]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/block.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45
46 #include <linux/uaccess.h>
47
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63
64 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67
68 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
69 (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71
72 /*
73 * The defaults come from config options but can be overriden by module
74 * or bootarg options.
75 */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77
78 /*
79 * We've only got one major, so number of mmcblk devices is
80 * limited to (1 << 20) / number of minors per device. It is also
81 * limited by the MAX_DEVICES below.
82 */
83 static int max_devices;
84
85 #define MAX_DEVICES 256
86
87 static DEFINE_IDA(mmc_blk_ida);
88
89 /*
90 * There is one mmc_blk_data per slot.
91 */
92 struct mmc_blk_data {
93 spinlock_t lock;
94 struct device *parent;
95 struct gendisk *disk;
96 struct mmc_queue queue;
97 struct list_head part;
98
99 unsigned int flags;
100 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
102
103 unsigned int usage;
104 unsigned int read_only;
105 unsigned int part_type;
106 unsigned int reset_done;
107 #define MMC_BLK_READ BIT(0)
108 #define MMC_BLK_WRITE BIT(1)
109 #define MMC_BLK_DISCARD BIT(2)
110 #define MMC_BLK_SECDISCARD BIT(3)
111
112 /*
113 * Only set in main mmc_blk_data associated
114 * with mmc_card with dev_set_drvdata, and keeps
115 * track of the current selected device partition.
116 */
117 unsigned int part_curr;
118 struct device_attribute force_ro;
119 struct device_attribute power_ro_lock;
120 int area_type;
121 };
122
123 static DEFINE_MUTEX(open_lock);
124
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 struct mmc_blk_data *md);
130
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133 struct mmc_blk_data *md;
134
135 mutex_lock(&open_lock);
136 md = disk->private_data;
137 if (md && md->usage == 0)
138 md = NULL;
139 if (md)
140 md->usage++;
141 mutex_unlock(&open_lock);
142
143 return md;
144 }
145
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148 int devidx = disk->first_minor / perdev_minors;
149 return devidx;
150 }
151
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 mutex_lock(&open_lock);
155 md->usage--;
156 if (md->usage == 0) {
157 int devidx = mmc_get_devidx(md->disk);
158 blk_cleanup_queue(md->queue.queue);
159 ida_simple_remove(&mmc_blk_ida, devidx);
160 put_disk(md->disk);
161 kfree(md);
162 }
163 mutex_unlock(&open_lock);
164 }
165
166 static ssize_t power_ro_lock_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168 {
169 int ret;
170 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171 struct mmc_card *card = md->queue.card;
172 int locked = 0;
173
174 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175 locked = 2;
176 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177 locked = 1;
178
179 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180
181 mmc_blk_put(md);
182
183 return ret;
184 }
185
186 static ssize_t power_ro_lock_store(struct device *dev,
187 struct device_attribute *attr, const char *buf, size_t count)
188 {
189 int ret;
190 struct mmc_blk_data *md, *part_md;
191 struct mmc_card *card;
192 struct mmc_queue *mq;
193 struct request *req;
194 unsigned long set;
195
196 if (kstrtoul(buf, 0, &set))
197 return -EINVAL;
198
199 if (set != 1)
200 return count;
201
202 md = mmc_blk_get(dev_to_disk(dev));
203 mq = &md->queue;
204 card = md->queue.card;
205
206 /* Dispatch locking to the block layer */
207 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209 blk_execute_rq(mq->queue, NULL, req, 0);
210 ret = req_to_mmc_queue_req(req)->drv_op_result;
211
212 if (!ret) {
213 pr_info("%s: Locking boot partition ro until next power on\n",
214 md->disk->disk_name);
215 set_disk_ro(md->disk, 1);
216
217 list_for_each_entry(part_md, &md->part, part)
218 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220 set_disk_ro(part_md->disk, 1);
221 }
222 }
223
224 mmc_blk_put(md);
225 return count;
226 }
227
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229 char *buf)
230 {
231 int ret;
232 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233
234 ret = snprintf(buf, PAGE_SIZE, "%d\n",
235 get_disk_ro(dev_to_disk(dev)) ^
236 md->read_only);
237 mmc_blk_put(md);
238 return ret;
239 }
240
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242 const char *buf, size_t count)
243 {
244 int ret;
245 char *end;
246 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247 unsigned long set = simple_strtoul(buf, &end, 0);
248 if (end == buf) {
249 ret = -EINVAL;
250 goto out;
251 }
252
253 set_disk_ro(dev_to_disk(dev), set || md->read_only);
254 ret = count;
255 out:
256 mmc_blk_put(md);
257 return ret;
258 }
259
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263 int ret = -ENXIO;
264
265 mutex_lock(&block_mutex);
266 if (md) {
267 if (md->usage == 2)
268 check_disk_change(bdev);
269 ret = 0;
270
271 if ((mode & FMODE_WRITE) && md->read_only) {
272 mmc_blk_put(md);
273 ret = -EROFS;
274 }
275 }
276 mutex_unlock(&block_mutex);
277
278 return ret;
279 }
280
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283 struct mmc_blk_data *md = disk->private_data;
284
285 mutex_lock(&block_mutex);
286 mmc_blk_put(md);
287 mutex_unlock(&block_mutex);
288 }
289
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294 geo->heads = 4;
295 geo->sectors = 16;
296 return 0;
297 }
298
299 struct mmc_blk_ioc_data {
300 struct mmc_ioc_cmd ic;
301 unsigned char *buf;
302 u64 buf_bytes;
303 };
304
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306 struct mmc_ioc_cmd __user *user)
307 {
308 struct mmc_blk_ioc_data *idata;
309 int err;
310
311 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312 if (!idata) {
313 err = -ENOMEM;
314 goto out;
315 }
316
317 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318 err = -EFAULT;
319 goto idata_err;
320 }
321
322 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324 err = -EOVERFLOW;
325 goto idata_err;
326 }
327
328 if (!idata->buf_bytes) {
329 idata->buf = NULL;
330 return idata;
331 }
332
333 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334 if (!idata->buf) {
335 err = -ENOMEM;
336 goto idata_err;
337 }
338
339 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340 idata->ic.data_ptr, idata->buf_bytes)) {
341 err = -EFAULT;
342 goto copy_err;
343 }
344
345 return idata;
346
347 copy_err:
348 kfree(idata->buf);
349 idata_err:
350 kfree(idata);
351 out:
352 return ERR_PTR(err);
353 }
354
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356 struct mmc_blk_ioc_data *idata)
357 {
358 struct mmc_ioc_cmd *ic = &idata->ic;
359
360 if (copy_to_user(&(ic_ptr->response), ic->response,
361 sizeof(ic->response)))
362 return -EFAULT;
363
364 if (!idata->ic.write_flag) {
365 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366 idata->buf, idata->buf_bytes))
367 return -EFAULT;
368 }
369
370 return 0;
371 }
372
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374 u32 retries_max)
375 {
376 int err;
377 u32 retry_count = 0;
378
379 if (!status || !retries_max)
380 return -EINVAL;
381
382 do {
383 err = __mmc_send_status(card, status, 5);
384 if (err)
385 break;
386
387 if (!R1_STATUS(*status) &&
388 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389 break; /* RPMB programming operation complete */
390
391 /*
392 * Rechedule to give the MMC device a chance to continue
393 * processing the previous command without being polled too
394 * frequently.
395 */
396 usleep_range(1000, 5000);
397 } while (++retry_count < retries_max);
398
399 if (retry_count == retries_max)
400 err = -EPERM;
401
402 return err;
403 }
404
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407 int err;
408
409 if (!mmc_can_sanitize(card)) {
410 pr_warn("%s: %s - SANITIZE is not supported\n",
411 mmc_hostname(card->host), __func__);
412 err = -EOPNOTSUPP;
413 goto out;
414 }
415
416 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417 mmc_hostname(card->host), __func__);
418
419 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420 EXT_CSD_SANITIZE_START, 1,
421 MMC_SANITIZE_REQ_TIMEOUT);
422
423 if (err)
424 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425 mmc_hostname(card->host), __func__, err);
426
427 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428 __func__);
429 out:
430 return err;
431 }
432
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434 struct mmc_blk_ioc_data *idata)
435 {
436 struct mmc_command cmd = {};
437 struct mmc_data data = {};
438 struct mmc_request mrq = {};
439 struct scatterlist sg;
440 int err;
441 bool is_rpmb = false;
442 u32 status = 0;
443
444 if (!card || !md || !idata)
445 return -EINVAL;
446
447 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448 is_rpmb = true;
449
450 cmd.opcode = idata->ic.opcode;
451 cmd.arg = idata->ic.arg;
452 cmd.flags = idata->ic.flags;
453
454 if (idata->buf_bytes) {
455 data.sg = &sg;
456 data.sg_len = 1;
457 data.blksz = idata->ic.blksz;
458 data.blocks = idata->ic.blocks;
459
460 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461
462 if (idata->ic.write_flag)
463 data.flags = MMC_DATA_WRITE;
464 else
465 data.flags = MMC_DATA_READ;
466
467 /* data.flags must already be set before doing this. */
468 mmc_set_data_timeout(&data, card);
469
470 /* Allow overriding the timeout_ns for empirical tuning. */
471 if (idata->ic.data_timeout_ns)
472 data.timeout_ns = idata->ic.data_timeout_ns;
473
474 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475 /*
476 * Pretend this is a data transfer and rely on the
477 * host driver to compute timeout. When all host
478 * drivers support cmd.cmd_timeout for R1B, this
479 * can be changed to:
480 *
481 * mrq.data = NULL;
482 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483 */
484 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485 }
486
487 mrq.data = &data;
488 }
489
490 mrq.cmd = &cmd;
491
492 err = mmc_blk_part_switch(card, md);
493 if (err)
494 return err;
495
496 if (idata->ic.is_acmd) {
497 err = mmc_app_cmd(card->host, card);
498 if (err)
499 return err;
500 }
501
502 if (is_rpmb) {
503 err = mmc_set_blockcount(card, data.blocks,
504 idata->ic.write_flag & (1 << 31));
505 if (err)
506 return err;
507 }
508
509 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510 (cmd.opcode == MMC_SWITCH)) {
511 err = ioctl_do_sanitize(card);
512
513 if (err)
514 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515 __func__, err);
516
517 return err;
518 }
519
520 mmc_wait_for_req(card->host, &mrq);
521
522 if (cmd.error) {
523 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524 __func__, cmd.error);
525 return cmd.error;
526 }
527 if (data.error) {
528 dev_err(mmc_dev(card->host), "%s: data error %d\n",
529 __func__, data.error);
530 return data.error;
531 }
532
533 /*
534 * According to the SD specs, some commands require a delay after
535 * issuing the command.
536 */
537 if (idata->ic.postsleep_min_us)
538 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539
540 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541
542 if (is_rpmb) {
543 /*
544 * Ensure RPMB command has completed by polling CMD13
545 * "Send Status".
546 */
547 err = ioctl_rpmb_card_status_poll(card, &status, 5);
548 if (err)
549 dev_err(mmc_dev(card->host),
550 "%s: Card Status=0x%08X, error %d\n",
551 __func__, status, err);
552 }
553
554 return err;
555 }
556
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558 struct mmc_ioc_cmd __user *ic_ptr)
559 {
560 struct mmc_blk_ioc_data *idata;
561 struct mmc_blk_ioc_data *idatas[1];
562 struct mmc_blk_data *md;
563 struct mmc_queue *mq;
564 struct mmc_card *card;
565 int err = 0, ioc_err = 0;
566 struct request *req;
567
568 /*
569 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570 * whole block device, not on a partition. This prevents overspray
571 * between sibling partitions.
572 */
573 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574 return -EPERM;
575
576 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577 if (IS_ERR(idata))
578 return PTR_ERR(idata);
579
580 md = mmc_blk_get(bdev->bd_disk);
581 if (!md) {
582 err = -EINVAL;
583 goto cmd_err;
584 }
585
586 card = md->queue.card;
587 if (IS_ERR(card)) {
588 err = PTR_ERR(card);
589 goto cmd_done;
590 }
591
592 /*
593 * Dispatch the ioctl() into the block request queue.
594 */
595 mq = &md->queue;
596 req = blk_get_request(mq->queue,
597 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598 __GFP_RECLAIM);
599 idatas[0] = idata;
600 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601 req_to_mmc_queue_req(req)->idata = idatas;
602 req_to_mmc_queue_req(req)->ioc_count = 1;
603 blk_execute_rq(mq->queue, NULL, req, 0);
604 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606 blk_put_request(req);
607
608 cmd_done:
609 mmc_blk_put(md);
610 cmd_err:
611 kfree(idata->buf);
612 kfree(idata);
613 return ioc_err ? ioc_err : err;
614 }
615
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617 struct mmc_ioc_multi_cmd __user *user)
618 {
619 struct mmc_blk_ioc_data **idata = NULL;
620 struct mmc_ioc_cmd __user *cmds = user->cmds;
621 struct mmc_card *card;
622 struct mmc_blk_data *md;
623 struct mmc_queue *mq;
624 int i, err = 0, ioc_err = 0;
625 __u64 num_of_cmds;
626 struct request *req;
627
628 /*
629 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 * whole block device, not on a partition. This prevents overspray
631 * between sibling partitions.
632 */
633 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 return -EPERM;
635
636 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 sizeof(num_of_cmds)))
638 return -EFAULT;
639
640 if (!num_of_cmds)
641 return 0;
642
643 if (num_of_cmds > MMC_IOC_MAX_CMDS)
644 return -EINVAL;
645
646 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
647 if (!idata)
648 return -ENOMEM;
649
650 for (i = 0; i < num_of_cmds; i++) {
651 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
652 if (IS_ERR(idata[i])) {
653 err = PTR_ERR(idata[i]);
654 num_of_cmds = i;
655 goto cmd_err;
656 }
657 }
658
659 md = mmc_blk_get(bdev->bd_disk);
660 if (!md) {
661 err = -EINVAL;
662 goto cmd_err;
663 }
664
665 card = md->queue.card;
666 if (IS_ERR(card)) {
667 err = PTR_ERR(card);
668 goto cmd_done;
669 }
670
671
672 /*
673 * Dispatch the ioctl()s into the block request queue.
674 */
675 mq = &md->queue;
676 req = blk_get_request(mq->queue,
677 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
678 __GFP_RECLAIM);
679 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
680 req_to_mmc_queue_req(req)->idata = idata;
681 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
682 blk_execute_rq(mq->queue, NULL, req, 0);
683 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684
685 /* copy to user if data and response */
686 for (i = 0; i < num_of_cmds && !err; i++)
687 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688
689 blk_put_request(req);
690
691 cmd_done:
692 mmc_blk_put(md);
693 cmd_err:
694 for (i = 0; i < num_of_cmds; i++) {
695 kfree(idata[i]->buf);
696 kfree(idata[i]);
697 }
698 kfree(idata);
699 return ioc_err ? ioc_err : err;
700 }
701
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703 unsigned int cmd, unsigned long arg)
704 {
705 switch (cmd) {
706 case MMC_IOC_CMD:
707 return mmc_blk_ioctl_cmd(bdev,
708 (struct mmc_ioc_cmd __user *)arg);
709 case MMC_IOC_MULTI_CMD:
710 return mmc_blk_ioctl_multi_cmd(bdev,
711 (struct mmc_ioc_multi_cmd __user *)arg);
712 default:
713 return -EINVAL;
714 }
715 }
716
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719 unsigned int cmd, unsigned long arg)
720 {
721 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
722 }
723 #endif
724
725 static const struct block_device_operations mmc_bdops = {
726 .open = mmc_blk_open,
727 .release = mmc_blk_release,
728 .getgeo = mmc_blk_getgeo,
729 .owner = THIS_MODULE,
730 .ioctl = mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732 .compat_ioctl = mmc_blk_compat_ioctl,
733 #endif
734 };
735
736 static int mmc_blk_part_switch_pre(struct mmc_card *card,
737 unsigned int part_type)
738 {
739 int ret = 0;
740
741 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
742 if (card->ext_csd.cmdq_en) {
743 ret = mmc_cmdq_disable(card);
744 if (ret)
745 return ret;
746 }
747 mmc_retune_pause(card->host);
748 }
749
750 return ret;
751 }
752
753 static int mmc_blk_part_switch_post(struct mmc_card *card,
754 unsigned int part_type)
755 {
756 int ret = 0;
757
758 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
759 mmc_retune_unpause(card->host);
760 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
761 ret = mmc_cmdq_enable(card);
762 }
763
764 return ret;
765 }
766
767 static inline int mmc_blk_part_switch(struct mmc_card *card,
768 struct mmc_blk_data *md)
769 {
770 int ret = 0;
771 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
772
773 if (main_md->part_curr == md->part_type)
774 return 0;
775
776 if (mmc_card_mmc(card)) {
777 u8 part_config = card->ext_csd.part_config;
778
779 ret = mmc_blk_part_switch_pre(card, md->part_type);
780 if (ret)
781 return ret;
782
783 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
784 part_config |= md->part_type;
785
786 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
787 EXT_CSD_PART_CONFIG, part_config,
788 card->ext_csd.part_time);
789 if (ret) {
790 mmc_blk_part_switch_post(card, md->part_type);
791 return ret;
792 }
793
794 card->ext_csd.part_config = part_config;
795
796 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
797 }
798
799 main_md->part_curr = md->part_type;
800 return ret;
801 }
802
803 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
804 {
805 int err;
806 u32 result;
807 __be32 *blocks;
808
809 struct mmc_request mrq = {};
810 struct mmc_command cmd = {};
811 struct mmc_data data = {};
812
813 struct scatterlist sg;
814
815 cmd.opcode = MMC_APP_CMD;
816 cmd.arg = card->rca << 16;
817 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
818
819 err = mmc_wait_for_cmd(card->host, &cmd, 0);
820 if (err)
821 return err;
822 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
823 return -EIO;
824
825 memset(&cmd, 0, sizeof(struct mmc_command));
826
827 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
828 cmd.arg = 0;
829 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
830
831 data.blksz = 4;
832 data.blocks = 1;
833 data.flags = MMC_DATA_READ;
834 data.sg = &sg;
835 data.sg_len = 1;
836 mmc_set_data_timeout(&data, card);
837
838 mrq.cmd = &cmd;
839 mrq.data = &data;
840
841 blocks = kmalloc(4, GFP_KERNEL);
842 if (!blocks)
843 return -ENOMEM;
844
845 sg_init_one(&sg, blocks, 4);
846
847 mmc_wait_for_req(card->host, &mrq);
848
849 result = ntohl(*blocks);
850 kfree(blocks);
851
852 if (cmd.error || data.error)
853 return -EIO;
854
855 *written_blocks = result;
856
857 return 0;
858 }
859
860 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
861 bool hw_busy_detect, struct request *req, bool *gen_err)
862 {
863 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
864 int err = 0;
865 u32 status;
866
867 do {
868 err = __mmc_send_status(card, &status, 5);
869 if (err) {
870 pr_err("%s: error %d requesting status\n",
871 req->rq_disk->disk_name, err);
872 return err;
873 }
874
875 if (status & R1_ERROR) {
876 pr_err("%s: %s: error sending status cmd, status %#x\n",
877 req->rq_disk->disk_name, __func__, status);
878 *gen_err = true;
879 }
880
881 /* We may rely on the host hw to handle busy detection.*/
882 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
883 hw_busy_detect)
884 break;
885
886 /*
887 * Timeout if the device never becomes ready for data and never
888 * leaves the program state.
889 */
890 if (time_after(jiffies, timeout)) {
891 pr_err("%s: Card stuck in programming state! %s %s\n",
892 mmc_hostname(card->host),
893 req->rq_disk->disk_name, __func__);
894 return -ETIMEDOUT;
895 }
896
897 /*
898 * Some cards mishandle the status bits,
899 * so make sure to check both the busy
900 * indication and the card state.
901 */
902 } while (!(status & R1_READY_FOR_DATA) ||
903 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
904
905 return err;
906 }
907
908 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
909 struct request *req, bool *gen_err, u32 *stop_status)
910 {
911 struct mmc_host *host = card->host;
912 struct mmc_command cmd = {};
913 int err;
914 bool use_r1b_resp = rq_data_dir(req) == WRITE;
915
916 /*
917 * Normally we use R1B responses for WRITE, but in cases where the host
918 * has specified a max_busy_timeout we need to validate it. A failure
919 * means we need to prevent the host from doing hw busy detection, which
920 * is done by converting to a R1 response instead.
921 */
922 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
923 use_r1b_resp = false;
924
925 cmd.opcode = MMC_STOP_TRANSMISSION;
926 if (use_r1b_resp) {
927 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
928 cmd.busy_timeout = timeout_ms;
929 } else {
930 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
931 }
932
933 err = mmc_wait_for_cmd(host, &cmd, 5);
934 if (err)
935 return err;
936
937 *stop_status = cmd.resp[0];
938
939 /* No need to check card status in case of READ. */
940 if (rq_data_dir(req) == READ)
941 return 0;
942
943 if (!mmc_host_is_spi(host) &&
944 (*stop_status & R1_ERROR)) {
945 pr_err("%s: %s: general error sending stop command, resp %#x\n",
946 req->rq_disk->disk_name, __func__, *stop_status);
947 *gen_err = true;
948 }
949
950 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
951 }
952
953 #define ERR_NOMEDIUM 3
954 #define ERR_RETRY 2
955 #define ERR_ABORT 1
956 #define ERR_CONTINUE 0
957
958 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
959 bool status_valid, u32 status)
960 {
961 switch (error) {
962 case -EILSEQ:
963 /* response crc error, retry the r/w cmd */
964 pr_err("%s: %s sending %s command, card status %#x\n",
965 req->rq_disk->disk_name, "response CRC error",
966 name, status);
967 return ERR_RETRY;
968
969 case -ETIMEDOUT:
970 pr_err("%s: %s sending %s command, card status %#x\n",
971 req->rq_disk->disk_name, "timed out", name, status);
972
973 /* If the status cmd initially failed, retry the r/w cmd */
974 if (!status_valid) {
975 pr_err("%s: status not valid, retrying timeout\n",
976 req->rq_disk->disk_name);
977 return ERR_RETRY;
978 }
979
980 /*
981 * If it was a r/w cmd crc error, or illegal command
982 * (eg, issued in wrong state) then retry - we should
983 * have corrected the state problem above.
984 */
985 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
986 pr_err("%s: command error, retrying timeout\n",
987 req->rq_disk->disk_name);
988 return ERR_RETRY;
989 }
990
991 /* Otherwise abort the command */
992 return ERR_ABORT;
993
994 default:
995 /* We don't understand the error code the driver gave us */
996 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
997 req->rq_disk->disk_name, error, status);
998 return ERR_ABORT;
999 }
1000 }
1001
1002 /*
1003 * Initial r/w and stop cmd error recovery.
1004 * We don't know whether the card received the r/w cmd or not, so try to
1005 * restore things back to a sane state. Essentially, we do this as follows:
1006 * - Obtain card status. If the first attempt to obtain card status fails,
1007 * the status word will reflect the failed status cmd, not the failed
1008 * r/w cmd. If we fail to obtain card status, it suggests we can no
1009 * longer communicate with the card.
1010 * - Check the card state. If the card received the cmd but there was a
1011 * transient problem with the response, it might still be in a data transfer
1012 * mode. Try to send it a stop command. If this fails, we can't recover.
1013 * - If the r/w cmd failed due to a response CRC error, it was probably
1014 * transient, so retry the cmd.
1015 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1016 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1017 * illegal cmd, retry.
1018 * Otherwise we don't understand what happened, so abort.
1019 */
1020 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1021 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1022 {
1023 bool prev_cmd_status_valid = true;
1024 u32 status, stop_status = 0;
1025 int err, retry;
1026
1027 if (mmc_card_removed(card))
1028 return ERR_NOMEDIUM;
1029
1030 /*
1031 * Try to get card status which indicates both the card state
1032 * and why there was no response. If the first attempt fails,
1033 * we can't be sure the returned status is for the r/w command.
1034 */
1035 for (retry = 2; retry >= 0; retry--) {
1036 err = __mmc_send_status(card, &status, 0);
1037 if (!err)
1038 break;
1039
1040 /* Re-tune if needed */
1041 mmc_retune_recheck(card->host);
1042
1043 prev_cmd_status_valid = false;
1044 pr_err("%s: error %d sending status command, %sing\n",
1045 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1046 }
1047
1048 /* We couldn't get a response from the card. Give up. */
1049 if (err) {
1050 /* Check if the card is removed */
1051 if (mmc_detect_card_removed(card->host))
1052 return ERR_NOMEDIUM;
1053 return ERR_ABORT;
1054 }
1055
1056 /* Flag ECC errors */
1057 if ((status & R1_CARD_ECC_FAILED) ||
1058 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1059 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1060 *ecc_err = true;
1061
1062 /* Flag General errors */
1063 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1064 if ((status & R1_ERROR) ||
1065 (brq->stop.resp[0] & R1_ERROR)) {
1066 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1067 req->rq_disk->disk_name, __func__,
1068 brq->stop.resp[0], status);
1069 *gen_err = true;
1070 }
1071
1072 /*
1073 * Check the current card state. If it is in some data transfer
1074 * mode, tell it to stop (and hopefully transition back to TRAN.)
1075 */
1076 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1077 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1078 err = send_stop(card,
1079 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1080 req, gen_err, &stop_status);
1081 if (err) {
1082 pr_err("%s: error %d sending stop command\n",
1083 req->rq_disk->disk_name, err);
1084 /*
1085 * If the stop cmd also timed out, the card is probably
1086 * not present, so abort. Other errors are bad news too.
1087 */
1088 return ERR_ABORT;
1089 }
1090
1091 if (stop_status & R1_CARD_ECC_FAILED)
1092 *ecc_err = true;
1093 }
1094
1095 /* Check for set block count errors */
1096 if (brq->sbc.error)
1097 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1098 prev_cmd_status_valid, status);
1099
1100 /* Check for r/w command errors */
1101 if (brq->cmd.error)
1102 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1103 prev_cmd_status_valid, status);
1104
1105 /* Data errors */
1106 if (!brq->stop.error)
1107 return ERR_CONTINUE;
1108
1109 /* Now for stop errors. These aren't fatal to the transfer. */
1110 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1111 req->rq_disk->disk_name, brq->stop.error,
1112 brq->cmd.resp[0], status);
1113
1114 /*
1115 * Subsitute in our own stop status as this will give the error
1116 * state which happened during the execution of the r/w command.
1117 */
1118 if (stop_status) {
1119 brq->stop.resp[0] = stop_status;
1120 brq->stop.error = 0;
1121 }
1122 return ERR_CONTINUE;
1123 }
1124
1125 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1126 int type)
1127 {
1128 int err;
1129
1130 if (md->reset_done & type)
1131 return -EEXIST;
1132
1133 md->reset_done |= type;
1134 err = mmc_hw_reset(host);
1135 /* Ensure we switch back to the correct partition */
1136 if (err != -EOPNOTSUPP) {
1137 struct mmc_blk_data *main_md =
1138 dev_get_drvdata(&host->card->dev);
1139 int part_err;
1140
1141 main_md->part_curr = main_md->part_type;
1142 part_err = mmc_blk_part_switch(host->card, md);
1143 if (part_err) {
1144 /*
1145 * We have failed to get back into the correct
1146 * partition, so we need to abort the whole request.
1147 */
1148 return -ENODEV;
1149 }
1150 }
1151 return err;
1152 }
1153
1154 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1155 {
1156 md->reset_done &= ~type;
1157 }
1158
1159 int mmc_access_rpmb(struct mmc_queue *mq)
1160 {
1161 struct mmc_blk_data *md = mq->blkdata;
1162 /*
1163 * If this is a RPMB partition access, return ture
1164 */
1165 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1166 return true;
1167
1168 return false;
1169 }
1170
1171 /*
1172 * The non-block commands come back from the block layer after it queued it and
1173 * processed it with all other requests and then they get issued in this
1174 * function.
1175 */
1176 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1177 {
1178 struct mmc_queue_req *mq_rq;
1179 struct mmc_card *card = mq->card;
1180 struct mmc_blk_data *md = mq->blkdata;
1181 int ret;
1182 int i;
1183
1184 mq_rq = req_to_mmc_queue_req(req);
1185
1186 switch (mq_rq->drv_op) {
1187 case MMC_DRV_OP_IOCTL:
1188 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1189 ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1190 if (ret)
1191 break;
1192 }
1193 /* Always switch back to main area after RPMB access */
1194 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1195 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1196 break;
1197 case MMC_DRV_OP_BOOT_WP:
1198 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1199 card->ext_csd.boot_ro_lock |
1200 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1201 card->ext_csd.part_time);
1202 if (ret)
1203 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1204 md->disk->disk_name, ret);
1205 else
1206 card->ext_csd.boot_ro_lock |=
1207 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1208 break;
1209 default:
1210 pr_err("%s: unknown driver specific operation\n",
1211 md->disk->disk_name);
1212 ret = -EINVAL;
1213 break;
1214 }
1215 mq_rq->drv_op_result = ret;
1216 blk_end_request_all(req, ret);
1217 }
1218
1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221 struct mmc_blk_data *md = mq->blkdata;
1222 struct mmc_card *card = md->queue.card;
1223 unsigned int from, nr, arg;
1224 int err = 0, type = MMC_BLK_DISCARD;
1225 blk_status_t status = BLK_STS_OK;
1226
1227 if (!mmc_can_erase(card)) {
1228 status = BLK_STS_NOTSUPP;
1229 goto fail;
1230 }
1231
1232 from = blk_rq_pos(req);
1233 nr = blk_rq_sectors(req);
1234
1235 if (mmc_can_discard(card))
1236 arg = MMC_DISCARD_ARG;
1237 else if (mmc_can_trim(card))
1238 arg = MMC_TRIM_ARG;
1239 else
1240 arg = MMC_ERASE_ARG;
1241 do {
1242 err = 0;
1243 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1244 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1245 INAND_CMD38_ARG_EXT_CSD,
1246 arg == MMC_TRIM_ARG ?
1247 INAND_CMD38_ARG_TRIM :
1248 INAND_CMD38_ARG_ERASE,
1249 0);
1250 }
1251 if (!err)
1252 err = mmc_erase(card, from, nr, arg);
1253 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1254 if (err)
1255 status = BLK_STS_IOERR;
1256 else
1257 mmc_blk_reset_success(md, type);
1258 fail:
1259 blk_end_request(req, status, blk_rq_bytes(req));
1260 }
1261
1262 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1263 struct request *req)
1264 {
1265 struct mmc_blk_data *md = mq->blkdata;
1266 struct mmc_card *card = md->queue.card;
1267 unsigned int from, nr, arg;
1268 int err = 0, type = MMC_BLK_SECDISCARD;
1269 blk_status_t status = BLK_STS_OK;
1270
1271 if (!(mmc_can_secure_erase_trim(card))) {
1272 status = BLK_STS_NOTSUPP;
1273 goto out;
1274 }
1275
1276 from = blk_rq_pos(req);
1277 nr = blk_rq_sectors(req);
1278
1279 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1280 arg = MMC_SECURE_TRIM1_ARG;
1281 else
1282 arg = MMC_SECURE_ERASE_ARG;
1283
1284 retry:
1285 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1286 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1287 INAND_CMD38_ARG_EXT_CSD,
1288 arg == MMC_SECURE_TRIM1_ARG ?
1289 INAND_CMD38_ARG_SECTRIM1 :
1290 INAND_CMD38_ARG_SECERASE,
1291 0);
1292 if (err)
1293 goto out_retry;
1294 }
1295
1296 err = mmc_erase(card, from, nr, arg);
1297 if (err == -EIO)
1298 goto out_retry;
1299 if (err) {
1300 status = BLK_STS_IOERR;
1301 goto out;
1302 }
1303
1304 if (arg == MMC_SECURE_TRIM1_ARG) {
1305 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1306 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1307 INAND_CMD38_ARG_EXT_CSD,
1308 INAND_CMD38_ARG_SECTRIM2,
1309 0);
1310 if (err)
1311 goto out_retry;
1312 }
1313
1314 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1315 if (err == -EIO)
1316 goto out_retry;
1317 if (err) {
1318 status = BLK_STS_IOERR;
1319 goto out;
1320 }
1321 }
1322
1323 out_retry:
1324 if (err && !mmc_blk_reset(md, card->host, type))
1325 goto retry;
1326 if (!err)
1327 mmc_blk_reset_success(md, type);
1328 out:
1329 blk_end_request(req, status, blk_rq_bytes(req));
1330 }
1331
1332 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1333 {
1334 struct mmc_blk_data *md = mq->blkdata;
1335 struct mmc_card *card = md->queue.card;
1336 int ret = 0;
1337
1338 ret = mmc_flush_cache(card);
1339 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1340 }
1341
1342 /*
1343 * Reformat current write as a reliable write, supporting
1344 * both legacy and the enhanced reliable write MMC cards.
1345 * In each transfer we'll handle only as much as a single
1346 * reliable write can handle, thus finish the request in
1347 * partial completions.
1348 */
1349 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1350 struct mmc_card *card,
1351 struct request *req)
1352 {
1353 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1354 /* Legacy mode imposes restrictions on transfers. */
1355 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1356 brq->data.blocks = 1;
1357
1358 if (brq->data.blocks > card->ext_csd.rel_sectors)
1359 brq->data.blocks = card->ext_csd.rel_sectors;
1360 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1361 brq->data.blocks = 1;
1362 }
1363 }
1364
1365 #define CMD_ERRORS \
1366 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1367 R1_ADDRESS_ERROR | /* Misaligned address */ \
1368 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1369 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1370 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1371 R1_CC_ERROR | /* Card controller error */ \
1372 R1_ERROR) /* General/unknown error */
1373
1374 static bool mmc_blk_has_cmd_err(struct mmc_command *cmd)
1375 {
1376 if (!cmd->error && cmd->resp[0] & CMD_ERRORS)
1377 cmd->error = -EIO;
1378
1379 return cmd->error;
1380 }
1381
1382 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1383 struct mmc_async_req *areq)
1384 {
1385 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1386 areq);
1387 struct mmc_blk_request *brq = &mq_mrq->brq;
1388 struct request *req = mmc_queue_req_to_req(mq_mrq);
1389 int need_retune = card->host->need_retune;
1390 bool ecc_err = false;
1391 bool gen_err = false;
1392
1393 /*
1394 * sbc.error indicates a problem with the set block count
1395 * command. No data will have been transferred.
1396 *
1397 * cmd.error indicates a problem with the r/w command. No
1398 * data will have been transferred.
1399 *
1400 * stop.error indicates a problem with the stop command. Data
1401 * may have been transferred, or may still be transferring.
1402 */
1403 if (brq->sbc.error || brq->cmd.error || mmc_blk_has_cmd_err(&brq->stop) ||
1404 brq->data.error) {
1405 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1406 case ERR_RETRY:
1407 return MMC_BLK_RETRY;
1408 case ERR_ABORT:
1409 return MMC_BLK_ABORT;
1410 case ERR_NOMEDIUM:
1411 return MMC_BLK_NOMEDIUM;
1412 case ERR_CONTINUE:
1413 break;
1414 }
1415 }
1416
1417 /*
1418 * Check for errors relating to the execution of the
1419 * initial command - such as address errors. No data
1420 * has been transferred.
1421 */
1422 if (brq->cmd.resp[0] & CMD_ERRORS) {
1423 pr_err("%s: r/w command failed, status = %#x\n",
1424 req->rq_disk->disk_name, brq->cmd.resp[0]);
1425 return MMC_BLK_ABORT;
1426 }
1427
1428 /*
1429 * Everything else is either success, or a data error of some
1430 * kind. If it was a write, we may have transitioned to
1431 * program mode, which we have to wait for it to complete.
1432 */
1433 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1434 int err;
1435
1436 /* Check stop command response */
1437 if (brq->stop.resp[0] & R1_ERROR) {
1438 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1439 req->rq_disk->disk_name, __func__,
1440 brq->stop.resp[0]);
1441 gen_err = true;
1442 }
1443
1444 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1445 &gen_err);
1446 if (err)
1447 return MMC_BLK_CMD_ERR;
1448 }
1449
1450 /* if general error occurs, retry the write operation. */
1451 if (gen_err) {
1452 pr_warn("%s: retrying write for general error\n",
1453 req->rq_disk->disk_name);
1454 return MMC_BLK_RETRY;
1455 }
1456
1457 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1458 if (brq->data.error || brq->stop.error) {
1459 if (need_retune && !brq->retune_retry_done) {
1460 pr_debug("%s: retrying because a re-tune was needed\n",
1461 req->rq_disk->disk_name);
1462 brq->retune_retry_done = 1;
1463 return MMC_BLK_RETRY;
1464 }
1465 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1466 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1467 (unsigned)blk_rq_pos(req),
1468 (unsigned)blk_rq_sectors(req),
1469 brq->cmd.resp[0], brq->stop.resp[0]);
1470
1471 if (rq_data_dir(req) == READ) {
1472 if (ecc_err)
1473 return MMC_BLK_ECC_ERR;
1474 return MMC_BLK_DATA_ERR;
1475 } else {
1476 return MMC_BLK_CMD_ERR;
1477 }
1478 }
1479
1480 if (!brq->data.bytes_xfered)
1481 return MMC_BLK_RETRY;
1482
1483 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1484 return MMC_BLK_PARTIAL;
1485
1486 return MMC_BLK_SUCCESS;
1487 }
1488
1489 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1490 int disable_multi, bool *do_rel_wr,
1491 bool *do_data_tag)
1492 {
1493 struct mmc_blk_data *md = mq->blkdata;
1494 struct mmc_card *card = md->queue.card;
1495 struct mmc_blk_request *brq = &mqrq->brq;
1496 struct request *req = mmc_queue_req_to_req(mqrq);
1497
1498 /*
1499 * Reliable writes are used to implement Forced Unit Access and
1500 * are supported only on MMCs.
1501 */
1502 *do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1503 rq_data_dir(req) == WRITE &&
1504 (md->flags & MMC_BLK_REL_WR);
1505
1506 memset(brq, 0, sizeof(struct mmc_blk_request));
1507
1508 brq->mrq.data = &brq->data;
1509
1510 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1511 brq->stop.arg = 0;
1512
1513 if (rq_data_dir(req) == READ) {
1514 brq->data.flags = MMC_DATA_READ;
1515 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1516 } else {
1517 brq->data.flags = MMC_DATA_WRITE;
1518 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1519 }
1520
1521 brq->data.blksz = 512;
1522 brq->data.blocks = blk_rq_sectors(req);
1523
1524 /*
1525 * The block layer doesn't support all sector count
1526 * restrictions, so we need to be prepared for too big
1527 * requests.
1528 */
1529 if (brq->data.blocks > card->host->max_blk_count)
1530 brq->data.blocks = card->host->max_blk_count;
1531
1532 if (brq->data.blocks > 1) {
1533 /*
1534 * After a read error, we redo the request one sector
1535 * at a time in order to accurately determine which
1536 * sectors can be read successfully.
1537 */
1538 if (disable_multi)
1539 brq->data.blocks = 1;
1540
1541 /*
1542 * Some controllers have HW issues while operating
1543 * in multiple I/O mode
1544 */
1545 if (card->host->ops->multi_io_quirk)
1546 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1547 (rq_data_dir(req) == READ) ?
1548 MMC_DATA_READ : MMC_DATA_WRITE,
1549 brq->data.blocks);
1550 }
1551
1552 if (*do_rel_wr)
1553 mmc_apply_rel_rw(brq, card, req);
1554
1555 /*
1556 * Data tag is used only during writing meta data to speed
1557 * up write and any subsequent read of this meta data
1558 */
1559 *do_data_tag = card->ext_csd.data_tag_unit_size &&
1560 (req->cmd_flags & REQ_META) &&
1561 (rq_data_dir(req) == WRITE) &&
1562 ((brq->data.blocks * brq->data.blksz) >=
1563 card->ext_csd.data_tag_unit_size);
1564
1565 mmc_set_data_timeout(&brq->data, card);
1566
1567 brq->data.sg = mqrq->sg;
1568 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1569
1570 /*
1571 * Adjust the sg list so it is the same size as the
1572 * request.
1573 */
1574 if (brq->data.blocks != blk_rq_sectors(req)) {
1575 int i, data_size = brq->data.blocks << 9;
1576 struct scatterlist *sg;
1577
1578 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1579 data_size -= sg->length;
1580 if (data_size <= 0) {
1581 sg->length += data_size;
1582 i++;
1583 break;
1584 }
1585 }
1586 brq->data.sg_len = i;
1587 }
1588
1589 mqrq->areq.mrq = &brq->mrq;
1590
1591 mmc_queue_bounce_pre(mqrq);
1592 }
1593
1594 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1595 struct mmc_card *card,
1596 int disable_multi,
1597 struct mmc_queue *mq)
1598 {
1599 u32 readcmd, writecmd;
1600 struct mmc_blk_request *brq = &mqrq->brq;
1601 struct request *req = mmc_queue_req_to_req(mqrq);
1602 struct mmc_blk_data *md = mq->blkdata;
1603 bool do_rel_wr, do_data_tag;
1604
1605 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1606
1607 brq->mrq.cmd = &brq->cmd;
1608
1609 brq->cmd.arg = blk_rq_pos(req);
1610 if (!mmc_card_blockaddr(card))
1611 brq->cmd.arg <<= 9;
1612 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1613
1614 if (brq->data.blocks > 1 || do_rel_wr) {
1615 /* SPI multiblock writes terminate using a special
1616 * token, not a STOP_TRANSMISSION request.
1617 */
1618 if (!mmc_host_is_spi(card->host) ||
1619 rq_data_dir(req) == READ)
1620 brq->mrq.stop = &brq->stop;
1621 readcmd = MMC_READ_MULTIPLE_BLOCK;
1622 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1623 } else {
1624 brq->mrq.stop = NULL;
1625 readcmd = MMC_READ_SINGLE_BLOCK;
1626 writecmd = MMC_WRITE_BLOCK;
1627 }
1628 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1629
1630 /*
1631 * Pre-defined multi-block transfers are preferable to
1632 * open ended-ones (and necessary for reliable writes).
1633 * However, it is not sufficient to just send CMD23,
1634 * and avoid the final CMD12, as on an error condition
1635 * CMD12 (stop) needs to be sent anyway. This, coupled
1636 * with Auto-CMD23 enhancements provided by some
1637 * hosts, means that the complexity of dealing
1638 * with this is best left to the host. If CMD23 is
1639 * supported by card and host, we'll fill sbc in and let
1640 * the host deal with handling it correctly. This means
1641 * that for hosts that don't expose MMC_CAP_CMD23, no
1642 * change of behavior will be observed.
1643 *
1644 * N.B: Some MMC cards experience perf degradation.
1645 * We'll avoid using CMD23-bounded multiblock writes for
1646 * these, while retaining features like reliable writes.
1647 */
1648 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1649 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1650 do_data_tag)) {
1651 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1652 brq->sbc.arg = brq->data.blocks |
1653 (do_rel_wr ? (1 << 31) : 0) |
1654 (do_data_tag ? (1 << 29) : 0);
1655 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1656 brq->mrq.sbc = &brq->sbc;
1657 }
1658
1659 mqrq->areq.err_check = mmc_blk_err_check;
1660 }
1661
1662 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1663 struct mmc_blk_request *brq, struct request *req,
1664 bool old_req_pending)
1665 {
1666 bool req_pending;
1667
1668 /*
1669 * If this is an SD card and we're writing, we can first
1670 * mark the known good sectors as ok.
1671 *
1672 * If the card is not SD, we can still ok written sectors
1673 * as reported by the controller (which might be less than
1674 * the real number of written sectors, but never more).
1675 */
1676 if (mmc_card_sd(card)) {
1677 u32 blocks;
1678 int err;
1679
1680 err = mmc_sd_num_wr_blocks(card, &blocks);
1681 if (err)
1682 req_pending = old_req_pending;
1683 else
1684 req_pending = blk_end_request(req, 0, blocks << 9);
1685 } else {
1686 req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1687 }
1688 return req_pending;
1689 }
1690
1691 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1692 struct request *req,
1693 struct mmc_queue_req *mqrq)
1694 {
1695 if (mmc_card_removed(card))
1696 req->rq_flags |= RQF_QUIET;
1697 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1698 mq->qcnt--;
1699 }
1700
1701 /**
1702 * mmc_blk_rw_try_restart() - tries to restart the current async request
1703 * @mq: the queue with the card and host to restart
1704 * @req: a new request that want to be started after the current one
1705 */
1706 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1707 struct mmc_queue_req *mqrq)
1708 {
1709 if (!req)
1710 return;
1711
1712 /*
1713 * If the card was removed, just cancel everything and return.
1714 */
1715 if (mmc_card_removed(mq->card)) {
1716 req->rq_flags |= RQF_QUIET;
1717 blk_end_request_all(req, BLK_STS_IOERR);
1718 mq->qcnt--; /* FIXME: just set to 0? */
1719 return;
1720 }
1721 /* Else proceed and try to restart the current async request */
1722 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1723 mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1724 }
1725
1726 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1727 {
1728 struct mmc_blk_data *md = mq->blkdata;
1729 struct mmc_card *card = md->queue.card;
1730 struct mmc_blk_request *brq;
1731 int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1732 enum mmc_blk_status status;
1733 struct mmc_queue_req *mqrq_cur = NULL;
1734 struct mmc_queue_req *mq_rq;
1735 struct request *old_req;
1736 struct mmc_async_req *new_areq;
1737 struct mmc_async_req *old_areq;
1738 bool req_pending = true;
1739
1740 if (new_req) {
1741 mqrq_cur = req_to_mmc_queue_req(new_req);
1742 mq->qcnt++;
1743 }
1744
1745 if (!mq->qcnt)
1746 return;
1747
1748 do {
1749 if (new_req) {
1750 /*
1751 * When 4KB native sector is enabled, only 8 blocks
1752 * multiple read or write is allowed
1753 */
1754 if (mmc_large_sector(card) &&
1755 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1756 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1757 new_req->rq_disk->disk_name);
1758 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1759 return;
1760 }
1761
1762 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1763 new_areq = &mqrq_cur->areq;
1764 } else
1765 new_areq = NULL;
1766
1767 old_areq = mmc_start_areq(card->host, new_areq, &status);
1768 if (!old_areq) {
1769 /*
1770 * We have just put the first request into the pipeline
1771 * and there is nothing more to do until it is
1772 * complete.
1773 */
1774 return;
1775 }
1776
1777 /*
1778 * An asynchronous request has been completed and we proceed
1779 * to handle the result of it.
1780 */
1781 mq_rq = container_of(old_areq, struct mmc_queue_req, areq);
1782 brq = &mq_rq->brq;
1783 old_req = mmc_queue_req_to_req(mq_rq);
1784 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1785 mmc_queue_bounce_post(mq_rq);
1786
1787 switch (status) {
1788 case MMC_BLK_SUCCESS:
1789 case MMC_BLK_PARTIAL:
1790 /*
1791 * A block was successfully transferred.
1792 */
1793 mmc_blk_reset_success(md, type);
1794
1795 req_pending = blk_end_request(old_req, BLK_STS_OK,
1796 brq->data.bytes_xfered);
1797 /*
1798 * If the blk_end_request function returns non-zero even
1799 * though all data has been transferred and no errors
1800 * were returned by the host controller, it's a bug.
1801 */
1802 if (status == MMC_BLK_SUCCESS && req_pending) {
1803 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1804 __func__, blk_rq_bytes(old_req),
1805 brq->data.bytes_xfered);
1806 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1807 return;
1808 }
1809 break;
1810 case MMC_BLK_CMD_ERR:
1811 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1812 if (mmc_blk_reset(md, card->host, type)) {
1813 if (req_pending)
1814 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1815 else
1816 mq->qcnt--;
1817 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1818 return;
1819 }
1820 if (!req_pending) {
1821 mq->qcnt--;
1822 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1823 return;
1824 }
1825 break;
1826 case MMC_BLK_RETRY:
1827 retune_retry_done = brq->retune_retry_done;
1828 if (retry++ < 5)
1829 break;
1830 /* Fall through */
1831 case MMC_BLK_ABORT:
1832 if (!mmc_blk_reset(md, card->host, type))
1833 break;
1834 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1835 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1836 return;
1837 case MMC_BLK_DATA_ERR: {
1838 int err;
1839
1840 err = mmc_blk_reset(md, card->host, type);
1841 if (!err)
1842 break;
1843 if (err == -ENODEV) {
1844 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1845 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1846 return;
1847 }
1848 /* Fall through */
1849 }
1850 case MMC_BLK_ECC_ERR:
1851 if (brq->data.blocks > 1) {
1852 /* Redo read one sector at a time */
1853 pr_warn("%s: retrying using single block read\n",
1854 old_req->rq_disk->disk_name);
1855 disable_multi = 1;
1856 break;
1857 }
1858 /*
1859 * After an error, we redo I/O one sector at a
1860 * time, so we only reach here after trying to
1861 * read a single sector.
1862 */
1863 req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1864 brq->data.blksz);
1865 if (!req_pending) {
1866 mq->qcnt--;
1867 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1868 return;
1869 }
1870 break;
1871 case MMC_BLK_NOMEDIUM:
1872 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1873 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1874 return;
1875 default:
1876 pr_err("%s: Unhandled return value (%d)",
1877 old_req->rq_disk->disk_name, status);
1878 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1879 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1880 return;
1881 }
1882
1883 if (req_pending) {
1884 /*
1885 * In case of a incomplete request
1886 * prepare it again and resend.
1887 */
1888 mmc_blk_rw_rq_prep(mq_rq, card,
1889 disable_multi, mq);
1890 mmc_start_areq(card->host,
1891 &mq_rq->areq, NULL);
1892 mq_rq->brq.retune_retry_done = retune_retry_done;
1893 }
1894 } while (req_pending);
1895
1896 mq->qcnt--;
1897 }
1898
1899 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1900 {
1901 int ret;
1902 struct mmc_blk_data *md = mq->blkdata;
1903 struct mmc_card *card = md->queue.card;
1904
1905 if (req && !mq->qcnt)
1906 /* claim host only for the first request */
1907 mmc_get_card(card);
1908
1909 ret = mmc_blk_part_switch(card, md);
1910 if (ret) {
1911 if (req) {
1912 blk_end_request_all(req, BLK_STS_IOERR);
1913 }
1914 goto out;
1915 }
1916
1917 if (req) {
1918 switch (req_op(req)) {
1919 case REQ_OP_DRV_IN:
1920 case REQ_OP_DRV_OUT:
1921 /*
1922 * Complete ongoing async transfer before issuing
1923 * ioctl()s
1924 */
1925 if (mq->qcnt)
1926 mmc_blk_issue_rw_rq(mq, NULL);
1927 mmc_blk_issue_drv_op(mq, req);
1928 break;
1929 case REQ_OP_DISCARD:
1930 /*
1931 * Complete ongoing async transfer before issuing
1932 * discard.
1933 */
1934 if (mq->qcnt)
1935 mmc_blk_issue_rw_rq(mq, NULL);
1936 mmc_blk_issue_discard_rq(mq, req);
1937 break;
1938 case REQ_OP_SECURE_ERASE:
1939 /*
1940 * Complete ongoing async transfer before issuing
1941 * secure erase.
1942 */
1943 if (mq->qcnt)
1944 mmc_blk_issue_rw_rq(mq, NULL);
1945 mmc_blk_issue_secdiscard_rq(mq, req);
1946 break;
1947 case REQ_OP_FLUSH:
1948 /*
1949 * Complete ongoing async transfer before issuing
1950 * flush.
1951 */
1952 if (mq->qcnt)
1953 mmc_blk_issue_rw_rq(mq, NULL);
1954 mmc_blk_issue_flush(mq, req);
1955 break;
1956 default:
1957 /* Normal request, just issue it */
1958 mmc_blk_issue_rw_rq(mq, req);
1959 card->host->context_info.is_waiting_last_req = false;
1960 break;
1961 }
1962 } else {
1963 /* No request, flushing the pipeline with NULL */
1964 mmc_blk_issue_rw_rq(mq, NULL);
1965 card->host->context_info.is_waiting_last_req = false;
1966 }
1967
1968 out:
1969 if (!mq->qcnt)
1970 mmc_put_card(card);
1971 }
1972
1973 static inline int mmc_blk_readonly(struct mmc_card *card)
1974 {
1975 return mmc_card_readonly(card) ||
1976 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1977 }
1978
1979 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1980 struct device *parent,
1981 sector_t size,
1982 bool default_ro,
1983 const char *subname,
1984 int area_type)
1985 {
1986 struct mmc_blk_data *md;
1987 int devidx, ret;
1988
1989 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
1990 if (devidx < 0)
1991 return ERR_PTR(devidx);
1992
1993 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1994 if (!md) {
1995 ret = -ENOMEM;
1996 goto out;
1997 }
1998
1999 md->area_type = area_type;
2000
2001 /*
2002 * Set the read-only status based on the supported commands
2003 * and the write protect switch.
2004 */
2005 md->read_only = mmc_blk_readonly(card);
2006
2007 md->disk = alloc_disk(perdev_minors);
2008 if (md->disk == NULL) {
2009 ret = -ENOMEM;
2010 goto err_kfree;
2011 }
2012
2013 spin_lock_init(&md->lock);
2014 INIT_LIST_HEAD(&md->part);
2015 md->usage = 1;
2016
2017 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2018 if (ret)
2019 goto err_putdisk;
2020
2021 md->queue.blkdata = md;
2022
2023 md->disk->major = MMC_BLOCK_MAJOR;
2024 md->disk->first_minor = devidx * perdev_minors;
2025 md->disk->fops = &mmc_bdops;
2026 md->disk->private_data = md;
2027 md->disk->queue = md->queue.queue;
2028 md->parent = parent;
2029 set_disk_ro(md->disk, md->read_only || default_ro);
2030 md->disk->flags = GENHD_FL_EXT_DEVT;
2031 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2032 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2033
2034 /*
2035 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2036 *
2037 * - be set for removable media with permanent block devices
2038 * - be unset for removable block devices with permanent media
2039 *
2040 * Since MMC block devices clearly fall under the second
2041 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2042 * should use the block device creation/destruction hotplug
2043 * messages to tell when the card is present.
2044 */
2045
2046 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2047 "mmcblk%u%s", card->host->index, subname ? subname : "");
2048
2049 if (mmc_card_mmc(card))
2050 blk_queue_logical_block_size(md->queue.queue,
2051 card->ext_csd.data_sector_size);
2052 else
2053 blk_queue_logical_block_size(md->queue.queue, 512);
2054
2055 set_capacity(md->disk, size);
2056
2057 if (mmc_host_cmd23(card->host)) {
2058 if ((mmc_card_mmc(card) &&
2059 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2060 (mmc_card_sd(card) &&
2061 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2062 md->flags |= MMC_BLK_CMD23;
2063 }
2064
2065 if (mmc_card_mmc(card) &&
2066 md->flags & MMC_BLK_CMD23 &&
2067 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2068 card->ext_csd.rel_sectors)) {
2069 md->flags |= MMC_BLK_REL_WR;
2070 blk_queue_write_cache(md->queue.queue, true, true);
2071 }
2072
2073 return md;
2074
2075 err_putdisk:
2076 put_disk(md->disk);
2077 err_kfree:
2078 kfree(md);
2079 out:
2080 ida_simple_remove(&mmc_blk_ida, devidx);
2081 return ERR_PTR(ret);
2082 }
2083
2084 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2085 {
2086 sector_t size;
2087
2088 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2089 /*
2090 * The EXT_CSD sector count is in number or 512 byte
2091 * sectors.
2092 */
2093 size = card->ext_csd.sectors;
2094 } else {
2095 /*
2096 * The CSD capacity field is in units of read_blkbits.
2097 * set_capacity takes units of 512 bytes.
2098 */
2099 size = (typeof(sector_t))card->csd.capacity
2100 << (card->csd.read_blkbits - 9);
2101 }
2102
2103 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2104 MMC_BLK_DATA_AREA_MAIN);
2105 }
2106
2107 static int mmc_blk_alloc_part(struct mmc_card *card,
2108 struct mmc_blk_data *md,
2109 unsigned int part_type,
2110 sector_t size,
2111 bool default_ro,
2112 const char *subname,
2113 int area_type)
2114 {
2115 char cap_str[10];
2116 struct mmc_blk_data *part_md;
2117
2118 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2119 subname, area_type);
2120 if (IS_ERR(part_md))
2121 return PTR_ERR(part_md);
2122 part_md->part_type = part_type;
2123 list_add(&part_md->part, &md->part);
2124
2125 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2126 cap_str, sizeof(cap_str));
2127 pr_info("%s: %s %s partition %u %s\n",
2128 part_md->disk->disk_name, mmc_card_id(card),
2129 mmc_card_name(card), part_md->part_type, cap_str);
2130 return 0;
2131 }
2132
2133 /* MMC Physical partitions consist of two boot partitions and
2134 * up to four general purpose partitions.
2135 * For each partition enabled in EXT_CSD a block device will be allocatedi
2136 * to provide access to the partition.
2137 */
2138
2139 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2140 {
2141 int idx, ret = 0;
2142
2143 if (!mmc_card_mmc(card))
2144 return 0;
2145
2146 for (idx = 0; idx < card->nr_parts; idx++) {
2147 if (card->part[idx].size) {
2148 ret = mmc_blk_alloc_part(card, md,
2149 card->part[idx].part_cfg,
2150 card->part[idx].size >> 9,
2151 card->part[idx].force_ro,
2152 card->part[idx].name,
2153 card->part[idx].area_type);
2154 if (ret)
2155 return ret;
2156 }
2157 }
2158
2159 return ret;
2160 }
2161
2162 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2163 {
2164 struct mmc_card *card;
2165
2166 if (md) {
2167 /*
2168 * Flush remaining requests and free queues. It
2169 * is freeing the queue that stops new requests
2170 * from being accepted.
2171 */
2172 card = md->queue.card;
2173 spin_lock_irq(md->queue.queue->queue_lock);
2174 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2175 spin_unlock_irq(md->queue.queue->queue_lock);
2176 blk_set_queue_dying(md->queue.queue);
2177 mmc_cleanup_queue(&md->queue);
2178 if (md->disk->flags & GENHD_FL_UP) {
2179 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2180 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2181 card->ext_csd.boot_ro_lockable)
2182 device_remove_file(disk_to_dev(md->disk),
2183 &md->power_ro_lock);
2184
2185 del_gendisk(md->disk);
2186 }
2187 mmc_blk_put(md);
2188 }
2189 }
2190
2191 static void mmc_blk_remove_parts(struct mmc_card *card,
2192 struct mmc_blk_data *md)
2193 {
2194 struct list_head *pos, *q;
2195 struct mmc_blk_data *part_md;
2196
2197 list_for_each_safe(pos, q, &md->part) {
2198 part_md = list_entry(pos, struct mmc_blk_data, part);
2199 list_del(pos);
2200 mmc_blk_remove_req(part_md);
2201 }
2202 }
2203
2204 static int mmc_add_disk(struct mmc_blk_data *md)
2205 {
2206 int ret;
2207 struct mmc_card *card = md->queue.card;
2208
2209 device_add_disk(md->parent, md->disk);
2210 md->force_ro.show = force_ro_show;
2211 md->force_ro.store = force_ro_store;
2212 sysfs_attr_init(&md->force_ro.attr);
2213 md->force_ro.attr.name = "force_ro";
2214 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2215 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2216 if (ret)
2217 goto force_ro_fail;
2218
2219 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2220 card->ext_csd.boot_ro_lockable) {
2221 umode_t mode;
2222
2223 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2224 mode = S_IRUGO;
2225 else
2226 mode = S_IRUGO | S_IWUSR;
2227
2228 md->power_ro_lock.show = power_ro_lock_show;
2229 md->power_ro_lock.store = power_ro_lock_store;
2230 sysfs_attr_init(&md->power_ro_lock.attr);
2231 md->power_ro_lock.attr.mode = mode;
2232 md->power_ro_lock.attr.name =
2233 "ro_lock_until_next_power_on";
2234 ret = device_create_file(disk_to_dev(md->disk),
2235 &md->power_ro_lock);
2236 if (ret)
2237 goto power_ro_lock_fail;
2238 }
2239 return ret;
2240
2241 power_ro_lock_fail:
2242 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2243 force_ro_fail:
2244 del_gendisk(md->disk);
2245
2246 return ret;
2247 }
2248
2249 static int mmc_blk_probe(struct mmc_card *card)
2250 {
2251 struct mmc_blk_data *md, *part_md;
2252 char cap_str[10];
2253
2254 /*
2255 * Check that the card supports the command class(es) we need.
2256 */
2257 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2258 return -ENODEV;
2259
2260 mmc_fixup_device(card, mmc_blk_fixups);
2261
2262 md = mmc_blk_alloc(card);
2263 if (IS_ERR(md))
2264 return PTR_ERR(md);
2265
2266 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2267 cap_str, sizeof(cap_str));
2268 pr_info("%s: %s %s %s %s\n",
2269 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2270 cap_str, md->read_only ? "(ro)" : "");
2271
2272 if (mmc_blk_alloc_parts(card, md))
2273 goto out;
2274
2275 dev_set_drvdata(&card->dev, md);
2276
2277 if (mmc_add_disk(md))
2278 goto out;
2279
2280 list_for_each_entry(part_md, &md->part, part) {
2281 if (mmc_add_disk(part_md))
2282 goto out;
2283 }
2284
2285 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2286 pm_runtime_use_autosuspend(&card->dev);
2287
2288 /*
2289 * Don't enable runtime PM for SD-combo cards here. Leave that
2290 * decision to be taken during the SDIO init sequence instead.
2291 */
2292 if (card->type != MMC_TYPE_SD_COMBO) {
2293 pm_runtime_set_active(&card->dev);
2294 pm_runtime_enable(&card->dev);
2295 }
2296
2297 return 0;
2298
2299 out:
2300 mmc_blk_remove_parts(card, md);
2301 mmc_blk_remove_req(md);
2302 return 0;
2303 }
2304
2305 static void mmc_blk_remove(struct mmc_card *card)
2306 {
2307 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2308
2309 mmc_blk_remove_parts(card, md);
2310 pm_runtime_get_sync(&card->dev);
2311 mmc_claim_host(card->host);
2312 mmc_blk_part_switch(card, md);
2313 mmc_release_host(card->host);
2314 if (card->type != MMC_TYPE_SD_COMBO)
2315 pm_runtime_disable(&card->dev);
2316 pm_runtime_put_noidle(&card->dev);
2317 mmc_blk_remove_req(md);
2318 dev_set_drvdata(&card->dev, NULL);
2319 }
2320
2321 static int _mmc_blk_suspend(struct mmc_card *card)
2322 {
2323 struct mmc_blk_data *part_md;
2324 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2325
2326 if (md) {
2327 mmc_queue_suspend(&md->queue);
2328 list_for_each_entry(part_md, &md->part, part) {
2329 mmc_queue_suspend(&part_md->queue);
2330 }
2331 }
2332 return 0;
2333 }
2334
2335 static void mmc_blk_shutdown(struct mmc_card *card)
2336 {
2337 _mmc_blk_suspend(card);
2338 }
2339
2340 #ifdef CONFIG_PM_SLEEP
2341 static int mmc_blk_suspend(struct device *dev)
2342 {
2343 struct mmc_card *card = mmc_dev_to_card(dev);
2344
2345 return _mmc_blk_suspend(card);
2346 }
2347
2348 static int mmc_blk_resume(struct device *dev)
2349 {
2350 struct mmc_blk_data *part_md;
2351 struct mmc_blk_data *md = dev_get_drvdata(dev);
2352
2353 if (md) {
2354 /*
2355 * Resume involves the card going into idle state,
2356 * so current partition is always the main one.
2357 */
2358 md->part_curr = md->part_type;
2359 mmc_queue_resume(&md->queue);
2360 list_for_each_entry(part_md, &md->part, part) {
2361 mmc_queue_resume(&part_md->queue);
2362 }
2363 }
2364 return 0;
2365 }
2366 #endif
2367
2368 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2369
2370 static struct mmc_driver mmc_driver = {
2371 .drv = {
2372 .name = "mmcblk",
2373 .pm = &mmc_blk_pm_ops,
2374 },
2375 .probe = mmc_blk_probe,
2376 .remove = mmc_blk_remove,
2377 .shutdown = mmc_blk_shutdown,
2378 };
2379
2380 static int __init mmc_blk_init(void)
2381 {
2382 int res;
2383
2384 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2385 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2386
2387 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2388
2389 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2390 if (res)
2391 goto out;
2392
2393 res = mmc_register_driver(&mmc_driver);
2394 if (res)
2395 goto out2;
2396
2397 return 0;
2398 out2:
2399 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2400 out:
2401 return res;
2402 }
2403
2404 static void __exit mmc_blk_exit(void)
2405 {
2406 mmc_unregister_driver(&mmc_driver);
2407 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2408 }
2409
2410 module_init(mmc_blk_init);
2411 module_exit(mmc_blk_exit);
2412
2413 MODULE_LICENSE("GPL");
2414 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2415