]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/core.c
99275e40bf2fb7f61083d6bcf2b867d76d6b25ca
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55 /*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62
63 /*
64 * Enabling software CRCs on the data blocks can be a significant (30%)
65 * performance cost, and for other reasons may not always be desired.
66 * So we allow it it to be disabled.
67 */
68 bool use_spi_crc = 1;
69 module_param(use_spi_crc, bool, 0);
70
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73 {
74 /*
75 * We use the system_freezable_wq, because of two reasons.
76 * First, it allows several works (not the same work item) to be
77 * executed simultaneously. Second, the queue becomes frozen when
78 * userspace becomes frozen during system PM.
79 */
80 return queue_delayed_work(system_freezable_wq, work, delay);
81 }
82
83 #ifdef CONFIG_FAIL_MMC_REQUEST
84
85 /*
86 * Internal function. Inject random data errors.
87 * If mmc_data is NULL no errors are injected.
88 */
89 static void mmc_should_fail_request(struct mmc_host *host,
90 struct mmc_request *mrq)
91 {
92 struct mmc_command *cmd = mrq->cmd;
93 struct mmc_data *data = mrq->data;
94 static const int data_errors[] = {
95 -ETIMEDOUT,
96 -EILSEQ,
97 -EIO,
98 };
99
100 if (!data)
101 return;
102
103 if (cmd->error || data->error ||
104 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
105 return;
106
107 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
108 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 }
110
111 #else /* CONFIG_FAIL_MMC_REQUEST */
112
113 static inline void mmc_should_fail_request(struct mmc_host *host,
114 struct mmc_request *mrq)
115 {
116 }
117
118 #endif /* CONFIG_FAIL_MMC_REQUEST */
119
120 /**
121 * mmc_request_done - finish processing an MMC request
122 * @host: MMC host which completed request
123 * @mrq: MMC request which request
124 *
125 * MMC drivers should call this function when they have completed
126 * their processing of a request.
127 */
128 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
129 {
130 struct mmc_command *cmd = mrq->cmd;
131 int err = cmd->error;
132
133 /* Flag re-tuning needed on CRC errors */
134 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
135 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
136 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
137 (mrq->data && mrq->data->error == -EILSEQ) ||
138 (mrq->stop && mrq->stop->error == -EILSEQ)))
139 mmc_retune_needed(host);
140
141 if (err && cmd->retries && mmc_host_is_spi(host)) {
142 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
143 cmd->retries = 0;
144 }
145
146 trace_mmc_request_done(host, mrq);
147
148 if (err && cmd->retries && !mmc_card_removed(host->card)) {
149 /*
150 * Request starter must handle retries - see
151 * mmc_wait_for_req_done().
152 */
153 if (mrq->done)
154 mrq->done(mrq);
155 } else {
156 mmc_should_fail_request(host, mrq);
157
158 led_trigger_event(host->led, LED_OFF);
159
160 if (mrq->sbc) {
161 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
162 mmc_hostname(host), mrq->sbc->opcode,
163 mrq->sbc->error,
164 mrq->sbc->resp[0], mrq->sbc->resp[1],
165 mrq->sbc->resp[2], mrq->sbc->resp[3]);
166 }
167
168 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
169 mmc_hostname(host), cmd->opcode, err,
170 cmd->resp[0], cmd->resp[1],
171 cmd->resp[2], cmd->resp[3]);
172
173 if (mrq->data) {
174 pr_debug("%s: %d bytes transferred: %d\n",
175 mmc_hostname(host),
176 mrq->data->bytes_xfered, mrq->data->error);
177 }
178
179 if (mrq->stop) {
180 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host), mrq->stop->opcode,
182 mrq->stop->error,
183 mrq->stop->resp[0], mrq->stop->resp[1],
184 mrq->stop->resp[2], mrq->stop->resp[3]);
185 }
186
187 if (mrq->done)
188 mrq->done(mrq);
189 }
190 }
191
192 EXPORT_SYMBOL(mmc_request_done);
193
194 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
195 {
196 int err;
197
198 /* Assumes host controller has been runtime resumed by mmc_claim_host */
199 err = mmc_retune(host);
200 if (err) {
201 mrq->cmd->error = err;
202 mmc_request_done(host, mrq);
203 return;
204 }
205
206 /*
207 * For sdio rw commands we must wait for card busy otherwise some
208 * sdio devices won't work properly.
209 */
210 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
211 int tries = 500; /* Wait aprox 500ms at maximum */
212
213 while (host->ops->card_busy(host) && --tries)
214 mmc_delay(1);
215
216 if (tries == 0) {
217 mrq->cmd->error = -EBUSY;
218 mmc_request_done(host, mrq);
219 return;
220 }
221 }
222
223 trace_mmc_request_start(host, mrq);
224
225 host->ops->request(host, mrq);
226 }
227
228 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
229 {
230 #ifdef CONFIG_MMC_DEBUG
231 unsigned int i, sz;
232 struct scatterlist *sg;
233 #endif
234 mmc_retune_hold(host);
235
236 if (mmc_card_removed(host->card))
237 return -ENOMEDIUM;
238
239 if (mrq->sbc) {
240 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
241 mmc_hostname(host), mrq->sbc->opcode,
242 mrq->sbc->arg, mrq->sbc->flags);
243 }
244
245 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
246 mmc_hostname(host), mrq->cmd->opcode,
247 mrq->cmd->arg, mrq->cmd->flags);
248
249 if (mrq->data) {
250 pr_debug("%s: blksz %d blocks %d flags %08x "
251 "tsac %d ms nsac %d\n",
252 mmc_hostname(host), mrq->data->blksz,
253 mrq->data->blocks, mrq->data->flags,
254 mrq->data->timeout_ns / 1000000,
255 mrq->data->timeout_clks);
256 }
257
258 if (mrq->stop) {
259 pr_debug("%s: CMD%u arg %08x flags %08x\n",
260 mmc_hostname(host), mrq->stop->opcode,
261 mrq->stop->arg, mrq->stop->flags);
262 }
263
264 WARN_ON(!host->claimed);
265
266 mrq->cmd->error = 0;
267 mrq->cmd->mrq = mrq;
268 if (mrq->sbc) {
269 mrq->sbc->error = 0;
270 mrq->sbc->mrq = mrq;
271 }
272 if (mrq->data) {
273 BUG_ON(mrq->data->blksz > host->max_blk_size);
274 BUG_ON(mrq->data->blocks > host->max_blk_count);
275 BUG_ON(mrq->data->blocks * mrq->data->blksz >
276 host->max_req_size);
277
278 #ifdef CONFIG_MMC_DEBUG
279 sz = 0;
280 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
281 sz += sg->length;
282 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
283 #endif
284
285 mrq->cmd->data = mrq->data;
286 mrq->data->error = 0;
287 mrq->data->mrq = mrq;
288 if (mrq->stop) {
289 mrq->data->stop = mrq->stop;
290 mrq->stop->error = 0;
291 mrq->stop->mrq = mrq;
292 }
293 }
294 led_trigger_event(host->led, LED_FULL);
295 __mmc_start_request(host, mrq);
296
297 return 0;
298 }
299
300 /**
301 * mmc_start_bkops - start BKOPS for supported cards
302 * @card: MMC card to start BKOPS
303 * @form_exception: A flag to indicate if this function was
304 * called due to an exception raised by the card
305 *
306 * Start background operations whenever requested.
307 * When the urgent BKOPS bit is set in a R1 command response
308 * then background operations should be started immediately.
309 */
310 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
311 {
312 int err;
313 int timeout;
314 bool use_busy_signal;
315
316 BUG_ON(!card);
317
318 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
319 return;
320
321 err = mmc_read_bkops_status(card);
322 if (err) {
323 pr_err("%s: Failed to read bkops status: %d\n",
324 mmc_hostname(card->host), err);
325 return;
326 }
327
328 if (!card->ext_csd.raw_bkops_status)
329 return;
330
331 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
332 from_exception)
333 return;
334
335 mmc_claim_host(card->host);
336 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
337 timeout = MMC_BKOPS_MAX_TIMEOUT;
338 use_busy_signal = true;
339 } else {
340 timeout = 0;
341 use_busy_signal = false;
342 }
343
344 mmc_retune_hold(card->host);
345
346 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
347 EXT_CSD_BKOPS_START, 1, timeout,
348 use_busy_signal, true, false);
349 if (err) {
350 pr_warn("%s: Error %d starting bkops\n",
351 mmc_hostname(card->host), err);
352 mmc_retune_release(card->host);
353 goto out;
354 }
355
356 /*
357 * For urgent bkops status (LEVEL_2 and more)
358 * bkops executed synchronously, otherwise
359 * the operation is in progress
360 */
361 if (!use_busy_signal)
362 mmc_card_set_doing_bkops(card);
363 else
364 mmc_retune_release(card->host);
365 out:
366 mmc_release_host(card->host);
367 }
368 EXPORT_SYMBOL(mmc_start_bkops);
369
370 /*
371 * mmc_wait_data_done() - done callback for data request
372 * @mrq: done data request
373 *
374 * Wakes up mmc context, passed as a callback to host controller driver
375 */
376 static void mmc_wait_data_done(struct mmc_request *mrq)
377 {
378 struct mmc_context_info *context_info = &mrq->host->context_info;
379
380 context_info->is_done_rcv = true;
381 wake_up_interruptible(&context_info->wait);
382 }
383
384 static void mmc_wait_done(struct mmc_request *mrq)
385 {
386 complete(&mrq->completion);
387 }
388
389 /*
390 *__mmc_start_data_req() - starts data request
391 * @host: MMC host to start the request
392 * @mrq: data request to start
393 *
394 * Sets the done callback to be called when request is completed by the card.
395 * Starts data mmc request execution
396 */
397 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 int err;
400
401 mrq->done = mmc_wait_data_done;
402 mrq->host = host;
403
404 err = mmc_start_request(host, mrq);
405 if (err) {
406 mrq->cmd->error = err;
407 mmc_wait_data_done(mrq);
408 }
409
410 return err;
411 }
412
413 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
414 {
415 int err;
416
417 init_completion(&mrq->completion);
418 mrq->done = mmc_wait_done;
419
420 err = mmc_start_request(host, mrq);
421 if (err) {
422 mrq->cmd->error = err;
423 complete(&mrq->completion);
424 }
425
426 return err;
427 }
428
429 /*
430 * mmc_wait_for_data_req_done() - wait for request completed
431 * @host: MMC host to prepare the command.
432 * @mrq: MMC request to wait for
433 *
434 * Blocks MMC context till host controller will ack end of data request
435 * execution or new request notification arrives from the block layer.
436 * Handles command retries.
437 *
438 * Returns enum mmc_blk_status after checking errors.
439 */
440 static int mmc_wait_for_data_req_done(struct mmc_host *host,
441 struct mmc_request *mrq,
442 struct mmc_async_req *next_req)
443 {
444 struct mmc_command *cmd;
445 struct mmc_context_info *context_info = &host->context_info;
446 int err;
447 unsigned long flags;
448
449 while (1) {
450 wait_event_interruptible(context_info->wait,
451 (context_info->is_done_rcv ||
452 context_info->is_new_req));
453 spin_lock_irqsave(&context_info->lock, flags);
454 context_info->is_waiting_last_req = false;
455 spin_unlock_irqrestore(&context_info->lock, flags);
456 if (context_info->is_done_rcv) {
457 context_info->is_done_rcv = false;
458 context_info->is_new_req = false;
459 cmd = mrq->cmd;
460
461 if (!cmd->error || !cmd->retries ||
462 mmc_card_removed(host->card)) {
463 err = host->areq->err_check(host->card,
464 host->areq);
465 break; /* return err */
466 } else {
467 mmc_retune_recheck(host);
468 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
469 mmc_hostname(host),
470 cmd->opcode, cmd->error);
471 cmd->retries--;
472 cmd->error = 0;
473 __mmc_start_request(host, mrq);
474 continue; /* wait for done/new event again */
475 }
476 } else if (context_info->is_new_req) {
477 context_info->is_new_req = false;
478 if (!next_req)
479 return MMC_BLK_NEW_REQUEST;
480 }
481 }
482 mmc_retune_release(host);
483 return err;
484 }
485
486 static void mmc_wait_for_req_done(struct mmc_host *host,
487 struct mmc_request *mrq)
488 {
489 struct mmc_command *cmd;
490
491 while (1) {
492 wait_for_completion(&mrq->completion);
493
494 cmd = mrq->cmd;
495
496 /*
497 * If host has timed out waiting for the sanitize
498 * to complete, card might be still in programming state
499 * so let's try to bring the card out of programming
500 * state.
501 */
502 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
503 if (!mmc_interrupt_hpi(host->card)) {
504 pr_warn("%s: %s: Interrupted sanitize\n",
505 mmc_hostname(host), __func__);
506 cmd->error = 0;
507 break;
508 } else {
509 pr_err("%s: %s: Failed to interrupt sanitize\n",
510 mmc_hostname(host), __func__);
511 }
512 }
513 if (!cmd->error || !cmd->retries ||
514 mmc_card_removed(host->card))
515 break;
516
517 mmc_retune_recheck(host);
518
519 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
520 mmc_hostname(host), cmd->opcode, cmd->error);
521 cmd->retries--;
522 cmd->error = 0;
523 __mmc_start_request(host, mrq);
524 }
525
526 mmc_retune_release(host);
527 }
528
529 /**
530 * mmc_pre_req - Prepare for a new request
531 * @host: MMC host to prepare command
532 * @mrq: MMC request to prepare for
533 * @is_first_req: true if there is no previous started request
534 * that may run in parellel to this call, otherwise false
535 *
536 * mmc_pre_req() is called in prior to mmc_start_req() to let
537 * host prepare for the new request. Preparation of a request may be
538 * performed while another request is running on the host.
539 */
540 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
541 bool is_first_req)
542 {
543 if (host->ops->pre_req)
544 host->ops->pre_req(host, mrq, is_first_req);
545 }
546
547 /**
548 * mmc_post_req - Post process a completed request
549 * @host: MMC host to post process command
550 * @mrq: MMC request to post process for
551 * @err: Error, if non zero, clean up any resources made in pre_req
552 *
553 * Let the host post process a completed request. Post processing of
554 * a request may be performed while another reuqest is running.
555 */
556 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
557 int err)
558 {
559 if (host->ops->post_req)
560 host->ops->post_req(host, mrq, err);
561 }
562
563 /**
564 * mmc_start_req - start a non-blocking request
565 * @host: MMC host to start command
566 * @areq: async request to start
567 * @error: out parameter returns 0 for success, otherwise non zero
568 *
569 * Start a new MMC custom command request for a host.
570 * If there is on ongoing async request wait for completion
571 * of that request and start the new one and return.
572 * Does not wait for the new request to complete.
573 *
574 * Returns the completed request, NULL in case of none completed.
575 * Wait for the an ongoing request (previoulsy started) to complete and
576 * return the completed request. If there is no ongoing request, NULL
577 * is returned without waiting. NULL is not an error condition.
578 */
579 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
580 struct mmc_async_req *areq, int *error)
581 {
582 int err = 0;
583 int start_err = 0;
584 struct mmc_async_req *data = host->areq;
585
586 /* Prepare a new request */
587 if (areq)
588 mmc_pre_req(host, areq->mrq, !host->areq);
589
590 if (host->areq) {
591 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
592 if (err == MMC_BLK_NEW_REQUEST) {
593 if (error)
594 *error = err;
595 /*
596 * The previous request was not completed,
597 * nothing to return
598 */
599 return NULL;
600 }
601 /*
602 * Check BKOPS urgency for each R1 response
603 */
604 if (host->card && mmc_card_mmc(host->card) &&
605 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
606 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
607 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
608
609 /* Cancel the prepared request */
610 if (areq)
611 mmc_post_req(host, areq->mrq, -EINVAL);
612
613 mmc_start_bkops(host->card, true);
614
615 /* prepare the request again */
616 if (areq)
617 mmc_pre_req(host, areq->mrq, !host->areq);
618 }
619 }
620
621 if (!err && areq)
622 start_err = __mmc_start_data_req(host, areq->mrq);
623
624 if (host->areq)
625 mmc_post_req(host, host->areq->mrq, 0);
626
627 /* Cancel a prepared request if it was not started. */
628 if ((err || start_err) && areq)
629 mmc_post_req(host, areq->mrq, -EINVAL);
630
631 if (err)
632 host->areq = NULL;
633 else
634 host->areq = areq;
635
636 if (error)
637 *error = err;
638 return data;
639 }
640 EXPORT_SYMBOL(mmc_start_req);
641
642 /**
643 * mmc_wait_for_req - start a request and wait for completion
644 * @host: MMC host to start command
645 * @mrq: MMC request to start
646 *
647 * Start a new MMC custom command request for a host, and wait
648 * for the command to complete. Does not attempt to parse the
649 * response.
650 */
651 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
652 {
653 __mmc_start_req(host, mrq);
654 mmc_wait_for_req_done(host, mrq);
655 }
656 EXPORT_SYMBOL(mmc_wait_for_req);
657
658 /**
659 * mmc_interrupt_hpi - Issue for High priority Interrupt
660 * @card: the MMC card associated with the HPI transfer
661 *
662 * Issued High Priority Interrupt, and check for card status
663 * until out-of prg-state.
664 */
665 int mmc_interrupt_hpi(struct mmc_card *card)
666 {
667 int err;
668 u32 status;
669 unsigned long prg_wait;
670
671 BUG_ON(!card);
672
673 if (!card->ext_csd.hpi_en) {
674 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
675 return 1;
676 }
677
678 mmc_claim_host(card->host);
679 err = mmc_send_status(card, &status);
680 if (err) {
681 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
682 goto out;
683 }
684
685 switch (R1_CURRENT_STATE(status)) {
686 case R1_STATE_IDLE:
687 case R1_STATE_READY:
688 case R1_STATE_STBY:
689 case R1_STATE_TRAN:
690 /*
691 * In idle and transfer states, HPI is not needed and the caller
692 * can issue the next intended command immediately
693 */
694 goto out;
695 case R1_STATE_PRG:
696 break;
697 default:
698 /* In all other states, it's illegal to issue HPI */
699 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
700 mmc_hostname(card->host), R1_CURRENT_STATE(status));
701 err = -EINVAL;
702 goto out;
703 }
704
705 err = mmc_send_hpi_cmd(card, &status);
706 if (err)
707 goto out;
708
709 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
710 do {
711 err = mmc_send_status(card, &status);
712
713 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
714 break;
715 if (time_after(jiffies, prg_wait))
716 err = -ETIMEDOUT;
717 } while (!err);
718
719 out:
720 mmc_release_host(card->host);
721 return err;
722 }
723 EXPORT_SYMBOL(mmc_interrupt_hpi);
724
725 /**
726 * mmc_wait_for_cmd - start a command and wait for completion
727 * @host: MMC host to start command
728 * @cmd: MMC command to start
729 * @retries: maximum number of retries
730 *
731 * Start a new MMC command for a host, and wait for the command
732 * to complete. Return any error that occurred while the command
733 * was executing. Do not attempt to parse the response.
734 */
735 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
736 {
737 struct mmc_request mrq = {NULL};
738
739 WARN_ON(!host->claimed);
740
741 memset(cmd->resp, 0, sizeof(cmd->resp));
742 cmd->retries = retries;
743
744 mrq.cmd = cmd;
745 cmd->data = NULL;
746
747 mmc_wait_for_req(host, &mrq);
748
749 return cmd->error;
750 }
751
752 EXPORT_SYMBOL(mmc_wait_for_cmd);
753
754 /**
755 * mmc_stop_bkops - stop ongoing BKOPS
756 * @card: MMC card to check BKOPS
757 *
758 * Send HPI command to stop ongoing background operations to
759 * allow rapid servicing of foreground operations, e.g. read/
760 * writes. Wait until the card comes out of the programming state
761 * to avoid errors in servicing read/write requests.
762 */
763 int mmc_stop_bkops(struct mmc_card *card)
764 {
765 int err = 0;
766
767 BUG_ON(!card);
768 err = mmc_interrupt_hpi(card);
769
770 /*
771 * If err is EINVAL, we can't issue an HPI.
772 * It should complete the BKOPS.
773 */
774 if (!err || (err == -EINVAL)) {
775 mmc_card_clr_doing_bkops(card);
776 mmc_retune_release(card->host);
777 err = 0;
778 }
779
780 return err;
781 }
782 EXPORT_SYMBOL(mmc_stop_bkops);
783
784 int mmc_read_bkops_status(struct mmc_card *card)
785 {
786 int err;
787 u8 *ext_csd;
788
789 mmc_claim_host(card->host);
790 err = mmc_get_ext_csd(card, &ext_csd);
791 mmc_release_host(card->host);
792 if (err)
793 return err;
794
795 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
796 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
797 kfree(ext_csd);
798 return 0;
799 }
800 EXPORT_SYMBOL(mmc_read_bkops_status);
801
802 /**
803 * mmc_set_data_timeout - set the timeout for a data command
804 * @data: data phase for command
805 * @card: the MMC card associated with the data transfer
806 *
807 * Computes the data timeout parameters according to the
808 * correct algorithm given the card type.
809 */
810 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
811 {
812 unsigned int mult;
813
814 /*
815 * SDIO cards only define an upper 1 s limit on access.
816 */
817 if (mmc_card_sdio(card)) {
818 data->timeout_ns = 1000000000;
819 data->timeout_clks = 0;
820 return;
821 }
822
823 /*
824 * SD cards use a 100 multiplier rather than 10
825 */
826 mult = mmc_card_sd(card) ? 100 : 10;
827
828 /*
829 * Scale up the multiplier (and therefore the timeout) by
830 * the r2w factor for writes.
831 */
832 if (data->flags & MMC_DATA_WRITE)
833 mult <<= card->csd.r2w_factor;
834
835 data->timeout_ns = card->csd.tacc_ns * mult;
836 data->timeout_clks = card->csd.tacc_clks * mult;
837
838 /*
839 * SD cards also have an upper limit on the timeout.
840 */
841 if (mmc_card_sd(card)) {
842 unsigned int timeout_us, limit_us;
843
844 timeout_us = data->timeout_ns / 1000;
845 if (card->host->ios.clock)
846 timeout_us += data->timeout_clks * 1000 /
847 (card->host->ios.clock / 1000);
848
849 if (data->flags & MMC_DATA_WRITE)
850 /*
851 * The MMC spec "It is strongly recommended
852 * for hosts to implement more than 500ms
853 * timeout value even if the card indicates
854 * the 250ms maximum busy length." Even the
855 * previous value of 300ms is known to be
856 * insufficient for some cards.
857 */
858 limit_us = 3000000;
859 else
860 limit_us = 100000;
861
862 /*
863 * SDHC cards always use these fixed values.
864 */
865 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
866 data->timeout_ns = limit_us * 1000;
867 data->timeout_clks = 0;
868 }
869
870 /* assign limit value if invalid */
871 if (timeout_us == 0)
872 data->timeout_ns = limit_us * 1000;
873 }
874
875 /*
876 * Some cards require longer data read timeout than indicated in CSD.
877 * Address this by setting the read timeout to a "reasonably high"
878 * value. For the cards tested, 300ms has proven enough. If necessary,
879 * this value can be increased if other problematic cards require this.
880 */
881 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
882 data->timeout_ns = 300000000;
883 data->timeout_clks = 0;
884 }
885
886 /*
887 * Some cards need very high timeouts if driven in SPI mode.
888 * The worst observed timeout was 900ms after writing a
889 * continuous stream of data until the internal logic
890 * overflowed.
891 */
892 if (mmc_host_is_spi(card->host)) {
893 if (data->flags & MMC_DATA_WRITE) {
894 if (data->timeout_ns < 1000000000)
895 data->timeout_ns = 1000000000; /* 1s */
896 } else {
897 if (data->timeout_ns < 100000000)
898 data->timeout_ns = 100000000; /* 100ms */
899 }
900 }
901 }
902 EXPORT_SYMBOL(mmc_set_data_timeout);
903
904 /**
905 * mmc_align_data_size - pads a transfer size to a more optimal value
906 * @card: the MMC card associated with the data transfer
907 * @sz: original transfer size
908 *
909 * Pads the original data size with a number of extra bytes in
910 * order to avoid controller bugs and/or performance hits
911 * (e.g. some controllers revert to PIO for certain sizes).
912 *
913 * Returns the improved size, which might be unmodified.
914 *
915 * Note that this function is only relevant when issuing a
916 * single scatter gather entry.
917 */
918 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
919 {
920 /*
921 * FIXME: We don't have a system for the controller to tell
922 * the core about its problems yet, so for now we just 32-bit
923 * align the size.
924 */
925 sz = ((sz + 3) / 4) * 4;
926
927 return sz;
928 }
929 EXPORT_SYMBOL(mmc_align_data_size);
930
931 /**
932 * __mmc_claim_host - exclusively claim a host
933 * @host: mmc host to claim
934 * @abort: whether or not the operation should be aborted
935 *
936 * Claim a host for a set of operations. If @abort is non null and
937 * dereference a non-zero value then this will return prematurely with
938 * that non-zero value without acquiring the lock. Returns zero
939 * with the lock held otherwise.
940 */
941 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
942 {
943 DECLARE_WAITQUEUE(wait, current);
944 unsigned long flags;
945 int stop;
946 bool pm = false;
947
948 might_sleep();
949
950 add_wait_queue(&host->wq, &wait);
951 spin_lock_irqsave(&host->lock, flags);
952 while (1) {
953 set_current_state(TASK_UNINTERRUPTIBLE);
954 stop = abort ? atomic_read(abort) : 0;
955 if (stop || !host->claimed || host->claimer == current)
956 break;
957 spin_unlock_irqrestore(&host->lock, flags);
958 schedule();
959 spin_lock_irqsave(&host->lock, flags);
960 }
961 set_current_state(TASK_RUNNING);
962 if (!stop) {
963 host->claimed = 1;
964 host->claimer = current;
965 host->claim_cnt += 1;
966 if (host->claim_cnt == 1)
967 pm = true;
968 } else
969 wake_up(&host->wq);
970 spin_unlock_irqrestore(&host->lock, flags);
971 remove_wait_queue(&host->wq, &wait);
972
973 if (pm)
974 pm_runtime_get_sync(mmc_dev(host));
975
976 return stop;
977 }
978 EXPORT_SYMBOL(__mmc_claim_host);
979
980 /**
981 * mmc_release_host - release a host
982 * @host: mmc host to release
983 *
984 * Release a MMC host, allowing others to claim the host
985 * for their operations.
986 */
987 void mmc_release_host(struct mmc_host *host)
988 {
989 unsigned long flags;
990
991 WARN_ON(!host->claimed);
992
993 spin_lock_irqsave(&host->lock, flags);
994 if (--host->claim_cnt) {
995 /* Release for nested claim */
996 spin_unlock_irqrestore(&host->lock, flags);
997 } else {
998 host->claimed = 0;
999 host->claimer = NULL;
1000 spin_unlock_irqrestore(&host->lock, flags);
1001 wake_up(&host->wq);
1002 pm_runtime_mark_last_busy(mmc_dev(host));
1003 pm_runtime_put_autosuspend(mmc_dev(host));
1004 }
1005 }
1006 EXPORT_SYMBOL(mmc_release_host);
1007
1008 /*
1009 * This is a helper function, which fetches a runtime pm reference for the
1010 * card device and also claims the host.
1011 */
1012 void mmc_get_card(struct mmc_card *card)
1013 {
1014 pm_runtime_get_sync(&card->dev);
1015 mmc_claim_host(card->host);
1016 }
1017 EXPORT_SYMBOL(mmc_get_card);
1018
1019 /*
1020 * This is a helper function, which releases the host and drops the runtime
1021 * pm reference for the card device.
1022 */
1023 void mmc_put_card(struct mmc_card *card)
1024 {
1025 mmc_release_host(card->host);
1026 pm_runtime_mark_last_busy(&card->dev);
1027 pm_runtime_put_autosuspend(&card->dev);
1028 }
1029 EXPORT_SYMBOL(mmc_put_card);
1030
1031 /*
1032 * Internal function that does the actual ios call to the host driver,
1033 * optionally printing some debug output.
1034 */
1035 static inline void mmc_set_ios(struct mmc_host *host)
1036 {
1037 struct mmc_ios *ios = &host->ios;
1038
1039 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1040 "width %u timing %u\n",
1041 mmc_hostname(host), ios->clock, ios->bus_mode,
1042 ios->power_mode, ios->chip_select, ios->vdd,
1043 1 << ios->bus_width, ios->timing);
1044
1045 host->ops->set_ios(host, ios);
1046 }
1047
1048 /*
1049 * Control chip select pin on a host.
1050 */
1051 void mmc_set_chip_select(struct mmc_host *host, int mode)
1052 {
1053 host->ios.chip_select = mode;
1054 mmc_set_ios(host);
1055 }
1056
1057 /*
1058 * Sets the host clock to the highest possible frequency that
1059 * is below "hz".
1060 */
1061 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1062 {
1063 WARN_ON(hz && hz < host->f_min);
1064
1065 if (hz > host->f_max)
1066 hz = host->f_max;
1067
1068 host->ios.clock = hz;
1069 mmc_set_ios(host);
1070 }
1071
1072 int mmc_execute_tuning(struct mmc_card *card)
1073 {
1074 struct mmc_host *host = card->host;
1075 u32 opcode;
1076 int err;
1077
1078 if (!host->ops->execute_tuning)
1079 return 0;
1080
1081 if (mmc_card_mmc(card))
1082 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1083 else
1084 opcode = MMC_SEND_TUNING_BLOCK;
1085
1086 err = host->ops->execute_tuning(host, opcode);
1087
1088 if (err)
1089 pr_err("%s: tuning execution failed: %d\n",
1090 mmc_hostname(host), err);
1091 else
1092 mmc_retune_enable(host);
1093
1094 return err;
1095 }
1096
1097 /*
1098 * Change the bus mode (open drain/push-pull) of a host.
1099 */
1100 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1101 {
1102 host->ios.bus_mode = mode;
1103 mmc_set_ios(host);
1104 }
1105
1106 /*
1107 * Change data bus width of a host.
1108 */
1109 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1110 {
1111 host->ios.bus_width = width;
1112 mmc_set_ios(host);
1113 }
1114
1115 /*
1116 * Set initial state after a power cycle or a hw_reset.
1117 */
1118 void mmc_set_initial_state(struct mmc_host *host)
1119 {
1120 mmc_retune_disable(host);
1121
1122 if (mmc_host_is_spi(host))
1123 host->ios.chip_select = MMC_CS_HIGH;
1124 else
1125 host->ios.chip_select = MMC_CS_DONTCARE;
1126 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1127 host->ios.bus_width = MMC_BUS_WIDTH_1;
1128 host->ios.timing = MMC_TIMING_LEGACY;
1129 host->ios.drv_type = 0;
1130
1131 mmc_set_ios(host);
1132 }
1133
1134 /**
1135 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1136 * @vdd: voltage (mV)
1137 * @low_bits: prefer low bits in boundary cases
1138 *
1139 * This function returns the OCR bit number according to the provided @vdd
1140 * value. If conversion is not possible a negative errno value returned.
1141 *
1142 * Depending on the @low_bits flag the function prefers low or high OCR bits
1143 * on boundary voltages. For example,
1144 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1145 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1146 *
1147 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1148 */
1149 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1150 {
1151 const int max_bit = ilog2(MMC_VDD_35_36);
1152 int bit;
1153
1154 if (vdd < 1650 || vdd > 3600)
1155 return -EINVAL;
1156
1157 if (vdd >= 1650 && vdd <= 1950)
1158 return ilog2(MMC_VDD_165_195);
1159
1160 if (low_bits)
1161 vdd -= 1;
1162
1163 /* Base 2000 mV, step 100 mV, bit's base 8. */
1164 bit = (vdd - 2000) / 100 + 8;
1165 if (bit > max_bit)
1166 return max_bit;
1167 return bit;
1168 }
1169
1170 /**
1171 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1172 * @vdd_min: minimum voltage value (mV)
1173 * @vdd_max: maximum voltage value (mV)
1174 *
1175 * This function returns the OCR mask bits according to the provided @vdd_min
1176 * and @vdd_max values. If conversion is not possible the function returns 0.
1177 *
1178 * Notes wrt boundary cases:
1179 * This function sets the OCR bits for all boundary voltages, for example
1180 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1181 * MMC_VDD_34_35 mask.
1182 */
1183 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1184 {
1185 u32 mask = 0;
1186
1187 if (vdd_max < vdd_min)
1188 return 0;
1189
1190 /* Prefer high bits for the boundary vdd_max values. */
1191 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1192 if (vdd_max < 0)
1193 return 0;
1194
1195 /* Prefer low bits for the boundary vdd_min values. */
1196 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1197 if (vdd_min < 0)
1198 return 0;
1199
1200 /* Fill the mask, from max bit to min bit. */
1201 while (vdd_max >= vdd_min)
1202 mask |= 1 << vdd_max--;
1203
1204 return mask;
1205 }
1206 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1207
1208 #ifdef CONFIG_OF
1209
1210 /**
1211 * mmc_of_parse_voltage - return mask of supported voltages
1212 * @np: The device node need to be parsed.
1213 * @mask: mask of voltages available for MMC/SD/SDIO
1214 *
1215 * Parse the "voltage-ranges" DT property, returning zero if it is not
1216 * found, negative errno if the voltage-range specification is invalid,
1217 * or one if the voltage-range is specified and successfully parsed.
1218 */
1219 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1220 {
1221 const u32 *voltage_ranges;
1222 int num_ranges, i;
1223
1224 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1225 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1226 if (!voltage_ranges) {
1227 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1228 return 0;
1229 }
1230 if (!num_ranges) {
1231 pr_err("%s: voltage-ranges empty\n", np->full_name);
1232 return -EINVAL;
1233 }
1234
1235 for (i = 0; i < num_ranges; i++) {
1236 const int j = i * 2;
1237 u32 ocr_mask;
1238
1239 ocr_mask = mmc_vddrange_to_ocrmask(
1240 be32_to_cpu(voltage_ranges[j]),
1241 be32_to_cpu(voltage_ranges[j + 1]));
1242 if (!ocr_mask) {
1243 pr_err("%s: voltage-range #%d is invalid\n",
1244 np->full_name, i);
1245 return -EINVAL;
1246 }
1247 *mask |= ocr_mask;
1248 }
1249
1250 return 1;
1251 }
1252 EXPORT_SYMBOL(mmc_of_parse_voltage);
1253
1254 #endif /* CONFIG_OF */
1255
1256 static int mmc_of_get_func_num(struct device_node *node)
1257 {
1258 u32 reg;
1259 int ret;
1260
1261 ret = of_property_read_u32(node, "reg", &reg);
1262 if (ret < 0)
1263 return ret;
1264
1265 return reg;
1266 }
1267
1268 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1269 unsigned func_num)
1270 {
1271 struct device_node *node;
1272
1273 if (!host->parent || !host->parent->of_node)
1274 return NULL;
1275
1276 for_each_child_of_node(host->parent->of_node, node) {
1277 if (mmc_of_get_func_num(node) == func_num)
1278 return node;
1279 }
1280
1281 return NULL;
1282 }
1283
1284 #ifdef CONFIG_REGULATOR
1285
1286 /**
1287 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1288 * @vdd_bit: OCR bit number
1289 * @min_uV: minimum voltage value (mV)
1290 * @max_uV: maximum voltage value (mV)
1291 *
1292 * This function returns the voltage range according to the provided OCR
1293 * bit number. If conversion is not possible a negative errno value returned.
1294 */
1295 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1296 {
1297 int tmp;
1298
1299 if (!vdd_bit)
1300 return -EINVAL;
1301
1302 /*
1303 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1304 * bits this regulator doesn't quite support ... don't
1305 * be too picky, most cards and regulators are OK with
1306 * a 0.1V range goof (it's a small error percentage).
1307 */
1308 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1309 if (tmp == 0) {
1310 *min_uV = 1650 * 1000;
1311 *max_uV = 1950 * 1000;
1312 } else {
1313 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1314 *max_uV = *min_uV + 100 * 1000;
1315 }
1316
1317 return 0;
1318 }
1319
1320 /**
1321 * mmc_regulator_get_ocrmask - return mask of supported voltages
1322 * @supply: regulator to use
1323 *
1324 * This returns either a negative errno, or a mask of voltages that
1325 * can be provided to MMC/SD/SDIO devices using the specified voltage
1326 * regulator. This would normally be called before registering the
1327 * MMC host adapter.
1328 */
1329 int mmc_regulator_get_ocrmask(struct regulator *supply)
1330 {
1331 int result = 0;
1332 int count;
1333 int i;
1334 int vdd_uV;
1335 int vdd_mV;
1336
1337 count = regulator_count_voltages(supply);
1338 if (count < 0)
1339 return count;
1340
1341 for (i = 0; i < count; i++) {
1342 vdd_uV = regulator_list_voltage(supply, i);
1343 if (vdd_uV <= 0)
1344 continue;
1345
1346 vdd_mV = vdd_uV / 1000;
1347 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1348 }
1349
1350 if (!result) {
1351 vdd_uV = regulator_get_voltage(supply);
1352 if (vdd_uV <= 0)
1353 return vdd_uV;
1354
1355 vdd_mV = vdd_uV / 1000;
1356 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1357 }
1358
1359 return result;
1360 }
1361 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1362
1363 /**
1364 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1365 * @mmc: the host to regulate
1366 * @supply: regulator to use
1367 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1368 *
1369 * Returns zero on success, else negative errno.
1370 *
1371 * MMC host drivers may use this to enable or disable a regulator using
1372 * a particular supply voltage. This would normally be called from the
1373 * set_ios() method.
1374 */
1375 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1376 struct regulator *supply,
1377 unsigned short vdd_bit)
1378 {
1379 int result = 0;
1380 int min_uV, max_uV;
1381
1382 if (vdd_bit) {
1383 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1384
1385 result = regulator_set_voltage(supply, min_uV, max_uV);
1386 if (result == 0 && !mmc->regulator_enabled) {
1387 result = regulator_enable(supply);
1388 if (!result)
1389 mmc->regulator_enabled = true;
1390 }
1391 } else if (mmc->regulator_enabled) {
1392 result = regulator_disable(supply);
1393 if (result == 0)
1394 mmc->regulator_enabled = false;
1395 }
1396
1397 if (result)
1398 dev_err(mmc_dev(mmc),
1399 "could not set regulator OCR (%d)\n", result);
1400 return result;
1401 }
1402 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1403
1404 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1405 int min_uV, int target_uV,
1406 int max_uV)
1407 {
1408 /*
1409 * Check if supported first to avoid errors since we may try several
1410 * signal levels during power up and don't want to show errors.
1411 */
1412 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1413 return -EINVAL;
1414
1415 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1416 max_uV);
1417 }
1418
1419 /**
1420 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1421 *
1422 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1423 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1424 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1425 * SD card spec also define VQMMC in terms of VMMC.
1426 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1427 *
1428 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1429 * requested voltage. This is definitely a good idea for UHS where there's a
1430 * separate regulator on the card that's trying to make 1.8V and it's best if
1431 * we match.
1432 *
1433 * This function is expected to be used by a controller's
1434 * start_signal_voltage_switch() function.
1435 */
1436 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1437 {
1438 struct device *dev = mmc_dev(mmc);
1439 int ret, volt, min_uV, max_uV;
1440
1441 /* If no vqmmc supply then we can't change the voltage */
1442 if (IS_ERR(mmc->supply.vqmmc))
1443 return -EINVAL;
1444
1445 switch (ios->signal_voltage) {
1446 case MMC_SIGNAL_VOLTAGE_120:
1447 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1448 1100000, 1200000, 1300000);
1449 case MMC_SIGNAL_VOLTAGE_180:
1450 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1451 1700000, 1800000, 1950000);
1452 case MMC_SIGNAL_VOLTAGE_330:
1453 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1454 if (ret < 0)
1455 return ret;
1456
1457 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1458 __func__, volt, max_uV);
1459
1460 min_uV = max(volt - 300000, 2700000);
1461 max_uV = min(max_uV + 200000, 3600000);
1462
1463 /*
1464 * Due to a limitation in the current implementation of
1465 * regulator_set_voltage_triplet() which is taking the lowest
1466 * voltage possible if below the target, search for a suitable
1467 * voltage in two steps and try to stay close to vmmc
1468 * with a 0.3V tolerance at first.
1469 */
1470 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1471 min_uV, volt, max_uV))
1472 return 0;
1473
1474 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1475 2700000, volt, 3600000);
1476 default:
1477 return -EINVAL;
1478 }
1479 }
1480 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1481
1482 #endif /* CONFIG_REGULATOR */
1483
1484 int mmc_regulator_get_supply(struct mmc_host *mmc)
1485 {
1486 struct device *dev = mmc_dev(mmc);
1487 int ret;
1488
1489 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1490 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1491
1492 if (IS_ERR(mmc->supply.vmmc)) {
1493 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1494 return -EPROBE_DEFER;
1495 dev_dbg(dev, "No vmmc regulator found\n");
1496 } else {
1497 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1498 if (ret > 0)
1499 mmc->ocr_avail = ret;
1500 else
1501 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1502 }
1503
1504 if (IS_ERR(mmc->supply.vqmmc)) {
1505 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1506 return -EPROBE_DEFER;
1507 dev_dbg(dev, "No vqmmc regulator found\n");
1508 }
1509
1510 return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1513
1514 /*
1515 * Mask off any voltages we don't support and select
1516 * the lowest voltage
1517 */
1518 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1519 {
1520 int bit;
1521
1522 /*
1523 * Sanity check the voltages that the card claims to
1524 * support.
1525 */
1526 if (ocr & 0x7F) {
1527 dev_warn(mmc_dev(host),
1528 "card claims to support voltages below defined range\n");
1529 ocr &= ~0x7F;
1530 }
1531
1532 ocr &= host->ocr_avail;
1533 if (!ocr) {
1534 dev_warn(mmc_dev(host), "no support for card's volts\n");
1535 return 0;
1536 }
1537
1538 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1539 bit = ffs(ocr) - 1;
1540 ocr &= 3 << bit;
1541 mmc_power_cycle(host, ocr);
1542 } else {
1543 bit = fls(ocr) - 1;
1544 ocr &= 3 << bit;
1545 if (bit != host->ios.vdd)
1546 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1547 }
1548
1549 return ocr;
1550 }
1551
1552 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1553 {
1554 int err = 0;
1555 int old_signal_voltage = host->ios.signal_voltage;
1556
1557 host->ios.signal_voltage = signal_voltage;
1558 if (host->ops->start_signal_voltage_switch)
1559 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1560
1561 if (err)
1562 host->ios.signal_voltage = old_signal_voltage;
1563
1564 return err;
1565
1566 }
1567
1568 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1569 {
1570 struct mmc_command cmd = {0};
1571 int err = 0;
1572 u32 clock;
1573
1574 BUG_ON(!host);
1575
1576 /*
1577 * Send CMD11 only if the request is to switch the card to
1578 * 1.8V signalling.
1579 */
1580 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1581 return __mmc_set_signal_voltage(host, signal_voltage);
1582
1583 /*
1584 * If we cannot switch voltages, return failure so the caller
1585 * can continue without UHS mode
1586 */
1587 if (!host->ops->start_signal_voltage_switch)
1588 return -EPERM;
1589 if (!host->ops->card_busy)
1590 pr_warn("%s: cannot verify signal voltage switch\n",
1591 mmc_hostname(host));
1592
1593 cmd.opcode = SD_SWITCH_VOLTAGE;
1594 cmd.arg = 0;
1595 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1596
1597 err = mmc_wait_for_cmd(host, &cmd, 0);
1598 if (err)
1599 return err;
1600
1601 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1602 return -EIO;
1603
1604 /*
1605 * The card should drive cmd and dat[0:3] low immediately
1606 * after the response of cmd11, but wait 1 ms to be sure
1607 */
1608 mmc_delay(1);
1609 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1610 err = -EAGAIN;
1611 goto power_cycle;
1612 }
1613 /*
1614 * During a signal voltage level switch, the clock must be gated
1615 * for 5 ms according to the SD spec
1616 */
1617 clock = host->ios.clock;
1618 host->ios.clock = 0;
1619 mmc_set_ios(host);
1620
1621 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1622 /*
1623 * Voltages may not have been switched, but we've already
1624 * sent CMD11, so a power cycle is required anyway
1625 */
1626 err = -EAGAIN;
1627 goto power_cycle;
1628 }
1629
1630 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1631 mmc_delay(10);
1632 host->ios.clock = clock;
1633 mmc_set_ios(host);
1634
1635 /* Wait for at least 1 ms according to spec */
1636 mmc_delay(1);
1637
1638 /*
1639 * Failure to switch is indicated by the card holding
1640 * dat[0:3] low
1641 */
1642 if (host->ops->card_busy && host->ops->card_busy(host))
1643 err = -EAGAIN;
1644
1645 power_cycle:
1646 if (err) {
1647 pr_debug("%s: Signal voltage switch failed, "
1648 "power cycling card\n", mmc_hostname(host));
1649 mmc_power_cycle(host, ocr);
1650 }
1651
1652 return err;
1653 }
1654
1655 /*
1656 * Select timing parameters for host.
1657 */
1658 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1659 {
1660 host->ios.timing = timing;
1661 mmc_set_ios(host);
1662 }
1663
1664 /*
1665 * Select appropriate driver type for host.
1666 */
1667 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1668 {
1669 host->ios.drv_type = drv_type;
1670 mmc_set_ios(host);
1671 }
1672
1673 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1674 int card_drv_type, int *drv_type)
1675 {
1676 struct mmc_host *host = card->host;
1677 int host_drv_type = SD_DRIVER_TYPE_B;
1678
1679 *drv_type = 0;
1680
1681 if (!host->ops->select_drive_strength)
1682 return 0;
1683
1684 /* Use SD definition of driver strength for hosts */
1685 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1686 host_drv_type |= SD_DRIVER_TYPE_A;
1687
1688 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1689 host_drv_type |= SD_DRIVER_TYPE_C;
1690
1691 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1692 host_drv_type |= SD_DRIVER_TYPE_D;
1693
1694 /*
1695 * The drive strength that the hardware can support
1696 * depends on the board design. Pass the appropriate
1697 * information and let the hardware specific code
1698 * return what is possible given the options
1699 */
1700 return host->ops->select_drive_strength(card, max_dtr,
1701 host_drv_type,
1702 card_drv_type,
1703 drv_type);
1704 }
1705
1706 /*
1707 * Apply power to the MMC stack. This is a two-stage process.
1708 * First, we enable power to the card without the clock running.
1709 * We then wait a bit for the power to stabilise. Finally,
1710 * enable the bus drivers and clock to the card.
1711 *
1712 * We must _NOT_ enable the clock prior to power stablising.
1713 *
1714 * If a host does all the power sequencing itself, ignore the
1715 * initial MMC_POWER_UP stage.
1716 */
1717 void mmc_power_up(struct mmc_host *host, u32 ocr)
1718 {
1719 if (host->ios.power_mode == MMC_POWER_ON)
1720 return;
1721
1722 mmc_pwrseq_pre_power_on(host);
1723
1724 host->ios.vdd = fls(ocr) - 1;
1725 host->ios.power_mode = MMC_POWER_UP;
1726 /* Set initial state and call mmc_set_ios */
1727 mmc_set_initial_state(host);
1728
1729 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1730 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1731 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1732 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1733 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1734 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1735 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1736
1737 /*
1738 * This delay should be sufficient to allow the power supply
1739 * to reach the minimum voltage.
1740 */
1741 mmc_delay(10);
1742
1743 mmc_pwrseq_post_power_on(host);
1744
1745 host->ios.clock = host->f_init;
1746
1747 host->ios.power_mode = MMC_POWER_ON;
1748 mmc_set_ios(host);
1749
1750 /*
1751 * This delay must be at least 74 clock sizes, or 1 ms, or the
1752 * time required to reach a stable voltage.
1753 */
1754 mmc_delay(10);
1755 }
1756
1757 void mmc_power_off(struct mmc_host *host)
1758 {
1759 if (host->ios.power_mode == MMC_POWER_OFF)
1760 return;
1761
1762 mmc_pwrseq_power_off(host);
1763
1764 host->ios.clock = 0;
1765 host->ios.vdd = 0;
1766
1767 host->ios.power_mode = MMC_POWER_OFF;
1768 /* Set initial state and call mmc_set_ios */
1769 mmc_set_initial_state(host);
1770
1771 /*
1772 * Some configurations, such as the 802.11 SDIO card in the OLPC
1773 * XO-1.5, require a short delay after poweroff before the card
1774 * can be successfully turned on again.
1775 */
1776 mmc_delay(1);
1777 }
1778
1779 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1780 {
1781 mmc_power_off(host);
1782 /* Wait at least 1 ms according to SD spec */
1783 mmc_delay(1);
1784 mmc_power_up(host, ocr);
1785 }
1786
1787 /*
1788 * Cleanup when the last reference to the bus operator is dropped.
1789 */
1790 static void __mmc_release_bus(struct mmc_host *host)
1791 {
1792 BUG_ON(!host);
1793 BUG_ON(host->bus_refs);
1794 BUG_ON(!host->bus_dead);
1795
1796 host->bus_ops = NULL;
1797 }
1798
1799 /*
1800 * Increase reference count of bus operator
1801 */
1802 static inline void mmc_bus_get(struct mmc_host *host)
1803 {
1804 unsigned long flags;
1805
1806 spin_lock_irqsave(&host->lock, flags);
1807 host->bus_refs++;
1808 spin_unlock_irqrestore(&host->lock, flags);
1809 }
1810
1811 /*
1812 * Decrease reference count of bus operator and free it if
1813 * it is the last reference.
1814 */
1815 static inline void mmc_bus_put(struct mmc_host *host)
1816 {
1817 unsigned long flags;
1818
1819 spin_lock_irqsave(&host->lock, flags);
1820 host->bus_refs--;
1821 if ((host->bus_refs == 0) && host->bus_ops)
1822 __mmc_release_bus(host);
1823 spin_unlock_irqrestore(&host->lock, flags);
1824 }
1825
1826 /*
1827 * Assign a mmc bus handler to a host. Only one bus handler may control a
1828 * host at any given time.
1829 */
1830 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1831 {
1832 unsigned long flags;
1833
1834 BUG_ON(!host);
1835 BUG_ON(!ops);
1836
1837 WARN_ON(!host->claimed);
1838
1839 spin_lock_irqsave(&host->lock, flags);
1840
1841 BUG_ON(host->bus_ops);
1842 BUG_ON(host->bus_refs);
1843
1844 host->bus_ops = ops;
1845 host->bus_refs = 1;
1846 host->bus_dead = 0;
1847
1848 spin_unlock_irqrestore(&host->lock, flags);
1849 }
1850
1851 /*
1852 * Remove the current bus handler from a host.
1853 */
1854 void mmc_detach_bus(struct mmc_host *host)
1855 {
1856 unsigned long flags;
1857
1858 BUG_ON(!host);
1859
1860 WARN_ON(!host->claimed);
1861 WARN_ON(!host->bus_ops);
1862
1863 spin_lock_irqsave(&host->lock, flags);
1864
1865 host->bus_dead = 1;
1866
1867 spin_unlock_irqrestore(&host->lock, flags);
1868
1869 mmc_bus_put(host);
1870 }
1871
1872 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1873 bool cd_irq)
1874 {
1875 #ifdef CONFIG_MMC_DEBUG
1876 unsigned long flags;
1877 spin_lock_irqsave(&host->lock, flags);
1878 WARN_ON(host->removed);
1879 spin_unlock_irqrestore(&host->lock, flags);
1880 #endif
1881
1882 /*
1883 * If the device is configured as wakeup, we prevent a new sleep for
1884 * 5 s to give provision for user space to consume the event.
1885 */
1886 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1887 device_can_wakeup(mmc_dev(host)))
1888 pm_wakeup_event(mmc_dev(host), 5000);
1889
1890 host->detect_change = 1;
1891 mmc_schedule_delayed_work(&host->detect, delay);
1892 }
1893
1894 /**
1895 * mmc_detect_change - process change of state on a MMC socket
1896 * @host: host which changed state.
1897 * @delay: optional delay to wait before detection (jiffies)
1898 *
1899 * MMC drivers should call this when they detect a card has been
1900 * inserted or removed. The MMC layer will confirm that any
1901 * present card is still functional, and initialize any newly
1902 * inserted.
1903 */
1904 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1905 {
1906 _mmc_detect_change(host, delay, true);
1907 }
1908 EXPORT_SYMBOL(mmc_detect_change);
1909
1910 void mmc_init_erase(struct mmc_card *card)
1911 {
1912 unsigned int sz;
1913
1914 if (is_power_of_2(card->erase_size))
1915 card->erase_shift = ffs(card->erase_size) - 1;
1916 else
1917 card->erase_shift = 0;
1918
1919 /*
1920 * It is possible to erase an arbitrarily large area of an SD or MMC
1921 * card. That is not desirable because it can take a long time
1922 * (minutes) potentially delaying more important I/O, and also the
1923 * timeout calculations become increasingly hugely over-estimated.
1924 * Consequently, 'pref_erase' is defined as a guide to limit erases
1925 * to that size and alignment.
1926 *
1927 * For SD cards that define Allocation Unit size, limit erases to one
1928 * Allocation Unit at a time. For MMC cards that define High Capacity
1929 * Erase Size, whether it is switched on or not, limit to that size.
1930 * Otherwise just have a stab at a good value. For modern cards it
1931 * will end up being 4MiB. Note that if the value is too small, it
1932 * can end up taking longer to erase.
1933 */
1934 if (mmc_card_sd(card) && card->ssr.au) {
1935 card->pref_erase = card->ssr.au;
1936 card->erase_shift = ffs(card->ssr.au) - 1;
1937 } else if (card->ext_csd.hc_erase_size) {
1938 card->pref_erase = card->ext_csd.hc_erase_size;
1939 } else if (card->erase_size) {
1940 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1941 if (sz < 128)
1942 card->pref_erase = 512 * 1024 / 512;
1943 else if (sz < 512)
1944 card->pref_erase = 1024 * 1024 / 512;
1945 else if (sz < 1024)
1946 card->pref_erase = 2 * 1024 * 1024 / 512;
1947 else
1948 card->pref_erase = 4 * 1024 * 1024 / 512;
1949 if (card->pref_erase < card->erase_size)
1950 card->pref_erase = card->erase_size;
1951 else {
1952 sz = card->pref_erase % card->erase_size;
1953 if (sz)
1954 card->pref_erase += card->erase_size - sz;
1955 }
1956 } else
1957 card->pref_erase = 0;
1958 }
1959
1960 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1961 unsigned int arg, unsigned int qty)
1962 {
1963 unsigned int erase_timeout;
1964
1965 if (arg == MMC_DISCARD_ARG ||
1966 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1967 erase_timeout = card->ext_csd.trim_timeout;
1968 } else if (card->ext_csd.erase_group_def & 1) {
1969 /* High Capacity Erase Group Size uses HC timeouts */
1970 if (arg == MMC_TRIM_ARG)
1971 erase_timeout = card->ext_csd.trim_timeout;
1972 else
1973 erase_timeout = card->ext_csd.hc_erase_timeout;
1974 } else {
1975 /* CSD Erase Group Size uses write timeout */
1976 unsigned int mult = (10 << card->csd.r2w_factor);
1977 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1978 unsigned int timeout_us;
1979
1980 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1981 if (card->csd.tacc_ns < 1000000)
1982 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1983 else
1984 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1985
1986 /*
1987 * ios.clock is only a target. The real clock rate might be
1988 * less but not that much less, so fudge it by multiplying by 2.
1989 */
1990 timeout_clks <<= 1;
1991 timeout_us += (timeout_clks * 1000) /
1992 (card->host->ios.clock / 1000);
1993
1994 erase_timeout = timeout_us / 1000;
1995
1996 /*
1997 * Theoretically, the calculation could underflow so round up
1998 * to 1ms in that case.
1999 */
2000 if (!erase_timeout)
2001 erase_timeout = 1;
2002 }
2003
2004 /* Multiplier for secure operations */
2005 if (arg & MMC_SECURE_ARGS) {
2006 if (arg == MMC_SECURE_ERASE_ARG)
2007 erase_timeout *= card->ext_csd.sec_erase_mult;
2008 else
2009 erase_timeout *= card->ext_csd.sec_trim_mult;
2010 }
2011
2012 erase_timeout *= qty;
2013
2014 /*
2015 * Ensure at least a 1 second timeout for SPI as per
2016 * 'mmc_set_data_timeout()'
2017 */
2018 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2019 erase_timeout = 1000;
2020
2021 return erase_timeout;
2022 }
2023
2024 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2025 unsigned int arg,
2026 unsigned int qty)
2027 {
2028 unsigned int erase_timeout;
2029
2030 if (card->ssr.erase_timeout) {
2031 /* Erase timeout specified in SD Status Register (SSR) */
2032 erase_timeout = card->ssr.erase_timeout * qty +
2033 card->ssr.erase_offset;
2034 } else {
2035 /*
2036 * Erase timeout not specified in SD Status Register (SSR) so
2037 * use 250ms per write block.
2038 */
2039 erase_timeout = 250 * qty;
2040 }
2041
2042 /* Must not be less than 1 second */
2043 if (erase_timeout < 1000)
2044 erase_timeout = 1000;
2045
2046 return erase_timeout;
2047 }
2048
2049 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2050 unsigned int arg,
2051 unsigned int qty)
2052 {
2053 if (mmc_card_sd(card))
2054 return mmc_sd_erase_timeout(card, arg, qty);
2055 else
2056 return mmc_mmc_erase_timeout(card, arg, qty);
2057 }
2058
2059 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2060 unsigned int to, unsigned int arg)
2061 {
2062 struct mmc_command cmd = {0};
2063 unsigned int qty = 0;
2064 unsigned long timeout;
2065 int err;
2066
2067 mmc_retune_hold(card->host);
2068
2069 /*
2070 * qty is used to calculate the erase timeout which depends on how many
2071 * erase groups (or allocation units in SD terminology) are affected.
2072 * We count erasing part of an erase group as one erase group.
2073 * For SD, the allocation units are always a power of 2. For MMC, the
2074 * erase group size is almost certainly also power of 2, but it does not
2075 * seem to insist on that in the JEDEC standard, so we fall back to
2076 * division in that case. SD may not specify an allocation unit size,
2077 * in which case the timeout is based on the number of write blocks.
2078 *
2079 * Note that the timeout for secure trim 2 will only be correct if the
2080 * number of erase groups specified is the same as the total of all
2081 * preceding secure trim 1 commands. Since the power may have been
2082 * lost since the secure trim 1 commands occurred, it is generally
2083 * impossible to calculate the secure trim 2 timeout correctly.
2084 */
2085 if (card->erase_shift)
2086 qty += ((to >> card->erase_shift) -
2087 (from >> card->erase_shift)) + 1;
2088 else if (mmc_card_sd(card))
2089 qty += to - from + 1;
2090 else
2091 qty += ((to / card->erase_size) -
2092 (from / card->erase_size)) + 1;
2093
2094 if (!mmc_card_blockaddr(card)) {
2095 from <<= 9;
2096 to <<= 9;
2097 }
2098
2099 if (mmc_card_sd(card))
2100 cmd.opcode = SD_ERASE_WR_BLK_START;
2101 else
2102 cmd.opcode = MMC_ERASE_GROUP_START;
2103 cmd.arg = from;
2104 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2105 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2106 if (err) {
2107 pr_err("mmc_erase: group start error %d, "
2108 "status %#x\n", err, cmd.resp[0]);
2109 err = -EIO;
2110 goto out;
2111 }
2112
2113 memset(&cmd, 0, sizeof(struct mmc_command));
2114 if (mmc_card_sd(card))
2115 cmd.opcode = SD_ERASE_WR_BLK_END;
2116 else
2117 cmd.opcode = MMC_ERASE_GROUP_END;
2118 cmd.arg = to;
2119 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2120 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2121 if (err) {
2122 pr_err("mmc_erase: group end error %d, status %#x\n",
2123 err, cmd.resp[0]);
2124 err = -EIO;
2125 goto out;
2126 }
2127
2128 memset(&cmd, 0, sizeof(struct mmc_command));
2129 cmd.opcode = MMC_ERASE;
2130 cmd.arg = arg;
2131 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2132 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2133 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2134 if (err) {
2135 pr_err("mmc_erase: erase error %d, status %#x\n",
2136 err, cmd.resp[0]);
2137 err = -EIO;
2138 goto out;
2139 }
2140
2141 if (mmc_host_is_spi(card->host))
2142 goto out;
2143
2144 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2145 do {
2146 memset(&cmd, 0, sizeof(struct mmc_command));
2147 cmd.opcode = MMC_SEND_STATUS;
2148 cmd.arg = card->rca << 16;
2149 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2150 /* Do not retry else we can't see errors */
2151 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2152 if (err || (cmd.resp[0] & 0xFDF92000)) {
2153 pr_err("error %d requesting status %#x\n",
2154 err, cmd.resp[0]);
2155 err = -EIO;
2156 goto out;
2157 }
2158
2159 /* Timeout if the device never becomes ready for data and
2160 * never leaves the program state.
2161 */
2162 if (time_after(jiffies, timeout)) {
2163 pr_err("%s: Card stuck in programming state! %s\n",
2164 mmc_hostname(card->host), __func__);
2165 err = -EIO;
2166 goto out;
2167 }
2168
2169 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2170 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2171 out:
2172 mmc_retune_release(card->host);
2173 return err;
2174 }
2175
2176 /**
2177 * mmc_erase - erase sectors.
2178 * @card: card to erase
2179 * @from: first sector to erase
2180 * @nr: number of sectors to erase
2181 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2182 *
2183 * Caller must claim host before calling this function.
2184 */
2185 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2186 unsigned int arg)
2187 {
2188 unsigned int rem, to = from + nr;
2189 int err;
2190
2191 if (!(card->host->caps & MMC_CAP_ERASE) ||
2192 !(card->csd.cmdclass & CCC_ERASE))
2193 return -EOPNOTSUPP;
2194
2195 if (!card->erase_size)
2196 return -EOPNOTSUPP;
2197
2198 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2199 return -EOPNOTSUPP;
2200
2201 if ((arg & MMC_SECURE_ARGS) &&
2202 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2203 return -EOPNOTSUPP;
2204
2205 if ((arg & MMC_TRIM_ARGS) &&
2206 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2207 return -EOPNOTSUPP;
2208
2209 if (arg == MMC_SECURE_ERASE_ARG) {
2210 if (from % card->erase_size || nr % card->erase_size)
2211 return -EINVAL;
2212 }
2213
2214 if (arg == MMC_ERASE_ARG) {
2215 rem = from % card->erase_size;
2216 if (rem) {
2217 rem = card->erase_size - rem;
2218 from += rem;
2219 if (nr > rem)
2220 nr -= rem;
2221 else
2222 return 0;
2223 }
2224 rem = nr % card->erase_size;
2225 if (rem)
2226 nr -= rem;
2227 }
2228
2229 if (nr == 0)
2230 return 0;
2231
2232 to = from + nr;
2233
2234 if (to <= from)
2235 return -EINVAL;
2236
2237 /* 'from' and 'to' are inclusive */
2238 to -= 1;
2239
2240 /*
2241 * Special case where only one erase-group fits in the timeout budget:
2242 * If the region crosses an erase-group boundary on this particular
2243 * case, we will be trimming more than one erase-group which, does not
2244 * fit in the timeout budget of the controller, so we need to split it
2245 * and call mmc_do_erase() twice if necessary. This special case is
2246 * identified by the card->eg_boundary flag.
2247 */
2248 rem = card->erase_size - (from % card->erase_size);
2249 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2250 err = mmc_do_erase(card, from, from + rem - 1, arg);
2251 from += rem;
2252 if ((err) || (to <= from))
2253 return err;
2254 }
2255
2256 return mmc_do_erase(card, from, to, arg);
2257 }
2258 EXPORT_SYMBOL(mmc_erase);
2259
2260 int mmc_can_erase(struct mmc_card *card)
2261 {
2262 if ((card->host->caps & MMC_CAP_ERASE) &&
2263 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2264 return 1;
2265 return 0;
2266 }
2267 EXPORT_SYMBOL(mmc_can_erase);
2268
2269 int mmc_can_trim(struct mmc_card *card)
2270 {
2271 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2272 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2273 return 1;
2274 return 0;
2275 }
2276 EXPORT_SYMBOL(mmc_can_trim);
2277
2278 int mmc_can_discard(struct mmc_card *card)
2279 {
2280 /*
2281 * As there's no way to detect the discard support bit at v4.5
2282 * use the s/w feature support filed.
2283 */
2284 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2285 return 1;
2286 return 0;
2287 }
2288 EXPORT_SYMBOL(mmc_can_discard);
2289
2290 int mmc_can_sanitize(struct mmc_card *card)
2291 {
2292 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2293 return 0;
2294 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2295 return 1;
2296 return 0;
2297 }
2298 EXPORT_SYMBOL(mmc_can_sanitize);
2299
2300 int mmc_can_secure_erase_trim(struct mmc_card *card)
2301 {
2302 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2303 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2304 return 1;
2305 return 0;
2306 }
2307 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2308
2309 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2310 unsigned int nr)
2311 {
2312 if (!card->erase_size)
2313 return 0;
2314 if (from % card->erase_size || nr % card->erase_size)
2315 return 0;
2316 return 1;
2317 }
2318 EXPORT_SYMBOL(mmc_erase_group_aligned);
2319
2320 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2321 unsigned int arg)
2322 {
2323 struct mmc_host *host = card->host;
2324 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2325 unsigned int last_timeout = 0;
2326
2327 if (card->erase_shift)
2328 max_qty = UINT_MAX >> card->erase_shift;
2329 else if (mmc_card_sd(card))
2330 max_qty = UINT_MAX;
2331 else
2332 max_qty = UINT_MAX / card->erase_size;
2333
2334 /* Find the largest qty with an OK timeout */
2335 do {
2336 y = 0;
2337 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2338 timeout = mmc_erase_timeout(card, arg, qty + x);
2339 if (timeout > host->max_busy_timeout)
2340 break;
2341 if (timeout < last_timeout)
2342 break;
2343 last_timeout = timeout;
2344 y = x;
2345 }
2346 qty += y;
2347 } while (y);
2348
2349 if (!qty)
2350 return 0;
2351
2352 /*
2353 * When specifying a sector range to trim, chances are we might cross
2354 * an erase-group boundary even if the amount of sectors is less than
2355 * one erase-group.
2356 * If we can only fit one erase-group in the controller timeout budget,
2357 * we have to care that erase-group boundaries are not crossed by a
2358 * single trim operation. We flag that special case with "eg_boundary".
2359 * In all other cases we can just decrement qty and pretend that we
2360 * always touch (qty + 1) erase-groups as a simple optimization.
2361 */
2362 if (qty == 1)
2363 card->eg_boundary = 1;
2364 else
2365 qty--;
2366
2367 /* Convert qty to sectors */
2368 if (card->erase_shift)
2369 max_discard = qty << card->erase_shift;
2370 else if (mmc_card_sd(card))
2371 max_discard = qty + 1;
2372 else
2373 max_discard = qty * card->erase_size;
2374
2375 return max_discard;
2376 }
2377
2378 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2379 {
2380 struct mmc_host *host = card->host;
2381 unsigned int max_discard, max_trim;
2382
2383 if (!host->max_busy_timeout)
2384 return UINT_MAX;
2385
2386 /*
2387 * Without erase_group_def set, MMC erase timeout depends on clock
2388 * frequence which can change. In that case, the best choice is
2389 * just the preferred erase size.
2390 */
2391 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2392 return card->pref_erase;
2393
2394 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2395 if (mmc_can_trim(card)) {
2396 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2397 if (max_trim < max_discard)
2398 max_discard = max_trim;
2399 } else if (max_discard < card->erase_size) {
2400 max_discard = 0;
2401 }
2402 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2403 mmc_hostname(host), max_discard, host->max_busy_timeout);
2404 return max_discard;
2405 }
2406 EXPORT_SYMBOL(mmc_calc_max_discard);
2407
2408 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2409 {
2410 struct mmc_command cmd = {0};
2411
2412 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2413 return 0;
2414
2415 cmd.opcode = MMC_SET_BLOCKLEN;
2416 cmd.arg = blocklen;
2417 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2418 return mmc_wait_for_cmd(card->host, &cmd, 5);
2419 }
2420 EXPORT_SYMBOL(mmc_set_blocklen);
2421
2422 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2423 bool is_rel_write)
2424 {
2425 struct mmc_command cmd = {0};
2426
2427 cmd.opcode = MMC_SET_BLOCK_COUNT;
2428 cmd.arg = blockcount & 0x0000FFFF;
2429 if (is_rel_write)
2430 cmd.arg |= 1 << 31;
2431 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2432 return mmc_wait_for_cmd(card->host, &cmd, 5);
2433 }
2434 EXPORT_SYMBOL(mmc_set_blockcount);
2435
2436 static void mmc_hw_reset_for_init(struct mmc_host *host)
2437 {
2438 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2439 return;
2440 host->ops->hw_reset(host);
2441 }
2442
2443 int mmc_hw_reset(struct mmc_host *host)
2444 {
2445 int ret;
2446
2447 if (!host->card)
2448 return -EINVAL;
2449
2450 mmc_bus_get(host);
2451 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2452 mmc_bus_put(host);
2453 return -EOPNOTSUPP;
2454 }
2455
2456 ret = host->bus_ops->reset(host);
2457 mmc_bus_put(host);
2458
2459 if (ret)
2460 pr_warn("%s: tried to reset card, got error %d\n",
2461 mmc_hostname(host), ret);
2462
2463 return ret;
2464 }
2465 EXPORT_SYMBOL(mmc_hw_reset);
2466
2467 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2468 {
2469 host->f_init = freq;
2470
2471 #ifdef CONFIG_MMC_DEBUG
2472 pr_info("%s: %s: trying to init card at %u Hz\n",
2473 mmc_hostname(host), __func__, host->f_init);
2474 #endif
2475 mmc_power_up(host, host->ocr_avail);
2476
2477 /*
2478 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2479 * do a hardware reset if possible.
2480 */
2481 mmc_hw_reset_for_init(host);
2482
2483 /*
2484 * sdio_reset sends CMD52 to reset card. Since we do not know
2485 * if the card is being re-initialized, just send it. CMD52
2486 * should be ignored by SD/eMMC cards.
2487 * Skip it if we already know that we do not support SDIO commands
2488 */
2489 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2490 sdio_reset(host);
2491
2492 mmc_go_idle(host);
2493
2494 mmc_send_if_cond(host, host->ocr_avail);
2495
2496 /* Order's important: probe SDIO, then SD, then MMC */
2497 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2498 if (!mmc_attach_sdio(host))
2499 return 0;
2500
2501 if (!mmc_attach_sd(host))
2502 return 0;
2503 if (!mmc_attach_mmc(host))
2504 return 0;
2505
2506 mmc_power_off(host);
2507 return -EIO;
2508 }
2509
2510 int _mmc_detect_card_removed(struct mmc_host *host)
2511 {
2512 int ret;
2513
2514 if (!host->card || mmc_card_removed(host->card))
2515 return 1;
2516
2517 ret = host->bus_ops->alive(host);
2518
2519 /*
2520 * Card detect status and alive check may be out of sync if card is
2521 * removed slowly, when card detect switch changes while card/slot
2522 * pads are still contacted in hardware (refer to "SD Card Mechanical
2523 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2524 * detect work 200ms later for this case.
2525 */
2526 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2527 mmc_detect_change(host, msecs_to_jiffies(200));
2528 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2529 }
2530
2531 if (ret) {
2532 mmc_card_set_removed(host->card);
2533 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2534 }
2535
2536 return ret;
2537 }
2538
2539 int mmc_detect_card_removed(struct mmc_host *host)
2540 {
2541 struct mmc_card *card = host->card;
2542 int ret;
2543
2544 WARN_ON(!host->claimed);
2545
2546 if (!card)
2547 return 1;
2548
2549 if (!mmc_card_is_removable(host))
2550 return 0;
2551
2552 ret = mmc_card_removed(card);
2553 /*
2554 * The card will be considered unchanged unless we have been asked to
2555 * detect a change or host requires polling to provide card detection.
2556 */
2557 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2558 return ret;
2559
2560 host->detect_change = 0;
2561 if (!ret) {
2562 ret = _mmc_detect_card_removed(host);
2563 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2564 /*
2565 * Schedule a detect work as soon as possible to let a
2566 * rescan handle the card removal.
2567 */
2568 cancel_delayed_work(&host->detect);
2569 _mmc_detect_change(host, 0, false);
2570 }
2571 }
2572
2573 return ret;
2574 }
2575 EXPORT_SYMBOL(mmc_detect_card_removed);
2576
2577 void mmc_rescan(struct work_struct *work)
2578 {
2579 struct mmc_host *host =
2580 container_of(work, struct mmc_host, detect.work);
2581 int i;
2582
2583 if (host->rescan_disable)
2584 return;
2585
2586 /* If there is a non-removable card registered, only scan once */
2587 if (!mmc_card_is_removable(host) && host->rescan_entered)
2588 return;
2589 host->rescan_entered = 1;
2590
2591 if (host->trigger_card_event && host->ops->card_event) {
2592 mmc_claim_host(host);
2593 host->ops->card_event(host);
2594 mmc_release_host(host);
2595 host->trigger_card_event = false;
2596 }
2597
2598 mmc_bus_get(host);
2599
2600 /*
2601 * if there is a _removable_ card registered, check whether it is
2602 * still present
2603 */
2604 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2605 host->bus_ops->detect(host);
2606
2607 host->detect_change = 0;
2608
2609 /*
2610 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2611 * the card is no longer present.
2612 */
2613 mmc_bus_put(host);
2614 mmc_bus_get(host);
2615
2616 /* if there still is a card present, stop here */
2617 if (host->bus_ops != NULL) {
2618 mmc_bus_put(host);
2619 goto out;
2620 }
2621
2622 /*
2623 * Only we can add a new handler, so it's safe to
2624 * release the lock here.
2625 */
2626 mmc_bus_put(host);
2627
2628 mmc_claim_host(host);
2629 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2630 host->ops->get_cd(host) == 0) {
2631 mmc_power_off(host);
2632 mmc_release_host(host);
2633 goto out;
2634 }
2635
2636 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2637 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2638 break;
2639 if (freqs[i] <= host->f_min)
2640 break;
2641 }
2642 mmc_release_host(host);
2643
2644 out:
2645 if (host->caps & MMC_CAP_NEEDS_POLL)
2646 mmc_schedule_delayed_work(&host->detect, HZ);
2647 }
2648
2649 void mmc_start_host(struct mmc_host *host)
2650 {
2651 host->f_init = max(freqs[0], host->f_min);
2652 host->rescan_disable = 0;
2653 host->ios.power_mode = MMC_POWER_UNDEFINED;
2654
2655 mmc_claim_host(host);
2656 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2657 mmc_power_off(host);
2658 else
2659 mmc_power_up(host, host->ocr_avail);
2660 mmc_release_host(host);
2661
2662 mmc_gpiod_request_cd_irq(host);
2663 _mmc_detect_change(host, 0, false);
2664 }
2665
2666 void mmc_stop_host(struct mmc_host *host)
2667 {
2668 #ifdef CONFIG_MMC_DEBUG
2669 unsigned long flags;
2670 spin_lock_irqsave(&host->lock, flags);
2671 host->removed = 1;
2672 spin_unlock_irqrestore(&host->lock, flags);
2673 #endif
2674 if (host->slot.cd_irq >= 0)
2675 disable_irq(host->slot.cd_irq);
2676
2677 host->rescan_disable = 1;
2678 cancel_delayed_work_sync(&host->detect);
2679
2680 /* clear pm flags now and let card drivers set them as needed */
2681 host->pm_flags = 0;
2682
2683 mmc_bus_get(host);
2684 if (host->bus_ops && !host->bus_dead) {
2685 /* Calling bus_ops->remove() with a claimed host can deadlock */
2686 host->bus_ops->remove(host);
2687 mmc_claim_host(host);
2688 mmc_detach_bus(host);
2689 mmc_power_off(host);
2690 mmc_release_host(host);
2691 mmc_bus_put(host);
2692 return;
2693 }
2694 mmc_bus_put(host);
2695
2696 BUG_ON(host->card);
2697
2698 mmc_claim_host(host);
2699 mmc_power_off(host);
2700 mmc_release_host(host);
2701 }
2702
2703 int mmc_power_save_host(struct mmc_host *host)
2704 {
2705 int ret = 0;
2706
2707 #ifdef CONFIG_MMC_DEBUG
2708 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2709 #endif
2710
2711 mmc_bus_get(host);
2712
2713 if (!host->bus_ops || host->bus_dead) {
2714 mmc_bus_put(host);
2715 return -EINVAL;
2716 }
2717
2718 if (host->bus_ops->power_save)
2719 ret = host->bus_ops->power_save(host);
2720
2721 mmc_bus_put(host);
2722
2723 mmc_power_off(host);
2724
2725 return ret;
2726 }
2727 EXPORT_SYMBOL(mmc_power_save_host);
2728
2729 int mmc_power_restore_host(struct mmc_host *host)
2730 {
2731 int ret;
2732
2733 #ifdef CONFIG_MMC_DEBUG
2734 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2735 #endif
2736
2737 mmc_bus_get(host);
2738
2739 if (!host->bus_ops || host->bus_dead) {
2740 mmc_bus_put(host);
2741 return -EINVAL;
2742 }
2743
2744 mmc_power_up(host, host->card->ocr);
2745 ret = host->bus_ops->power_restore(host);
2746
2747 mmc_bus_put(host);
2748
2749 return ret;
2750 }
2751 EXPORT_SYMBOL(mmc_power_restore_host);
2752
2753 /*
2754 * Flush the cache to the non-volatile storage.
2755 */
2756 int mmc_flush_cache(struct mmc_card *card)
2757 {
2758 int err = 0;
2759
2760 if (mmc_card_mmc(card) &&
2761 (card->ext_csd.cache_size > 0) &&
2762 (card->ext_csd.cache_ctrl & 1)) {
2763 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2764 EXT_CSD_FLUSH_CACHE, 1, 0);
2765 if (err)
2766 pr_err("%s: cache flush error %d\n",
2767 mmc_hostname(card->host), err);
2768 }
2769
2770 return err;
2771 }
2772 EXPORT_SYMBOL(mmc_flush_cache);
2773
2774 #ifdef CONFIG_PM_SLEEP
2775 /* Do the card removal on suspend if card is assumed removeable
2776 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2777 to sync the card.
2778 */
2779 static int mmc_pm_notify(struct notifier_block *notify_block,
2780 unsigned long mode, void *unused)
2781 {
2782 struct mmc_host *host = container_of(
2783 notify_block, struct mmc_host, pm_notify);
2784 unsigned long flags;
2785 int err = 0;
2786
2787 switch (mode) {
2788 case PM_HIBERNATION_PREPARE:
2789 case PM_SUSPEND_PREPARE:
2790 case PM_RESTORE_PREPARE:
2791 spin_lock_irqsave(&host->lock, flags);
2792 host->rescan_disable = 1;
2793 spin_unlock_irqrestore(&host->lock, flags);
2794 cancel_delayed_work_sync(&host->detect);
2795
2796 if (!host->bus_ops)
2797 break;
2798
2799 /* Validate prerequisites for suspend */
2800 if (host->bus_ops->pre_suspend)
2801 err = host->bus_ops->pre_suspend(host);
2802 if (!err)
2803 break;
2804
2805 /* Calling bus_ops->remove() with a claimed host can deadlock */
2806 host->bus_ops->remove(host);
2807 mmc_claim_host(host);
2808 mmc_detach_bus(host);
2809 mmc_power_off(host);
2810 mmc_release_host(host);
2811 host->pm_flags = 0;
2812 break;
2813
2814 case PM_POST_SUSPEND:
2815 case PM_POST_HIBERNATION:
2816 case PM_POST_RESTORE:
2817
2818 spin_lock_irqsave(&host->lock, flags);
2819 host->rescan_disable = 0;
2820 spin_unlock_irqrestore(&host->lock, flags);
2821 _mmc_detect_change(host, 0, false);
2822
2823 }
2824
2825 return 0;
2826 }
2827
2828 void mmc_register_pm_notifier(struct mmc_host *host)
2829 {
2830 host->pm_notify.notifier_call = mmc_pm_notify;
2831 register_pm_notifier(&host->pm_notify);
2832 }
2833
2834 void mmc_unregister_pm_notifier(struct mmc_host *host)
2835 {
2836 unregister_pm_notifier(&host->pm_notify);
2837 }
2838 #endif
2839
2840 /**
2841 * mmc_init_context_info() - init synchronization context
2842 * @host: mmc host
2843 *
2844 * Init struct context_info needed to implement asynchronous
2845 * request mechanism, used by mmc core, host driver and mmc requests
2846 * supplier.
2847 */
2848 void mmc_init_context_info(struct mmc_host *host)
2849 {
2850 spin_lock_init(&host->context_info.lock);
2851 host->context_info.is_new_req = false;
2852 host->context_info.is_done_rcv = false;
2853 host->context_info.is_waiting_last_req = false;
2854 init_waitqueue_head(&host->context_info.wait);
2855 }
2856
2857 static int __init mmc_init(void)
2858 {
2859 int ret;
2860
2861 ret = mmc_register_bus();
2862 if (ret)
2863 return ret;
2864
2865 ret = mmc_register_host_class();
2866 if (ret)
2867 goto unregister_bus;
2868
2869 ret = sdio_register_bus();
2870 if (ret)
2871 goto unregister_host_class;
2872
2873 return 0;
2874
2875 unregister_host_class:
2876 mmc_unregister_host_class();
2877 unregister_bus:
2878 mmc_unregister_bus();
2879 return ret;
2880 }
2881
2882 static void __exit mmc_exit(void)
2883 {
2884 sdio_unregister_bus();
2885 mmc_unregister_host_class();
2886 mmc_unregister_bus();
2887 }
2888
2889 subsys_initcall(mmc_init);
2890 module_exit(mmc_exit);
2891
2892 MODULE_LICENSE("GPL");