complete.
1810 */
1811 return;
1812 }
1813
1814 /*
1815 * An asynchronous request has been completed and we proceed
1816 * to handle the result of it.
1817 */
1818 mq_rq = container_of(old_areq, struct mmc_queue_req, areq);
1819 brq = &mq_rq->brq;
1820 old_req = mmc_queue_req_to_req(mq_rq);
1821 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1822 mmc_queue_bounce_post(mq_rq);
1823
1824 switch (status) {
1825 case MMC_BLK_SUCCESS:
1826 case MMC_BLK_PARTIAL:
1827 /*
1828 * A block was successfully transferred.
1829 */
1830 mmc_blk_reset_success(md, type);
1831
1832 req_pending = blk_end_request(old_req, BLK_STS_OK,
1833 brq->data.bytes_xfered);
1834 /*
1835 * If the blk_end_request function returns non-zero even
1836 * though all data has been transferred and no errors
1837 * were returned by the host controller, it's a bug.
1838 */
1839 if (status == MMC_BLK_SUCCESS && req_pending) {
1840 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1841 __func__, blk_rq_bytes(old_req),
1842 brq->data.bytes_xfered);
1843 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1844 return;
1845 }
1846 break;
1847 case MMC_BLK_CMD_ERR:
1848 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1849 if (mmc_blk_reset(md, card->host, type)) {
1850 if (req_pending)
1851 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1852 else
1853 mq->qcnt--;
1854 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1855 return;
1856 }
1857 if (!req_pending) {
1858 mq->qcnt--;
1859 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1860 return;
1861 }
1862 break;
1863 case MMC_BLK_RETRY:
1864 retune_retry_done = brq->retune_retry_done;
1865 if (retry++ < 5)
1866 break;
1867 /* Fall through */
1868 case MMC_BLK_ABORT:
1869 if (!mmc_blk_reset(md, card->host, type))
1870 break;
1871 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1872 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1873 return;
1874 case MMC_BLK_DATA_ERR: {
1875 int err;
1876
1877 err = mmc_blk_reset(md, card->host, type);
1878 if (!err)
1879 break;
1880 if (err == -ENODEV) {
1881 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1882 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1883 return;
1884 }
1885 /* Fall through */
1886 }
1887 case MMC_BLK_ECC_ERR:
1888 if (brq->data.blocks > 1) {
1889 /* Redo read one sector at a time */
1890 pr_warn("%s: retrying using single block read\n",
1891 old_req->rq_disk->disk_name);
1892 disable_multi = 1;
1893 break;
1894 }
1895 /*
1896 * After an error, we redo I/O one sector at a
1897 * time, so we only reach here after trying to
1898 * read a single sector.
1899 */
1900 req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1901 brq->data.blksz);
1902 if (!req_pending) {
1903 mq->qcnt--;
1904 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1905 return;
1906 }
1907 break;
1908 case MMC_BLK_NOMEDIUM:
1909 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1910 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1911 return;
1912 default:
1913 pr_err("%s: Unhandled return value (%d)",
1914 old_req->rq_disk->disk_name, status);
1915 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1916 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1917 return;
1918 }
1919
1920 if (req_pending) {
1921 /*
1922 * In case of a incomplete request
1923 * prepare it again and resend.
1924 */
1925 mmc_blk_rw_rq_prep(mq_rq, card,
1926 disable_multi, mq);
1927 mmc_start_areq(card->host,
1928 &mq_rq->areq, NULL);
1929 mq_rq->brq.retune_retry_done = retune_retry_done;
1930 }
1931 } while (req_pending);
1932
1933 mq->qcnt--;
1934 }
1935
1936 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1937 {
1938 int ret;
1939 struct mmc_blk_data *md = mq->blkdata;
1940 struct mmc_card *card = md->queue.card;
1941
1942 if (req && !mq->qcnt)
1943 /* claim host only for the first request */
1944 mmc_get_card(card);
1945
1946 ret = mmc_blk_part_switch(card, md);
1947 if (ret) {
1948 if (req) {
1949 blk_end_request_all(req, BLK_STS_IOERR);
1950 }
1951 goto out;
1952 }
1953
1954 if (req) {
1955 switch (req_op(req)) {
1956 case REQ_OP_DRV_IN:
1957 case REQ_OP_DRV_OUT:
1958 /*
1959 * Complete ongoing async transfer before issuing
1960 * ioctl()s
1961 */
1962 if (mq->qcnt)
1963 mmc_blk_issue_rw_rq(mq, NULL);
1964 mmc_blk_issue_drv_op(mq, req);
1965 break;
1966 case REQ_OP_DISCARD:
1967 /*
1968 * Complete ongoing async transfer before issuing
1969 * discard.
1970 */
1971 if (mq->qcnt)
1972 mmc_blk_issue_rw_rq(mq, NULL);
1973 mmc_blk_issue_discard_rq(mq, req);
1974 break;
1975 case REQ_OP_SECURE_ERASE:
1976 /*
1977 * Complete ongoing async transfer before issuing
1978 * secure erase.
1979 */
1980 if (mq->qcnt)
1981 mmc_blk_issue_rw_rq(mq, NULL);
1982 mmc_blk_issue_secdiscard_rq(mq, req);
1983 break;
1984 case REQ_OP_FLUSH:
1985 /*
1986 * Complete ongoing async transfer before issuing
1987 * flush.
1988 */
1989 if (mq->qcnt)
1990 mmc_blk_issue_rw_rq(mq, NULL);
1991 mmc_blk_issue_flush(mq, req);
1992 break;
1993 default:
1994 /* Normal request, just issue it */
1995 mmc_blk_issue_rw_rq(mq, req);
1996 card->host->context_info.is_waiting_last_req = false;
1997 break;
1998 }
1999 } else {
2000 /* No request, flushing the pipeline with NULL */
2001 mmc_blk_issue_rw_rq(mq, NULL);
2002 card->host->context_info.is_waiting_last_req = false;
2003 }
2004
2005 out:
2006 if (!mq->qcnt)
2007 mmc_put_card(card);
2008 }
2009
2010 static inline int mmc_blk_readonly(struct mmc_card *card)
2011 {
2012 return mmc_card_readonly(card) ||
2013 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2014 }
2015
2016 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2017 struct device *parent,
2018 sector_t size,
2019 bool default_ro,
2020 const char *subname,
2021 int area_type)
2022 {
2023 struct mmc_blk_data *md;
2024 int devidx, ret;
2025
2026 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2027 if (devidx < 0)
2028 return ERR_PTR(devidx);
2029
2030 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2031 if (!md) {
2032 ret = -ENOMEM;
2033 goto out;
2034 }
2035
2036 md->area_type = area_type;
2037
2038 /*
2039 * Set the read-only status based on the supported commands
2040 * and the write protect switch.
2041 */
2042 md->read_only = mmc_blk_readonly(card);
2043
2044 md->disk = alloc_disk(perdev_minors);
2045 if (md->disk == NULL) {
2046 ret = -ENOMEM;
2047 goto err_kfree;
2048 }
2049
2050 spin_lock_init(&md->lock);
2051 INIT_LIST_HEAD(&md->part);
2052 md->usage = 1;
2053
2054 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2055 if (ret)
2056 goto err_putdisk;
2057
2058 md->queue.blkdata = md;
2059
2060 md->disk->major = MMC_BLOCK_MAJOR;
2061 md->disk->first_minor = devidx * perdev_minors;
2062 md->disk->fops = &mmc_bdops;
2063 md->disk->private_data = md;
2064 md->disk->queue = md->queue.queue;
2065 md->parent = parent;
2066 set_disk_ro(md->disk, md->read_only || default_ro);
2067 md->disk->flags = GENHD_FL_EXT_DEVT;
2068 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2069 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2070
2071 /*
2072 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2073 *
2074 * - be set for removable media with permanent block devices
2075 * - be unset for removable block devices with permanent media
2076 *
2077 * Since MMC block devices clearly fall under the second
2078 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2079 * should use the block device creation/destruction hotplug
2080 * messages to tell when the card is present.
2081 */
2082
2083 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2084 "mmcblk%u%s", card->host->index, subname ? subname : "");
2085
2086 if (mmc_card_mmc(card))
2087 blk_queue_logical_block_size(md->queue.queue,
2088 card->ext_csd.data_sector_size);
2089 else
2090 blk_queue_logical_block_size(md->queue.queue, 512);
2091
2092 set_capacity(md->disk, size);
2093
2094 if (mmc_host_cmd23(card->host)) {
2095 if ((mmc_card_mmc(card) &&
2096 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2097 (mmc_card_sd(card) &&
2098 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2099 md->flags |= MMC_BLK_CMD23;
2100 }
2101
2102 if (mmc_card_mmc(card) &&
2103 md->flags & MMC_BLK_CMD23 &&
2104 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2105 card->ext_csd.rel_sectors)) {
2106 md->flags |= MMC_BLK_REL_WR;
2107 blk_queue_write_cache(md->queue.queue, true, true);
2108 }
2109
2110 return md;
2111
2112 err_putdisk:
2113 put_disk(md->disk);
2114 err_kfree:
2115 kfree(md);
2116 out:
2117 ida_simple_remove(&mmc_blk_ida, devidx);
2118 return ERR_PTR(ret);
2119 }
2120
2121 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2122 {
2123 sector_t size;
2124
2125 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2126 /*
2127 * The EXT_CSD sector count is in number or 512 byte
2128 * sectors.
2129 */
2130 size = card->ext_csd.sectors;
2131 } else {
2132 /*
2133 * The CSD capacity field is in units of read_blkbits.
2134 * set_capacity takes units of 512 bytes.
2135 */
2136 size = (typeof(sector_t))card->csd.capacity
2137 << (card->csd.read_blkbits - 9);
2138 }
2139
2140 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2141 MMC_BLK_DATA_AREA_MAIN);
2142 }
2143
2144 static int mmc_blk_alloc_part(struct mmc_card *card,
2145 struct mmc_blk_data *md,
2146 unsigned int part_type,
2147 sector_t size,
2148 bool default_ro,
2149 const char *subname,
2150 int area_type)
2151 {
2152 char cap_str[10];
2153 struct mmc_blk_data *part_md;
2154
2155 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2156 subname, area_type);
2157 if (IS_ERR(part_md))
2158 return PTR_ERR(part_md);
2159 part_md->part_type = part_type;
2160 list_add(&part_md->part, &md->part);
2161
2162 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2163 cap_str, sizeof(cap_str));
2164 pr_info("%s: %s %s partition %u %s\n",
2165 part_md->disk->disk_name, mmc_card_id(card),
2166 mmc_card_name(card), part_md->part_type, cap_str);
2167 return 0;
2168 }
2169
2170 /* MMC Physical partitions consist of two boot partitions and
2171 * up to four general purpose partitions.
2172 * For each partition enabled in EXT_CSD a block device will be allocatedi
2173 * to provide access to the partition.
2174 */
2175
2176 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2177 {
2178 int idx, ret = 0;
2179
2180 if (!mmc_card_mmc(card))
2181 return 0;
2182
2183 for (idx = 0; idx < card->nr_parts; idx++) {
2184 if (card->part[idx].size) {
2185 ret = mmc_blk_alloc_part(card, md,
2186 card->part[idx].part_cfg,
2187 card->part[idx].size >> 9,
2188 card->part[idx].force_ro,
2189 card->part[idx].name,
2190 card->part[idx].area_type);
2191 if (ret)
2192 return ret;
2193 }
2194 }
2195
2196 return ret;
2197 }
2198
2199 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2200 {
2201 struct mmc_card *card;
2202
2203 if (md) {
2204 /*
2205 * Flush remaining requests and free queues. It
2206 * is freeing the queue that stops new requests
2207 * from being accepted.
2208 */
2209 card = md->queue.card;
2210 spin_lock_irq(md->queue.queue->queue_lock);
2211 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2212 spin_unlock_irq(md->queue.queue->queue_lock);
2213 blk_set_queue_dying(md->queue.queue);
2214 mmc_cleanup_queue(&md->queue);
2215 if (md->disk->flags & GENHD_FL_UP) {
2216 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2217 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2218 card->ext_csd.boot_ro_lockable)
2219 device_remove_file(disk_to_dev(md->disk),
2220 &md->power_ro_lock);
2221
2222 del_gendisk(md->disk);
2223 }
2224 mmc_blk_put(md);
2225 }
2226 }
2227
2228 static void mmc_blk_remove_parts(struct mmc_card *card,
2229 struct mmc_blk_data *md)
2230 {
2231 struct list_head *pos, *q;
2232 struct mmc_blk_data *part_md;
2233
2234 list_for_each_safe(pos, q, &md->part) {
2235 part_md = list_entry(pos, struct mmc_blk_data, part);
2236 list_del(pos);
2237 mmc_blk_remove_req(part_md);
2238 }
2239 }
2240
2241 static int mmc_add_disk(struct mmc_blk_data *md)
2242 {
2243 int ret;
2244 struct mmc_card *card = md->queue.card;
2245
2246 device_add_disk(md->parent, md->disk);
2247 md->force_ro.show = force_ro_show;
2248 md->force_ro.store = force_ro_store;
2249 sysfs_attr_init(&md->force_ro.attr);
2250 md->force_ro.attr.name = "force_ro";
2251 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2252 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2253 if (ret)
2254 goto force_ro_fail;
2255
2256 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2257 card->ext_csd.boot_ro_lockable) {
2258 umode_t mode;
2259
2260 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2261 mode = S_IRUGO;
2262 else
2263 mode = S_IRUGO | S_IWUSR;
2264
2265 md->power_ro_lock.show = power_ro_lock_show;
2266 md->power_ro_lock.store = power_ro_lock_store;
2267 sysfs_attr_init(&md->power_ro_lock.attr);
2268 md->power_ro_lock.attr.mode = mode;
2269 md->power_ro_lock.attr.name =
2270 "ro_lock_until_next_power_on";
2271 ret = device_create_file(disk_to_dev(md->disk),
2272 &md->power_ro_lock);
2273 if (ret)
2274 goto power_ro_lock_fail;
2275 }
2276 return ret;
2277
2278 power_ro_lock_fail:
2279 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2280 force_ro_fail:
2281 del_gendisk(md->disk);
2282
2283 return ret;
2284 }
2285
2286 static int mmc_blk_probe(struct mmc_card *card)
2287 {
2288 struct mmc_blk_data *md, *part_md;
2289 char cap_str[10];
2290
2291 /*
2292 * Check that the card supports the command class(es) we need.
2293 */
2294 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2295 return -ENODEV;
2296
2297 mmc_fixup_device(card, mmc_blk_fixups);
2298
2299 md = mmc_blk_alloc(card);
2300 if (IS_ERR(md))
2301 return PTR_ERR(md);
2302
2303 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2304 cap_str, sizeof(cap_str));
2305 pr_info("%s: %s %s %s %s\n",
2306 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2307 cap_str, md->read_only ? "(ro)" : "");
2308
2309 if (mmc_blk_alloc_parts(card, md))
2310 goto out;
2311
2312 dev_set_drvdata(&card->dev, md);
2313
2314 if (mmc_add_disk(md))
2315 goto out;
2316
2317 list_for_each_entry(part_md, &md->part, part) {
2318 if (mmc_add_disk(part_md))
2319 goto out;
2320 }
2321
2322 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2323 pm_runtime_use_autosuspend(&card->dev);
2324
2325 /*
2326 * Don't enable runtime PM for SD-combo cards here. Leave that
2327 * decision to be taken during the SDIO init sequence instead.
2328 */
2329 if (card->type != MMC_TYPE_SD_COMBO) {
2330 pm_runtime_set_active(&card->dev);
2331 pm_runtime_enable(&card->dev);
2332 }
2333
2334 return 0;
2335
2336 out:
2337 mmc_blk_remove_parts(card, md);
2338 mmc_blk_remove_req(md);
2339 return 0;
2340 }
2341
2342 static void mmc_blk_remove(struct mmc_card *card)
2343 {
2344 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2345
2346 mmc_blk_remove_parts(card, md);
2347 pm_runtime_get_sync(&card->dev);
2348 mmc_claim_host(card->host);
2349 mmc_blk_part_switch(card, md);
2350 mmc_release_host(card->host);
2351 if (card->type != MMC_TYPE_SD_COMBO)
2352 pm_runtime_disable(&card->dev);
2353 pm_runtime_put_noidle(&card->dev);
2354 mmc_blk_remove_req(md);
2355 dev_set_drvdata(&card->dev, NULL);
2356 }
2357
2358 static int _mmc_blk_suspend(struct mmc_card *card)
2359 {
2360 struct mmc_blk_data *part_md;
2361 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2362
2363 if (md) {
2364 mmc_queue_suspend(&md->queue);
2365 list_for_each_entry(part_md, &md->part, part) {
2366 mmc_queue_suspend(&part_md->queue);
2367 }
2368 }
2369 return 0;
2370 }
2371
2372 static void mmc_blk_shutdown(struct mmc_card *card)
2373 {
2374 _mmc_blk_suspend(card);
2375 }
2376
2377 #ifdef CONFIG_PM_SLEEP
2378 static int mmc_blk_suspend(struct device *dev)
2379 {
2380 struct mmc_card *card = mmc_dev_to_card(dev);
2381
2382 return _mmc_blk_suspend(card);
2383 }
2384
2385 static int mmc_blk_resume(struct device *dev)
2386 {
2387 struct mmc_blk_data *part_md;
2388 struct mmc_blk_data *md = dev_get_drvdata(dev);
2389
2390 if (md) {
2391 /*
2392 * Resume involves the card going into idle state,
2393 * so current partition is always the main one.
2394 */
2395 md->part_curr = md->part_type;
2396 mmc_queue_resume(&md->queue);
2397 list_for_each_entry(part_md, &md->part, part) {
2398 mmc_queue_resume(&part_md->queue);
2399 }
2400 }
2401 return 0;
2402 }
2403 #endif
2404
2405 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2406
2407 static struct mmc_driver mmc_driver = {
2408 .drv = {
2409 .name = "mmcblk",
2410 .pm = &mmc_blk_pm_ops,
2411 },
2412 .probe = mmc_blk_probe,
2413 .remove = mmc_blk_remove,
2414 .shutdown = mmc_blk_shutdown,
2415 };
2416
2417 static int __init mmc_blk_init(void)
2418 {
2419 int res;
2420
2421 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2422 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2423
2424 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2425
2426 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2427 if (res)
2428 goto out;
2429
2430 res = mmc_register_driver(&mmc_driver);
2431 if (res)
2432 goto out2;
2433
2434 return 0;
2435 out2:
2436 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2437 out:
2438 return res;
2439 }
2440
2441 static void __exit mmc_blk_exit(void)
2442 {
2443 mmc_unregister_driver(&mmc_driver);
2444 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2445 }
2446
2447 module_init(mmc_blk_init);
2448 module_exit(mmc_blk_exit);
2449
2450 MODULE_LICENSE("GPL");
2451 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2452