]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/core.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55 /*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
63
64 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
65
66 /*
67 * Enabling software CRCs on the data blocks can be a significant (30%)
68 * performance cost, and for other reasons may not always be desired.
69 * So we allow it it to be disabled.
70 */
71 bool use_spi_crc = 1;
72 module_param(use_spi_crc, bool, 0);
73
74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76 {
77 /*
78 * We use the system_freezable_wq, because of two reasons.
79 * First, it allows several works (not the same work item) to be
80 * executed simultaneously. Second, the queue becomes frozen when
81 * userspace becomes frozen during system PM.
82 */
83 return queue_delayed_work(system_freezable_wq, work, delay);
84 }
85
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87
88 /*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94 {
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118 {
119 }
120
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122
123 static inline void mmc_complete_cmd(struct mmc_request *mrq)
124 {
125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
126 complete_all(&mrq->cmd_completion);
127 }
128
129 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
130 {
131 if (!mrq->cap_cmd_during_tfr)
132 return;
133
134 mmc_complete_cmd(mrq);
135
136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
137 mmc_hostname(host), mrq->cmd->opcode);
138 }
139 EXPORT_SYMBOL(mmc_command_done);
140
141 /**
142 * mmc_request_done - finish processing an MMC request
143 * @host: MMC host which completed request
144 * @mrq: MMC request which request
145 *
146 * MMC drivers should call this function when they have completed
147 * their processing of a request.
148 */
149 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
150 {
151 struct mmc_command *cmd = mrq->cmd;
152 int err = cmd->error;
153
154 /* Flag re-tuning needed on CRC errors */
155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
158 (mrq->data && mrq->data->error == -EILSEQ) ||
159 (mrq->stop && mrq->stop->error == -EILSEQ)))
160 mmc_retune_needed(host);
161
162 if (err && cmd->retries && mmc_host_is_spi(host)) {
163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
164 cmd->retries = 0;
165 }
166
167 if (host->ongoing_mrq == mrq)
168 host->ongoing_mrq = NULL;
169
170 mmc_complete_cmd(mrq);
171
172 trace_mmc_request_done(host, mrq);
173
174 if (err && cmd->retries && !mmc_card_removed(host->card)) {
175 /*
176 * Request starter must handle retries - see
177 * mmc_wait_for_req_done().
178 */
179 if (mrq->done)
180 mrq->done(mrq);
181 } else {
182 mmc_should_fail_request(host, mrq);
183
184 if (!host->ongoing_mrq)
185 led_trigger_event(host->led, LED_OFF);
186
187 if (mrq->sbc) {
188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), mrq->sbc->opcode,
190 mrq->sbc->error,
191 mrq->sbc->resp[0], mrq->sbc->resp[1],
192 mrq->sbc->resp[2], mrq->sbc->resp[3]);
193 }
194
195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
196 mmc_hostname(host), cmd->opcode, err,
197 cmd->resp[0], cmd->resp[1],
198 cmd->resp[2], cmd->resp[3]);
199
200 if (mrq->data) {
201 pr_debug("%s: %d bytes transferred: %d\n",
202 mmc_hostname(host),
203 mrq->data->bytes_xfered, mrq->data->error);
204 }
205
206 if (mrq->stop) {
207 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
208 mmc_hostname(host), mrq->stop->opcode,
209 mrq->stop->error,
210 mrq->stop->resp[0], mrq->stop->resp[1],
211 mrq->stop->resp[2], mrq->stop->resp[3]);
212 }
213
214 if (mrq->done)
215 mrq->done(mrq);
216 }
217 }
218
219 EXPORT_SYMBOL(mmc_request_done);
220
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 int err;
224
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
231 }
232
233 /*
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 */
237 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
238 int tries = 500; /* Wait aprox 500ms at maximum */
239
240 while (host->ops->card_busy(host) && --tries)
241 mmc_delay(1);
242
243 if (tries == 0) {
244 mrq->cmd->error = -EBUSY;
245 mmc_request_done(host, mrq);
246 return;
247 }
248 }
249
250 if (mrq->cap_cmd_during_tfr) {
251 host->ongoing_mrq = mrq;
252 /*
253 * Retry path could come through here without having waiting on
254 * cmd_completion, so ensure it is reinitialised.
255 */
256 reinit_completion(&mrq->cmd_completion);
257 }
258
259 trace_mmc_request_start(host, mrq);
260
261 host->ops->request(host, mrq);
262 }
263
264 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
265 {
266 #ifdef CONFIG_MMC_DEBUG
267 unsigned int i, sz;
268 struct scatterlist *sg;
269 #endif
270 mmc_retune_hold(host);
271
272 if (mmc_card_removed(host->card))
273 return -ENOMEDIUM;
274
275 if (mrq->sbc) {
276 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
277 mmc_hostname(host), mrq->sbc->opcode,
278 mrq->sbc->arg, mrq->sbc->flags);
279 }
280
281 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
282 mmc_hostname(host), mrq->cmd->opcode,
283 mrq->cmd->arg, mrq->cmd->flags);
284
285 if (mrq->data) {
286 pr_debug("%s: blksz %d blocks %d flags %08x "
287 "tsac %d ms nsac %d\n",
288 mmc_hostname(host), mrq->data->blksz,
289 mrq->data->blocks, mrq->data->flags,
290 mrq->data->timeout_ns / 1000000,
291 mrq->data->timeout_clks);
292 }
293
294 if (mrq->stop) {
295 pr_debug("%s: CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host), mrq->stop->opcode,
297 mrq->stop->arg, mrq->stop->flags);
298 }
299
300 WARN_ON(!host->claimed);
301
302 mrq->cmd->error = 0;
303 mrq->cmd->mrq = mrq;
304 if (mrq->sbc) {
305 mrq->sbc->error = 0;
306 mrq->sbc->mrq = mrq;
307 }
308 if (mrq->data) {
309 if (mrq->data->blksz > host->max_blk_size ||
310 mrq->data->blocks > host->max_blk_count ||
311 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
312 return -EINVAL;
313 #ifdef CONFIG_MMC_DEBUG
314 sz = 0;
315 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
316 sz += sg->length;
317 if (sz != mrq->data->blocks * mrq->data->blksz)
318 return -EINVAL;
319 #endif
320
321 mrq->cmd->data = mrq->data;
322 mrq->data->error = 0;
323 mrq->data->mrq = mrq;
324 if (mrq->stop) {
325 mrq->data->stop = mrq->stop;
326 mrq->stop->error = 0;
327 mrq->stop->mrq = mrq;
328 }
329 }
330 led_trigger_event(host->led, LED_FULL);
331 __mmc_start_request(host, mrq);
332
333 return 0;
334 }
335
336 /**
337 * mmc_start_bkops - start BKOPS for supported cards
338 * @card: MMC card to start BKOPS
339 * @form_exception: A flag to indicate if this function was
340 * called due to an exception raised by the card
341 *
342 * Start background operations whenever requested.
343 * When the urgent BKOPS bit is set in a R1 command response
344 * then background operations should be started immediately.
345 */
346 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
347 {
348 int err;
349 int timeout;
350 bool use_busy_signal;
351
352 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
353 return;
354
355 err = mmc_read_bkops_status(card);
356 if (err) {
357 pr_err("%s: Failed to read bkops status: %d\n",
358 mmc_hostname(card->host), err);
359 return;
360 }
361
362 if (!card->ext_csd.raw_bkops_status)
363 return;
364
365 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
366 from_exception)
367 return;
368
369 mmc_claim_host(card->host);
370 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
371 timeout = MMC_BKOPS_MAX_TIMEOUT;
372 use_busy_signal = true;
373 } else {
374 timeout = 0;
375 use_busy_signal = false;
376 }
377
378 mmc_retune_hold(card->host);
379
380 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
381 EXT_CSD_BKOPS_START, 1, timeout, 0,
382 use_busy_signal, true, false);
383 if (err) {
384 pr_warn("%s: Error %d starting bkops\n",
385 mmc_hostname(card->host), err);
386 mmc_retune_release(card->host);
387 goto out;
388 }
389
390 /*
391 * For urgent bkops status (LEVEL_2 and more)
392 * bkops executed synchronously, otherwise
393 * the operation is in progress
394 */
395 if (!use_busy_signal)
396 mmc_card_set_doing_bkops(card);
397 else
398 mmc_retune_release(card->host);
399 out:
400 mmc_release_host(card->host);
401 }
402 EXPORT_SYMBOL(mmc_start_bkops);
403
404 /*
405 * mmc_wait_data_done() - done callback for data request
406 * @mrq: done data request
407 *
408 * Wakes up mmc context, passed as a callback to host controller driver
409 */
410 static void mmc_wait_data_done(struct mmc_request *mrq)
411 {
412 struct mmc_context_info *context_info = &mrq->host->context_info;
413
414 context_info->is_done_rcv = true;
415 wake_up_interruptible(&context_info->wait);
416 }
417
418 static void mmc_wait_done(struct mmc_request *mrq)
419 {
420 complete(&mrq->completion);
421 }
422
423 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
424 {
425 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
426
427 /*
428 * If there is an ongoing transfer, wait for the command line to become
429 * available.
430 */
431 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
432 wait_for_completion(&ongoing_mrq->cmd_completion);
433 }
434
435 /*
436 *__mmc_start_data_req() - starts data request
437 * @host: MMC host to start the request
438 * @mrq: data request to start
439 *
440 * Sets the done callback to be called when request is completed by the card.
441 * Starts data mmc request execution
442 * If an ongoing transfer is already in progress, wait for the command line
443 * to become available before sending another command.
444 */
445 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
446 {
447 int err;
448
449 mmc_wait_ongoing_tfr_cmd(host);
450
451 mrq->done = mmc_wait_data_done;
452 mrq->host = host;
453
454 init_completion(&mrq->cmd_completion);
455
456 err = mmc_start_request(host, mrq);
457 if (err) {
458 mrq->cmd->error = err;
459 mmc_complete_cmd(mrq);
460 mmc_wait_data_done(mrq);
461 }
462
463 return err;
464 }
465
466 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
467 {
468 int err;
469
470 mmc_wait_ongoing_tfr_cmd(host);
471
472 init_completion(&mrq->completion);
473 mrq->done = mmc_wait_done;
474
475 init_completion(&mrq->cmd_completion);
476
477 err = mmc_start_request(host, mrq);
478 if (err) {
479 mrq->cmd->error = err;
480 mmc_complete_cmd(mrq);
481 complete(&mrq->completion);
482 }
483
484 return err;
485 }
486
487 /*
488 * mmc_wait_for_data_req_done() - wait for request completed
489 * @host: MMC host to prepare the command.
490 * @mrq: MMC request to wait for
491 *
492 * Blocks MMC context till host controller will ack end of data request
493 * execution or new request notification arrives from the block layer.
494 * Handles command retries.
495 *
496 * Returns enum mmc_blk_status after checking errors.
497 */
498 static enum mmc_blk_status mmc_wait_for_data_req_done(struct mmc_host *host,
499 struct mmc_request *mrq)
500 {
501 struct mmc_command *cmd;
502 struct mmc_context_info *context_info = &host->context_info;
503 enum mmc_blk_status status;
504
505 while (1) {
506 wait_event_interruptible(context_info->wait,
507 (context_info->is_done_rcv ||
508 context_info->is_new_req));
509
510 if (context_info->is_done_rcv) {
511 context_info->is_done_rcv = false;
512 cmd = mrq->cmd;
513
514 if (!cmd->error || !cmd->retries ||
515 mmc_card_removed(host->card)) {
516 status = host->areq->err_check(host->card,
517 host->areq);
518 break; /* return status */
519 } else {
520 mmc_retune_recheck(host);
521 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
522 mmc_hostname(host),
523 cmd->opcode, cmd->error);
524 cmd->retries--;
525 cmd->error = 0;
526 __mmc_start_request(host, mrq);
527 continue; /* wait for done/new event again */
528 }
529 }
530
531 return MMC_BLK_NEW_REQUEST;
532 }
533 mmc_retune_release(host);
534 return status;
535 }
536
537 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
538 {
539 struct mmc_command *cmd;
540
541 while (1) {
542 wait_for_completion(&mrq->completion);
543
544 cmd = mrq->cmd;
545
546 /*
547 * If host has timed out waiting for the sanitize
548 * to complete, card might be still in programming state
549 * so let's try to bring the card out of programming
550 * state.
551 */
552 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
553 if (!mmc_interrupt_hpi(host->card)) {
554 pr_warn("%s: %s: Interrupted sanitize\n",
555 mmc_hostname(host), __func__);
556 cmd->error = 0;
557 break;
558 } else {
559 pr_err("%s: %s: Failed to interrupt sanitize\n",
560 mmc_hostname(host), __func__);
561 }
562 }
563 if (!cmd->error || !cmd->retries ||
564 mmc_card_removed(host->card))
565 break;
566
567 mmc_retune_recheck(host);
568
569 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
570 mmc_hostname(host), cmd->opcode, cmd->error);
571 cmd->retries--;
572 cmd->error = 0;
573 __mmc_start_request(host, mrq);
574 }
575
576 mmc_retune_release(host);
577 }
578 EXPORT_SYMBOL(mmc_wait_for_req_done);
579
580 /**
581 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
582 * @host: MMC host
583 * @mrq: MMC request
584 *
585 * mmc_is_req_done() is used with requests that have
586 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
587 * starting a request and before waiting for it to complete. That is,
588 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
589 * and before mmc_wait_for_req_done(). If it is called at other times the
590 * result is not meaningful.
591 */
592 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
593 {
594 if (host->areq)
595 return host->context_info.is_done_rcv;
596 else
597 return completion_done(&mrq->completion);
598 }
599 EXPORT_SYMBOL(mmc_is_req_done);
600
601 /**
602 * mmc_pre_req - Prepare for a new request
603 * @host: MMC host to prepare command
604 * @mrq: MMC request to prepare for
605 *
606 * mmc_pre_req() is called in prior to mmc_start_req() to let
607 * host prepare for the new request. Preparation of a request may be
608 * performed while another request is running on the host.
609 */
610 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
611 {
612 if (host->ops->pre_req)
613 host->ops->pre_req(host, mrq);
614 }
615
616 /**
617 * mmc_post_req - Post process a completed request
618 * @host: MMC host to post process command
619 * @mrq: MMC request to post process for
620 * @err: Error, if non zero, clean up any resources made in pre_req
621 *
622 * Let the host post process a completed request. Post processing of
623 * a request may be performed while another reuqest is running.
624 */
625 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
626 int err)
627 {
628 if (host->ops->post_req)
629 host->ops->post_req(host, mrq, err);
630 }
631
632 /**
633 * mmc_start_req - start a non-blocking request
634 * @host: MMC host to start command
635 * @areq: async request to start
636 * @error: out parameter returns 0 for success, otherwise non zero
637 *
638 * Start a new MMC custom command request for a host.
639 * If there is on ongoing async request wait for completion
640 * of that request and start the new one and return.
641 * Does not wait for the new request to complete.
642 *
643 * Returns the completed request, NULL in case of none completed.
644 * Wait for the an ongoing request (previoulsy started) to complete and
645 * return the completed request. If there is no ongoing request, NULL
646 * is returned without waiting. NULL is not an error condition.
647 */
648 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
649 struct mmc_async_req *areq,
650 enum mmc_blk_status *ret_stat)
651 {
652 enum mmc_blk_status status = MMC_BLK_SUCCESS;
653 int start_err = 0;
654 struct mmc_async_req *data = host->areq;
655
656 /* Prepare a new request */
657 if (areq)
658 mmc_pre_req(host, areq->mrq);
659
660 if (host->areq) {
661 status = mmc_wait_for_data_req_done(host, host->areq->mrq);
662 if (status == MMC_BLK_NEW_REQUEST) {
663 if (ret_stat)
664 *ret_stat = status;
665 /*
666 * The previous request was not completed,
667 * nothing to return
668 */
669 return NULL;
670 }
671 /*
672 * Check BKOPS urgency for each R1 response
673 */
674 if (host->card && mmc_card_mmc(host->card) &&
675 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
676 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
677 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
678
679 /* Cancel the prepared request */
680 if (areq)
681 mmc_post_req(host, areq->mrq, -EINVAL);
682
683 mmc_start_bkops(host->card, true);
684
685 /* prepare the request again */
686 if (areq)
687 mmc_pre_req(host, areq->mrq);
688 }
689 }
690
691 if (status == MMC_BLK_SUCCESS && areq)
692 start_err = __mmc_start_data_req(host, areq->mrq);
693
694 if (host->areq)
695 mmc_post_req(host, host->areq->mrq, 0);
696
697 /* Cancel a prepared request if it was not started. */
698 if ((status != MMC_BLK_SUCCESS || start_err) && areq)
699 mmc_post_req(host, areq->mrq, -EINVAL);
700
701 if (status != MMC_BLK_SUCCESS)
702 host->areq = NULL;
703 else
704 host->areq = areq;
705
706 if (ret_stat)
707 *ret_stat = status;
708 return data;
709 }
710 EXPORT_SYMBOL(mmc_start_req);
711
712 /**
713 * mmc_wait_for_req - start a request and wait for completion
714 * @host: MMC host to start command
715 * @mrq: MMC request to start
716 *
717 * Start a new MMC custom command request for a host, and wait
718 * for the command to complete. In the case of 'cap_cmd_during_tfr'
719 * requests, the transfer is ongoing and the caller can issue further
720 * commands that do not use the data lines, and then wait by calling
721 * mmc_wait_for_req_done().
722 * Does not attempt to parse the response.
723 */
724 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
725 {
726 __mmc_start_req(host, mrq);
727
728 if (!mrq->cap_cmd_during_tfr)
729 mmc_wait_for_req_done(host, mrq);
730 }
731 EXPORT_SYMBOL(mmc_wait_for_req);
732
733 /**
734 * mmc_interrupt_hpi - Issue for High priority Interrupt
735 * @card: the MMC card associated with the HPI transfer
736 *
737 * Issued High Priority Interrupt, and check for card status
738 * until out-of prg-state.
739 */
740 int mmc_interrupt_hpi(struct mmc_card *card)
741 {
742 int err;
743 u32 status;
744 unsigned long prg_wait;
745
746 if (!card->ext_csd.hpi_en) {
747 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
748 return 1;
749 }
750
751 mmc_claim_host(card->host);
752 err = mmc_send_status(card, &status);
753 if (err) {
754 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
755 goto out;
756 }
757
758 switch (R1_CURRENT_STATE(status)) {
759 case R1_STATE_IDLE:
760 case R1_STATE_READY:
761 case R1_STATE_STBY:
762 case R1_STATE_TRAN:
763 /*
764 * In idle and transfer states, HPI is not needed and the caller
765 * can issue the next intended command immediately
766 */
767 goto out;
768 case R1_STATE_PRG:
769 break;
770 default:
771 /* In all other states, it's illegal to issue HPI */
772 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
773 mmc_hostname(card->host), R1_CURRENT_STATE(status));
774 err = -EINVAL;
775 goto out;
776 }
777
778 err = mmc_send_hpi_cmd(card, &status);
779 if (err)
780 goto out;
781
782 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
783 do {
784 err = mmc_send_status(card, &status);
785
786 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
787 break;
788 if (time_after(jiffies, prg_wait))
789 err = -ETIMEDOUT;
790 } while (!err);
791
792 out:
793 mmc_release_host(card->host);
794 return err;
795 }
796 EXPORT_SYMBOL(mmc_interrupt_hpi);
797
798 /**
799 * mmc_wait_for_cmd - start a command and wait for completion
800 * @host: MMC host to start command
801 * @cmd: MMC command to start
802 * @retries: maximum number of retries
803 *
804 * Start a new MMC command for a host, and wait for the command
805 * to complete. Return any error that occurred while the command
806 * was executing. Do not attempt to parse the response.
807 */
808 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
809 {
810 struct mmc_request mrq = {NULL};
811
812 WARN_ON(!host->claimed);
813
814 memset(cmd->resp, 0, sizeof(cmd->resp));
815 cmd->retries = retries;
816
817 mrq.cmd = cmd;
818 cmd->data = NULL;
819
820 mmc_wait_for_req(host, &mrq);
821
822 return cmd->error;
823 }
824
825 EXPORT_SYMBOL(mmc_wait_for_cmd);
826
827 /**
828 * mmc_stop_bkops - stop ongoing BKOPS
829 * @card: MMC card to check BKOPS
830 *
831 * Send HPI command to stop ongoing background operations to
832 * allow rapid servicing of foreground operations, e.g. read/
833 * writes. Wait until the card comes out of the programming state
834 * to avoid errors in servicing read/write requests.
835 */
836 int mmc_stop_bkops(struct mmc_card *card)
837 {
838 int err = 0;
839
840 err = mmc_interrupt_hpi(card);
841
842 /*
843 * If err is EINVAL, we can't issue an HPI.
844 * It should complete the BKOPS.
845 */
846 if (!err || (err == -EINVAL)) {
847 mmc_card_clr_doing_bkops(card);
848 mmc_retune_release(card->host);
849 err = 0;
850 }
851
852 return err;
853 }
854 EXPORT_SYMBOL(mmc_stop_bkops);
855
856 int mmc_read_bkops_status(struct mmc_card *card)
857 {
858 int err;
859 u8 *ext_csd;
860
861 mmc_claim_host(card->host);
862 err = mmc_get_ext_csd(card, &ext_csd);
863 mmc_release_host(card->host);
864 if (err)
865 return err;
866
867 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
868 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
869 kfree(ext_csd);
870 return 0;
871 }
872 EXPORT_SYMBOL(mmc_read_bkops_status);
873
874 /**
875 * mmc_set_data_timeout - set the timeout for a data command
876 * @data: data phase for command
877 * @card: the MMC card associated with the data transfer
878 *
879 * Computes the data timeout parameters according to the
880 * correct algorithm given the card type.
881 */
882 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
883 {
884 unsigned int mult;
885
886 /*
887 * SDIO cards only define an upper 1 s limit on access.
888 */
889 if (mmc_card_sdio(card)) {
890 data->timeout_ns = 1000000000;
891 data->timeout_clks = 0;
892 return;
893 }
894
895 /*
896 * SD cards use a 100 multiplier rather than 10
897 */
898 mult = mmc_card_sd(card) ? 100 : 10;
899
900 /*
901 * Scale up the multiplier (and therefore the timeout) by
902 * the r2w factor for writes.
903 */
904 if (data->flags & MMC_DATA_WRITE)
905 mult <<= card->csd.r2w_factor;
906
907 data->timeout_ns = card->csd.tacc_ns * mult;
908 data->timeout_clks = card->csd.tacc_clks * mult;
909
910 /*
911 * SD cards also have an upper limit on the timeout.
912 */
913 if (mmc_card_sd(card)) {
914 unsigned int timeout_us, limit_us;
915
916 timeout_us = data->timeout_ns / 1000;
917 if (card->host->ios.clock)
918 timeout_us += data->timeout_clks * 1000 /
919 (card->host->ios.clock / 1000);
920
921 if (data->flags & MMC_DATA_WRITE)
922 /*
923 * The MMC spec "It is strongly recommended
924 * for hosts to implement more than 500ms
925 * timeout value even if the card indicates
926 * the 250ms maximum busy length." Even the
927 * previous value of 300ms is known to be
928 * insufficient for some cards.
929 */
930 limit_us = 3000000;
931 else
932 limit_us = 100000;
933
934 /*
935 * SDHC cards always use these fixed values.
936 */
937 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
938 data->timeout_ns = limit_us * 1000;
939 data->timeout_clks = 0;
940 }
941
942 /* assign limit value if invalid */
943 if (timeout_us == 0)
944 data->timeout_ns = limit_us * 1000;
945 }
946
947 /*
948 * Some cards require longer data read timeout than indicated in CSD.
949 * Address this by setting the read timeout to a "reasonably high"
950 * value. For the cards tested, 600ms has proven enough. If necessary,
951 * this value can be increased if other problematic cards require this.
952 */
953 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
954 data->timeout_ns = 600000000;
955 data->timeout_clks = 0;
956 }
957
958 /*
959 * Some cards need very high timeouts if driven in SPI mode.
960 * The worst observed timeout was 900ms after writing a
961 * continuous stream of data until the internal logic
962 * overflowed.
963 */
964 if (mmc_host_is_spi(card->host)) {
965 if (data->flags & MMC_DATA_WRITE) {
966 if (data->timeout_ns < 1000000000)
967 data->timeout_ns = 1000000000; /* 1s */
968 } else {
969 if (data->timeout_ns < 100000000)
970 data->timeout_ns = 100000000; /* 100ms */
971 }
972 }
973 }
974 EXPORT_SYMBOL(mmc_set_data_timeout);
975
976 /**
977 * mmc_align_data_size - pads a transfer size to a more optimal value
978 * @card: the MMC card associated with the data transfer
979 * @sz: original transfer size
980 *
981 * Pads the original data size with a number of extra bytes in
982 * order to avoid controller bugs and/or performance hits
983 * (e.g. some controllers revert to PIO for certain sizes).
984 *
985 * Returns the improved size, which might be unmodified.
986 *
987 * Note that this function is only relevant when issuing a
988 * single scatter gather entry.
989 */
990 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
991 {
992 /*
993 * FIXME: We don't have a system for the controller to tell
994 * the core about its problems yet, so for now we just 32-bit
995 * align the size.
996 */
997 sz = ((sz + 3) / 4) * 4;
998
999 return sz;
1000 }
1001 EXPORT_SYMBOL(mmc_align_data_size);
1002
1003 /**
1004 * __mmc_claim_host - exclusively claim a host
1005 * @host: mmc host to claim
1006 * @abort: whether or not the operation should be aborted
1007 *
1008 * Claim a host for a set of operations. If @abort is non null and
1009 * dereference a non-zero value then this will return prematurely with
1010 * that non-zero value without acquiring the lock. Returns zero
1011 * with the lock held otherwise.
1012 */
1013 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1014 {
1015 DECLARE_WAITQUEUE(wait, current);
1016 unsigned long flags;
1017 int stop;
1018 bool pm = false;
1019
1020 might_sleep();
1021
1022 add_wait_queue(&host->wq, &wait);
1023 spin_lock_irqsave(&host->lock, flags);
1024 while (1) {
1025 set_current_state(TASK_UNINTERRUPTIBLE);
1026 stop = abort ? atomic_read(abort) : 0;
1027 if (stop || !host->claimed || host->claimer == current)
1028 break;
1029 spin_unlock_irqrestore(&host->lock, flags);
1030 schedule();
1031 spin_lock_irqsave(&host->lock, flags);
1032 }
1033 set_current_state(TASK_RUNNING);
1034 if (!stop) {
1035 host->claimed = 1;
1036 host->claimer = current;
1037 host->claim_cnt += 1;
1038 if (host->claim_cnt == 1)
1039 pm = true;
1040 } else
1041 wake_up(&host->wq);
1042 spin_unlock_irqrestore(&host->lock, flags);
1043 remove_wait_queue(&host->wq, &wait);
1044
1045 if (pm)
1046 pm_runtime_get_sync(mmc_dev(host));
1047
1048 return stop;
1049 }
1050 EXPORT_SYMBOL(__mmc_claim_host);
1051
1052 /**
1053 * mmc_release_host - release a host
1054 * @host: mmc host to release
1055 *
1056 * Release a MMC host, allowing others to claim the host
1057 * for their operations.
1058 */
1059 void mmc_release_host(struct mmc_host *host)
1060 {
1061 unsigned long flags;
1062
1063 WARN_ON(!host->claimed);
1064
1065 spin_lock_irqsave(&host->lock, flags);
1066 if (--host->claim_cnt) {
1067 /* Release for nested claim */
1068 spin_unlock_irqrestore(&host->lock, flags);
1069 } else {
1070 host->claimed = 0;
1071 host->claimer = NULL;
1072 spin_unlock_irqrestore(&host->lock, flags);
1073 wake_up(&host->wq);
1074 pm_runtime_mark_last_busy(mmc_dev(host));
1075 pm_runtime_put_autosuspend(mmc_dev(host));
1076 }
1077 }
1078 EXPORT_SYMBOL(mmc_release_host);
1079
1080 /*
1081 * This is a helper function, which fetches a runtime pm reference for the
1082 * card device and also claims the host.
1083 */
1084 void mmc_get_card(struct mmc_card *card)
1085 {
1086 pm_runtime_get_sync(&card->dev);
1087 mmc_claim_host(card->host);
1088 }
1089 EXPORT_SYMBOL(mmc_get_card);
1090
1091 /*
1092 * This is a helper function, which releases the host and drops the runtime
1093 * pm reference for the card device.
1094 */
1095 void mmc_put_card(struct mmc_card *card)
1096 {
1097 mmc_release_host(card->host);
1098 pm_runtime_mark_last_busy(&card->dev);
1099 pm_runtime_put_autosuspend(&card->dev);
1100 }
1101 EXPORT_SYMBOL(mmc_put_card);
1102
1103 /*
1104 * Internal function that does the actual ios call to the host driver,
1105 * optionally printing some debug output.
1106 */
1107 static inline void mmc_set_ios(struct mmc_host *host)
1108 {
1109 struct mmc_ios *ios = &host->ios;
1110
1111 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1112 "width %u timing %u\n",
1113 mmc_hostname(host), ios->clock, ios->bus_mode,
1114 ios->power_mode, ios->chip_select, ios->vdd,
1115 1 << ios->bus_width, ios->timing);
1116
1117 host->ops->set_ios(host, ios);
1118 }
1119
1120 /*
1121 * Control chip select pin on a host.
1122 */
1123 void mmc_set_chip_select(struct mmc_host *host, int mode)
1124 {
1125 host->ios.chip_select = mode;
1126 mmc_set_ios(host);
1127 }
1128
1129 /*
1130 * Sets the host clock to the highest possible frequency that
1131 * is below "hz".
1132 */
1133 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1134 {
1135 WARN_ON(hz && hz < host->f_min);
1136
1137 if (hz > host->f_max)
1138 hz = host->f_max;
1139
1140 host->ios.clock = hz;
1141 mmc_set_ios(host);
1142 }
1143
1144 int mmc_execute_tuning(struct mmc_card *card)
1145 {
1146 struct mmc_host *host = card->host;
1147 u32 opcode;
1148 int err;
1149
1150 if (!host->ops->execute_tuning)
1151 return 0;
1152
1153 if (mmc_card_mmc(card))
1154 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1155 else
1156 opcode = MMC_SEND_TUNING_BLOCK;
1157
1158 err = host->ops->execute_tuning(host, opcode);
1159
1160 if (err)
1161 pr_err("%s: tuning execution failed: %d\n",
1162 mmc_hostname(host), err);
1163 else
1164 mmc_retune_enable(host);
1165
1166 return err;
1167 }
1168
1169 /*
1170 * Change the bus mode (open drain/push-pull) of a host.
1171 */
1172 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1173 {
1174 host->ios.bus_mode = mode;
1175 mmc_set_ios(host);
1176 }
1177
1178 /*
1179 * Change data bus width of a host.
1180 */
1181 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1182 {
1183 host->ios.bus_width = width;
1184 mmc_set_ios(host);
1185 }
1186
1187 /*
1188 * Set initial state after a power cycle or a hw_reset.
1189 */
1190 void mmc_set_initial_state(struct mmc_host *host)
1191 {
1192 mmc_retune_disable(host);
1193
1194 if (mmc_host_is_spi(host))
1195 host->ios.chip_select = MMC_CS_HIGH;
1196 else
1197 host->ios.chip_select = MMC_CS_DONTCARE;
1198 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1199 host->ios.bus_width = MMC_BUS_WIDTH_1;
1200 host->ios.timing = MMC_TIMING_LEGACY;
1201 host->ios.drv_type = 0;
1202 host->ios.enhanced_strobe = false;
1203
1204 /*
1205 * Make sure we are in non-enhanced strobe mode before we
1206 * actually enable it in ext_csd.
1207 */
1208 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1209 host->ops->hs400_enhanced_strobe)
1210 host->ops->hs400_enhanced_strobe(host, &host->ios);
1211
1212 mmc_set_ios(host);
1213 }
1214
1215 /**
1216 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1217 * @vdd: voltage (mV)
1218 * @low_bits: prefer low bits in boundary cases
1219 *
1220 * This function returns the OCR bit number according to the provided @vdd
1221 * value. If conversion is not possible a negative errno value returned.
1222 *
1223 * Depending on the @low_bits flag the function prefers low or high OCR bits
1224 * on boundary voltages. For example,
1225 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1226 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1227 *
1228 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1229 */
1230 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1231 {
1232 const int max_bit = ilog2(MMC_VDD_35_36);
1233 int bit;
1234
1235 if (vdd < 1650 || vdd > 3600)
1236 return -EINVAL;
1237
1238 if (vdd >= 1650 && vdd <= 1950)
1239 return ilog2(MMC_VDD_165_195);
1240
1241 if (low_bits)
1242 vdd -= 1;
1243
1244 /* Base 2000 mV, step 100 mV, bit's base 8. */
1245 bit = (vdd - 2000) / 100 + 8;
1246 if (bit > max_bit)
1247 return max_bit;
1248 return bit;
1249 }
1250
1251 /**
1252 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1253 * @vdd_min: minimum voltage value (mV)
1254 * @vdd_max: maximum voltage value (mV)
1255 *
1256 * This function returns the OCR mask bits according to the provided @vdd_min
1257 * and @vdd_max values. If conversion is not possible the function returns 0.
1258 *
1259 * Notes wrt boundary cases:
1260 * This function sets the OCR bits for all boundary voltages, for example
1261 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1262 * MMC_VDD_34_35 mask.
1263 */
1264 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1265 {
1266 u32 mask = 0;
1267
1268 if (vdd_max < vdd_min)
1269 return 0;
1270
1271 /* Prefer high bits for the boundary vdd_max values. */
1272 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1273 if (vdd_max < 0)
1274 return 0;
1275
1276 /* Prefer low bits for the boundary vdd_min values. */
1277 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1278 if (vdd_min < 0)
1279 return 0;
1280
1281 /* Fill the mask, from max bit to min bit. */
1282 while (vdd_max >= vdd_min)
1283 mask |= 1 << vdd_max--;
1284
1285 return mask;
1286 }
1287 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1288
1289 #ifdef CONFIG_OF
1290
1291 /**
1292 * mmc_of_parse_voltage - return mask of supported voltages
1293 * @np: The device node need to be parsed.
1294 * @mask: mask of voltages available for MMC/SD/SDIO
1295 *
1296 * Parse the "voltage-ranges" DT property, returning zero if it is not
1297 * found, negative errno if the voltage-range specification is invalid,
1298 * or one if the voltage-range is specified and successfully parsed.
1299 */
1300 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1301 {
1302 const u32 *voltage_ranges;
1303 int num_ranges, i;
1304
1305 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1306 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1307 if (!voltage_ranges) {
1308 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1309 return 0;
1310 }
1311 if (!num_ranges) {
1312 pr_err("%s: voltage-ranges empty\n", np->full_name);
1313 return -EINVAL;
1314 }
1315
1316 for (i = 0; i < num_ranges; i++) {
1317 const int j = i * 2;
1318 u32 ocr_mask;
1319
1320 ocr_mask = mmc_vddrange_to_ocrmask(
1321 be32_to_cpu(voltage_ranges[j]),
1322 be32_to_cpu(voltage_ranges[j + 1]));
1323 if (!ocr_mask) {
1324 pr_err("%s: voltage-range #%d is invalid\n",
1325 np->full_name, i);
1326 return -EINVAL;
1327 }
1328 *mask |= ocr_mask;
1329 }
1330
1331 return 1;
1332 }
1333 EXPORT_SYMBOL(mmc_of_parse_voltage);
1334
1335 #endif /* CONFIG_OF */
1336
1337 static int mmc_of_get_func_num(struct device_node *node)
1338 {
1339 u32 reg;
1340 int ret;
1341
1342 ret = of_property_read_u32(node, "reg", &reg);
1343 if (ret < 0)
1344 return ret;
1345
1346 return reg;
1347 }
1348
1349 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1350 unsigned func_num)
1351 {
1352 struct device_node *node;
1353
1354 if (!host->parent || !host->parent->of_node)
1355 return NULL;
1356
1357 for_each_child_of_node(host->parent->of_node, node) {
1358 if (mmc_of_get_func_num(node) == func_num)
1359 return node;
1360 }
1361
1362 return NULL;
1363 }
1364
1365 #ifdef CONFIG_REGULATOR
1366
1367 /**
1368 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1369 * @vdd_bit: OCR bit number
1370 * @min_uV: minimum voltage value (mV)
1371 * @max_uV: maximum voltage value (mV)
1372 *
1373 * This function returns the voltage range according to the provided OCR
1374 * bit number. If conversion is not possible a negative errno value returned.
1375 */
1376 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1377 {
1378 int tmp;
1379
1380 if (!vdd_bit)
1381 return -EINVAL;
1382
1383 /*
1384 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1385 * bits this regulator doesn't quite support ... don't
1386 * be too picky, most cards and regulators are OK with
1387 * a 0.1V range goof (it's a small error percentage).
1388 */
1389 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1390 if (tmp == 0) {
1391 *min_uV = 1650 * 1000;
1392 *max_uV = 1950 * 1000;
1393 } else {
1394 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1395 *max_uV = *min_uV + 100 * 1000;
1396 }
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * mmc_regulator_get_ocrmask - return mask of supported voltages
1403 * @supply: regulator to use
1404 *
1405 * This returns either a negative errno, or a mask of voltages that
1406 * can be provided to MMC/SD/SDIO devices using the specified voltage
1407 * regulator. This would normally be called before registering the
1408 * MMC host adapter.
1409 */
1410 int mmc_regulator_get_ocrmask(struct regulator *supply)
1411 {
1412 int result = 0;
1413 int count;
1414 int i;
1415 int vdd_uV;
1416 int vdd_mV;
1417
1418 count = regulator_count_voltages(supply);
1419 if (count < 0)
1420 return count;
1421
1422 for (i = 0; i < count; i++) {
1423 vdd_uV = regulator_list_voltage(supply, i);
1424 if (vdd_uV <= 0)
1425 continue;
1426
1427 vdd_mV = vdd_uV / 1000;
1428 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1429 }
1430
1431 if (!result) {
1432 vdd_uV = regulator_get_voltage(supply);
1433 if (vdd_uV <= 0)
1434 return vdd_uV;
1435
1436 vdd_mV = vdd_uV / 1000;
1437 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1438 }
1439
1440 return result;
1441 }
1442 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1443
1444 /**
1445 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1446 * @mmc: the host to regulate
1447 * @supply: regulator to use
1448 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1449 *
1450 * Returns zero on success, else negative errno.
1451 *
1452 * MMC host drivers may use this to enable or disable a regulator using
1453 * a particular supply voltage. This would normally be called from the
1454 * set_ios() method.
1455 */
1456 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1457 struct regulator *supply,
1458 unsigned short vdd_bit)
1459 {
1460 int result = 0;
1461 int min_uV, max_uV;
1462
1463 if (vdd_bit) {
1464 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1465
1466 result = regulator_set_voltage(supply, min_uV, max_uV);
1467 if (result == 0 && !mmc->regulator_enabled) {
1468 result = regulator_enable(supply);
1469 if (!result)
1470 mmc->regulator_enabled = true;
1471 }
1472 } else if (mmc->regulator_enabled) {
1473 result = regulator_disable(supply);
1474 if (result == 0)
1475 mmc->regulator_enabled = false;
1476 }
1477
1478 if (result)
1479 dev_err(mmc_dev(mmc),
1480 "could not set regulator OCR (%d)\n", result);
1481 return result;
1482 }
1483 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1484
1485 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1486 int min_uV, int target_uV,
1487 int max_uV)
1488 {
1489 /*
1490 * Check if supported first to avoid errors since we may try several
1491 * signal levels during power up and don't want to show errors.
1492 */
1493 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1494 return -EINVAL;
1495
1496 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1497 max_uV);
1498 }
1499
1500 /**
1501 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1502 *
1503 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1504 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1505 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1506 * SD card spec also define VQMMC in terms of VMMC.
1507 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1508 *
1509 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1510 * requested voltage. This is definitely a good idea for UHS where there's a
1511 * separate regulator on the card that's trying to make 1.8V and it's best if
1512 * we match.
1513 *
1514 * This function is expected to be used by a controller's
1515 * start_signal_voltage_switch() function.
1516 */
1517 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1518 {
1519 struct device *dev = mmc_dev(mmc);
1520 int ret, volt, min_uV, max_uV;
1521
1522 /* If no vqmmc supply then we can't change the voltage */
1523 if (IS_ERR(mmc->supply.vqmmc))
1524 return -EINVAL;
1525
1526 switch (ios->signal_voltage) {
1527 case MMC_SIGNAL_VOLTAGE_120:
1528 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1529 1100000, 1200000, 1300000);
1530 case MMC_SIGNAL_VOLTAGE_180:
1531 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1532 1700000, 1800000, 1950000);
1533 case MMC_SIGNAL_VOLTAGE_330:
1534 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1535 if (ret < 0)
1536 return ret;
1537
1538 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1539 __func__, volt, max_uV);
1540
1541 min_uV = max(volt - 300000, 2700000);
1542 max_uV = min(max_uV + 200000, 3600000);
1543
1544 /*
1545 * Due to a limitation in the current implementation of
1546 * regulator_set_voltage_triplet() which is taking the lowest
1547 * voltage possible if below the target, search for a suitable
1548 * voltage in two steps and try to stay close to vmmc
1549 * with a 0.3V tolerance at first.
1550 */
1551 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1552 min_uV, volt, max_uV))
1553 return 0;
1554
1555 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1556 2700000, volt, 3600000);
1557 default:
1558 return -EINVAL;
1559 }
1560 }
1561 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1562
1563 #endif /* CONFIG_REGULATOR */
1564
1565 int mmc_regulator_get_supply(struct mmc_host *mmc)
1566 {
1567 struct device *dev = mmc_dev(mmc);
1568 int ret;
1569
1570 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1571 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1572
1573 if (IS_ERR(mmc->supply.vmmc)) {
1574 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1575 return -EPROBE_DEFER;
1576 dev_dbg(dev, "No vmmc regulator found\n");
1577 } else {
1578 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1579 if (ret > 0)
1580 mmc->ocr_avail = ret;
1581 else
1582 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1583 }
1584
1585 if (IS_ERR(mmc->supply.vqmmc)) {
1586 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1587 return -EPROBE_DEFER;
1588 dev_dbg(dev, "No vqmmc regulator found\n");
1589 }
1590
1591 return 0;
1592 }
1593 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1594
1595 /*
1596 * Mask off any voltages we don't support and select
1597 * the lowest voltage
1598 */
1599 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1600 {
1601 int bit;
1602
1603 /*
1604 * Sanity check the voltages that the card claims to
1605 * support.
1606 */
1607 if (ocr & 0x7F) {
1608 dev_warn(mmc_dev(host),
1609 "card claims to support voltages below defined range\n");
1610 ocr &= ~0x7F;
1611 }
1612
1613 ocr &= host->ocr_avail;
1614 if (!ocr) {
1615 dev_warn(mmc_dev(host), "no support for card's volts\n");
1616 return 0;
1617 }
1618
1619 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1620 bit = ffs(ocr) - 1;
1621 ocr &= 3 << bit;
1622 mmc_power_cycle(host, ocr);
1623 } else {
1624 bit = fls(ocr) - 1;
1625 ocr &= 3 << bit;
1626 if (bit != host->ios.vdd)
1627 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1628 }
1629
1630 return ocr;
1631 }
1632
1633 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1634 {
1635 int err = 0;
1636 int old_signal_voltage = host->ios.signal_voltage;
1637
1638 host->ios.signal_voltage = signal_voltage;
1639 if (host->ops->start_signal_voltage_switch)
1640 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1641
1642 if (err)
1643 host->ios.signal_voltage = old_signal_voltage;
1644
1645 return err;
1646
1647 }
1648
1649 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1650 {
1651 struct mmc_command cmd = {0};
1652 int err = 0;
1653 u32 clock;
1654
1655 /*
1656 * Send CMD11 only if the request is to switch the card to
1657 * 1.8V signalling.
1658 */
1659 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1660 return __mmc_set_signal_voltage(host, signal_voltage);
1661
1662 /*
1663 * If we cannot switch voltages, return failure so the caller
1664 * can continue without UHS mode
1665 */
1666 if (!host->ops->start_signal_voltage_switch)
1667 return -EPERM;
1668 if (!host->ops->card_busy)
1669 pr_warn("%s: cannot verify signal voltage switch\n",
1670 mmc_hostname(host));
1671
1672 cmd.opcode = SD_SWITCH_VOLTAGE;
1673 cmd.arg = 0;
1674 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1675
1676 err = mmc_wait_for_cmd(host, &cmd, 0);
1677 if (err)
1678 return err;
1679
1680 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1681 return -EIO;
1682
1683 /*
1684 * The card should drive cmd and dat[0:3] low immediately
1685 * after the response of cmd11, but wait 1 ms to be sure
1686 */
1687 mmc_delay(1);
1688 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1689 err = -EAGAIN;
1690 goto power_cycle;
1691 }
1692 /*
1693 * During a signal voltage level switch, the clock must be gated
1694 * for 5 ms according to the SD spec
1695 */
1696 clock = host->ios.clock;
1697 host->ios.clock = 0;
1698 mmc_set_ios(host);
1699
1700 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1701 /*
1702 * Voltages may not have been switched, but we've already
1703 * sent CMD11, so a power cycle is required anyway
1704 */
1705 err = -EAGAIN;
1706 goto power_cycle;
1707 }
1708
1709 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1710 mmc_delay(10);
1711 host->ios.clock = clock;
1712 mmc_set_ios(host);
1713
1714 /* Wait for at least 1 ms according to spec */
1715 mmc_delay(1);
1716
1717 /*
1718 * Failure to switch is indicated by the card holding
1719 * dat[0:3] low
1720 */
1721 if (host->ops->card_busy && host->ops->card_busy(host))
1722 err = -EAGAIN;
1723
1724 power_cycle:
1725 if (err) {
1726 pr_debug("%s: Signal voltage switch failed, "
1727 "power cycling card\n", mmc_hostname(host));
1728 mmc_power_cycle(host, ocr);
1729 }
1730
1731 return err;
1732 }
1733
1734 /*
1735 * Select timing parameters for host.
1736 */
1737 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1738 {
1739 host->ios.timing = timing;
1740 mmc_set_ios(host);
1741 }
1742
1743 /*
1744 * Select appropriate driver type for host.
1745 */
1746 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1747 {
1748 host->ios.drv_type = drv_type;
1749 mmc_set_ios(host);
1750 }
1751
1752 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1753 int card_drv_type, int *drv_type)
1754 {
1755 struct mmc_host *host = card->host;
1756 int host_drv_type = SD_DRIVER_TYPE_B;
1757
1758 *drv_type = 0;
1759
1760 if (!host->ops->select_drive_strength)
1761 return 0;
1762
1763 /* Use SD definition of driver strength for hosts */
1764 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1765 host_drv_type |= SD_DRIVER_TYPE_A;
1766
1767 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1768 host_drv_type |= SD_DRIVER_TYPE_C;
1769
1770 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1771 host_drv_type |= SD_DRIVER_TYPE_D;
1772
1773 /*
1774 * The drive strength that the hardware can support
1775 * depends on the board design. Pass the appropriate
1776 * information and let the hardware specific code
1777 * return what is possible given the options
1778 */
1779 return host->ops->select_drive_strength(card, max_dtr,
1780 host_drv_type,
1781 card_drv_type,
1782 drv_type);
1783 }
1784
1785 /*
1786 * Apply power to the MMC stack. This is a two-stage process.
1787 * First, we enable power to the card without the clock running.
1788 * We then wait a bit for the power to stabilise. Finally,
1789 * enable the bus drivers and clock to the card.
1790 *
1791 * We must _NOT_ enable the clock prior to power stablising.
1792 *
1793 * If a host does all the power sequencing itself, ignore the
1794 * initial MMC_POWER_UP stage.
1795 */
1796 void mmc_power_up(struct mmc_host *host, u32 ocr)
1797 {
1798 if (host->ios.power_mode == MMC_POWER_ON)
1799 return;
1800
1801 mmc_pwrseq_pre_power_on(host);
1802
1803 host->ios.vdd = fls(ocr) - 1;
1804 host->ios.power_mode = MMC_POWER_UP;
1805 /* Set initial state and call mmc_set_ios */
1806 mmc_set_initial_state(host);
1807
1808 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1809 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1810 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1811 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1812 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1813 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1814 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1815
1816 /*
1817 * This delay should be sufficient to allow the power supply
1818 * to reach the minimum voltage.
1819 */
1820 mmc_delay(10);
1821
1822 mmc_pwrseq_post_power_on(host);
1823
1824 host->ios.clock = host->f_init;
1825
1826 host->ios.power_mode = MMC_POWER_ON;
1827 mmc_set_ios(host);
1828
1829 /*
1830 * This delay must be at least 74 clock sizes, or 1 ms, or the
1831 * time required to reach a stable voltage.
1832 */
1833 mmc_delay(10);
1834 }
1835
1836 void mmc_power_off(struct mmc_host *host)
1837 {
1838 if (host->ios.power_mode == MMC_POWER_OFF)
1839 return;
1840
1841 mmc_pwrseq_power_off(host);
1842
1843 host->ios.clock = 0;
1844 host->ios.vdd = 0;
1845
1846 host->ios.power_mode = MMC_POWER_OFF;
1847 /* Set initial state and call mmc_set_ios */
1848 mmc_set_initial_state(host);
1849
1850 /*
1851 * Some configurations, such as the 802.11 SDIO card in the OLPC
1852 * XO-1.5, require a short delay after poweroff before the card
1853 * can be successfully turned on again.
1854 */
1855 mmc_delay(1);
1856 }
1857
1858 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1859 {
1860 mmc_power_off(host);
1861 /* Wait at least 1 ms according to SD spec */
1862 mmc_delay(1);
1863 mmc_power_up(host, ocr);
1864 }
1865
1866 /*
1867 * Cleanup when the last reference to the bus operator is dropped.
1868 */
1869 static void __mmc_release_bus(struct mmc_host *host)
1870 {
1871 WARN_ON(!host->bus_dead);
1872
1873 host->bus_ops = NULL;
1874 }
1875
1876 /*
1877 * Increase reference count of bus operator
1878 */
1879 static inline void mmc_bus_get(struct mmc_host *host)
1880 {
1881 unsigned long flags;
1882
1883 spin_lock_irqsave(&host->lock, flags);
1884 host->bus_refs++;
1885 spin_unlock_irqrestore(&host->lock, flags);
1886 }
1887
1888 /*
1889 * Decrease reference count of bus operator and free it if
1890 * it is the last reference.
1891 */
1892 static inline void mmc_bus_put(struct mmc_host *host)
1893 {
1894 unsigned long flags;
1895
1896 spin_lock_irqsave(&host->lock, flags);
1897 host->bus_refs--;
1898 if ((host->bus_refs == 0) && host->bus_ops)
1899 __mmc_release_bus(host);
1900 spin_unlock_irqrestore(&host->lock, flags);
1901 }
1902
1903 /*
1904 * Assign a mmc bus handler to a host. Only one bus handler may control a
1905 * host at any given time.
1906 */
1907 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1908 {
1909 unsigned long flags;
1910
1911 WARN_ON(!host->claimed);
1912
1913 spin_lock_irqsave(&host->lock, flags);
1914
1915 WARN_ON(host->bus_ops);
1916 WARN_ON(host->bus_refs);
1917
1918 host->bus_ops = ops;
1919 host->bus_refs = 1;
1920 host->bus_dead = 0;
1921
1922 spin_unlock_irqrestore(&host->lock, flags);
1923 }
1924
1925 /*
1926 * Remove the current bus handler from a host.
1927 */
1928 void mmc_detach_bus(struct mmc_host *host)
1929 {
1930 unsigned long flags;
1931
1932 WARN_ON(!host->claimed);
1933 WARN_ON(!host->bus_ops);
1934
1935 spin_lock_irqsave(&host->lock, flags);
1936
1937 host->bus_dead = 1;
1938
1939 spin_unlock_irqrestore(&host->lock, flags);
1940
1941 mmc_bus_put(host);
1942 }
1943
1944 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1945 bool cd_irq)
1946 {
1947 #ifdef CONFIG_MMC_DEBUG
1948 unsigned long flags;
1949 spin_lock_irqsave(&host->lock, flags);
1950 WARN_ON(host->removed);
1951 spin_unlock_irqrestore(&host->lock, flags);
1952 #endif
1953
1954 /*
1955 * If the device is configured as wakeup, we prevent a new sleep for
1956 * 5 s to give provision for user space to consume the event.
1957 */
1958 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1959 device_can_wakeup(mmc_dev(host)))
1960 pm_wakeup_event(mmc_dev(host), 5000);
1961
1962 host->detect_change = 1;
1963 mmc_schedule_delayed_work(&host->detect, delay);
1964 }
1965
1966 /**
1967 * mmc_detect_change - process change of state on a MMC socket
1968 * @host: host which changed state.
1969 * @delay: optional delay to wait before detection (jiffies)
1970 *
1971 * MMC drivers should call this when they detect a card has been
1972 * inserted or removed. The MMC layer will confirm that any
1973 * present card is still functional, and initialize any newly
1974 * inserted.
1975 */
1976 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1977 {
1978 _mmc_detect_change(host, delay, true);
1979 }
1980 EXPORT_SYMBOL(mmc_detect_change);
1981
1982 void mmc_init_erase(struct mmc_card *card)
1983 {
1984 unsigned int sz;
1985
1986 if (is_power_of_2(card->erase_size))
1987 card->erase_shift = ffs(card->erase_size) - 1;
1988 else
1989 card->erase_shift = 0;
1990
1991 /*
1992 * It is possible to erase an arbitrarily large area of an SD or MMC
1993 * card. That is not desirable because it can take a long time
1994 * (minutes) potentially delaying more important I/O, and also the
1995 * timeout calculations become increasingly hugely over-estimated.
1996 * Consequently, 'pref_erase' is defined as a guide to limit erases
1997 * to that size and alignment.
1998 *
1999 * For SD cards that define Allocation Unit size, limit erases to one
2000 * Allocation Unit at a time.
2001 * For MMC, have a stab at ai good value and for modern cards it will
2002 * end up being 4MiB. Note that if the value is too small, it can end
2003 * up taking longer to erase. Also note, erase_size is already set to
2004 * High Capacity Erase Size if available when this function is called.
2005 */
2006 if (mmc_card_sd(card) && card->ssr.au) {
2007 card->pref_erase = card->ssr.au;
2008 card->erase_shift = ffs(card->ssr.au) - 1;
2009 } else if (card->erase_size) {
2010 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2011 if (sz < 128)
2012 card->pref_erase = 512 * 1024 / 512;
2013 else if (sz < 512)
2014 card->pref_erase = 1024 * 1024 / 512;
2015 else if (sz < 1024)
2016 card->pref_erase = 2 * 1024 * 1024 / 512;
2017 else
2018 card->pref_erase = 4 * 1024 * 1024 / 512;
2019 if (card->pref_erase < card->erase_size)
2020 card->pref_erase = card->erase_size;
2021 else {
2022 sz = card->pref_erase % card->erase_size;
2023 if (sz)
2024 card->pref_erase += card->erase_size - sz;
2025 }
2026 } else
2027 card->pref_erase = 0;
2028 }
2029
2030 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2031 unsigned int arg, unsigned int qty)
2032 {
2033 unsigned int erase_timeout;
2034
2035 if (arg == MMC_DISCARD_ARG ||
2036 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2037 erase_timeout = card->ext_csd.trim_timeout;
2038 } else if (card->ext_csd.erase_group_def & 1) {
2039 /* High Capacity Erase Group Size uses HC timeouts */
2040 if (arg == MMC_TRIM_ARG)
2041 erase_timeout = card->ext_csd.trim_timeout;
2042 else
2043 erase_timeout = card->ext_csd.hc_erase_timeout;
2044 } else {
2045 /* CSD Erase Group Size uses write timeout */
2046 unsigned int mult = (10 << card->csd.r2w_factor);
2047 unsigned int timeout_clks = card->csd.tacc_clks * mult;
2048 unsigned int timeout_us;
2049
2050 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2051 if (card->csd.tacc_ns < 1000000)
2052 timeout_us = (card->csd.tacc_ns * mult) / 1000;
2053 else
2054 timeout_us = (card->csd.tacc_ns / 1000) * mult;
2055
2056 /*
2057 * ios.clock is only a target. The real clock rate might be
2058 * less but not that much less, so fudge it by multiplying by 2.
2059 */
2060 timeout_clks <<= 1;
2061 timeout_us += (timeout_clks * 1000) /
2062 (card->host->ios.clock / 1000);
2063
2064 erase_timeout = timeout_us / 1000;
2065
2066 /*
2067 * Theoretically, the calculation could underflow so round up
2068 * to 1ms in that case.
2069 */
2070 if (!erase_timeout)
2071 erase_timeout = 1;
2072 }
2073
2074 /* Multiplier for secure operations */
2075 if (arg & MMC_SECURE_ARGS) {
2076 if (arg == MMC_SECURE_ERASE_ARG)
2077 erase_timeout *= card->ext_csd.sec_erase_mult;
2078 else
2079 erase_timeout *= card->ext_csd.sec_trim_mult;
2080 }
2081
2082 erase_timeout *= qty;
2083
2084 /*
2085 * Ensure at least a 1 second timeout for SPI as per
2086 * 'mmc_set_data_timeout()'
2087 */
2088 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2089 erase_timeout = 1000;
2090
2091 return erase_timeout;
2092 }
2093
2094 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2095 unsigned int arg,
2096 unsigned int qty)
2097 {
2098 unsigned int erase_timeout;
2099
2100 if (card->ssr.erase_timeout) {
2101 /* Erase timeout specified in SD Status Register (SSR) */
2102 erase_timeout = card->ssr.erase_timeout * qty +
2103 card->ssr.erase_offset;
2104 } else {
2105 /*
2106 * Erase timeout not specified in SD Status Register (SSR) so
2107 * use 250ms per write block.
2108 */
2109 erase_timeout = 250 * qty;
2110 }
2111
2112 /* Must not be less than 1 second */
2113 if (erase_timeout < 1000)
2114 erase_timeout = 1000;
2115
2116 return erase_timeout;
2117 }
2118
2119 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2120 unsigned int arg,
2121 unsigned int qty)
2122 {
2123 if (mmc_card_sd(card))
2124 return mmc_sd_erase_timeout(card, arg, qty);
2125 else
2126 return mmc_mmc_erase_timeout(card, arg, qty);
2127 }
2128
2129 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2130 unsigned int to, unsigned int arg)
2131 {
2132 struct mmc_command cmd = {0};
2133 unsigned int qty = 0, busy_timeout = 0;
2134 bool use_r1b_resp = false;
2135 unsigned long timeout;
2136 int err;
2137
2138 mmc_retune_hold(card->host);
2139
2140 /*
2141 * qty is used to calculate the erase timeout which depends on how many
2142 * erase groups (or allocation units in SD terminology) are affected.
2143 * We count erasing part of an erase group as one erase group.
2144 * For SD, the allocation units are always a power of 2. For MMC, the
2145 * erase group size is almost certainly also power of 2, but it does not
2146 * seem to insist on that in the JEDEC standard, so we fall back to
2147 * division in that case. SD may not specify an allocation unit size,
2148 * in which case the timeout is based on the number of write blocks.
2149 *
2150 * Note that the timeout for secure trim 2 will only be correct if the
2151 * number of erase groups specified is the same as the total of all
2152 * preceding secure trim 1 commands. Since the power may have been
2153 * lost since the secure trim 1 commands occurred, it is generally
2154 * impossible to calculate the secure trim 2 timeout correctly.
2155 */
2156 if (card->erase_shift)
2157 qty += ((to >> card->erase_shift) -
2158 (from >> card->erase_shift)) + 1;
2159 else if (mmc_card_sd(card))
2160 qty += to - from + 1;
2161 else
2162 qty += ((to / card->erase_size) -
2163 (from / card->erase_size)) + 1;
2164
2165 if (!mmc_card_blockaddr(card)) {
2166 from <<= 9;
2167 to <<= 9;
2168 }
2169
2170 if (mmc_card_sd(card))
2171 cmd.opcode = SD_ERASE_WR_BLK_START;
2172 else
2173 cmd.opcode = MMC_ERASE_GROUP_START;
2174 cmd.arg = from;
2175 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2176 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2177 if (err) {
2178 pr_err("mmc_erase: group start error %d, "
2179 "status %#x\n", err, cmd.resp[0]);
2180 err = -EIO;
2181 goto out;
2182 }
2183
2184 memset(&cmd, 0, sizeof(struct mmc_command));
2185 if (mmc_card_sd(card))
2186 cmd.opcode = SD_ERASE_WR_BLK_END;
2187 else
2188 cmd.opcode = MMC_ERASE_GROUP_END;
2189 cmd.arg = to;
2190 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2191 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2192 if (err) {
2193 pr_err("mmc_erase: group end error %d, status %#x\n",
2194 err, cmd.resp[0]);
2195 err = -EIO;
2196 goto out;
2197 }
2198
2199 memset(&cmd, 0, sizeof(struct mmc_command));
2200 cmd.opcode = MMC_ERASE;
2201 cmd.arg = arg;
2202 busy_timeout = mmc_erase_timeout(card, arg, qty);
2203 /*
2204 * If the host controller supports busy signalling and the timeout for
2205 * the erase operation does not exceed the max_busy_timeout, we should
2206 * use R1B response. Or we need to prevent the host from doing hw busy
2207 * detection, which is done by converting to a R1 response instead.
2208 */
2209 if (card->host->max_busy_timeout &&
2210 busy_timeout > card->host->max_busy_timeout) {
2211 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2212 } else {
2213 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2214 cmd.busy_timeout = busy_timeout;
2215 use_r1b_resp = true;
2216 }
2217
2218 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2219 if (err) {
2220 pr_err("mmc_erase: erase error %d, status %#x\n",
2221 err, cmd.resp[0]);
2222 err = -EIO;
2223 goto out;
2224 }
2225
2226 if (mmc_host_is_spi(card->host))
2227 goto out;
2228
2229 /*
2230 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2231 * shall be avoided.
2232 */
2233 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2234 goto out;
2235
2236 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2237 do {
2238 memset(&cmd, 0, sizeof(struct mmc_command));
2239 cmd.opcode = MMC_SEND_STATUS;
2240 cmd.arg = card->rca << 16;
2241 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2242 /* Do not retry else we can't see errors */
2243 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2244 if (err || (cmd.resp[0] & 0xFDF92000)) {
2245 pr_err("error %d requesting status %#x\n",
2246 err, cmd.resp[0]);
2247 err = -EIO;
2248 goto out;
2249 }
2250
2251 /* Timeout if the device never becomes ready for data and
2252 * never leaves the program state.
2253 */
2254 if (time_after(jiffies, timeout)) {
2255 pr_err("%s: Card stuck in programming state! %s\n",
2256 mmc_hostname(card->host), __func__);
2257 err = -EIO;
2258 goto out;
2259 }
2260
2261 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2262 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2263 out:
2264 mmc_retune_release(card->host);
2265 return err;
2266 }
2267
2268 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2269 unsigned int *from,
2270 unsigned int *to,
2271 unsigned int nr)
2272 {
2273 unsigned int from_new = *from, nr_new = nr, rem;
2274
2275 /*
2276 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2277 * to align the erase size efficiently.
2278 */
2279 if (is_power_of_2(card->erase_size)) {
2280 unsigned int temp = from_new;
2281
2282 from_new = round_up(temp, card->erase_size);
2283 rem = from_new - temp;
2284
2285 if (nr_new > rem)
2286 nr_new -= rem;
2287 else
2288 return 0;
2289
2290 nr_new = round_down(nr_new, card->erase_size);
2291 } else {
2292 rem = from_new % card->erase_size;
2293 if (rem) {
2294 rem = card->erase_size - rem;
2295 from_new += rem;
2296 if (nr_new > rem)
2297 nr_new -= rem;
2298 else
2299 return 0;
2300 }
2301
2302 rem = nr_new % card->erase_size;
2303 if (rem)
2304 nr_new -= rem;
2305 }
2306
2307 if (nr_new == 0)
2308 return 0;
2309
2310 *to = from_new + nr_new;
2311 *from = from_new;
2312
2313 return nr_new;
2314 }
2315
2316 /**
2317 * mmc_erase - erase sectors.
2318 * @card: card to erase
2319 * @from: first sector to erase
2320 * @nr: number of sectors to erase
2321 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2322 *
2323 * Caller must claim host before calling this function.
2324 */
2325 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2326 unsigned int arg)
2327 {
2328 unsigned int rem, to = from + nr;
2329 int err;
2330
2331 if (!(card->host->caps & MMC_CAP_ERASE) ||
2332 !(card->csd.cmdclass & CCC_ERASE))
2333 return -EOPNOTSUPP;
2334
2335 if (!card->erase_size)
2336 return -EOPNOTSUPP;
2337
2338 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2339 return -EOPNOTSUPP;
2340
2341 if ((arg & MMC_SECURE_ARGS) &&
2342 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2343 return -EOPNOTSUPP;
2344
2345 if ((arg & MMC_TRIM_ARGS) &&
2346 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2347 return -EOPNOTSUPP;
2348
2349 if (arg == MMC_SECURE_ERASE_ARG) {
2350 if (from % card->erase_size || nr % card->erase_size)
2351 return -EINVAL;
2352 }
2353
2354 if (arg == MMC_ERASE_ARG)
2355 nr = mmc_align_erase_size(card, &from, &to, nr);
2356
2357 if (nr == 0)
2358 return 0;
2359
2360 if (to <= from)
2361 return -EINVAL;
2362
2363 /* 'from' and 'to' are inclusive */
2364 to -= 1;
2365
2366 /*
2367 * Special case where only one erase-group fits in the timeout budget:
2368 * If the region crosses an erase-group boundary on this particular
2369 * case, we will be trimming more than one erase-group which, does not
2370 * fit in the timeout budget of the controller, so we need to split it
2371 * and call mmc_do_erase() twice if necessary. This special case is
2372 * identified by the card->eg_boundary flag.
2373 */
2374 rem = card->erase_size - (from % card->erase_size);
2375 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2376 err = mmc_do_erase(card, from, from + rem - 1, arg);
2377 from += rem;
2378 if ((err) || (to <= from))
2379 return err;
2380 }
2381
2382 return mmc_do_erase(card, from, to, arg);
2383 }
2384 EXPORT_SYMBOL(mmc_erase);
2385
2386 int mmc_can_erase(struct mmc_card *card)
2387 {
2388 if ((card->host->caps & MMC_CAP_ERASE) &&
2389 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2390 return 1;
2391 return 0;
2392 }
2393 EXPORT_SYMBOL(mmc_can_erase);
2394
2395 int mmc_can_trim(struct mmc_card *card)
2396 {
2397 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2398 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2399 return 1;
2400 return 0;
2401 }
2402 EXPORT_SYMBOL(mmc_can_trim);
2403
2404 int mmc_can_discard(struct mmc_card *card)
2405 {
2406 /*
2407 * As there's no way to detect the discard support bit at v4.5
2408 * use the s/w feature support filed.
2409 */
2410 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2411 return 1;
2412 return 0;
2413 }
2414 EXPORT_SYMBOL(mmc_can_discard);
2415
2416 int mmc_can_sanitize(struct mmc_card *card)
2417 {
2418 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2419 return 0;
2420 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2421 return 1;
2422 return 0;
2423 }
2424 EXPORT_SYMBOL(mmc_can_sanitize);
2425
2426 int mmc_can_secure_erase_trim(struct mmc_card *card)
2427 {
2428 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2429 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2430 return 1;
2431 return 0;
2432 }
2433 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2434
2435 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2436 unsigned int nr)
2437 {
2438 if (!card->erase_size)
2439 return 0;
2440 if (from % card->erase_size || nr % card->erase_size)
2441 return 0;
2442 return 1;
2443 }
2444 EXPORT_SYMBOL(mmc_erase_group_aligned);
2445
2446 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2447 unsigned int arg)
2448 {
2449 struct mmc_host *host = card->host;
2450 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2451 unsigned int last_timeout = 0;
2452 unsigned int max_busy_timeout = host->max_busy_timeout ?
2453 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2454
2455 if (card->erase_shift) {
2456 max_qty = UINT_MAX >> card->erase_shift;
2457 min_qty = card->pref_erase >> card->erase_shift;
2458 } else if (mmc_card_sd(card)) {
2459 max_qty = UINT_MAX;
2460 min_qty = card->pref_erase;
2461 } else {
2462 max_qty = UINT_MAX / card->erase_size;
2463 min_qty = card->pref_erase / card->erase_size;
2464 }
2465
2466 /*
2467 * We should not only use 'host->max_busy_timeout' as the limitation
2468 * when deciding the max discard sectors. We should set a balance value
2469 * to improve the erase speed, and it can not get too long timeout at
2470 * the same time.
2471 *
2472 * Here we set 'card->pref_erase' as the minimal discard sectors no
2473 * matter what size of 'host->max_busy_timeout', but if the
2474 * 'host->max_busy_timeout' is large enough for more discard sectors,
2475 * then we can continue to increase the max discard sectors until we
2476 * get a balance value. In cases when the 'host->max_busy_timeout'
2477 * isn't specified, use the default max erase timeout.
2478 */
2479 do {
2480 y = 0;
2481 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2482 timeout = mmc_erase_timeout(card, arg, qty + x);
2483
2484 if (qty + x > min_qty && timeout > max_busy_timeout)
2485 break;
2486
2487 if (timeout < last_timeout)
2488 break;
2489 last_timeout = timeout;
2490 y = x;
2491 }
2492 qty += y;
2493 } while (y);
2494
2495 if (!qty)
2496 return 0;
2497
2498 /*
2499 * When specifying a sector range to trim, chances are we might cross
2500 * an erase-group boundary even if the amount of sectors is less than
2501 * one erase-group.
2502 * If we can only fit one erase-group in the controller timeout budget,
2503 * we have to care that erase-group boundaries are not crossed by a
2504 * single trim operation. We flag that special case with "eg_boundary".
2505 * In all other cases we can just decrement qty and pretend that we
2506 * always touch (qty + 1) erase-groups as a simple optimization.
2507 */
2508 if (qty == 1)
2509 card->eg_boundary = 1;
2510 else
2511 qty--;
2512
2513 /* Convert qty to sectors */
2514 if (card->erase_shift)
2515 max_discard = qty << card->erase_shift;
2516 else if (mmc_card_sd(card))
2517 max_discard = qty + 1;
2518 else
2519 max_discard = qty * card->erase_size;
2520
2521 return max_discard;
2522 }
2523
2524 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2525 {
2526 struct mmc_host *host = card->host;
2527 unsigned int max_discard, max_trim;
2528
2529 /*
2530 * Without erase_group_def set, MMC erase timeout depends on clock
2531 * frequence which can change. In that case, the best choice is
2532 * just the preferred erase size.
2533 */
2534 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2535 return card->pref_erase;
2536
2537 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2538 if (mmc_can_trim(card)) {
2539 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2540 if (max_trim < max_discard)
2541 max_discard = max_trim;
2542 } else if (max_discard < card->erase_size) {
2543 max_discard = 0;
2544 }
2545 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2546 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2547 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2548 return max_discard;
2549 }
2550 EXPORT_SYMBOL(mmc_calc_max_discard);
2551
2552 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2553 {
2554 struct mmc_command cmd = {0};
2555
2556 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2557 mmc_card_hs400(card) || mmc_card_hs400es(card))
2558 return 0;
2559
2560 cmd.opcode = MMC_SET_BLOCKLEN;
2561 cmd.arg = blocklen;
2562 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2563 return mmc_wait_for_cmd(card->host, &cmd, 5);
2564 }
2565 EXPORT_SYMBOL(mmc_set_blocklen);
2566
2567 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2568 bool is_rel_write)
2569 {
2570 struct mmc_command cmd = {0};
2571
2572 cmd.opcode = MMC_SET_BLOCK_COUNT;
2573 cmd.arg = blockcount & 0x0000FFFF;
2574 if (is_rel_write)
2575 cmd.arg |= 1 << 31;
2576 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2577 return mmc_wait_for_cmd(card->host, &cmd, 5);
2578 }
2579 EXPORT_SYMBOL(mmc_set_blockcount);
2580
2581 static void mmc_hw_reset_for_init(struct mmc_host *host)
2582 {
2583 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2584 return;
2585 host->ops->hw_reset(host);
2586 }
2587
2588 int mmc_hw_reset(struct mmc_host *host)
2589 {
2590 int ret;
2591
2592 if (!host->card)
2593 return -EINVAL;
2594
2595 mmc_bus_get(host);
2596 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2597 mmc_bus_put(host);
2598 return -EOPNOTSUPP;
2599 }
2600
2601 ret = host->bus_ops->reset(host);
2602 mmc_bus_put(host);
2603
2604 if (ret)
2605 pr_warn("%s: tried to reset card, got error %d\n",
2606 mmc_hostname(host), ret);
2607
2608 return ret;
2609 }
2610 EXPORT_SYMBOL(mmc_hw_reset);
2611
2612 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2613 {
2614 host->f_init = freq;
2615
2616 #ifdef CONFIG_MMC_DEBUG
2617 pr_info("%s: %s: trying to init card at %u Hz\n",
2618 mmc_hostname(host), __func__, host->f_init);
2619 #endif
2620 mmc_power_up(host, host->ocr_avail);
2621
2622 /*
2623 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2624 * do a hardware reset if possible.
2625 */
2626 mmc_hw_reset_for_init(host);
2627
2628 /*
2629 * sdio_reset sends CMD52 to reset card. Since we do not know
2630 * if the card is being re-initialized, just send it. CMD52
2631 * should be ignored by SD/eMMC cards.
2632 * Skip it if we already know that we do not support SDIO commands
2633 */
2634 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2635 sdio_reset(host);
2636
2637 mmc_go_idle(host);
2638
2639 if (!(host->caps2 & MMC_CAP2_NO_SD))
2640 mmc_send_if_cond(host, host->ocr_avail);
2641
2642 /* Order's important: probe SDIO, then SD, then MMC */
2643 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2644 if (!mmc_attach_sdio(host))
2645 return 0;
2646
2647 if (!(host->caps2 & MMC_CAP2_NO_SD))
2648 if (!mmc_attach_sd(host))
2649 return 0;
2650
2651 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2652 if (!mmc_attach_mmc(host))
2653 return 0;
2654
2655 mmc_power_off(host);
2656 return -EIO;
2657 }
2658
2659 int _mmc_detect_card_removed(struct mmc_host *host)
2660 {
2661 int ret;
2662
2663 if (!host->card || mmc_card_removed(host->card))
2664 return 1;
2665
2666 ret = host->bus_ops->alive(host);
2667
2668 /*
2669 * Card detect status and alive check may be out of sync if card is
2670 * removed slowly, when card detect switch changes while card/slot
2671 * pads are still contacted in hardware (refer to "SD Card Mechanical
2672 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2673 * detect work 200ms later for this case.
2674 */
2675 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2676 mmc_detect_change(host, msecs_to_jiffies(200));
2677 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2678 }
2679
2680 if (ret) {
2681 mmc_card_set_removed(host->card);
2682 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2683 }
2684
2685 return ret;
2686 }
2687
2688 int mmc_detect_card_removed(struct mmc_host *host)
2689 {
2690 struct mmc_card *card = host->card;
2691 int ret;
2692
2693 WARN_ON(!host->claimed);
2694
2695 if (!card)
2696 return 1;
2697
2698 if (!mmc_card_is_removable(host))
2699 return 0;
2700
2701 ret = mmc_card_removed(card);
2702 /*
2703 * The card will be considered unchanged unless we have been asked to
2704 * detect a change or host requires polling to provide card detection.
2705 */
2706 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2707 return ret;
2708
2709 host->detect_change = 0;
2710 if (!ret) {
2711 ret = _mmc_detect_card_removed(host);
2712 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2713 /*
2714 * Schedule a detect work as soon as possible to let a
2715 * rescan handle the card removal.
2716 */
2717 cancel_delayed_work(&host->detect);
2718 _mmc_detect_change(host, 0, false);
2719 }
2720 }
2721
2722 return ret;
2723 }
2724 EXPORT_SYMBOL(mmc_detect_card_removed);
2725
2726 void mmc_rescan(struct work_struct *work)
2727 {
2728 struct mmc_host *host =
2729 container_of(work, struct mmc_host, detect.work);
2730 int i;
2731
2732 if (host->rescan_disable)
2733 return;
2734
2735 /* If there is a non-removable card registered, only scan once */
2736 if (!mmc_card_is_removable(host) && host->rescan_entered)
2737 return;
2738 host->rescan_entered = 1;
2739
2740 if (host->trigger_card_event && host->ops->card_event) {
2741 mmc_claim_host(host);
2742 host->ops->card_event(host);
2743 mmc_release_host(host);
2744 host->trigger_card_event = false;
2745 }
2746
2747 mmc_bus_get(host);
2748
2749 /*
2750 * if there is a _removable_ card registered, check whether it is
2751 * still present
2752 */
2753 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2754 host->bus_ops->detect(host);
2755
2756 host->detect_change = 0;
2757
2758 /*
2759 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2760 * the card is no longer present.
2761 */
2762 mmc_bus_put(host);
2763 mmc_bus_get(host);
2764
2765 /* if there still is a card present, stop here */
2766 if (host->bus_ops != NULL) {
2767 mmc_bus_put(host);
2768 goto out;
2769 }
2770
2771 /*
2772 * Only we can add a new handler, so it's safe to
2773 * release the lock here.
2774 */
2775 mmc_bus_put(host);
2776
2777 mmc_claim_host(host);
2778 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2779 host->ops->get_cd(host) == 0) {
2780 mmc_power_off(host);
2781 mmc_release_host(host);
2782 goto out;
2783 }
2784
2785 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2786 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2787 break;
2788 if (freqs[i] <= host->f_min)
2789 break;
2790 }
2791 mmc_release_host(host);
2792
2793 out:
2794 if (host->caps & MMC_CAP_NEEDS_POLL)
2795 mmc_schedule_delayed_work(&host->detect, HZ);
2796 }
2797
2798 void mmc_start_host(struct mmc_host *host)
2799 {
2800 host->f_init = max(freqs[0], host->f_min);
2801 host->rescan_disable = 0;
2802 host->ios.power_mode = MMC_POWER_UNDEFINED;
2803
2804 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2805 mmc_claim_host(host);
2806 mmc_power_up(host, host->ocr_avail);
2807 mmc_release_host(host);
2808 }
2809
2810 mmc_gpiod_request_cd_irq(host);
2811 _mmc_detect_change(host, 0, false);
2812 }
2813
2814 void mmc_stop_host(struct mmc_host *host)
2815 {
2816 #ifdef CONFIG_MMC_DEBUG
2817 unsigned long flags;
2818 spin_lock_irqsave(&host->lock, flags);
2819 host->removed = 1;
2820 spin_unlock_irqrestore(&host->lock, flags);
2821 #endif
2822 if (host->slot.cd_irq >= 0)
2823 disable_irq(host->slot.cd_irq);
2824
2825 host->rescan_disable = 1;
2826 cancel_delayed_work_sync(&host->detect);
2827
2828 /* clear pm flags now and let card drivers set them as needed */
2829 host->pm_flags = 0;
2830
2831 mmc_bus_get(host);
2832 if (host->bus_ops && !host->bus_dead) {
2833 /* Calling bus_ops->remove() with a claimed host can deadlock */
2834 host->bus_ops->remove(host);
2835 mmc_claim_host(host);
2836 mmc_detach_bus(host);
2837 mmc_power_off(host);
2838 mmc_release_host(host);
2839 mmc_bus_put(host);
2840 return;
2841 }
2842 mmc_bus_put(host);
2843
2844 mmc_claim_host(host);
2845 mmc_power_off(host);
2846 mmc_release_host(host);
2847 }
2848
2849 int mmc_power_save_host(struct mmc_host *host)
2850 {
2851 int ret = 0;
2852
2853 #ifdef CONFIG_MMC_DEBUG
2854 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2855 #endif
2856
2857 mmc_bus_get(host);
2858
2859 if (!host->bus_ops || host->bus_dead) {
2860 mmc_bus_put(host);
2861 return -EINVAL;
2862 }
2863
2864 if (host->bus_ops->power_save)
2865 ret = host->bus_ops->power_save(host);
2866
2867 mmc_bus_put(host);
2868
2869 mmc_power_off(host);
2870
2871 return ret;
2872 }
2873 EXPORT_SYMBOL(mmc_power_save_host);
2874
2875 int mmc_power_restore_host(struct mmc_host *host)
2876 {
2877 int ret;
2878
2879 #ifdef CONFIG_MMC_DEBUG
2880 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2881 #endif
2882
2883 mmc_bus_get(host);
2884
2885 if (!host->bus_ops || host->bus_dead) {
2886 mmc_bus_put(host);
2887 return -EINVAL;
2888 }
2889
2890 mmc_power_up(host, host->card->ocr);
2891 ret = host->bus_ops->power_restore(host);
2892
2893 mmc_bus_put(host);
2894
2895 return ret;
2896 }
2897 EXPORT_SYMBOL(mmc_power_restore_host);
2898
2899 /*
2900 * Flush the cache to the non-volatile storage.
2901 */
2902 int mmc_flush_cache(struct mmc_card *card)
2903 {
2904 int err = 0;
2905
2906 if (mmc_card_mmc(card) &&
2907 (card->ext_csd.cache_size > 0) &&
2908 (card->ext_csd.cache_ctrl & 1)) {
2909 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2910 EXT_CSD_FLUSH_CACHE, 1, 0);
2911 if (err)
2912 pr_err("%s: cache flush error %d\n",
2913 mmc_hostname(card->host), err);
2914 }
2915
2916 return err;
2917 }
2918 EXPORT_SYMBOL(mmc_flush_cache);
2919
2920 #ifdef CONFIG_PM_SLEEP
2921 /* Do the card removal on suspend if card is assumed removeable
2922 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2923 to sync the card.
2924 */
2925 static int mmc_pm_notify(struct notifier_block *notify_block,
2926 unsigned long mode, void *unused)
2927 {
2928 struct mmc_host *host = container_of(
2929 notify_block, struct mmc_host, pm_notify);
2930 unsigned long flags;
2931 int err = 0;
2932
2933 switch (mode) {
2934 case PM_HIBERNATION_PREPARE:
2935 case PM_SUSPEND_PREPARE:
2936 case PM_RESTORE_PREPARE:
2937 spin_lock_irqsave(&host->lock, flags);
2938 host->rescan_disable = 1;
2939 spin_unlock_irqrestore(&host->lock, flags);
2940 cancel_delayed_work_sync(&host->detect);
2941
2942 if (!host->bus_ops)
2943 break;
2944
2945 /* Validate prerequisites for suspend */
2946 if (host->bus_ops->pre_suspend)
2947 err = host->bus_ops->pre_suspend(host);
2948 if (!err)
2949 break;
2950
2951 /* Calling bus_ops->remove() with a claimed host can deadlock */
2952 host->bus_ops->remove(host);
2953 mmc_claim_host(host);
2954 mmc_detach_bus(host);
2955 mmc_power_off(host);
2956 mmc_release_host(host);
2957 host->pm_flags = 0;
2958 break;
2959
2960 case PM_POST_SUSPEND:
2961 case PM_POST_HIBERNATION:
2962 case PM_POST_RESTORE:
2963
2964 spin_lock_irqsave(&host->lock, flags);
2965 host->rescan_disable = 0;
2966 spin_unlock_irqrestore(&host->lock, flags);
2967 _mmc_detect_change(host, 0, false);
2968
2969 }
2970
2971 return 0;
2972 }
2973
2974 void mmc_register_pm_notifier(struct mmc_host *host)
2975 {
2976 host->pm_notify.notifier_call = mmc_pm_notify;
2977 register_pm_notifier(&host->pm_notify);
2978 }
2979
2980 void mmc_unregister_pm_notifier(struct mmc_host *host)
2981 {
2982 unregister_pm_notifier(&host->pm_notify);
2983 }
2984 #endif
2985
2986 /**
2987 * mmc_init_context_info() - init synchronization context
2988 * @host: mmc host
2989 *
2990 * Init struct context_info needed to implement asynchronous
2991 * request mechanism, used by mmc core, host driver and mmc requests
2992 * supplier.
2993 */
2994 void mmc_init_context_info(struct mmc_host *host)
2995 {
2996 host->context_info.is_new_req = false;
2997 host->context_info.is_done_rcv = false;
2998 host->context_info.is_waiting_last_req = false;
2999 init_waitqueue_head(&host->context_info.wait);
3000 }
3001
3002 static int __init mmc_init(void)
3003 {
3004 int ret;
3005
3006 ret = mmc_register_bus();
3007 if (ret)
3008 return ret;
3009
3010 ret = mmc_register_host_class();
3011 if (ret)
3012 goto unregister_bus;
3013
3014 ret = sdio_register_bus();
3015 if (ret)
3016 goto unregister_host_class;
3017
3018 return 0;
3019
3020 unregister_host_class:
3021 mmc_unregister_host_class();
3022 unregister_bus:
3023 mmc_unregister_bus();
3024 return ret;
3025 }
3026
3027 static void __exit mmc_exit(void)
3028 {
3029 sdio_unregister_bus();
3030 mmc_unregister_host_class();
3031 mmc_unregister_bus();
3032 }
3033
3034 subsys_initcall(mmc_init);
3035 module_exit(mmc_exit);
3036
3037 MODULE_LICENSE("GPL");