]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/core.c
Merge commit 'v2.6.37-rc7' into x86/security
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/host.h>
28 #include <linux/mmc/mmc.h>
29 #include <linux/mmc/sd.h>
30
31 #include "core.h"
32 #include "bus.h"
33 #include "host.h"
34 #include "sdio_bus.h"
35
36 #include "mmc_ops.h"
37 #include "sd_ops.h"
38 #include "sdio_ops.h"
39
40 static struct workqueue_struct *workqueue;
41
42 /*
43 * Enabling software CRCs on the data blocks can be a significant (30%)
44 * performance cost, and for other reasons may not always be desired.
45 * So we allow it it to be disabled.
46 */
47 int use_spi_crc = 1;
48 module_param(use_spi_crc, bool, 0);
49
50 /*
51 * We normally treat cards as removed during suspend if they are not
52 * known to be on a non-removable bus, to avoid the risk of writing
53 * back data to a different card after resume. Allow this to be
54 * overridden if necessary.
55 */
56 #ifdef CONFIG_MMC_UNSAFE_RESUME
57 int mmc_assume_removable;
58 #else
59 int mmc_assume_removable = 1;
60 #endif
61 EXPORT_SYMBOL(mmc_assume_removable);
62 module_param_named(removable, mmc_assume_removable, bool, 0644);
63 MODULE_PARM_DESC(
64 removable,
65 "MMC/SD cards are removable and may be removed during suspend");
66
67 /*
68 * Internal function. Schedule delayed work in the MMC work queue.
69 */
70 static int mmc_schedule_delayed_work(struct delayed_work *work,
71 unsigned long delay)
72 {
73 return queue_delayed_work(workqueue, work, delay);
74 }
75
76 /*
77 * Internal function. Flush all scheduled work from the MMC work queue.
78 */
79 static void mmc_flush_scheduled_work(void)
80 {
81 flush_workqueue(workqueue);
82 }
83
84 /**
85 * mmc_request_done - finish processing an MMC request
86 * @host: MMC host which completed request
87 * @mrq: MMC request which request
88 *
89 * MMC drivers should call this function when they have completed
90 * their processing of a request.
91 */
92 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
93 {
94 struct mmc_command *cmd = mrq->cmd;
95 int err = cmd->error;
96
97 if (err && cmd->retries && mmc_host_is_spi(host)) {
98 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
99 cmd->retries = 0;
100 }
101
102 if (err && cmd->retries) {
103 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
104 mmc_hostname(host), cmd->opcode, err);
105
106 cmd->retries--;
107 cmd->error = 0;
108 host->ops->request(host, mrq);
109 } else {
110 led_trigger_event(host->led, LED_OFF);
111
112 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
113 mmc_hostname(host), cmd->opcode, err,
114 cmd->resp[0], cmd->resp[1],
115 cmd->resp[2], cmd->resp[3]);
116
117 if (mrq->data) {
118 pr_debug("%s: %d bytes transferred: %d\n",
119 mmc_hostname(host),
120 mrq->data->bytes_xfered, mrq->data->error);
121 }
122
123 if (mrq->stop) {
124 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
125 mmc_hostname(host), mrq->stop->opcode,
126 mrq->stop->error,
127 mrq->stop->resp[0], mrq->stop->resp[1],
128 mrq->stop->resp[2], mrq->stop->resp[3]);
129 }
130
131 if (mrq->done)
132 mrq->done(mrq);
133 }
134 }
135
136 EXPORT_SYMBOL(mmc_request_done);
137
138 static void
139 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 #ifdef CONFIG_MMC_DEBUG
142 unsigned int i, sz;
143 struct scatterlist *sg;
144 #endif
145
146 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
147 mmc_hostname(host), mrq->cmd->opcode,
148 mrq->cmd->arg, mrq->cmd->flags);
149
150 if (mrq->data) {
151 pr_debug("%s: blksz %d blocks %d flags %08x "
152 "tsac %d ms nsac %d\n",
153 mmc_hostname(host), mrq->data->blksz,
154 mrq->data->blocks, mrq->data->flags,
155 mrq->data->timeout_ns / 1000000,
156 mrq->data->timeout_clks);
157 }
158
159 if (mrq->stop) {
160 pr_debug("%s: CMD%u arg %08x flags %08x\n",
161 mmc_hostname(host), mrq->stop->opcode,
162 mrq->stop->arg, mrq->stop->flags);
163 }
164
165 WARN_ON(!host->claimed);
166
167 led_trigger_event(host->led, LED_FULL);
168
169 mrq->cmd->error = 0;
170 mrq->cmd->mrq = mrq;
171 if (mrq->data) {
172 BUG_ON(mrq->data->blksz > host->max_blk_size);
173 BUG_ON(mrq->data->blocks > host->max_blk_count);
174 BUG_ON(mrq->data->blocks * mrq->data->blksz >
175 host->max_req_size);
176
177 #ifdef CONFIG_MMC_DEBUG
178 sz = 0;
179 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
180 sz += sg->length;
181 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
182 #endif
183
184 mrq->cmd->data = mrq->data;
185 mrq->data->error = 0;
186 mrq->data->mrq = mrq;
187 if (mrq->stop) {
188 mrq->data->stop = mrq->stop;
189 mrq->stop->error = 0;
190 mrq->stop->mrq = mrq;
191 }
192 }
193 host->ops->request(host, mrq);
194 }
195
196 static void mmc_wait_done(struct mmc_request *mrq)
197 {
198 complete(mrq->done_data);
199 }
200
201 /**
202 * mmc_wait_for_req - start a request and wait for completion
203 * @host: MMC host to start command
204 * @mrq: MMC request to start
205 *
206 * Start a new MMC custom command request for a host, and wait
207 * for the command to complete. Does not attempt to parse the
208 * response.
209 */
210 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
211 {
212 DECLARE_COMPLETION_ONSTACK(complete);
213
214 mrq->done_data = &complete;
215 mrq->done = mmc_wait_done;
216
217 mmc_start_request(host, mrq);
218
219 wait_for_completion(&complete);
220 }
221
222 EXPORT_SYMBOL(mmc_wait_for_req);
223
224 /**
225 * mmc_wait_for_cmd - start a command and wait for completion
226 * @host: MMC host to start command
227 * @cmd: MMC command to start
228 * @retries: maximum number of retries
229 *
230 * Start a new MMC command for a host, and wait for the command
231 * to complete. Return any error that occurred while the command
232 * was executing. Do not attempt to parse the response.
233 */
234 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
235 {
236 struct mmc_request mrq;
237
238 WARN_ON(!host->claimed);
239
240 memset(&mrq, 0, sizeof(struct mmc_request));
241
242 memset(cmd->resp, 0, sizeof(cmd->resp));
243 cmd->retries = retries;
244
245 mrq.cmd = cmd;
246 cmd->data = NULL;
247
248 mmc_wait_for_req(host, &mrq);
249
250 return cmd->error;
251 }
252
253 EXPORT_SYMBOL(mmc_wait_for_cmd);
254
255 /**
256 * mmc_set_data_timeout - set the timeout for a data command
257 * @data: data phase for command
258 * @card: the MMC card associated with the data transfer
259 *
260 * Computes the data timeout parameters according to the
261 * correct algorithm given the card type.
262 */
263 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
264 {
265 unsigned int mult;
266
267 /*
268 * SDIO cards only define an upper 1 s limit on access.
269 */
270 if (mmc_card_sdio(card)) {
271 data->timeout_ns = 1000000000;
272 data->timeout_clks = 0;
273 return;
274 }
275
276 /*
277 * SD cards use a 100 multiplier rather than 10
278 */
279 mult = mmc_card_sd(card) ? 100 : 10;
280
281 /*
282 * Scale up the multiplier (and therefore the timeout) by
283 * the r2w factor for writes.
284 */
285 if (data->flags & MMC_DATA_WRITE)
286 mult <<= card->csd.r2w_factor;
287
288 data->timeout_ns = card->csd.tacc_ns * mult;
289 data->timeout_clks = card->csd.tacc_clks * mult;
290
291 /*
292 * SD cards also have an upper limit on the timeout.
293 */
294 if (mmc_card_sd(card)) {
295 unsigned int timeout_us, limit_us;
296
297 timeout_us = data->timeout_ns / 1000;
298 timeout_us += data->timeout_clks * 1000 /
299 (card->host->ios.clock / 1000);
300
301 if (data->flags & MMC_DATA_WRITE)
302 /*
303 * The limit is really 250 ms, but that is
304 * insufficient for some crappy cards.
305 */
306 limit_us = 300000;
307 else
308 limit_us = 100000;
309
310 /*
311 * SDHC cards always use these fixed values.
312 */
313 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
314 data->timeout_ns = limit_us * 1000;
315 data->timeout_clks = 0;
316 }
317 }
318 /*
319 * Some cards need very high timeouts if driven in SPI mode.
320 * The worst observed timeout was 900ms after writing a
321 * continuous stream of data until the internal logic
322 * overflowed.
323 */
324 if (mmc_host_is_spi(card->host)) {
325 if (data->flags & MMC_DATA_WRITE) {
326 if (data->timeout_ns < 1000000000)
327 data->timeout_ns = 1000000000; /* 1s */
328 } else {
329 if (data->timeout_ns < 100000000)
330 data->timeout_ns = 100000000; /* 100ms */
331 }
332 }
333 }
334 EXPORT_SYMBOL(mmc_set_data_timeout);
335
336 /**
337 * mmc_align_data_size - pads a transfer size to a more optimal value
338 * @card: the MMC card associated with the data transfer
339 * @sz: original transfer size
340 *
341 * Pads the original data size with a number of extra bytes in
342 * order to avoid controller bugs and/or performance hits
343 * (e.g. some controllers revert to PIO for certain sizes).
344 *
345 * Returns the improved size, which might be unmodified.
346 *
347 * Note that this function is only relevant when issuing a
348 * single scatter gather entry.
349 */
350 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
351 {
352 /*
353 * FIXME: We don't have a system for the controller to tell
354 * the core about its problems yet, so for now we just 32-bit
355 * align the size.
356 */
357 sz = ((sz + 3) / 4) * 4;
358
359 return sz;
360 }
361 EXPORT_SYMBOL(mmc_align_data_size);
362
363 /**
364 * mmc_host_enable - enable a host.
365 * @host: mmc host to enable
366 *
367 * Hosts that support power saving can use the 'enable' and 'disable'
368 * methods to exit and enter power saving states. For more information
369 * see comments for struct mmc_host_ops.
370 */
371 int mmc_host_enable(struct mmc_host *host)
372 {
373 if (!(host->caps & MMC_CAP_DISABLE))
374 return 0;
375
376 if (host->en_dis_recurs)
377 return 0;
378
379 if (host->nesting_cnt++)
380 return 0;
381
382 cancel_delayed_work_sync(&host->disable);
383
384 if (host->enabled)
385 return 0;
386
387 if (host->ops->enable) {
388 int err;
389
390 host->en_dis_recurs = 1;
391 err = host->ops->enable(host);
392 host->en_dis_recurs = 0;
393
394 if (err) {
395 pr_debug("%s: enable error %d\n",
396 mmc_hostname(host), err);
397 return err;
398 }
399 }
400 host->enabled = 1;
401 return 0;
402 }
403 EXPORT_SYMBOL(mmc_host_enable);
404
405 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
406 {
407 if (host->ops->disable) {
408 int err;
409
410 host->en_dis_recurs = 1;
411 err = host->ops->disable(host, lazy);
412 host->en_dis_recurs = 0;
413
414 if (err < 0) {
415 pr_debug("%s: disable error %d\n",
416 mmc_hostname(host), err);
417 return err;
418 }
419 if (err > 0) {
420 unsigned long delay = msecs_to_jiffies(err);
421
422 mmc_schedule_delayed_work(&host->disable, delay);
423 }
424 }
425 host->enabled = 0;
426 return 0;
427 }
428
429 /**
430 * mmc_host_disable - disable a host.
431 * @host: mmc host to disable
432 *
433 * Hosts that support power saving can use the 'enable' and 'disable'
434 * methods to exit and enter power saving states. For more information
435 * see comments for struct mmc_host_ops.
436 */
437 int mmc_host_disable(struct mmc_host *host)
438 {
439 int err;
440
441 if (!(host->caps & MMC_CAP_DISABLE))
442 return 0;
443
444 if (host->en_dis_recurs)
445 return 0;
446
447 if (--host->nesting_cnt)
448 return 0;
449
450 if (!host->enabled)
451 return 0;
452
453 err = mmc_host_do_disable(host, 0);
454 return err;
455 }
456 EXPORT_SYMBOL(mmc_host_disable);
457
458 /**
459 * __mmc_claim_host - exclusively claim a host
460 * @host: mmc host to claim
461 * @abort: whether or not the operation should be aborted
462 *
463 * Claim a host for a set of operations. If @abort is non null and
464 * dereference a non-zero value then this will return prematurely with
465 * that non-zero value without acquiring the lock. Returns zero
466 * with the lock held otherwise.
467 */
468 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
469 {
470 DECLARE_WAITQUEUE(wait, current);
471 unsigned long flags;
472 int stop;
473
474 might_sleep();
475
476 add_wait_queue(&host->wq, &wait);
477 spin_lock_irqsave(&host->lock, flags);
478 while (1) {
479 set_current_state(TASK_UNINTERRUPTIBLE);
480 stop = abort ? atomic_read(abort) : 0;
481 if (stop || !host->claimed || host->claimer == current)
482 break;
483 spin_unlock_irqrestore(&host->lock, flags);
484 schedule();
485 spin_lock_irqsave(&host->lock, flags);
486 }
487 set_current_state(TASK_RUNNING);
488 if (!stop) {
489 host->claimed = 1;
490 host->claimer = current;
491 host->claim_cnt += 1;
492 } else
493 wake_up(&host->wq);
494 spin_unlock_irqrestore(&host->lock, flags);
495 remove_wait_queue(&host->wq, &wait);
496 if (!stop)
497 mmc_host_enable(host);
498 return stop;
499 }
500
501 EXPORT_SYMBOL(__mmc_claim_host);
502
503 /**
504 * mmc_try_claim_host - try exclusively to claim a host
505 * @host: mmc host to claim
506 *
507 * Returns %1 if the host is claimed, %0 otherwise.
508 */
509 int mmc_try_claim_host(struct mmc_host *host)
510 {
511 int claimed_host = 0;
512 unsigned long flags;
513
514 spin_lock_irqsave(&host->lock, flags);
515 if (!host->claimed || host->claimer == current) {
516 host->claimed = 1;
517 host->claimer = current;
518 host->claim_cnt += 1;
519 claimed_host = 1;
520 }
521 spin_unlock_irqrestore(&host->lock, flags);
522 return claimed_host;
523 }
524 EXPORT_SYMBOL(mmc_try_claim_host);
525
526 static void mmc_do_release_host(struct mmc_host *host)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&host->lock, flags);
531 if (--host->claim_cnt) {
532 /* Release for nested claim */
533 spin_unlock_irqrestore(&host->lock, flags);
534 } else {
535 host->claimed = 0;
536 host->claimer = NULL;
537 spin_unlock_irqrestore(&host->lock, flags);
538 wake_up(&host->wq);
539 }
540 }
541
542 void mmc_host_deeper_disable(struct work_struct *work)
543 {
544 struct mmc_host *host =
545 container_of(work, struct mmc_host, disable.work);
546
547 /* If the host is claimed then we do not want to disable it anymore */
548 if (!mmc_try_claim_host(host))
549 return;
550 mmc_host_do_disable(host, 1);
551 mmc_do_release_host(host);
552 }
553
554 /**
555 * mmc_host_lazy_disable - lazily disable a host.
556 * @host: mmc host to disable
557 *
558 * Hosts that support power saving can use the 'enable' and 'disable'
559 * methods to exit and enter power saving states. For more information
560 * see comments for struct mmc_host_ops.
561 */
562 int mmc_host_lazy_disable(struct mmc_host *host)
563 {
564 if (!(host->caps & MMC_CAP_DISABLE))
565 return 0;
566
567 if (host->en_dis_recurs)
568 return 0;
569
570 if (--host->nesting_cnt)
571 return 0;
572
573 if (!host->enabled)
574 return 0;
575
576 if (host->disable_delay) {
577 mmc_schedule_delayed_work(&host->disable,
578 msecs_to_jiffies(host->disable_delay));
579 return 0;
580 } else
581 return mmc_host_do_disable(host, 1);
582 }
583 EXPORT_SYMBOL(mmc_host_lazy_disable);
584
585 /**
586 * mmc_release_host - release a host
587 * @host: mmc host to release
588 *
589 * Release a MMC host, allowing others to claim the host
590 * for their operations.
591 */
592 void mmc_release_host(struct mmc_host *host)
593 {
594 WARN_ON(!host->claimed);
595
596 mmc_host_lazy_disable(host);
597
598 mmc_do_release_host(host);
599 }
600
601 EXPORT_SYMBOL(mmc_release_host);
602
603 /*
604 * Internal function that does the actual ios call to the host driver,
605 * optionally printing some debug output.
606 */
607 static inline void mmc_set_ios(struct mmc_host *host)
608 {
609 struct mmc_ios *ios = &host->ios;
610
611 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
612 "width %u timing %u\n",
613 mmc_hostname(host), ios->clock, ios->bus_mode,
614 ios->power_mode, ios->chip_select, ios->vdd,
615 ios->bus_width, ios->timing);
616
617 host->ops->set_ios(host, ios);
618 }
619
620 /*
621 * Control chip select pin on a host.
622 */
623 void mmc_set_chip_select(struct mmc_host *host, int mode)
624 {
625 host->ios.chip_select = mode;
626 mmc_set_ios(host);
627 }
628
629 /*
630 * Sets the host clock to the highest possible frequency that
631 * is below "hz".
632 */
633 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
634 {
635 WARN_ON(hz < host->f_min);
636
637 if (hz > host->f_max)
638 hz = host->f_max;
639
640 host->ios.clock = hz;
641 mmc_set_ios(host);
642 }
643
644 /*
645 * Change the bus mode (open drain/push-pull) of a host.
646 */
647 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
648 {
649 host->ios.bus_mode = mode;
650 mmc_set_ios(host);
651 }
652
653 /*
654 * Change data bus width and DDR mode of a host.
655 */
656 void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
657 unsigned int ddr)
658 {
659 host->ios.bus_width = width;
660 host->ios.ddr = ddr;
661 mmc_set_ios(host);
662 }
663
664 /*
665 * Change data bus width of a host.
666 */
667 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
668 {
669 mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
670 }
671
672 /**
673 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
674 * @vdd: voltage (mV)
675 * @low_bits: prefer low bits in boundary cases
676 *
677 * This function returns the OCR bit number according to the provided @vdd
678 * value. If conversion is not possible a negative errno value returned.
679 *
680 * Depending on the @low_bits flag the function prefers low or high OCR bits
681 * on boundary voltages. For example,
682 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
683 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
684 *
685 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
686 */
687 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
688 {
689 const int max_bit = ilog2(MMC_VDD_35_36);
690 int bit;
691
692 if (vdd < 1650 || vdd > 3600)
693 return -EINVAL;
694
695 if (vdd >= 1650 && vdd <= 1950)
696 return ilog2(MMC_VDD_165_195);
697
698 if (low_bits)
699 vdd -= 1;
700
701 /* Base 2000 mV, step 100 mV, bit's base 8. */
702 bit = (vdd - 2000) / 100 + 8;
703 if (bit > max_bit)
704 return max_bit;
705 return bit;
706 }
707
708 /**
709 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
710 * @vdd_min: minimum voltage value (mV)
711 * @vdd_max: maximum voltage value (mV)
712 *
713 * This function returns the OCR mask bits according to the provided @vdd_min
714 * and @vdd_max values. If conversion is not possible the function returns 0.
715 *
716 * Notes wrt boundary cases:
717 * This function sets the OCR bits for all boundary voltages, for example
718 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
719 * MMC_VDD_34_35 mask.
720 */
721 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
722 {
723 u32 mask = 0;
724
725 if (vdd_max < vdd_min)
726 return 0;
727
728 /* Prefer high bits for the boundary vdd_max values. */
729 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
730 if (vdd_max < 0)
731 return 0;
732
733 /* Prefer low bits for the boundary vdd_min values. */
734 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
735 if (vdd_min < 0)
736 return 0;
737
738 /* Fill the mask, from max bit to min bit. */
739 while (vdd_max >= vdd_min)
740 mask |= 1 << vdd_max--;
741
742 return mask;
743 }
744 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
745
746 #ifdef CONFIG_REGULATOR
747
748 /**
749 * mmc_regulator_get_ocrmask - return mask of supported voltages
750 * @supply: regulator to use
751 *
752 * This returns either a negative errno, or a mask of voltages that
753 * can be provided to MMC/SD/SDIO devices using the specified voltage
754 * regulator. This would normally be called before registering the
755 * MMC host adapter.
756 */
757 int mmc_regulator_get_ocrmask(struct regulator *supply)
758 {
759 int result = 0;
760 int count;
761 int i;
762
763 count = regulator_count_voltages(supply);
764 if (count < 0)
765 return count;
766
767 for (i = 0; i < count; i++) {
768 int vdd_uV;
769 int vdd_mV;
770
771 vdd_uV = regulator_list_voltage(supply, i);
772 if (vdd_uV <= 0)
773 continue;
774
775 vdd_mV = vdd_uV / 1000;
776 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
777 }
778
779 return result;
780 }
781 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
782
783 /**
784 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
785 * @mmc: the host to regulate
786 * @supply: regulator to use
787 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
788 *
789 * Returns zero on success, else negative errno.
790 *
791 * MMC host drivers may use this to enable or disable a regulator using
792 * a particular supply voltage. This would normally be called from the
793 * set_ios() method.
794 */
795 int mmc_regulator_set_ocr(struct mmc_host *mmc,
796 struct regulator *supply,
797 unsigned short vdd_bit)
798 {
799 int result = 0;
800 int min_uV, max_uV;
801
802 if (vdd_bit) {
803 int tmp;
804 int voltage;
805
806 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
807 * bits this regulator doesn't quite support ... don't
808 * be too picky, most cards and regulators are OK with
809 * a 0.1V range goof (it's a small error percentage).
810 */
811 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
812 if (tmp == 0) {
813 min_uV = 1650 * 1000;
814 max_uV = 1950 * 1000;
815 } else {
816 min_uV = 1900 * 1000 + tmp * 100 * 1000;
817 max_uV = min_uV + 100 * 1000;
818 }
819
820 /* avoid needless changes to this voltage; the regulator
821 * might not allow this operation
822 */
823 voltage = regulator_get_voltage(supply);
824 if (voltage < 0)
825 result = voltage;
826 else if (voltage < min_uV || voltage > max_uV)
827 result = regulator_set_voltage(supply, min_uV, max_uV);
828 else
829 result = 0;
830
831 if (result == 0 && !mmc->regulator_enabled) {
832 result = regulator_enable(supply);
833 if (!result)
834 mmc->regulator_enabled = true;
835 }
836 } else if (mmc->regulator_enabled) {
837 result = regulator_disable(supply);
838 if (result == 0)
839 mmc->regulator_enabled = false;
840 }
841
842 if (result)
843 dev_err(mmc_dev(mmc),
844 "could not set regulator OCR (%d)\n", result);
845 return result;
846 }
847 EXPORT_SYMBOL(mmc_regulator_set_ocr);
848
849 #endif /* CONFIG_REGULATOR */
850
851 /*
852 * Mask off any voltages we don't support and select
853 * the lowest voltage
854 */
855 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
856 {
857 int bit;
858
859 ocr &= host->ocr_avail;
860
861 bit = ffs(ocr);
862 if (bit) {
863 bit -= 1;
864
865 ocr &= 3 << bit;
866
867 host->ios.vdd = bit;
868 mmc_set_ios(host);
869 } else {
870 pr_warning("%s: host doesn't support card's voltages\n",
871 mmc_hostname(host));
872 ocr = 0;
873 }
874
875 return ocr;
876 }
877
878 /*
879 * Select timing parameters for host.
880 */
881 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
882 {
883 host->ios.timing = timing;
884 mmc_set_ios(host);
885 }
886
887 /*
888 * Apply power to the MMC stack. This is a two-stage process.
889 * First, we enable power to the card without the clock running.
890 * We then wait a bit for the power to stabilise. Finally,
891 * enable the bus drivers and clock to the card.
892 *
893 * We must _NOT_ enable the clock prior to power stablising.
894 *
895 * If a host does all the power sequencing itself, ignore the
896 * initial MMC_POWER_UP stage.
897 */
898 static void mmc_power_up(struct mmc_host *host)
899 {
900 int bit;
901
902 /* If ocr is set, we use it */
903 if (host->ocr)
904 bit = ffs(host->ocr) - 1;
905 else
906 bit = fls(host->ocr_avail) - 1;
907
908 host->ios.vdd = bit;
909 if (mmc_host_is_spi(host)) {
910 host->ios.chip_select = MMC_CS_HIGH;
911 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
912 } else {
913 host->ios.chip_select = MMC_CS_DONTCARE;
914 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
915 }
916 host->ios.power_mode = MMC_POWER_UP;
917 host->ios.bus_width = MMC_BUS_WIDTH_1;
918 host->ios.timing = MMC_TIMING_LEGACY;
919 mmc_set_ios(host);
920
921 /*
922 * This delay should be sufficient to allow the power supply
923 * to reach the minimum voltage.
924 */
925 mmc_delay(10);
926
927 host->ios.clock = host->f_init;
928
929 host->ios.power_mode = MMC_POWER_ON;
930 mmc_set_ios(host);
931
932 /*
933 * This delay must be at least 74 clock sizes, or 1 ms, or the
934 * time required to reach a stable voltage.
935 */
936 mmc_delay(10);
937 }
938
939 static void mmc_power_off(struct mmc_host *host)
940 {
941 host->ios.clock = 0;
942 host->ios.vdd = 0;
943 if (!mmc_host_is_spi(host)) {
944 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
945 host->ios.chip_select = MMC_CS_DONTCARE;
946 }
947 host->ios.power_mode = MMC_POWER_OFF;
948 host->ios.bus_width = MMC_BUS_WIDTH_1;
949 host->ios.timing = MMC_TIMING_LEGACY;
950 mmc_set_ios(host);
951 }
952
953 /*
954 * Cleanup when the last reference to the bus operator is dropped.
955 */
956 static void __mmc_release_bus(struct mmc_host *host)
957 {
958 BUG_ON(!host);
959 BUG_ON(host->bus_refs);
960 BUG_ON(!host->bus_dead);
961
962 host->bus_ops = NULL;
963 }
964
965 /*
966 * Increase reference count of bus operator
967 */
968 static inline void mmc_bus_get(struct mmc_host *host)
969 {
970 unsigned long flags;
971
972 spin_lock_irqsave(&host->lock, flags);
973 host->bus_refs++;
974 spin_unlock_irqrestore(&host->lock, flags);
975 }
976
977 /*
978 * Decrease reference count of bus operator and free it if
979 * it is the last reference.
980 */
981 static inline void mmc_bus_put(struct mmc_host *host)
982 {
983 unsigned long flags;
984
985 spin_lock_irqsave(&host->lock, flags);
986 host->bus_refs--;
987 if ((host->bus_refs == 0) && host->bus_ops)
988 __mmc_release_bus(host);
989 spin_unlock_irqrestore(&host->lock, flags);
990 }
991
992 /*
993 * Assign a mmc bus handler to a host. Only one bus handler may control a
994 * host at any given time.
995 */
996 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
997 {
998 unsigned long flags;
999
1000 BUG_ON(!host);
1001 BUG_ON(!ops);
1002
1003 WARN_ON(!host->claimed);
1004
1005 spin_lock_irqsave(&host->lock, flags);
1006
1007 BUG_ON(host->bus_ops);
1008 BUG_ON(host->bus_refs);
1009
1010 host->bus_ops = ops;
1011 host->bus_refs = 1;
1012 host->bus_dead = 0;
1013
1014 spin_unlock_irqrestore(&host->lock, flags);
1015 }
1016
1017 /*
1018 * Remove the current bus handler from a host. Assumes that there are
1019 * no interesting cards left, so the bus is powered down.
1020 */
1021 void mmc_detach_bus(struct mmc_host *host)
1022 {
1023 unsigned long flags;
1024
1025 BUG_ON(!host);
1026
1027 WARN_ON(!host->claimed);
1028 WARN_ON(!host->bus_ops);
1029
1030 spin_lock_irqsave(&host->lock, flags);
1031
1032 host->bus_dead = 1;
1033
1034 spin_unlock_irqrestore(&host->lock, flags);
1035
1036 mmc_power_off(host);
1037
1038 mmc_bus_put(host);
1039 }
1040
1041 /**
1042 * mmc_detect_change - process change of state on a MMC socket
1043 * @host: host which changed state.
1044 * @delay: optional delay to wait before detection (jiffies)
1045 *
1046 * MMC drivers should call this when they detect a card has been
1047 * inserted or removed. The MMC layer will confirm that any
1048 * present card is still functional, and initialize any newly
1049 * inserted.
1050 */
1051 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1052 {
1053 #ifdef CONFIG_MMC_DEBUG
1054 unsigned long flags;
1055 spin_lock_irqsave(&host->lock, flags);
1056 WARN_ON(host->removed);
1057 spin_unlock_irqrestore(&host->lock, flags);
1058 #endif
1059
1060 mmc_schedule_delayed_work(&host->detect, delay);
1061 }
1062
1063 EXPORT_SYMBOL(mmc_detect_change);
1064
1065 void mmc_init_erase(struct mmc_card *card)
1066 {
1067 unsigned int sz;
1068
1069 if (is_power_of_2(card->erase_size))
1070 card->erase_shift = ffs(card->erase_size) - 1;
1071 else
1072 card->erase_shift = 0;
1073
1074 /*
1075 * It is possible to erase an arbitrarily large area of an SD or MMC
1076 * card. That is not desirable because it can take a long time
1077 * (minutes) potentially delaying more important I/O, and also the
1078 * timeout calculations become increasingly hugely over-estimated.
1079 * Consequently, 'pref_erase' is defined as a guide to limit erases
1080 * to that size and alignment.
1081 *
1082 * For SD cards that define Allocation Unit size, limit erases to one
1083 * Allocation Unit at a time. For MMC cards that define High Capacity
1084 * Erase Size, whether it is switched on or not, limit to that size.
1085 * Otherwise just have a stab at a good value. For modern cards it
1086 * will end up being 4MiB. Note that if the value is too small, it
1087 * can end up taking longer to erase.
1088 */
1089 if (mmc_card_sd(card) && card->ssr.au) {
1090 card->pref_erase = card->ssr.au;
1091 card->erase_shift = ffs(card->ssr.au) - 1;
1092 } else if (card->ext_csd.hc_erase_size) {
1093 card->pref_erase = card->ext_csd.hc_erase_size;
1094 } else {
1095 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1096 if (sz < 128)
1097 card->pref_erase = 512 * 1024 / 512;
1098 else if (sz < 512)
1099 card->pref_erase = 1024 * 1024 / 512;
1100 else if (sz < 1024)
1101 card->pref_erase = 2 * 1024 * 1024 / 512;
1102 else
1103 card->pref_erase = 4 * 1024 * 1024 / 512;
1104 if (card->pref_erase < card->erase_size)
1105 card->pref_erase = card->erase_size;
1106 else {
1107 sz = card->pref_erase % card->erase_size;
1108 if (sz)
1109 card->pref_erase += card->erase_size - sz;
1110 }
1111 }
1112 }
1113
1114 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1115 struct mmc_command *cmd,
1116 unsigned int arg, unsigned int qty)
1117 {
1118 unsigned int erase_timeout;
1119
1120 if (card->ext_csd.erase_group_def & 1) {
1121 /* High Capacity Erase Group Size uses HC timeouts */
1122 if (arg == MMC_TRIM_ARG)
1123 erase_timeout = card->ext_csd.trim_timeout;
1124 else
1125 erase_timeout = card->ext_csd.hc_erase_timeout;
1126 } else {
1127 /* CSD Erase Group Size uses write timeout */
1128 unsigned int mult = (10 << card->csd.r2w_factor);
1129 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1130 unsigned int timeout_us;
1131
1132 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1133 if (card->csd.tacc_ns < 1000000)
1134 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1135 else
1136 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1137
1138 /*
1139 * ios.clock is only a target. The real clock rate might be
1140 * less but not that much less, so fudge it by multiplying by 2.
1141 */
1142 timeout_clks <<= 1;
1143 timeout_us += (timeout_clks * 1000) /
1144 (card->host->ios.clock / 1000);
1145
1146 erase_timeout = timeout_us / 1000;
1147
1148 /*
1149 * Theoretically, the calculation could underflow so round up
1150 * to 1ms in that case.
1151 */
1152 if (!erase_timeout)
1153 erase_timeout = 1;
1154 }
1155
1156 /* Multiplier for secure operations */
1157 if (arg & MMC_SECURE_ARGS) {
1158 if (arg == MMC_SECURE_ERASE_ARG)
1159 erase_timeout *= card->ext_csd.sec_erase_mult;
1160 else
1161 erase_timeout *= card->ext_csd.sec_trim_mult;
1162 }
1163
1164 erase_timeout *= qty;
1165
1166 /*
1167 * Ensure at least a 1 second timeout for SPI as per
1168 * 'mmc_set_data_timeout()'
1169 */
1170 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1171 erase_timeout = 1000;
1172
1173 cmd->erase_timeout = erase_timeout;
1174 }
1175
1176 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1177 struct mmc_command *cmd, unsigned int arg,
1178 unsigned int qty)
1179 {
1180 if (card->ssr.erase_timeout) {
1181 /* Erase timeout specified in SD Status Register (SSR) */
1182 cmd->erase_timeout = card->ssr.erase_timeout * qty +
1183 card->ssr.erase_offset;
1184 } else {
1185 /*
1186 * Erase timeout not specified in SD Status Register (SSR) so
1187 * use 250ms per write block.
1188 */
1189 cmd->erase_timeout = 250 * qty;
1190 }
1191
1192 /* Must not be less than 1 second */
1193 if (cmd->erase_timeout < 1000)
1194 cmd->erase_timeout = 1000;
1195 }
1196
1197 static void mmc_set_erase_timeout(struct mmc_card *card,
1198 struct mmc_command *cmd, unsigned int arg,
1199 unsigned int qty)
1200 {
1201 if (mmc_card_sd(card))
1202 mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1203 else
1204 mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1205 }
1206
1207 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1208 unsigned int to, unsigned int arg)
1209 {
1210 struct mmc_command cmd;
1211 unsigned int qty = 0;
1212 int err;
1213
1214 /*
1215 * qty is used to calculate the erase timeout which depends on how many
1216 * erase groups (or allocation units in SD terminology) are affected.
1217 * We count erasing part of an erase group as one erase group.
1218 * For SD, the allocation units are always a power of 2. For MMC, the
1219 * erase group size is almost certainly also power of 2, but it does not
1220 * seem to insist on that in the JEDEC standard, so we fall back to
1221 * division in that case. SD may not specify an allocation unit size,
1222 * in which case the timeout is based on the number of write blocks.
1223 *
1224 * Note that the timeout for secure trim 2 will only be correct if the
1225 * number of erase groups specified is the same as the total of all
1226 * preceding secure trim 1 commands. Since the power may have been
1227 * lost since the secure trim 1 commands occurred, it is generally
1228 * impossible to calculate the secure trim 2 timeout correctly.
1229 */
1230 if (card->erase_shift)
1231 qty += ((to >> card->erase_shift) -
1232 (from >> card->erase_shift)) + 1;
1233 else if (mmc_card_sd(card))
1234 qty += to - from + 1;
1235 else
1236 qty += ((to / card->erase_size) -
1237 (from / card->erase_size)) + 1;
1238
1239 if (!mmc_card_blockaddr(card)) {
1240 from <<= 9;
1241 to <<= 9;
1242 }
1243
1244 memset(&cmd, 0, sizeof(struct mmc_command));
1245 if (mmc_card_sd(card))
1246 cmd.opcode = SD_ERASE_WR_BLK_START;
1247 else
1248 cmd.opcode = MMC_ERASE_GROUP_START;
1249 cmd.arg = from;
1250 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1251 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1252 if (err) {
1253 printk(KERN_ERR "mmc_erase: group start error %d, "
1254 "status %#x\n", err, cmd.resp[0]);
1255 err = -EINVAL;
1256 goto out;
1257 }
1258
1259 memset(&cmd, 0, sizeof(struct mmc_command));
1260 if (mmc_card_sd(card))
1261 cmd.opcode = SD_ERASE_WR_BLK_END;
1262 else
1263 cmd.opcode = MMC_ERASE_GROUP_END;
1264 cmd.arg = to;
1265 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1266 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1267 if (err) {
1268 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1269 err, cmd.resp[0]);
1270 err = -EINVAL;
1271 goto out;
1272 }
1273
1274 memset(&cmd, 0, sizeof(struct mmc_command));
1275 cmd.opcode = MMC_ERASE;
1276 cmd.arg = arg;
1277 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1278 mmc_set_erase_timeout(card, &cmd, arg, qty);
1279 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1280 if (err) {
1281 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1282 err, cmd.resp[0]);
1283 err = -EIO;
1284 goto out;
1285 }
1286
1287 if (mmc_host_is_spi(card->host))
1288 goto out;
1289
1290 do {
1291 memset(&cmd, 0, sizeof(struct mmc_command));
1292 cmd.opcode = MMC_SEND_STATUS;
1293 cmd.arg = card->rca << 16;
1294 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1295 /* Do not retry else we can't see errors */
1296 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1297 if (err || (cmd.resp[0] & 0xFDF92000)) {
1298 printk(KERN_ERR "error %d requesting status %#x\n",
1299 err, cmd.resp[0]);
1300 err = -EIO;
1301 goto out;
1302 }
1303 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1304 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1305 out:
1306 return err;
1307 }
1308
1309 /**
1310 * mmc_erase - erase sectors.
1311 * @card: card to erase
1312 * @from: first sector to erase
1313 * @nr: number of sectors to erase
1314 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1315 *
1316 * Caller must claim host before calling this function.
1317 */
1318 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1319 unsigned int arg)
1320 {
1321 unsigned int rem, to = from + nr;
1322
1323 if (!(card->host->caps & MMC_CAP_ERASE) ||
1324 !(card->csd.cmdclass & CCC_ERASE))
1325 return -EOPNOTSUPP;
1326
1327 if (!card->erase_size)
1328 return -EOPNOTSUPP;
1329
1330 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1331 return -EOPNOTSUPP;
1332
1333 if ((arg & MMC_SECURE_ARGS) &&
1334 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1335 return -EOPNOTSUPP;
1336
1337 if ((arg & MMC_TRIM_ARGS) &&
1338 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1339 return -EOPNOTSUPP;
1340
1341 if (arg == MMC_SECURE_ERASE_ARG) {
1342 if (from % card->erase_size || nr % card->erase_size)
1343 return -EINVAL;
1344 }
1345
1346 if (arg == MMC_ERASE_ARG) {
1347 rem = from % card->erase_size;
1348 if (rem) {
1349 rem = card->erase_size - rem;
1350 from += rem;
1351 if (nr > rem)
1352 nr -= rem;
1353 else
1354 return 0;
1355 }
1356 rem = nr % card->erase_size;
1357 if (rem)
1358 nr -= rem;
1359 }
1360
1361 if (nr == 0)
1362 return 0;
1363
1364 to = from + nr;
1365
1366 if (to <= from)
1367 return -EINVAL;
1368
1369 /* 'from' and 'to' are inclusive */
1370 to -= 1;
1371
1372 return mmc_do_erase(card, from, to, arg);
1373 }
1374 EXPORT_SYMBOL(mmc_erase);
1375
1376 int mmc_can_erase(struct mmc_card *card)
1377 {
1378 if ((card->host->caps & MMC_CAP_ERASE) &&
1379 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1380 return 1;
1381 return 0;
1382 }
1383 EXPORT_SYMBOL(mmc_can_erase);
1384
1385 int mmc_can_trim(struct mmc_card *card)
1386 {
1387 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1388 return 1;
1389 return 0;
1390 }
1391 EXPORT_SYMBOL(mmc_can_trim);
1392
1393 int mmc_can_secure_erase_trim(struct mmc_card *card)
1394 {
1395 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1396 return 1;
1397 return 0;
1398 }
1399 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1400
1401 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1402 unsigned int nr)
1403 {
1404 if (!card->erase_size)
1405 return 0;
1406 if (from % card->erase_size || nr % card->erase_size)
1407 return 0;
1408 return 1;
1409 }
1410 EXPORT_SYMBOL(mmc_erase_group_aligned);
1411
1412 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1413 {
1414 struct mmc_command cmd;
1415
1416 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1417 return 0;
1418
1419 memset(&cmd, 0, sizeof(struct mmc_command));
1420 cmd.opcode = MMC_SET_BLOCKLEN;
1421 cmd.arg = blocklen;
1422 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1423 return mmc_wait_for_cmd(card->host, &cmd, 5);
1424 }
1425 EXPORT_SYMBOL(mmc_set_blocklen);
1426
1427 void mmc_rescan(struct work_struct *work)
1428 {
1429 struct mmc_host *host =
1430 container_of(work, struct mmc_host, detect.work);
1431 u32 ocr;
1432 int err;
1433 unsigned long flags;
1434 int i;
1435 const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1436
1437 spin_lock_irqsave(&host->lock, flags);
1438
1439 if (host->rescan_disable) {
1440 spin_unlock_irqrestore(&host->lock, flags);
1441 return;
1442 }
1443
1444 spin_unlock_irqrestore(&host->lock, flags);
1445
1446
1447 mmc_bus_get(host);
1448
1449 /* if there is a card registered, check whether it is still present */
1450 if ((host->bus_ops != NULL) && host->bus_ops->detect && !host->bus_dead)
1451 host->bus_ops->detect(host);
1452
1453 mmc_bus_put(host);
1454
1455
1456 mmc_bus_get(host);
1457
1458 /* if there still is a card present, stop here */
1459 if (host->bus_ops != NULL) {
1460 mmc_bus_put(host);
1461 goto out;
1462 }
1463
1464 /* detect a newly inserted card */
1465
1466 /*
1467 * Only we can add a new handler, so it's safe to
1468 * release the lock here.
1469 */
1470 mmc_bus_put(host);
1471
1472 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1473 goto out;
1474
1475 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1476 mmc_claim_host(host);
1477
1478 if (freqs[i] >= host->f_min)
1479 host->f_init = freqs[i];
1480 else if (!i || freqs[i-1] > host->f_min)
1481 host->f_init = host->f_min;
1482 else {
1483 mmc_release_host(host);
1484 goto out;
1485 }
1486 #ifdef CONFIG_MMC_DEBUG
1487 pr_info("%s: %s: trying to init card at %u Hz\n",
1488 mmc_hostname(host), __func__, host->f_init);
1489 #endif
1490 mmc_power_up(host);
1491 sdio_reset(host);
1492 mmc_go_idle(host);
1493
1494 mmc_send_if_cond(host, host->ocr_avail);
1495
1496 /*
1497 * First we search for SDIO...
1498 */
1499 err = mmc_send_io_op_cond(host, 0, &ocr);
1500 if (!err) {
1501 if (mmc_attach_sdio(host, ocr)) {
1502 mmc_claim_host(host);
1503 /*
1504 * Try SDMEM (but not MMC) even if SDIO
1505 * is broken.
1506 */
1507 if (mmc_send_app_op_cond(host, 0, &ocr))
1508 goto out_fail;
1509
1510 if (mmc_attach_sd(host, ocr))
1511 mmc_power_off(host);
1512 }
1513 goto out;
1514 }
1515
1516 /*
1517 * ...then normal SD...
1518 */
1519 err = mmc_send_app_op_cond(host, 0, &ocr);
1520 if (!err) {
1521 if (mmc_attach_sd(host, ocr))
1522 mmc_power_off(host);
1523 goto out;
1524 }
1525
1526 /*
1527 * ...and finally MMC.
1528 */
1529 err = mmc_send_op_cond(host, 0, &ocr);
1530 if (!err) {
1531 if (mmc_attach_mmc(host, ocr))
1532 mmc_power_off(host);
1533 goto out;
1534 }
1535
1536 out_fail:
1537 mmc_release_host(host);
1538 mmc_power_off(host);
1539 }
1540 out:
1541 if (host->caps & MMC_CAP_NEEDS_POLL)
1542 mmc_schedule_delayed_work(&host->detect, HZ);
1543 }
1544
1545 void mmc_start_host(struct mmc_host *host)
1546 {
1547 mmc_power_off(host);
1548 mmc_detect_change(host, 0);
1549 }
1550
1551 void mmc_stop_host(struct mmc_host *host)
1552 {
1553 #ifdef CONFIG_MMC_DEBUG
1554 unsigned long flags;
1555 spin_lock_irqsave(&host->lock, flags);
1556 host->removed = 1;
1557 spin_unlock_irqrestore(&host->lock, flags);
1558 #endif
1559
1560 if (host->caps & MMC_CAP_DISABLE)
1561 cancel_delayed_work(&host->disable);
1562 cancel_delayed_work_sync(&host->detect);
1563 mmc_flush_scheduled_work();
1564
1565 /* clear pm flags now and let card drivers set them as needed */
1566 host->pm_flags = 0;
1567
1568 mmc_bus_get(host);
1569 if (host->bus_ops && !host->bus_dead) {
1570 if (host->bus_ops->remove)
1571 host->bus_ops->remove(host);
1572
1573 mmc_claim_host(host);
1574 mmc_detach_bus(host);
1575 mmc_release_host(host);
1576 mmc_bus_put(host);
1577 return;
1578 }
1579 mmc_bus_put(host);
1580
1581 BUG_ON(host->card);
1582
1583 mmc_power_off(host);
1584 }
1585
1586 int mmc_power_save_host(struct mmc_host *host)
1587 {
1588 int ret = 0;
1589
1590 mmc_bus_get(host);
1591
1592 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1593 mmc_bus_put(host);
1594 return -EINVAL;
1595 }
1596
1597 if (host->bus_ops->power_save)
1598 ret = host->bus_ops->power_save(host);
1599
1600 mmc_bus_put(host);
1601
1602 mmc_power_off(host);
1603
1604 return ret;
1605 }
1606 EXPORT_SYMBOL(mmc_power_save_host);
1607
1608 int mmc_power_restore_host(struct mmc_host *host)
1609 {
1610 int ret;
1611
1612 mmc_bus_get(host);
1613
1614 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1615 mmc_bus_put(host);
1616 return -EINVAL;
1617 }
1618
1619 mmc_power_up(host);
1620 ret = host->bus_ops->power_restore(host);
1621
1622 mmc_bus_put(host);
1623
1624 return ret;
1625 }
1626 EXPORT_SYMBOL(mmc_power_restore_host);
1627
1628 int mmc_card_awake(struct mmc_host *host)
1629 {
1630 int err = -ENOSYS;
1631
1632 mmc_bus_get(host);
1633
1634 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1635 err = host->bus_ops->awake(host);
1636
1637 mmc_bus_put(host);
1638
1639 return err;
1640 }
1641 EXPORT_SYMBOL(mmc_card_awake);
1642
1643 int mmc_card_sleep(struct mmc_host *host)
1644 {
1645 int err = -ENOSYS;
1646
1647 mmc_bus_get(host);
1648
1649 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1650 err = host->bus_ops->sleep(host);
1651
1652 mmc_bus_put(host);
1653
1654 return err;
1655 }
1656 EXPORT_SYMBOL(mmc_card_sleep);
1657
1658 int mmc_card_can_sleep(struct mmc_host *host)
1659 {
1660 struct mmc_card *card = host->card;
1661
1662 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1663 return 1;
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(mmc_card_can_sleep);
1667
1668 #ifdef CONFIG_PM
1669
1670 /**
1671 * mmc_suspend_host - suspend a host
1672 * @host: mmc host
1673 */
1674 int mmc_suspend_host(struct mmc_host *host)
1675 {
1676 int err = 0;
1677
1678 if (host->caps & MMC_CAP_DISABLE)
1679 cancel_delayed_work(&host->disable);
1680 cancel_delayed_work(&host->detect);
1681 mmc_flush_scheduled_work();
1682
1683 mmc_bus_get(host);
1684 if (host->bus_ops && !host->bus_dead) {
1685 if (host->bus_ops->suspend)
1686 err = host->bus_ops->suspend(host);
1687 if (err == -ENOSYS || !host->bus_ops->resume) {
1688 /*
1689 * We simply "remove" the card in this case.
1690 * It will be redetected on resume.
1691 */
1692 if (host->bus_ops->remove)
1693 host->bus_ops->remove(host);
1694 mmc_claim_host(host);
1695 mmc_detach_bus(host);
1696 mmc_release_host(host);
1697 host->pm_flags = 0;
1698 err = 0;
1699 }
1700 }
1701 mmc_bus_put(host);
1702
1703 if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1704 mmc_power_off(host);
1705
1706 return err;
1707 }
1708
1709 EXPORT_SYMBOL(mmc_suspend_host);
1710
1711 /**
1712 * mmc_resume_host - resume a previously suspended host
1713 * @host: mmc host
1714 */
1715 int mmc_resume_host(struct mmc_host *host)
1716 {
1717 int err = 0;
1718
1719 mmc_bus_get(host);
1720 if (host->bus_ops && !host->bus_dead) {
1721 if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1722 mmc_power_up(host);
1723 mmc_select_voltage(host, host->ocr);
1724 }
1725 BUG_ON(!host->bus_ops->resume);
1726 err = host->bus_ops->resume(host);
1727 if (err) {
1728 printk(KERN_WARNING "%s: error %d during resume "
1729 "(card was removed?)\n",
1730 mmc_hostname(host), err);
1731 err = 0;
1732 }
1733 }
1734 mmc_bus_put(host);
1735
1736 return err;
1737 }
1738 EXPORT_SYMBOL(mmc_resume_host);
1739
1740 /* Do the card removal on suspend if card is assumed removeable
1741 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1742 to sync the card.
1743 */
1744 int mmc_pm_notify(struct notifier_block *notify_block,
1745 unsigned long mode, void *unused)
1746 {
1747 struct mmc_host *host = container_of(
1748 notify_block, struct mmc_host, pm_notify);
1749 unsigned long flags;
1750
1751
1752 switch (mode) {
1753 case PM_HIBERNATION_PREPARE:
1754 case PM_SUSPEND_PREPARE:
1755
1756 spin_lock_irqsave(&host->lock, flags);
1757 host->rescan_disable = 1;
1758 spin_unlock_irqrestore(&host->lock, flags);
1759 cancel_delayed_work_sync(&host->detect);
1760
1761 if (!host->bus_ops || host->bus_ops->suspend)
1762 break;
1763
1764 mmc_claim_host(host);
1765
1766 if (host->bus_ops->remove)
1767 host->bus_ops->remove(host);
1768
1769 mmc_detach_bus(host);
1770 mmc_release_host(host);
1771 host->pm_flags = 0;
1772 break;
1773
1774 case PM_POST_SUSPEND:
1775 case PM_POST_HIBERNATION:
1776
1777 spin_lock_irqsave(&host->lock, flags);
1778 host->rescan_disable = 0;
1779 spin_unlock_irqrestore(&host->lock, flags);
1780 mmc_detect_change(host, 0);
1781
1782 }
1783
1784 return 0;
1785 }
1786 #endif
1787
1788 static int __init mmc_init(void)
1789 {
1790 int ret;
1791
1792 workqueue = create_singlethread_workqueue("kmmcd");
1793 if (!workqueue)
1794 return -ENOMEM;
1795
1796 ret = mmc_register_bus();
1797 if (ret)
1798 goto destroy_workqueue;
1799
1800 ret = mmc_register_host_class();
1801 if (ret)
1802 goto unregister_bus;
1803
1804 ret = sdio_register_bus();
1805 if (ret)
1806 goto unregister_host_class;
1807
1808 return 0;
1809
1810 unregister_host_class:
1811 mmc_unregister_host_class();
1812 unregister_bus:
1813 mmc_unregister_bus();
1814 destroy_workqueue:
1815 destroy_workqueue(workqueue);
1816
1817 return ret;
1818 }
1819
1820 static void __exit mmc_exit(void)
1821 {
1822 sdio_unregister_bus();
1823 mmc_unregister_host_class();
1824 mmc_unregister_bus();
1825 destroy_workqueue(workqueue);
1826 }
1827
1828 subsys_initcall(mmc_init);
1829 module_exit(mmc_exit);
1830
1831 MODULE_LICENSE("GPL");