]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/core/core.c
6e95f6f11a287d0193cc6c626aa25338252f8f8f
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
40
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
44
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
47
48 /*
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
51 */
52 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
53
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
56
57 /*
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
61 */
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
64
65 /*
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
70 */
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
81
82 /*
83 * Internal function. Schedule delayed work in the MMC work queue.
84 */
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
87 {
88 return queue_delayed_work(workqueue, work, delay);
89 }
90
91 /*
92 * Internal function. Flush all scheduled work from the MMC work queue.
93 */
94 static void mmc_flush_scheduled_work(void)
95 {
96 flush_workqueue(workqueue);
97 }
98
99 #ifdef CONFIG_FAIL_MMC_REQUEST
100
101 /*
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
104 */
105 static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
107 {
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
114 };
115
116 if (!data)
117 return;
118
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
122
123 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
125 }
126
127 #else /* CONFIG_FAIL_MMC_REQUEST */
128
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
131 {
132 }
133
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
135
136 /**
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
140 *
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
143 */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
148
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
152 }
153
154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
155 /*
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
158 */
159 if (mrq->done)
160 mrq->done(mrq);
161 } else {
162 mmc_should_fail_request(host, mrq);
163
164 led_trigger_event(host->led, LED_OFF);
165
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
170
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
175 }
176
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
183 }
184
185 if (mrq->done)
186 mrq->done(mrq);
187
188 mmc_host_clk_release(host);
189 }
190 }
191
192 EXPORT_SYMBOL(mmc_request_done);
193
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
196 {
197 #ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
199 struct scatterlist *sg;
200 #endif
201
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
206 }
207
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
211
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
217 mrq->data->timeout_ns / 1000000,
218 mrq->data->timeout_clks);
219 }
220
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
225 }
226
227 WARN_ON(!host->claimed);
228
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
236
237 #ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
251 }
252 }
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
256 }
257
258 /**
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
263 *
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
267 */
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
269 {
270 int err;
271 int timeout;
272 bool use_busy_signal;
273
274 BUG_ON(!card);
275
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
278
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
284 }
285
286 if (!card->ext_csd.raw_bkops_status)
287 return;
288
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
292
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
300 }
301
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
308 }
309
310 /*
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
314 */
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317 out:
318 mmc_release_host(card->host);
319 }
320 EXPORT_SYMBOL(mmc_start_bkops);
321
322 /*
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
325 *
326 * Wakes up mmc context, passed as a callback to host controller driver
327 */
328 static void mmc_wait_data_done(struct mmc_request *mrq)
329 {
330 mrq->host->context_info.is_done_rcv = true;
331 wake_up_interruptible(&mrq->host->context_info.wait);
332 }
333
334 static void mmc_wait_done(struct mmc_request *mrq)
335 {
336 complete(&mrq->completion);
337 }
338
339 /*
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
343 *
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
346 */
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
348 {
349 mrq->done = mmc_wait_data_done;
350 mrq->host = host;
351 if (mmc_card_removed(host->card)) {
352 mrq->cmd->error = -ENOMEDIUM;
353 mmc_wait_data_done(mrq);
354 return -ENOMEDIUM;
355 }
356 mmc_start_request(host, mrq);
357
358 return 0;
359 }
360
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
362 {
363 init_completion(&mrq->completion);
364 mrq->done = mmc_wait_done;
365 if (mmc_card_removed(host->card)) {
366 mrq->cmd->error = -ENOMEDIUM;
367 complete(&mrq->completion);
368 return -ENOMEDIUM;
369 }
370 mmc_start_request(host, mrq);
371 return 0;
372 }
373
374 /*
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
378 *
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
382 *
383 * Returns enum mmc_blk_status after checking errors.
384 */
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 struct mmc_request *mrq,
387 struct mmc_async_req *next_req)
388 {
389 struct mmc_command *cmd;
390 struct mmc_context_info *context_info = &host->context_info;
391 int err;
392 unsigned long flags;
393
394 while (1) {
395 wait_event_interruptible(context_info->wait,
396 (context_info->is_done_rcv ||
397 context_info->is_new_req));
398 spin_lock_irqsave(&context_info->lock, flags);
399 context_info->is_waiting_last_req = false;
400 spin_unlock_irqrestore(&context_info->lock, flags);
401 if (context_info->is_done_rcv) {
402 context_info->is_done_rcv = false;
403 context_info->is_new_req = false;
404 cmd = mrq->cmd;
405 if (!cmd->error || !cmd->retries ||
406 mmc_card_removed(host->card)) {
407 err = host->areq->err_check(host->card,
408 host->areq);
409 break; /* return err */
410 } else {
411 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 mmc_hostname(host),
413 cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 host->ops->request(host, mrq);
417 continue; /* wait for done/new event again */
418 }
419 } else if (context_info->is_new_req) {
420 context_info->is_new_req = false;
421 if (!next_req) {
422 err = MMC_BLK_NEW_REQUEST;
423 break; /* return err */
424 }
425 }
426 }
427 return err;
428 }
429
430 static void mmc_wait_for_req_done(struct mmc_host *host,
431 struct mmc_request *mrq)
432 {
433 struct mmc_command *cmd;
434
435 while (1) {
436 wait_for_completion(&mrq->completion);
437
438 cmd = mrq->cmd;
439 if (!cmd->error || !cmd->retries ||
440 mmc_card_removed(host->card))
441 break;
442
443 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
444 mmc_hostname(host), cmd->opcode, cmd->error);
445 cmd->retries--;
446 cmd->error = 0;
447 host->ops->request(host, mrq);
448 }
449 }
450
451 /**
452 * mmc_pre_req - Prepare for a new request
453 * @host: MMC host to prepare command
454 * @mrq: MMC request to prepare for
455 * @is_first_req: true if there is no previous started request
456 * that may run in parellel to this call, otherwise false
457 *
458 * mmc_pre_req() is called in prior to mmc_start_req() to let
459 * host prepare for the new request. Preparation of a request may be
460 * performed while another request is running on the host.
461 */
462 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
463 bool is_first_req)
464 {
465 if (host->ops->pre_req) {
466 mmc_host_clk_hold(host);
467 host->ops->pre_req(host, mrq, is_first_req);
468 mmc_host_clk_release(host);
469 }
470 }
471
472 /**
473 * mmc_post_req - Post process a completed request
474 * @host: MMC host to post process command
475 * @mrq: MMC request to post process for
476 * @err: Error, if non zero, clean up any resources made in pre_req
477 *
478 * Let the host post process a completed request. Post processing of
479 * a request may be performed while another reuqest is running.
480 */
481 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
482 int err)
483 {
484 if (host->ops->post_req) {
485 mmc_host_clk_hold(host);
486 host->ops->post_req(host, mrq, err);
487 mmc_host_clk_release(host);
488 }
489 }
490
491 /**
492 * mmc_start_req - start a non-blocking request
493 * @host: MMC host to start command
494 * @areq: async request to start
495 * @error: out parameter returns 0 for success, otherwise non zero
496 *
497 * Start a new MMC custom command request for a host.
498 * If there is on ongoing async request wait for completion
499 * of that request and start the new one and return.
500 * Does not wait for the new request to complete.
501 *
502 * Returns the completed request, NULL in case of none completed.
503 * Wait for the an ongoing request (previoulsy started) to complete and
504 * return the completed request. If there is no ongoing request, NULL
505 * is returned without waiting. NULL is not an error condition.
506 */
507 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
508 struct mmc_async_req *areq, int *error)
509 {
510 int err = 0;
511 int start_err = 0;
512 struct mmc_async_req *data = host->areq;
513
514 /* Prepare a new request */
515 if (areq)
516 mmc_pre_req(host, areq->mrq, !host->areq);
517
518 if (host->areq) {
519 err = mmc_wait_for_data_req_done(host, host->areq->mrq,
520 areq);
521 if (err == MMC_BLK_NEW_REQUEST) {
522 if (error)
523 *error = err;
524 /*
525 * The previous request was not completed,
526 * nothing to return
527 */
528 return NULL;
529 }
530 /*
531 * Check BKOPS urgency for each R1 response
532 */
533 if (host->card && mmc_card_mmc(host->card) &&
534 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
535 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
536 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
537 mmc_start_bkops(host->card, true);
538 }
539
540 if (!err && areq)
541 start_err = __mmc_start_data_req(host, areq->mrq);
542
543 if (host->areq)
544 mmc_post_req(host, host->areq->mrq, 0);
545
546 /* Cancel a prepared request if it was not started. */
547 if ((err || start_err) && areq)
548 mmc_post_req(host, areq->mrq, -EINVAL);
549
550 if (err)
551 host->areq = NULL;
552 else
553 host->areq = areq;
554
555 if (error)
556 *error = err;
557 return data;
558 }
559 EXPORT_SYMBOL(mmc_start_req);
560
561 /**
562 * mmc_wait_for_req - start a request and wait for completion
563 * @host: MMC host to start command
564 * @mrq: MMC request to start
565 *
566 * Start a new MMC custom command request for a host, and wait
567 * for the command to complete. Does not attempt to parse the
568 * response.
569 */
570 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
571 {
572 __mmc_start_req(host, mrq);
573 mmc_wait_for_req_done(host, mrq);
574 }
575 EXPORT_SYMBOL(mmc_wait_for_req);
576
577 /**
578 * mmc_interrupt_hpi - Issue for High priority Interrupt
579 * @card: the MMC card associated with the HPI transfer
580 *
581 * Issued High Priority Interrupt, and check for card status
582 * until out-of prg-state.
583 */
584 int mmc_interrupt_hpi(struct mmc_card *card)
585 {
586 int err;
587 u32 status;
588 unsigned long prg_wait;
589
590 BUG_ON(!card);
591
592 if (!card->ext_csd.hpi_en) {
593 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
594 return 1;
595 }
596
597 mmc_claim_host(card->host);
598 err = mmc_send_status(card, &status);
599 if (err) {
600 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
601 goto out;
602 }
603
604 switch (R1_CURRENT_STATE(status)) {
605 case R1_STATE_IDLE:
606 case R1_STATE_READY:
607 case R1_STATE_STBY:
608 case R1_STATE_TRAN:
609 /*
610 * In idle and transfer states, HPI is not needed and the caller
611 * can issue the next intended command immediately
612 */
613 goto out;
614 case R1_STATE_PRG:
615 break;
616 default:
617 /* In all other states, it's illegal to issue HPI */
618 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
619 mmc_hostname(card->host), R1_CURRENT_STATE(status));
620 err = -EINVAL;
621 goto out;
622 }
623
624 err = mmc_send_hpi_cmd(card, &status);
625 if (err)
626 goto out;
627
628 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
629 do {
630 err = mmc_send_status(card, &status);
631
632 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
633 break;
634 if (time_after(jiffies, prg_wait))
635 err = -ETIMEDOUT;
636 } while (!err);
637
638 out:
639 mmc_release_host(card->host);
640 return err;
641 }
642 EXPORT_SYMBOL(mmc_interrupt_hpi);
643
644 /**
645 * mmc_wait_for_cmd - start a command and wait for completion
646 * @host: MMC host to start command
647 * @cmd: MMC command to start
648 * @retries: maximum number of retries
649 *
650 * Start a new MMC command for a host, and wait for the command
651 * to complete. Return any error that occurred while the command
652 * was executing. Do not attempt to parse the response.
653 */
654 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
655 {
656 struct mmc_request mrq = {NULL};
657
658 WARN_ON(!host->claimed);
659
660 memset(cmd->resp, 0, sizeof(cmd->resp));
661 cmd->retries = retries;
662
663 mrq.cmd = cmd;
664 cmd->data = NULL;
665
666 mmc_wait_for_req(host, &mrq);
667
668 return cmd->error;
669 }
670
671 EXPORT_SYMBOL(mmc_wait_for_cmd);
672
673 /**
674 * mmc_stop_bkops - stop ongoing BKOPS
675 * @card: MMC card to check BKOPS
676 *
677 * Send HPI command to stop ongoing background operations to
678 * allow rapid servicing of foreground operations, e.g. read/
679 * writes. Wait until the card comes out of the programming state
680 * to avoid errors in servicing read/write requests.
681 */
682 int mmc_stop_bkops(struct mmc_card *card)
683 {
684 int err = 0;
685
686 BUG_ON(!card);
687 err = mmc_interrupt_hpi(card);
688
689 /*
690 * If err is EINVAL, we can't issue an HPI.
691 * It should complete the BKOPS.
692 */
693 if (!err || (err == -EINVAL)) {
694 mmc_card_clr_doing_bkops(card);
695 err = 0;
696 }
697
698 return err;
699 }
700 EXPORT_SYMBOL(mmc_stop_bkops);
701
702 int mmc_read_bkops_status(struct mmc_card *card)
703 {
704 int err;
705 u8 *ext_csd;
706
707 /*
708 * In future work, we should consider storing the entire ext_csd.
709 */
710 ext_csd = kmalloc(512, GFP_KERNEL);
711 if (!ext_csd) {
712 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
713 mmc_hostname(card->host));
714 return -ENOMEM;
715 }
716
717 mmc_claim_host(card->host);
718 err = mmc_send_ext_csd(card, ext_csd);
719 mmc_release_host(card->host);
720 if (err)
721 goto out;
722
723 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
724 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
725 out:
726 kfree(ext_csd);
727 return err;
728 }
729 EXPORT_SYMBOL(mmc_read_bkops_status);
730
731 /**
732 * mmc_set_data_timeout - set the timeout for a data command
733 * @data: data phase for command
734 * @card: the MMC card associated with the data transfer
735 *
736 * Computes the data timeout parameters according to the
737 * correct algorithm given the card type.
738 */
739 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
740 {
741 unsigned int mult;
742
743 /*
744 * SDIO cards only define an upper 1 s limit on access.
745 */
746 if (mmc_card_sdio(card)) {
747 data->timeout_ns = 1000000000;
748 data->timeout_clks = 0;
749 return;
750 }
751
752 /*
753 * SD cards use a 100 multiplier rather than 10
754 */
755 mult = mmc_card_sd(card) ? 100 : 10;
756
757 /*
758 * Scale up the multiplier (and therefore the timeout) by
759 * the r2w factor for writes.
760 */
761 if (data->flags & MMC_DATA_WRITE)
762 mult <<= card->csd.r2w_factor;
763
764 data->timeout_ns = card->csd.tacc_ns * mult;
765 data->timeout_clks = card->csd.tacc_clks * mult;
766
767 /*
768 * SD cards also have an upper limit on the timeout.
769 */
770 if (mmc_card_sd(card)) {
771 unsigned int timeout_us, limit_us;
772
773 timeout_us = data->timeout_ns / 1000;
774 if (mmc_host_clk_rate(card->host))
775 timeout_us += data->timeout_clks * 1000 /
776 (mmc_host_clk_rate(card->host) / 1000);
777
778 if (data->flags & MMC_DATA_WRITE)
779 /*
780 * The MMC spec "It is strongly recommended
781 * for hosts to implement more than 500ms
782 * timeout value even if the card indicates
783 * the 250ms maximum busy length." Even the
784 * previous value of 300ms is known to be
785 * insufficient for some cards.
786 */
787 limit_us = 3000000;
788 else
789 limit_us = 100000;
790
791 /*
792 * SDHC cards always use these fixed values.
793 */
794 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
795 data->timeout_ns = limit_us * 1000;
796 data->timeout_clks = 0;
797 }
798 }
799
800 /*
801 * Some cards require longer data read timeout than indicated in CSD.
802 * Address this by setting the read timeout to a "reasonably high"
803 * value. For the cards tested, 300ms has proven enough. If necessary,
804 * this value can be increased if other problematic cards require this.
805 */
806 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
807 data->timeout_ns = 300000000;
808 data->timeout_clks = 0;
809 }
810
811 /*
812 * Some cards need very high timeouts if driven in SPI mode.
813 * The worst observed timeout was 900ms after writing a
814 * continuous stream of data until the internal logic
815 * overflowed.
816 */
817 if (mmc_host_is_spi(card->host)) {
818 if (data->flags & MMC_DATA_WRITE) {
819 if (data->timeout_ns < 1000000000)
820 data->timeout_ns = 1000000000; /* 1s */
821 } else {
822 if (data->timeout_ns < 100000000)
823 data->timeout_ns = 100000000; /* 100ms */
824 }
825 }
826 }
827 EXPORT_SYMBOL(mmc_set_data_timeout);
828
829 /**
830 * mmc_align_data_size - pads a transfer size to a more optimal value
831 * @card: the MMC card associated with the data transfer
832 * @sz: original transfer size
833 *
834 * Pads the original data size with a number of extra bytes in
835 * order to avoid controller bugs and/or performance hits
836 * (e.g. some controllers revert to PIO for certain sizes).
837 *
838 * Returns the improved size, which might be unmodified.
839 *
840 * Note that this function is only relevant when issuing a
841 * single scatter gather entry.
842 */
843 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
844 {
845 /*
846 * FIXME: We don't have a system for the controller to tell
847 * the core about its problems yet, so for now we just 32-bit
848 * align the size.
849 */
850 sz = ((sz + 3) / 4) * 4;
851
852 return sz;
853 }
854 EXPORT_SYMBOL(mmc_align_data_size);
855
856 /**
857 * __mmc_claim_host - exclusively claim a host
858 * @host: mmc host to claim
859 * @abort: whether or not the operation should be aborted
860 *
861 * Claim a host for a set of operations. If @abort is non null and
862 * dereference a non-zero value then this will return prematurely with
863 * that non-zero value without acquiring the lock. Returns zero
864 * with the lock held otherwise.
865 */
866 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
867 {
868 DECLARE_WAITQUEUE(wait, current);
869 unsigned long flags;
870 int stop;
871
872 might_sleep();
873
874 add_wait_queue(&host->wq, &wait);
875 spin_lock_irqsave(&host->lock, flags);
876 while (1) {
877 set_current_state(TASK_UNINTERRUPTIBLE);
878 stop = abort ? atomic_read(abort) : 0;
879 if (stop || !host->claimed || host->claimer == current)
880 break;
881 spin_unlock_irqrestore(&host->lock, flags);
882 schedule();
883 spin_lock_irqsave(&host->lock, flags);
884 }
885 set_current_state(TASK_RUNNING);
886 if (!stop) {
887 host->claimed = 1;
888 host->claimer = current;
889 host->claim_cnt += 1;
890 } else
891 wake_up(&host->wq);
892 spin_unlock_irqrestore(&host->lock, flags);
893 remove_wait_queue(&host->wq, &wait);
894 if (host->ops->enable && !stop && host->claim_cnt == 1)
895 host->ops->enable(host);
896 return stop;
897 }
898
899 EXPORT_SYMBOL(__mmc_claim_host);
900
901 /**
902 * mmc_try_claim_host - try exclusively to claim a host
903 * @host: mmc host to claim
904 *
905 * Returns %1 if the host is claimed, %0 otherwise.
906 */
907 int mmc_try_claim_host(struct mmc_host *host)
908 {
909 int claimed_host = 0;
910 unsigned long flags;
911
912 spin_lock_irqsave(&host->lock, flags);
913 if (!host->claimed || host->claimer == current) {
914 host->claimed = 1;
915 host->claimer = current;
916 host->claim_cnt += 1;
917 claimed_host = 1;
918 }
919 spin_unlock_irqrestore(&host->lock, flags);
920 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
921 host->ops->enable(host);
922 return claimed_host;
923 }
924 EXPORT_SYMBOL(mmc_try_claim_host);
925
926 /**
927 * mmc_release_host - release a host
928 * @host: mmc host to release
929 *
930 * Release a MMC host, allowing others to claim the host
931 * for their operations.
932 */
933 void mmc_release_host(struct mmc_host *host)
934 {
935 unsigned long flags;
936
937 WARN_ON(!host->claimed);
938
939 if (host->ops->disable && host->claim_cnt == 1)
940 host->ops->disable(host);
941
942 spin_lock_irqsave(&host->lock, flags);
943 if (--host->claim_cnt) {
944 /* Release for nested claim */
945 spin_unlock_irqrestore(&host->lock, flags);
946 } else {
947 host->claimed = 0;
948 host->claimer = NULL;
949 spin_unlock_irqrestore(&host->lock, flags);
950 wake_up(&host->wq);
951 }
952 }
953 EXPORT_SYMBOL(mmc_release_host);
954
955 /*
956 * Internal function that does the actual ios call to the host driver,
957 * optionally printing some debug output.
958 */
959 static inline void mmc_set_ios(struct mmc_host *host)
960 {
961 struct mmc_ios *ios = &host->ios;
962
963 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
964 "width %u timing %u\n",
965 mmc_hostname(host), ios->clock, ios->bus_mode,
966 ios->power_mode, ios->chip_select, ios->vdd,
967 ios->bus_width, ios->timing);
968
969 if (ios->clock > 0)
970 mmc_set_ungated(host);
971 host->ops->set_ios(host, ios);
972 }
973
974 /*
975 * Control chip select pin on a host.
976 */
977 void mmc_set_chip_select(struct mmc_host *host, int mode)
978 {
979 mmc_host_clk_hold(host);
980 host->ios.chip_select = mode;
981 mmc_set_ios(host);
982 mmc_host_clk_release(host);
983 }
984
985 /*
986 * Sets the host clock to the highest possible frequency that
987 * is below "hz".
988 */
989 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
990 {
991 WARN_ON(hz < host->f_min);
992
993 if (hz > host->f_max)
994 hz = host->f_max;
995
996 host->ios.clock = hz;
997 mmc_set_ios(host);
998 }
999
1000 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1001 {
1002 mmc_host_clk_hold(host);
1003 __mmc_set_clock(host, hz);
1004 mmc_host_clk_release(host);
1005 }
1006
1007 #ifdef CONFIG_MMC_CLKGATE
1008 /*
1009 * This gates the clock by setting it to 0 Hz.
1010 */
1011 void mmc_gate_clock(struct mmc_host *host)
1012 {
1013 unsigned long flags;
1014
1015 spin_lock_irqsave(&host->clk_lock, flags);
1016 host->clk_old = host->ios.clock;
1017 host->ios.clock = 0;
1018 host->clk_gated = true;
1019 spin_unlock_irqrestore(&host->clk_lock, flags);
1020 mmc_set_ios(host);
1021 }
1022
1023 /*
1024 * This restores the clock from gating by using the cached
1025 * clock value.
1026 */
1027 void mmc_ungate_clock(struct mmc_host *host)
1028 {
1029 /*
1030 * We should previously have gated the clock, so the clock shall
1031 * be 0 here! The clock may however be 0 during initialization,
1032 * when some request operations are performed before setting
1033 * the frequency. When ungate is requested in that situation
1034 * we just ignore the call.
1035 */
1036 if (host->clk_old) {
1037 BUG_ON(host->ios.clock);
1038 /* This call will also set host->clk_gated to false */
1039 __mmc_set_clock(host, host->clk_old);
1040 }
1041 }
1042
1043 void mmc_set_ungated(struct mmc_host *host)
1044 {
1045 unsigned long flags;
1046
1047 /*
1048 * We've been given a new frequency while the clock is gated,
1049 * so make sure we regard this as ungating it.
1050 */
1051 spin_lock_irqsave(&host->clk_lock, flags);
1052 host->clk_gated = false;
1053 spin_unlock_irqrestore(&host->clk_lock, flags);
1054 }
1055
1056 #else
1057 void mmc_set_ungated(struct mmc_host *host)
1058 {
1059 }
1060 #endif
1061
1062 /*
1063 * Change the bus mode (open drain/push-pull) of a host.
1064 */
1065 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1066 {
1067 mmc_host_clk_hold(host);
1068 host->ios.bus_mode = mode;
1069 mmc_set_ios(host);
1070 mmc_host_clk_release(host);
1071 }
1072
1073 /*
1074 * Change data bus width of a host.
1075 */
1076 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1077 {
1078 mmc_host_clk_hold(host);
1079 host->ios.bus_width = width;
1080 mmc_set_ios(host);
1081 mmc_host_clk_release(host);
1082 }
1083
1084 /**
1085 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1086 * @vdd: voltage (mV)
1087 * @low_bits: prefer low bits in boundary cases
1088 *
1089 * This function returns the OCR bit number according to the provided @vdd
1090 * value. If conversion is not possible a negative errno value returned.
1091 *
1092 * Depending on the @low_bits flag the function prefers low or high OCR bits
1093 * on boundary voltages. For example,
1094 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1095 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1096 *
1097 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1098 */
1099 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1100 {
1101 const int max_bit = ilog2(MMC_VDD_35_36);
1102 int bit;
1103
1104 if (vdd < 1650 || vdd > 3600)
1105 return -EINVAL;
1106
1107 if (vdd >= 1650 && vdd <= 1950)
1108 return ilog2(MMC_VDD_165_195);
1109
1110 if (low_bits)
1111 vdd -= 1;
1112
1113 /* Base 2000 mV, step 100 mV, bit's base 8. */
1114 bit = (vdd - 2000) / 100 + 8;
1115 if (bit > max_bit)
1116 return max_bit;
1117 return bit;
1118 }
1119
1120 /**
1121 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1122 * @vdd_min: minimum voltage value (mV)
1123 * @vdd_max: maximum voltage value (mV)
1124 *
1125 * This function returns the OCR mask bits according to the provided @vdd_min
1126 * and @vdd_max values. If conversion is not possible the function returns 0.
1127 *
1128 * Notes wrt boundary cases:
1129 * This function sets the OCR bits for all boundary voltages, for example
1130 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1131 * MMC_VDD_34_35 mask.
1132 */
1133 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1134 {
1135 u32 mask = 0;
1136
1137 if (vdd_max < vdd_min)
1138 return 0;
1139
1140 /* Prefer high bits for the boundary vdd_max values. */
1141 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1142 if (vdd_max < 0)
1143 return 0;
1144
1145 /* Prefer low bits for the boundary vdd_min values. */
1146 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1147 if (vdd_min < 0)
1148 return 0;
1149
1150 /* Fill the mask, from max bit to min bit. */
1151 while (vdd_max >= vdd_min)
1152 mask |= 1 << vdd_max--;
1153
1154 return mask;
1155 }
1156 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1157
1158 #ifdef CONFIG_REGULATOR
1159
1160 /**
1161 * mmc_regulator_get_ocrmask - return mask of supported voltages
1162 * @supply: regulator to use
1163 *
1164 * This returns either a negative errno, or a mask of voltages that
1165 * can be provided to MMC/SD/SDIO devices using the specified voltage
1166 * regulator. This would normally be called before registering the
1167 * MMC host adapter.
1168 */
1169 int mmc_regulator_get_ocrmask(struct regulator *supply)
1170 {
1171 int result = 0;
1172 int count;
1173 int i;
1174
1175 count = regulator_count_voltages(supply);
1176 if (count < 0)
1177 return count;
1178
1179 for (i = 0; i < count; i++) {
1180 int vdd_uV;
1181 int vdd_mV;
1182
1183 vdd_uV = regulator_list_voltage(supply, i);
1184 if (vdd_uV <= 0)
1185 continue;
1186
1187 vdd_mV = vdd_uV / 1000;
1188 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1189 }
1190
1191 return result;
1192 }
1193 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1194
1195 /**
1196 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1197 * @mmc: the host to regulate
1198 * @supply: regulator to use
1199 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1200 *
1201 * Returns zero on success, else negative errno.
1202 *
1203 * MMC host drivers may use this to enable or disable a regulator using
1204 * a particular supply voltage. This would normally be called from the
1205 * set_ios() method.
1206 */
1207 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1208 struct regulator *supply,
1209 unsigned short vdd_bit)
1210 {
1211 int result = 0;
1212 int min_uV, max_uV;
1213
1214 if (vdd_bit) {
1215 int tmp;
1216 int voltage;
1217
1218 /*
1219 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1220 * bits this regulator doesn't quite support ... don't
1221 * be too picky, most cards and regulators are OK with
1222 * a 0.1V range goof (it's a small error percentage).
1223 */
1224 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1225 if (tmp == 0) {
1226 min_uV = 1650 * 1000;
1227 max_uV = 1950 * 1000;
1228 } else {
1229 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1230 max_uV = min_uV + 100 * 1000;
1231 }
1232
1233 /*
1234 * If we're using a fixed/static regulator, don't call
1235 * regulator_set_voltage; it would fail.
1236 */
1237 voltage = regulator_get_voltage(supply);
1238
1239 if (regulator_count_voltages(supply) == 1)
1240 min_uV = max_uV = voltage;
1241
1242 if (voltage < 0)
1243 result = voltage;
1244 else if (voltage < min_uV || voltage > max_uV)
1245 result = regulator_set_voltage(supply, min_uV, max_uV);
1246 else
1247 result = 0;
1248
1249 if (result == 0 && !mmc->regulator_enabled) {
1250 result = regulator_enable(supply);
1251 if (!result)
1252 mmc->regulator_enabled = true;
1253 }
1254 } else if (mmc->regulator_enabled) {
1255 result = regulator_disable(supply);
1256 if (result == 0)
1257 mmc->regulator_enabled = false;
1258 }
1259
1260 if (result)
1261 dev_err(mmc_dev(mmc),
1262 "could not set regulator OCR (%d)\n", result);
1263 return result;
1264 }
1265 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1266
1267 int mmc_regulator_get_supply(struct mmc_host *mmc)
1268 {
1269 struct device *dev = mmc_dev(mmc);
1270 struct regulator *supply;
1271 int ret;
1272
1273 supply = devm_regulator_get(dev, "vmmc");
1274 mmc->supply.vmmc = supply;
1275 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1276
1277 if (IS_ERR(supply))
1278 return PTR_ERR(supply);
1279
1280 ret = mmc_regulator_get_ocrmask(supply);
1281 if (ret > 0)
1282 mmc->ocr_avail = ret;
1283 else
1284 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1285
1286 return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1289
1290 #endif /* CONFIG_REGULATOR */
1291
1292 /*
1293 * Mask off any voltages we don't support and select
1294 * the lowest voltage
1295 */
1296 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1297 {
1298 int bit;
1299
1300 ocr &= host->ocr_avail;
1301
1302 bit = ffs(ocr);
1303 if (bit) {
1304 bit -= 1;
1305
1306 ocr &= 3 << bit;
1307
1308 mmc_host_clk_hold(host);
1309 host->ios.vdd = bit;
1310 mmc_set_ios(host);
1311 mmc_host_clk_release(host);
1312 } else {
1313 pr_warning("%s: host doesn't support card's voltages\n",
1314 mmc_hostname(host));
1315 ocr = 0;
1316 }
1317
1318 return ocr;
1319 }
1320
1321 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1322 {
1323 int err = 0;
1324 int old_signal_voltage = host->ios.signal_voltage;
1325
1326 host->ios.signal_voltage = signal_voltage;
1327 if (host->ops->start_signal_voltage_switch) {
1328 mmc_host_clk_hold(host);
1329 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1330 mmc_host_clk_release(host);
1331 }
1332
1333 if (err)
1334 host->ios.signal_voltage = old_signal_voltage;
1335
1336 return err;
1337
1338 }
1339
1340 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1341 {
1342 struct mmc_command cmd = {0};
1343 int err = 0;
1344 u32 clock;
1345
1346 BUG_ON(!host);
1347
1348 /*
1349 * Send CMD11 only if the request is to switch the card to
1350 * 1.8V signalling.
1351 */
1352 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1353 return __mmc_set_signal_voltage(host, signal_voltage);
1354
1355 /*
1356 * If we cannot switch voltages, return failure so the caller
1357 * can continue without UHS mode
1358 */
1359 if (!host->ops->start_signal_voltage_switch)
1360 return -EPERM;
1361 if (!host->ops->card_busy)
1362 pr_warning("%s: cannot verify signal voltage switch\n",
1363 mmc_hostname(host));
1364
1365 cmd.opcode = SD_SWITCH_VOLTAGE;
1366 cmd.arg = 0;
1367 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1368
1369 err = mmc_wait_for_cmd(host, &cmd, 0);
1370 if (err)
1371 return err;
1372
1373 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1374 return -EIO;
1375
1376 mmc_host_clk_hold(host);
1377 /*
1378 * The card should drive cmd and dat[0:3] low immediately
1379 * after the response of cmd11, but wait 1 ms to be sure
1380 */
1381 mmc_delay(1);
1382 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1383 err = -EAGAIN;
1384 goto power_cycle;
1385 }
1386 /*
1387 * During a signal voltage level switch, the clock must be gated
1388 * for 5 ms according to the SD spec
1389 */
1390 clock = host->ios.clock;
1391 host->ios.clock = 0;
1392 mmc_set_ios(host);
1393
1394 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1395 /*
1396 * Voltages may not have been switched, but we've already
1397 * sent CMD11, so a power cycle is required anyway
1398 */
1399 err = -EAGAIN;
1400 goto power_cycle;
1401 }
1402
1403 /* Keep clock gated for at least 5 ms */
1404 mmc_delay(5);
1405 host->ios.clock = clock;
1406 mmc_set_ios(host);
1407
1408 /* Wait for at least 1 ms according to spec */
1409 mmc_delay(1);
1410
1411 /*
1412 * Failure to switch is indicated by the card holding
1413 * dat[0:3] low
1414 */
1415 if (host->ops->card_busy && host->ops->card_busy(host))
1416 err = -EAGAIN;
1417
1418 power_cycle:
1419 if (err) {
1420 pr_debug("%s: Signal voltage switch failed, "
1421 "power cycling card\n", mmc_hostname(host));
1422 mmc_power_cycle(host);
1423 }
1424
1425 mmc_host_clk_release(host);
1426
1427 return err;
1428 }
1429
1430 /*
1431 * Select timing parameters for host.
1432 */
1433 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1434 {
1435 mmc_host_clk_hold(host);
1436 host->ios.timing = timing;
1437 mmc_set_ios(host);
1438 mmc_host_clk_release(host);
1439 }
1440
1441 /*
1442 * Select appropriate driver type for host.
1443 */
1444 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1445 {
1446 mmc_host_clk_hold(host);
1447 host->ios.drv_type = drv_type;
1448 mmc_set_ios(host);
1449 mmc_host_clk_release(host);
1450 }
1451
1452 /*
1453 * Apply power to the MMC stack. This is a two-stage process.
1454 * First, we enable power to the card without the clock running.
1455 * We then wait a bit for the power to stabilise. Finally,
1456 * enable the bus drivers and clock to the card.
1457 *
1458 * We must _NOT_ enable the clock prior to power stablising.
1459 *
1460 * If a host does all the power sequencing itself, ignore the
1461 * initial MMC_POWER_UP stage.
1462 */
1463 static void mmc_power_up(struct mmc_host *host)
1464 {
1465 int bit;
1466
1467 if (host->ios.power_mode == MMC_POWER_ON)
1468 return;
1469
1470 mmc_host_clk_hold(host);
1471
1472 /* If ocr is set, we use it */
1473 if (host->ocr)
1474 bit = ffs(host->ocr) - 1;
1475 else
1476 bit = fls(host->ocr_avail) - 1;
1477
1478 host->ios.vdd = bit;
1479 if (mmc_host_is_spi(host))
1480 host->ios.chip_select = MMC_CS_HIGH;
1481 else
1482 host->ios.chip_select = MMC_CS_DONTCARE;
1483 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1484 host->ios.power_mode = MMC_POWER_UP;
1485 host->ios.bus_width = MMC_BUS_WIDTH_1;
1486 host->ios.timing = MMC_TIMING_LEGACY;
1487 mmc_set_ios(host);
1488
1489 /* Set signal voltage to 3.3V */
1490 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1491
1492 /*
1493 * This delay should be sufficient to allow the power supply
1494 * to reach the minimum voltage.
1495 */
1496 mmc_delay(10);
1497
1498 host->ios.clock = host->f_init;
1499
1500 host->ios.power_mode = MMC_POWER_ON;
1501 mmc_set_ios(host);
1502
1503 /*
1504 * This delay must be at least 74 clock sizes, or 1 ms, or the
1505 * time required to reach a stable voltage.
1506 */
1507 mmc_delay(10);
1508
1509 mmc_host_clk_release(host);
1510 }
1511
1512 void mmc_power_off(struct mmc_host *host)
1513 {
1514 if (host->ios.power_mode == MMC_POWER_OFF)
1515 return;
1516
1517 mmc_host_clk_hold(host);
1518
1519 host->ios.clock = 0;
1520 host->ios.vdd = 0;
1521
1522
1523 /*
1524 * Reset ocr mask to be the highest possible voltage supported for
1525 * this mmc host. This value will be used at next power up.
1526 */
1527 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1528
1529 if (!mmc_host_is_spi(host)) {
1530 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1531 host->ios.chip_select = MMC_CS_DONTCARE;
1532 }
1533 host->ios.power_mode = MMC_POWER_OFF;
1534 host->ios.bus_width = MMC_BUS_WIDTH_1;
1535 host->ios.timing = MMC_TIMING_LEGACY;
1536 mmc_set_ios(host);
1537
1538 /*
1539 * Some configurations, such as the 802.11 SDIO card in the OLPC
1540 * XO-1.5, require a short delay after poweroff before the card
1541 * can be successfully turned on again.
1542 */
1543 mmc_delay(1);
1544
1545 mmc_host_clk_release(host);
1546 }
1547
1548 void mmc_power_cycle(struct mmc_host *host)
1549 {
1550 mmc_power_off(host);
1551 /* Wait at least 1 ms according to SD spec */
1552 mmc_delay(1);
1553 mmc_power_up(host);
1554 }
1555
1556 /*
1557 * Cleanup when the last reference to the bus operator is dropped.
1558 */
1559 static void __mmc_release_bus(struct mmc_host *host)
1560 {
1561 BUG_ON(!host);
1562 BUG_ON(host->bus_refs);
1563 BUG_ON(!host->bus_dead);
1564
1565 host->bus_ops = NULL;
1566 }
1567
1568 /*
1569 * Increase reference count of bus operator
1570 */
1571 static inline void mmc_bus_get(struct mmc_host *host)
1572 {
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&host->lock, flags);
1576 host->bus_refs++;
1577 spin_unlock_irqrestore(&host->lock, flags);
1578 }
1579
1580 /*
1581 * Decrease reference count of bus operator and free it if
1582 * it is the last reference.
1583 */
1584 static inline void mmc_bus_put(struct mmc_host *host)
1585 {
1586 unsigned long flags;
1587
1588 spin_lock_irqsave(&host->lock, flags);
1589 host->bus_refs--;
1590 if ((host->bus_refs == 0) && host->bus_ops)
1591 __mmc_release_bus(host);
1592 spin_unlock_irqrestore(&host->lock, flags);
1593 }
1594
1595 /*
1596 * Assign a mmc bus handler to a host. Only one bus handler may control a
1597 * host at any given time.
1598 */
1599 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1600 {
1601 unsigned long flags;
1602
1603 BUG_ON(!host);
1604 BUG_ON(!ops);
1605
1606 WARN_ON(!host->claimed);
1607
1608 spin_lock_irqsave(&host->lock, flags);
1609
1610 BUG_ON(host->bus_ops);
1611 BUG_ON(host->bus_refs);
1612
1613 host->bus_ops = ops;
1614 host->bus_refs = 1;
1615 host->bus_dead = 0;
1616
1617 spin_unlock_irqrestore(&host->lock, flags);
1618 }
1619
1620 /*
1621 * Remove the current bus handler from a host.
1622 */
1623 void mmc_detach_bus(struct mmc_host *host)
1624 {
1625 unsigned long flags;
1626
1627 BUG_ON(!host);
1628
1629 WARN_ON(!host->claimed);
1630 WARN_ON(!host->bus_ops);
1631
1632 spin_lock_irqsave(&host->lock, flags);
1633
1634 host->bus_dead = 1;
1635
1636 spin_unlock_irqrestore(&host->lock, flags);
1637
1638 mmc_bus_put(host);
1639 }
1640
1641 /**
1642 * mmc_detect_change - process change of state on a MMC socket
1643 * @host: host which changed state.
1644 * @delay: optional delay to wait before detection (jiffies)
1645 *
1646 * MMC drivers should call this when they detect a card has been
1647 * inserted or removed. The MMC layer will confirm that any
1648 * present card is still functional, and initialize any newly
1649 * inserted.
1650 */
1651 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1652 {
1653 #ifdef CONFIG_MMC_DEBUG
1654 unsigned long flags;
1655 spin_lock_irqsave(&host->lock, flags);
1656 WARN_ON(host->removed);
1657 spin_unlock_irqrestore(&host->lock, flags);
1658 #endif
1659 host->detect_change = 1;
1660 mmc_schedule_delayed_work(&host->detect, delay);
1661 }
1662
1663 EXPORT_SYMBOL(mmc_detect_change);
1664
1665 void mmc_init_erase(struct mmc_card *card)
1666 {
1667 unsigned int sz;
1668
1669 if (is_power_of_2(card->erase_size))
1670 card->erase_shift = ffs(card->erase_size) - 1;
1671 else
1672 card->erase_shift = 0;
1673
1674 /*
1675 * It is possible to erase an arbitrarily large area of an SD or MMC
1676 * card. That is not desirable because it can take a long time
1677 * (minutes) potentially delaying more important I/O, and also the
1678 * timeout calculations become increasingly hugely over-estimated.
1679 * Consequently, 'pref_erase' is defined as a guide to limit erases
1680 * to that size and alignment.
1681 *
1682 * For SD cards that define Allocation Unit size, limit erases to one
1683 * Allocation Unit at a time. For MMC cards that define High Capacity
1684 * Erase Size, whether it is switched on or not, limit to that size.
1685 * Otherwise just have a stab at a good value. For modern cards it
1686 * will end up being 4MiB. Note that if the value is too small, it
1687 * can end up taking longer to erase.
1688 */
1689 if (mmc_card_sd(card) && card->ssr.au) {
1690 card->pref_erase = card->ssr.au;
1691 card->erase_shift = ffs(card->ssr.au) - 1;
1692 } else if (card->ext_csd.hc_erase_size) {
1693 card->pref_erase = card->ext_csd.hc_erase_size;
1694 } else {
1695 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1696 if (sz < 128)
1697 card->pref_erase = 512 * 1024 / 512;
1698 else if (sz < 512)
1699 card->pref_erase = 1024 * 1024 / 512;
1700 else if (sz < 1024)
1701 card->pref_erase = 2 * 1024 * 1024 / 512;
1702 else
1703 card->pref_erase = 4 * 1024 * 1024 / 512;
1704 if (card->pref_erase < card->erase_size)
1705 card->pref_erase = card->erase_size;
1706 else {
1707 sz = card->pref_erase % card->erase_size;
1708 if (sz)
1709 card->pref_erase += card->erase_size - sz;
1710 }
1711 }
1712 }
1713
1714 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1715 unsigned int arg, unsigned int qty)
1716 {
1717 unsigned int erase_timeout;
1718
1719 if (arg == MMC_DISCARD_ARG ||
1720 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1721 erase_timeout = card->ext_csd.trim_timeout;
1722 } else if (card->ext_csd.erase_group_def & 1) {
1723 /* High Capacity Erase Group Size uses HC timeouts */
1724 if (arg == MMC_TRIM_ARG)
1725 erase_timeout = card->ext_csd.trim_timeout;
1726 else
1727 erase_timeout = card->ext_csd.hc_erase_timeout;
1728 } else {
1729 /* CSD Erase Group Size uses write timeout */
1730 unsigned int mult = (10 << card->csd.r2w_factor);
1731 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1732 unsigned int timeout_us;
1733
1734 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1735 if (card->csd.tacc_ns < 1000000)
1736 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1737 else
1738 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1739
1740 /*
1741 * ios.clock is only a target. The real clock rate might be
1742 * less but not that much less, so fudge it by multiplying by 2.
1743 */
1744 timeout_clks <<= 1;
1745 timeout_us += (timeout_clks * 1000) /
1746 (mmc_host_clk_rate(card->host) / 1000);
1747
1748 erase_timeout = timeout_us / 1000;
1749
1750 /*
1751 * Theoretically, the calculation could underflow so round up
1752 * to 1ms in that case.
1753 */
1754 if (!erase_timeout)
1755 erase_timeout = 1;
1756 }
1757
1758 /* Multiplier for secure operations */
1759 if (arg & MMC_SECURE_ARGS) {
1760 if (arg == MMC_SECURE_ERASE_ARG)
1761 erase_timeout *= card->ext_csd.sec_erase_mult;
1762 else
1763 erase_timeout *= card->ext_csd.sec_trim_mult;
1764 }
1765
1766 erase_timeout *= qty;
1767
1768 /*
1769 * Ensure at least a 1 second timeout for SPI as per
1770 * 'mmc_set_data_timeout()'
1771 */
1772 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1773 erase_timeout = 1000;
1774
1775 return erase_timeout;
1776 }
1777
1778 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1779 unsigned int arg,
1780 unsigned int qty)
1781 {
1782 unsigned int erase_timeout;
1783
1784 if (card->ssr.erase_timeout) {
1785 /* Erase timeout specified in SD Status Register (SSR) */
1786 erase_timeout = card->ssr.erase_timeout * qty +
1787 card->ssr.erase_offset;
1788 } else {
1789 /*
1790 * Erase timeout not specified in SD Status Register (SSR) so
1791 * use 250ms per write block.
1792 */
1793 erase_timeout = 250 * qty;
1794 }
1795
1796 /* Must not be less than 1 second */
1797 if (erase_timeout < 1000)
1798 erase_timeout = 1000;
1799
1800 return erase_timeout;
1801 }
1802
1803 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1804 unsigned int arg,
1805 unsigned int qty)
1806 {
1807 if (mmc_card_sd(card))
1808 return mmc_sd_erase_timeout(card, arg, qty);
1809 else
1810 return mmc_mmc_erase_timeout(card, arg, qty);
1811 }
1812
1813 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1814 unsigned int to, unsigned int arg)
1815 {
1816 struct mmc_command cmd = {0};
1817 unsigned int qty = 0;
1818 unsigned long timeout;
1819 int err;
1820
1821 /*
1822 * qty is used to calculate the erase timeout which depends on how many
1823 * erase groups (or allocation units in SD terminology) are affected.
1824 * We count erasing part of an erase group as one erase group.
1825 * For SD, the allocation units are always a power of 2. For MMC, the
1826 * erase group size is almost certainly also power of 2, but it does not
1827 * seem to insist on that in the JEDEC standard, so we fall back to
1828 * division in that case. SD may not specify an allocation unit size,
1829 * in which case the timeout is based on the number of write blocks.
1830 *
1831 * Note that the timeout for secure trim 2 will only be correct if the
1832 * number of erase groups specified is the same as the total of all
1833 * preceding secure trim 1 commands. Since the power may have been
1834 * lost since the secure trim 1 commands occurred, it is generally
1835 * impossible to calculate the secure trim 2 timeout correctly.
1836 */
1837 if (card->erase_shift)
1838 qty += ((to >> card->erase_shift) -
1839 (from >> card->erase_shift)) + 1;
1840 else if (mmc_card_sd(card))
1841 qty += to - from + 1;
1842 else
1843 qty += ((to / card->erase_size) -
1844 (from / card->erase_size)) + 1;
1845
1846 if (!mmc_card_blockaddr(card)) {
1847 from <<= 9;
1848 to <<= 9;
1849 }
1850
1851 if (mmc_card_sd(card))
1852 cmd.opcode = SD_ERASE_WR_BLK_START;
1853 else
1854 cmd.opcode = MMC_ERASE_GROUP_START;
1855 cmd.arg = from;
1856 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1857 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1858 if (err) {
1859 pr_err("mmc_erase: group start error %d, "
1860 "status %#x\n", err, cmd.resp[0]);
1861 err = -EIO;
1862 goto out;
1863 }
1864
1865 memset(&cmd, 0, sizeof(struct mmc_command));
1866 if (mmc_card_sd(card))
1867 cmd.opcode = SD_ERASE_WR_BLK_END;
1868 else
1869 cmd.opcode = MMC_ERASE_GROUP_END;
1870 cmd.arg = to;
1871 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1872 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1873 if (err) {
1874 pr_err("mmc_erase: group end error %d, status %#x\n",
1875 err, cmd.resp[0]);
1876 err = -EIO;
1877 goto out;
1878 }
1879
1880 memset(&cmd, 0, sizeof(struct mmc_command));
1881 cmd.opcode = MMC_ERASE;
1882 cmd.arg = arg;
1883 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1884 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1885 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1886 if (err) {
1887 pr_err("mmc_erase: erase error %d, status %#x\n",
1888 err, cmd.resp[0]);
1889 err = -EIO;
1890 goto out;
1891 }
1892
1893 if (mmc_host_is_spi(card->host))
1894 goto out;
1895
1896 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1897 do {
1898 memset(&cmd, 0, sizeof(struct mmc_command));
1899 cmd.opcode = MMC_SEND_STATUS;
1900 cmd.arg = card->rca << 16;
1901 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1902 /* Do not retry else we can't see errors */
1903 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1904 if (err || (cmd.resp[0] & 0xFDF92000)) {
1905 pr_err("error %d requesting status %#x\n",
1906 err, cmd.resp[0]);
1907 err = -EIO;
1908 goto out;
1909 }
1910
1911 /* Timeout if the device never becomes ready for data and
1912 * never leaves the program state.
1913 */
1914 if (time_after(jiffies, timeout)) {
1915 pr_err("%s: Card stuck in programming state! %s\n",
1916 mmc_hostname(card->host), __func__);
1917 err = -EIO;
1918 goto out;
1919 }
1920
1921 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1922 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1923 out:
1924 return err;
1925 }
1926
1927 /**
1928 * mmc_erase - erase sectors.
1929 * @card: card to erase
1930 * @from: first sector to erase
1931 * @nr: number of sectors to erase
1932 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1933 *
1934 * Caller must claim host before calling this function.
1935 */
1936 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1937 unsigned int arg)
1938 {
1939 unsigned int rem, to = from + nr;
1940
1941 if (!(card->host->caps & MMC_CAP_ERASE) ||
1942 !(card->csd.cmdclass & CCC_ERASE))
1943 return -EOPNOTSUPP;
1944
1945 if (!card->erase_size)
1946 return -EOPNOTSUPP;
1947
1948 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1949 return -EOPNOTSUPP;
1950
1951 if ((arg & MMC_SECURE_ARGS) &&
1952 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1953 return -EOPNOTSUPP;
1954
1955 if ((arg & MMC_TRIM_ARGS) &&
1956 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1957 return -EOPNOTSUPP;
1958
1959 if (arg == MMC_SECURE_ERASE_ARG) {
1960 if (from % card->erase_size || nr % card->erase_size)
1961 return -EINVAL;
1962 }
1963
1964 if (arg == MMC_ERASE_ARG) {
1965 rem = from % card->erase_size;
1966 if (rem) {
1967 rem = card->erase_size - rem;
1968 from += rem;
1969 if (nr > rem)
1970 nr -= rem;
1971 else
1972 return 0;
1973 }
1974 rem = nr % card->erase_size;
1975 if (rem)
1976 nr -= rem;
1977 }
1978
1979 if (nr == 0)
1980 return 0;
1981
1982 to = from + nr;
1983
1984 if (to <= from)
1985 return -EINVAL;
1986
1987 /* 'from' and 'to' are inclusive */
1988 to -= 1;
1989
1990 return mmc_do_erase(card, from, to, arg);
1991 }
1992 EXPORT_SYMBOL(mmc_erase);
1993
1994 int mmc_can_erase(struct mmc_card *card)
1995 {
1996 if ((card->host->caps & MMC_CAP_ERASE) &&
1997 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1998 return 1;
1999 return 0;
2000 }
2001 EXPORT_SYMBOL(mmc_can_erase);
2002
2003 int mmc_can_trim(struct mmc_card *card)
2004 {
2005 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2006 return 1;
2007 return 0;
2008 }
2009 EXPORT_SYMBOL(mmc_can_trim);
2010
2011 int mmc_can_discard(struct mmc_card *card)
2012 {
2013 /*
2014 * As there's no way to detect the discard support bit at v4.5
2015 * use the s/w feature support filed.
2016 */
2017 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2018 return 1;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(mmc_can_discard);
2022
2023 int mmc_can_sanitize(struct mmc_card *card)
2024 {
2025 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2026 return 0;
2027 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2028 return 1;
2029 return 0;
2030 }
2031 EXPORT_SYMBOL(mmc_can_sanitize);
2032
2033 int mmc_can_secure_erase_trim(struct mmc_card *card)
2034 {
2035 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2036 return 1;
2037 return 0;
2038 }
2039 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2040
2041 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2042 unsigned int nr)
2043 {
2044 if (!card->erase_size)
2045 return 0;
2046 if (from % card->erase_size || nr % card->erase_size)
2047 return 0;
2048 return 1;
2049 }
2050 EXPORT_SYMBOL(mmc_erase_group_aligned);
2051
2052 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2053 unsigned int arg)
2054 {
2055 struct mmc_host *host = card->host;
2056 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2057 unsigned int last_timeout = 0;
2058
2059 if (card->erase_shift)
2060 max_qty = UINT_MAX >> card->erase_shift;
2061 else if (mmc_card_sd(card))
2062 max_qty = UINT_MAX;
2063 else
2064 max_qty = UINT_MAX / card->erase_size;
2065
2066 /* Find the largest qty with an OK timeout */
2067 do {
2068 y = 0;
2069 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2070 timeout = mmc_erase_timeout(card, arg, qty + x);
2071 if (timeout > host->max_discard_to)
2072 break;
2073 if (timeout < last_timeout)
2074 break;
2075 last_timeout = timeout;
2076 y = x;
2077 }
2078 qty += y;
2079 } while (y);
2080
2081 if (!qty)
2082 return 0;
2083
2084 if (qty == 1)
2085 return 1;
2086
2087 /* Convert qty to sectors */
2088 if (card->erase_shift)
2089 max_discard = --qty << card->erase_shift;
2090 else if (mmc_card_sd(card))
2091 max_discard = qty;
2092 else
2093 max_discard = --qty * card->erase_size;
2094
2095 return max_discard;
2096 }
2097
2098 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2099 {
2100 struct mmc_host *host = card->host;
2101 unsigned int max_discard, max_trim;
2102
2103 if (!host->max_discard_to)
2104 return UINT_MAX;
2105
2106 /*
2107 * Without erase_group_def set, MMC erase timeout depends on clock
2108 * frequence which can change. In that case, the best choice is
2109 * just the preferred erase size.
2110 */
2111 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2112 return card->pref_erase;
2113
2114 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2115 if (mmc_can_trim(card)) {
2116 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2117 if (max_trim < max_discard)
2118 max_discard = max_trim;
2119 } else if (max_discard < card->erase_size) {
2120 max_discard = 0;
2121 }
2122 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2123 mmc_hostname(host), max_discard, host->max_discard_to);
2124 return max_discard;
2125 }
2126 EXPORT_SYMBOL(mmc_calc_max_discard);
2127
2128 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2129 {
2130 struct mmc_command cmd = {0};
2131
2132 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2133 return 0;
2134
2135 cmd.opcode = MMC_SET_BLOCKLEN;
2136 cmd.arg = blocklen;
2137 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2138 return mmc_wait_for_cmd(card->host, &cmd, 5);
2139 }
2140 EXPORT_SYMBOL(mmc_set_blocklen);
2141
2142 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2143 bool is_rel_write)
2144 {
2145 struct mmc_command cmd = {0};
2146
2147 cmd.opcode = MMC_SET_BLOCK_COUNT;
2148 cmd.arg = blockcount & 0x0000FFFF;
2149 if (is_rel_write)
2150 cmd.arg |= 1 << 31;
2151 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2152 return mmc_wait_for_cmd(card->host, &cmd, 5);
2153 }
2154 EXPORT_SYMBOL(mmc_set_blockcount);
2155
2156 static void mmc_hw_reset_for_init(struct mmc_host *host)
2157 {
2158 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2159 return;
2160 mmc_host_clk_hold(host);
2161 host->ops->hw_reset(host);
2162 mmc_host_clk_release(host);
2163 }
2164
2165 int mmc_can_reset(struct mmc_card *card)
2166 {
2167 u8 rst_n_function;
2168
2169 if (!mmc_card_mmc(card))
2170 return 0;
2171 rst_n_function = card->ext_csd.rst_n_function;
2172 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2173 return 0;
2174 return 1;
2175 }
2176 EXPORT_SYMBOL(mmc_can_reset);
2177
2178 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2179 {
2180 struct mmc_card *card = host->card;
2181
2182 if (!host->bus_ops->power_restore)
2183 return -EOPNOTSUPP;
2184
2185 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2186 return -EOPNOTSUPP;
2187
2188 if (!card)
2189 return -EINVAL;
2190
2191 if (!mmc_can_reset(card))
2192 return -EOPNOTSUPP;
2193
2194 mmc_host_clk_hold(host);
2195 mmc_set_clock(host, host->f_init);
2196
2197 host->ops->hw_reset(host);
2198
2199 /* If the reset has happened, then a status command will fail */
2200 if (check) {
2201 struct mmc_command cmd = {0};
2202 int err;
2203
2204 cmd.opcode = MMC_SEND_STATUS;
2205 if (!mmc_host_is_spi(card->host))
2206 cmd.arg = card->rca << 16;
2207 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2208 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2209 if (!err) {
2210 mmc_host_clk_release(host);
2211 return -ENOSYS;
2212 }
2213 }
2214
2215 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2216 if (mmc_host_is_spi(host)) {
2217 host->ios.chip_select = MMC_CS_HIGH;
2218 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2219 } else {
2220 host->ios.chip_select = MMC_CS_DONTCARE;
2221 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2222 }
2223 host->ios.bus_width = MMC_BUS_WIDTH_1;
2224 host->ios.timing = MMC_TIMING_LEGACY;
2225 mmc_set_ios(host);
2226
2227 mmc_host_clk_release(host);
2228
2229 return host->bus_ops->power_restore(host);
2230 }
2231
2232 int mmc_hw_reset(struct mmc_host *host)
2233 {
2234 return mmc_do_hw_reset(host, 0);
2235 }
2236 EXPORT_SYMBOL(mmc_hw_reset);
2237
2238 int mmc_hw_reset_check(struct mmc_host *host)
2239 {
2240 return mmc_do_hw_reset(host, 1);
2241 }
2242 EXPORT_SYMBOL(mmc_hw_reset_check);
2243
2244 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2245 {
2246 host->f_init = freq;
2247
2248 #ifdef CONFIG_MMC_DEBUG
2249 pr_info("%s: %s: trying to init card at %u Hz\n",
2250 mmc_hostname(host), __func__, host->f_init);
2251 #endif
2252 mmc_power_up(host);
2253
2254 /*
2255 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2256 * do a hardware reset if possible.
2257 */
2258 mmc_hw_reset_for_init(host);
2259
2260 /*
2261 * sdio_reset sends CMD52 to reset card. Since we do not know
2262 * if the card is being re-initialized, just send it. CMD52
2263 * should be ignored by SD/eMMC cards.
2264 */
2265 sdio_reset(host);
2266 mmc_go_idle(host);
2267
2268 mmc_send_if_cond(host, host->ocr_avail);
2269
2270 /* Order's important: probe SDIO, then SD, then MMC */
2271 if (!mmc_attach_sdio(host))
2272 return 0;
2273 if (!mmc_attach_sd(host))
2274 return 0;
2275 if (!mmc_attach_mmc(host))
2276 return 0;
2277
2278 mmc_power_off(host);
2279 return -EIO;
2280 }
2281
2282 int _mmc_detect_card_removed(struct mmc_host *host)
2283 {
2284 int ret;
2285
2286 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2287 return 0;
2288
2289 if (!host->card || mmc_card_removed(host->card))
2290 return 1;
2291
2292 ret = host->bus_ops->alive(host);
2293 if (ret) {
2294 mmc_card_set_removed(host->card);
2295 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2296 }
2297
2298 return ret;
2299 }
2300
2301 int mmc_detect_card_removed(struct mmc_host *host)
2302 {
2303 struct mmc_card *card = host->card;
2304 int ret;
2305
2306 WARN_ON(!host->claimed);
2307
2308 if (!card)
2309 return 1;
2310
2311 ret = mmc_card_removed(card);
2312 /*
2313 * The card will be considered unchanged unless we have been asked to
2314 * detect a change or host requires polling to provide card detection.
2315 */
2316 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2317 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2318 return ret;
2319
2320 host->detect_change = 0;
2321 if (!ret) {
2322 ret = _mmc_detect_card_removed(host);
2323 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2324 /*
2325 * Schedule a detect work as soon as possible to let a
2326 * rescan handle the card removal.
2327 */
2328 cancel_delayed_work(&host->detect);
2329 mmc_detect_change(host, 0);
2330 }
2331 }
2332
2333 return ret;
2334 }
2335 EXPORT_SYMBOL(mmc_detect_card_removed);
2336
2337 void mmc_rescan(struct work_struct *work)
2338 {
2339 struct mmc_host *host =
2340 container_of(work, struct mmc_host, detect.work);
2341 int i;
2342
2343 if (host->rescan_disable)
2344 return;
2345
2346 /* If there is a non-removable card registered, only scan once */
2347 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2348 return;
2349 host->rescan_entered = 1;
2350
2351 mmc_bus_get(host);
2352
2353 /*
2354 * if there is a _removable_ card registered, check whether it is
2355 * still present
2356 */
2357 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2358 && !(host->caps & MMC_CAP_NONREMOVABLE))
2359 host->bus_ops->detect(host);
2360
2361 host->detect_change = 0;
2362
2363 /*
2364 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2365 * the card is no longer present.
2366 */
2367 mmc_bus_put(host);
2368 mmc_bus_get(host);
2369
2370 /* if there still is a card present, stop here */
2371 if (host->bus_ops != NULL) {
2372 mmc_bus_put(host);
2373 goto out;
2374 }
2375
2376 /*
2377 * Only we can add a new handler, so it's safe to
2378 * release the lock here.
2379 */
2380 mmc_bus_put(host);
2381
2382 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2383 mmc_claim_host(host);
2384 mmc_power_off(host);
2385 mmc_release_host(host);
2386 goto out;
2387 }
2388
2389 mmc_claim_host(host);
2390 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2391 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2392 break;
2393 if (freqs[i] <= host->f_min)
2394 break;
2395 }
2396 mmc_release_host(host);
2397
2398 out:
2399 if (host->caps & MMC_CAP_NEEDS_POLL)
2400 mmc_schedule_delayed_work(&host->detect, HZ);
2401 }
2402
2403 void mmc_start_host(struct mmc_host *host)
2404 {
2405 host->f_init = max(freqs[0], host->f_min);
2406 host->rescan_disable = 0;
2407 mmc_power_up(host);
2408 mmc_detect_change(host, 0);
2409 }
2410
2411 void mmc_stop_host(struct mmc_host *host)
2412 {
2413 #ifdef CONFIG_MMC_DEBUG
2414 unsigned long flags;
2415 spin_lock_irqsave(&host->lock, flags);
2416 host->removed = 1;
2417 spin_unlock_irqrestore(&host->lock, flags);
2418 #endif
2419
2420 host->rescan_disable = 1;
2421 cancel_delayed_work_sync(&host->detect);
2422 mmc_flush_scheduled_work();
2423
2424 /* clear pm flags now and let card drivers set them as needed */
2425 host->pm_flags = 0;
2426
2427 mmc_bus_get(host);
2428 if (host->bus_ops && !host->bus_dead) {
2429 /* Calling bus_ops->remove() with a claimed host can deadlock */
2430 if (host->bus_ops->remove)
2431 host->bus_ops->remove(host);
2432
2433 mmc_claim_host(host);
2434 mmc_detach_bus(host);
2435 mmc_power_off(host);
2436 mmc_release_host(host);
2437 mmc_bus_put(host);
2438 return;
2439 }
2440 mmc_bus_put(host);
2441
2442 BUG_ON(host->card);
2443
2444 mmc_power_off(host);
2445 }
2446
2447 int mmc_power_save_host(struct mmc_host *host)
2448 {
2449 int ret = 0;
2450
2451 #ifdef CONFIG_MMC_DEBUG
2452 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2453 #endif
2454
2455 mmc_bus_get(host);
2456
2457 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2458 mmc_bus_put(host);
2459 return -EINVAL;
2460 }
2461
2462 if (host->bus_ops->power_save)
2463 ret = host->bus_ops->power_save(host);
2464
2465 mmc_bus_put(host);
2466
2467 mmc_power_off(host);
2468
2469 return ret;
2470 }
2471 EXPORT_SYMBOL(mmc_power_save_host);
2472
2473 int mmc_power_restore_host(struct mmc_host *host)
2474 {
2475 int ret;
2476
2477 #ifdef CONFIG_MMC_DEBUG
2478 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2479 #endif
2480
2481 mmc_bus_get(host);
2482
2483 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2484 mmc_bus_put(host);
2485 return -EINVAL;
2486 }
2487
2488 mmc_power_up(host);
2489 ret = host->bus_ops->power_restore(host);
2490
2491 mmc_bus_put(host);
2492
2493 return ret;
2494 }
2495 EXPORT_SYMBOL(mmc_power_restore_host);
2496
2497 int mmc_card_awake(struct mmc_host *host)
2498 {
2499 int err = -ENOSYS;
2500
2501 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2502 return 0;
2503
2504 mmc_bus_get(host);
2505
2506 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2507 err = host->bus_ops->awake(host);
2508
2509 mmc_bus_put(host);
2510
2511 return err;
2512 }
2513 EXPORT_SYMBOL(mmc_card_awake);
2514
2515 int mmc_card_sleep(struct mmc_host *host)
2516 {
2517 int err = -ENOSYS;
2518
2519 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2520 return 0;
2521
2522 mmc_bus_get(host);
2523
2524 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2525 err = host->bus_ops->sleep(host);
2526
2527 mmc_bus_put(host);
2528
2529 return err;
2530 }
2531 EXPORT_SYMBOL(mmc_card_sleep);
2532
2533 int mmc_card_can_sleep(struct mmc_host *host)
2534 {
2535 struct mmc_card *card = host->card;
2536
2537 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2538 return 1;
2539 return 0;
2540 }
2541 EXPORT_SYMBOL(mmc_card_can_sleep);
2542
2543 /*
2544 * Flush the cache to the non-volatile storage.
2545 */
2546 int mmc_flush_cache(struct mmc_card *card)
2547 {
2548 struct mmc_host *host = card->host;
2549 int err = 0;
2550
2551 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2552 return err;
2553
2554 if (mmc_card_mmc(card) &&
2555 (card->ext_csd.cache_size > 0) &&
2556 (card->ext_csd.cache_ctrl & 1)) {
2557 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2558 EXT_CSD_FLUSH_CACHE, 1, 0);
2559 if (err)
2560 pr_err("%s: cache flush error %d\n",
2561 mmc_hostname(card->host), err);
2562 }
2563
2564 return err;
2565 }
2566 EXPORT_SYMBOL(mmc_flush_cache);
2567
2568 /*
2569 * Turn the cache ON/OFF.
2570 * Turning the cache OFF shall trigger flushing of the data
2571 * to the non-volatile storage.
2572 * This function should be called with host claimed
2573 */
2574 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2575 {
2576 struct mmc_card *card = host->card;
2577 unsigned int timeout;
2578 int err = 0;
2579
2580 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2581 mmc_card_is_removable(host))
2582 return err;
2583
2584 if (card && mmc_card_mmc(card) &&
2585 (card->ext_csd.cache_size > 0)) {
2586 enable = !!enable;
2587
2588 if (card->ext_csd.cache_ctrl ^ enable) {
2589 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2590 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2591 EXT_CSD_CACHE_CTRL, enable, timeout);
2592 if (err)
2593 pr_err("%s: cache %s error %d\n",
2594 mmc_hostname(card->host),
2595 enable ? "on" : "off",
2596 err);
2597 else
2598 card->ext_csd.cache_ctrl = enable;
2599 }
2600 }
2601
2602 return err;
2603 }
2604 EXPORT_SYMBOL(mmc_cache_ctrl);
2605
2606 #ifdef CONFIG_PM
2607
2608 /**
2609 * mmc_suspend_host - suspend a host
2610 * @host: mmc host
2611 */
2612 int mmc_suspend_host(struct mmc_host *host)
2613 {
2614 int err = 0;
2615
2616 cancel_delayed_work(&host->detect);
2617 mmc_flush_scheduled_work();
2618
2619 mmc_bus_get(host);
2620 if (host->bus_ops && !host->bus_dead) {
2621 if (host->bus_ops->suspend) {
2622 if (mmc_card_doing_bkops(host->card)) {
2623 err = mmc_stop_bkops(host->card);
2624 if (err)
2625 goto out;
2626 }
2627 err = host->bus_ops->suspend(host);
2628 }
2629
2630 if (err == -ENOSYS || !host->bus_ops->resume) {
2631 /*
2632 * We simply "remove" the card in this case.
2633 * It will be redetected on resume. (Calling
2634 * bus_ops->remove() with a claimed host can
2635 * deadlock.)
2636 */
2637 if (host->bus_ops->remove)
2638 host->bus_ops->remove(host);
2639 mmc_claim_host(host);
2640 mmc_detach_bus(host);
2641 mmc_power_off(host);
2642 mmc_release_host(host);
2643 host->pm_flags = 0;
2644 err = 0;
2645 }
2646 }
2647 mmc_bus_put(host);
2648
2649 if (!err && !mmc_card_keep_power(host))
2650 mmc_power_off(host);
2651
2652 out:
2653 return err;
2654 }
2655
2656 EXPORT_SYMBOL(mmc_suspend_host);
2657
2658 /**
2659 * mmc_resume_host - resume a previously suspended host
2660 * @host: mmc host
2661 */
2662 int mmc_resume_host(struct mmc_host *host)
2663 {
2664 int err = 0;
2665
2666 mmc_bus_get(host);
2667 if (host->bus_ops && !host->bus_dead) {
2668 if (!mmc_card_keep_power(host)) {
2669 mmc_power_up(host);
2670 mmc_select_voltage(host, host->ocr);
2671 /*
2672 * Tell runtime PM core we just powered up the card,
2673 * since it still believes the card is powered off.
2674 * Note that currently runtime PM is only enabled
2675 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2676 */
2677 if (mmc_card_sdio(host->card) &&
2678 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2679 pm_runtime_disable(&host->card->dev);
2680 pm_runtime_set_active(&host->card->dev);
2681 pm_runtime_enable(&host->card->dev);
2682 }
2683 }
2684 BUG_ON(!host->bus_ops->resume);
2685 err = host->bus_ops->resume(host);
2686 if (err) {
2687 pr_warning("%s: error %d during resume "
2688 "(card was removed?)\n",
2689 mmc_hostname(host), err);
2690 err = 0;
2691 }
2692 }
2693 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2694 mmc_bus_put(host);
2695
2696 return err;
2697 }
2698 EXPORT_SYMBOL(mmc_resume_host);
2699
2700 /* Do the card removal on suspend if card is assumed removeable
2701 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2702 to sync the card.
2703 */
2704 int mmc_pm_notify(struct notifier_block *notify_block,
2705 unsigned long mode, void *unused)
2706 {
2707 struct mmc_host *host = container_of(
2708 notify_block, struct mmc_host, pm_notify);
2709 unsigned long flags;
2710 int err = 0;
2711
2712 switch (mode) {
2713 case PM_HIBERNATION_PREPARE:
2714 case PM_SUSPEND_PREPARE:
2715 if (host->card && mmc_card_mmc(host->card) &&
2716 mmc_card_doing_bkops(host->card)) {
2717 err = mmc_stop_bkops(host->card);
2718 if (err) {
2719 pr_err("%s: didn't stop bkops\n",
2720 mmc_hostname(host));
2721 return err;
2722 }
2723 mmc_card_clr_doing_bkops(host->card);
2724 }
2725
2726 spin_lock_irqsave(&host->lock, flags);
2727 host->rescan_disable = 1;
2728 spin_unlock_irqrestore(&host->lock, flags);
2729 cancel_delayed_work_sync(&host->detect);
2730
2731 if (!host->bus_ops || host->bus_ops->suspend)
2732 break;
2733
2734 /* Calling bus_ops->remove() with a claimed host can deadlock */
2735 if (host->bus_ops->remove)
2736 host->bus_ops->remove(host);
2737
2738 mmc_claim_host(host);
2739 mmc_detach_bus(host);
2740 mmc_power_off(host);
2741 mmc_release_host(host);
2742 host->pm_flags = 0;
2743 break;
2744
2745 case PM_POST_SUSPEND:
2746 case PM_POST_HIBERNATION:
2747 case PM_POST_RESTORE:
2748
2749 spin_lock_irqsave(&host->lock, flags);
2750 host->rescan_disable = 0;
2751 spin_unlock_irqrestore(&host->lock, flags);
2752 mmc_detect_change(host, 0);
2753
2754 }
2755
2756 return 0;
2757 }
2758 #endif
2759
2760 /**
2761 * mmc_init_context_info() - init synchronization context
2762 * @host: mmc host
2763 *
2764 * Init struct context_info needed to implement asynchronous
2765 * request mechanism, used by mmc core, host driver and mmc requests
2766 * supplier.
2767 */
2768 void mmc_init_context_info(struct mmc_host *host)
2769 {
2770 spin_lock_init(&host->context_info.lock);
2771 host->context_info.is_new_req = false;
2772 host->context_info.is_done_rcv = false;
2773 host->context_info.is_waiting_last_req = false;
2774 init_waitqueue_head(&host->context_info.wait);
2775 }
2776
2777 static int __init mmc_init(void)
2778 {
2779 int ret;
2780
2781 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2782 if (!workqueue)
2783 return -ENOMEM;
2784
2785 ret = mmc_register_bus();
2786 if (ret)
2787 goto destroy_workqueue;
2788
2789 ret = mmc_register_host_class();
2790 if (ret)
2791 goto unregister_bus;
2792
2793 ret = sdio_register_bus();
2794 if (ret)
2795 goto unregister_host_class;
2796
2797 return 0;
2798
2799 unregister_host_class:
2800 mmc_unregister_host_class();
2801 unregister_bus:
2802 mmc_unregister_bus();
2803 destroy_workqueue:
2804 destroy_workqueue(workqueue);
2805
2806 return ret;
2807 }
2808
2809 static void __exit mmc_exit(void)
2810 {
2811 sdio_unregister_bus();
2812 mmc_unregister_host_class();
2813 mmc_unregister_bus();
2814 destroy_workqueue(workqueue);
2815 }
2816
2817 subsys_initcall(mmc_init);
2818 module_exit(mmc_exit);
2819
2820 MODULE_LICENSE("GPL");