]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mmc/core/core.c
Merge tag 'pm+acpi-3.15-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mmc / core / core.c
1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43
44 #include "mmc_ops.h"
45 #include "sd_ops.h"
46 #include "sdio_ops.h"
47
48 /* If the device is not responding */
49 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
50
51 /*
52 * Background operations can take a long time, depending on the housekeeping
53 * operations the card has to perform.
54 */
55 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
56
57 static struct workqueue_struct *workqueue;
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59
60 /*
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
64 */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67
68 /*
69 * Internal function. Schedule delayed work in the MMC work queue.
70 */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
73 {
74 return queue_delayed_work(workqueue, work, delay);
75 }
76
77 /*
78 * Internal function. Flush all scheduled work from the MMC work queue.
79 */
80 static void mmc_flush_scheduled_work(void)
81 {
82 flush_workqueue(workqueue);
83 }
84
85 #ifdef CONFIG_FAIL_MMC_REQUEST
86
87 /*
88 * Internal function. Inject random data errors.
89 * If mmc_data is NULL no errors are injected.
90 */
91 static void mmc_should_fail_request(struct mmc_host *host,
92 struct mmc_request *mrq)
93 {
94 struct mmc_command *cmd = mrq->cmd;
95 struct mmc_data *data = mrq->data;
96 static const int data_errors[] = {
97 -ETIMEDOUT,
98 -EILSEQ,
99 -EIO,
100 };
101
102 if (!data)
103 return;
104
105 if (cmd->error || data->error ||
106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 return;
108
109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111 }
112
113 #else /* CONFIG_FAIL_MMC_REQUEST */
114
115 static inline void mmc_should_fail_request(struct mmc_host *host,
116 struct mmc_request *mrq)
117 {
118 }
119
120 #endif /* CONFIG_FAIL_MMC_REQUEST */
121
122 /**
123 * mmc_request_done - finish processing an MMC request
124 * @host: MMC host which completed request
125 * @mrq: MMC request which request
126 *
127 * MMC drivers should call this function when they have completed
128 * their processing of a request.
129 */
130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 struct mmc_command *cmd = mrq->cmd;
133 int err = cmd->error;
134
135 if (err && cmd->retries && mmc_host_is_spi(host)) {
136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 cmd->retries = 0;
138 }
139
140 if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 /*
142 * Request starter must handle retries - see
143 * mmc_wait_for_req_done().
144 */
145 if (mrq->done)
146 mrq->done(mrq);
147 } else {
148 mmc_should_fail_request(host, mrq);
149
150 led_trigger_event(host->led, LED_OFF);
151
152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 mmc_hostname(host), cmd->opcode, err,
154 cmd->resp[0], cmd->resp[1],
155 cmd->resp[2], cmd->resp[3]);
156
157 if (mrq->data) {
158 pr_debug("%s: %d bytes transferred: %d\n",
159 mmc_hostname(host),
160 mrq->data->bytes_xfered, mrq->data->error);
161 }
162
163 if (mrq->stop) {
164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
165 mmc_hostname(host), mrq->stop->opcode,
166 mrq->stop->error,
167 mrq->stop->resp[0], mrq->stop->resp[1],
168 mrq->stop->resp[2], mrq->stop->resp[3]);
169 }
170
171 if (mrq->done)
172 mrq->done(mrq);
173
174 mmc_host_clk_release(host);
175 }
176 }
177
178 EXPORT_SYMBOL(mmc_request_done);
179
180 static void
181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182 {
183 #ifdef CONFIG_MMC_DEBUG
184 unsigned int i, sz;
185 struct scatterlist *sg;
186 #endif
187
188 if (mrq->sbc) {
189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 mmc_hostname(host), mrq->sbc->opcode,
191 mrq->sbc->arg, mrq->sbc->flags);
192 }
193
194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 mmc_hostname(host), mrq->cmd->opcode,
196 mrq->cmd->arg, mrq->cmd->flags);
197
198 if (mrq->data) {
199 pr_debug("%s: blksz %d blocks %d flags %08x "
200 "tsac %d ms nsac %d\n",
201 mmc_hostname(host), mrq->data->blksz,
202 mrq->data->blocks, mrq->data->flags,
203 mrq->data->timeout_ns / 1000000,
204 mrq->data->timeout_clks);
205 }
206
207 if (mrq->stop) {
208 pr_debug("%s: CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->stop->opcode,
210 mrq->stop->arg, mrq->stop->flags);
211 }
212
213 WARN_ON(!host->claimed);
214
215 mrq->cmd->error = 0;
216 mrq->cmd->mrq = mrq;
217 if (mrq->data) {
218 BUG_ON(mrq->data->blksz > host->max_blk_size);
219 BUG_ON(mrq->data->blocks > host->max_blk_count);
220 BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 host->max_req_size);
222
223 #ifdef CONFIG_MMC_DEBUG
224 sz = 0;
225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 sz += sg->length;
227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228 #endif
229
230 mrq->cmd->data = mrq->data;
231 mrq->data->error = 0;
232 mrq->data->mrq = mrq;
233 if (mrq->stop) {
234 mrq->data->stop = mrq->stop;
235 mrq->stop->error = 0;
236 mrq->stop->mrq = mrq;
237 }
238 }
239 mmc_host_clk_hold(host);
240 led_trigger_event(host->led, LED_FULL);
241 host->ops->request(host, mrq);
242 }
243
244 /**
245 * mmc_start_bkops - start BKOPS for supported cards
246 * @card: MMC card to start BKOPS
247 * @form_exception: A flag to indicate if this function was
248 * called due to an exception raised by the card
249 *
250 * Start background operations whenever requested.
251 * When the urgent BKOPS bit is set in a R1 command response
252 * then background operations should be started immediately.
253 */
254 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255 {
256 int err;
257 int timeout;
258 bool use_busy_signal;
259
260 BUG_ON(!card);
261
262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 return;
264
265 err = mmc_read_bkops_status(card);
266 if (err) {
267 pr_err("%s: Failed to read bkops status: %d\n",
268 mmc_hostname(card->host), err);
269 return;
270 }
271
272 if (!card->ext_csd.raw_bkops_status)
273 return;
274
275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 from_exception)
277 return;
278
279 mmc_claim_host(card->host);
280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 timeout = MMC_BKOPS_MAX_TIMEOUT;
282 use_busy_signal = true;
283 } else {
284 timeout = 0;
285 use_busy_signal = false;
286 }
287
288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 EXT_CSD_BKOPS_START, 1, timeout,
290 use_busy_signal, true, false);
291 if (err) {
292 pr_warn("%s: Error %d starting bkops\n",
293 mmc_hostname(card->host), err);
294 goto out;
295 }
296
297 /*
298 * For urgent bkops status (LEVEL_2 and more)
299 * bkops executed synchronously, otherwise
300 * the operation is in progress
301 */
302 if (!use_busy_signal)
303 mmc_card_set_doing_bkops(card);
304 out:
305 mmc_release_host(card->host);
306 }
307 EXPORT_SYMBOL(mmc_start_bkops);
308
309 /*
310 * mmc_wait_data_done() - done callback for data request
311 * @mrq: done data request
312 *
313 * Wakes up mmc context, passed as a callback to host controller driver
314 */
315 static void mmc_wait_data_done(struct mmc_request *mrq)
316 {
317 mrq->host->context_info.is_done_rcv = true;
318 wake_up_interruptible(&mrq->host->context_info.wait);
319 }
320
321 static void mmc_wait_done(struct mmc_request *mrq)
322 {
323 complete(&mrq->completion);
324 }
325
326 /*
327 *__mmc_start_data_req() - starts data request
328 * @host: MMC host to start the request
329 * @mrq: data request to start
330 *
331 * Sets the done callback to be called when request is completed by the card.
332 * Starts data mmc request execution
333 */
334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 mrq->done = mmc_wait_data_done;
337 mrq->host = host;
338 if (mmc_card_removed(host->card)) {
339 mrq->cmd->error = -ENOMEDIUM;
340 mmc_wait_data_done(mrq);
341 return -ENOMEDIUM;
342 }
343 mmc_start_request(host, mrq);
344
345 return 0;
346 }
347
348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349 {
350 init_completion(&mrq->completion);
351 mrq->done = mmc_wait_done;
352 if (mmc_card_removed(host->card)) {
353 mrq->cmd->error = -ENOMEDIUM;
354 complete(&mrq->completion);
355 return -ENOMEDIUM;
356 }
357 mmc_start_request(host, mrq);
358 return 0;
359 }
360
361 /*
362 * mmc_wait_for_data_req_done() - wait for request completed
363 * @host: MMC host to prepare the command.
364 * @mrq: MMC request to wait for
365 *
366 * Blocks MMC context till host controller will ack end of data request
367 * execution or new request notification arrives from the block layer.
368 * Handles command retries.
369 *
370 * Returns enum mmc_blk_status after checking errors.
371 */
372 static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 struct mmc_request *mrq,
374 struct mmc_async_req *next_req)
375 {
376 struct mmc_command *cmd;
377 struct mmc_context_info *context_info = &host->context_info;
378 int err;
379 unsigned long flags;
380
381 while (1) {
382 wait_event_interruptible(context_info->wait,
383 (context_info->is_done_rcv ||
384 context_info->is_new_req));
385 spin_lock_irqsave(&context_info->lock, flags);
386 context_info->is_waiting_last_req = false;
387 spin_unlock_irqrestore(&context_info->lock, flags);
388 if (context_info->is_done_rcv) {
389 context_info->is_done_rcv = false;
390 context_info->is_new_req = false;
391 cmd = mrq->cmd;
392
393 if (!cmd->error || !cmd->retries ||
394 mmc_card_removed(host->card)) {
395 err = host->areq->err_check(host->card,
396 host->areq);
397 break; /* return err */
398 } else {
399 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 mmc_hostname(host),
401 cmd->opcode, cmd->error);
402 cmd->retries--;
403 cmd->error = 0;
404 host->ops->request(host, mrq);
405 continue; /* wait for done/new event again */
406 }
407 } else if (context_info->is_new_req) {
408 context_info->is_new_req = false;
409 if (!next_req) {
410 err = MMC_BLK_NEW_REQUEST;
411 break; /* return err */
412 }
413 }
414 }
415 return err;
416 }
417
418 static void mmc_wait_for_req_done(struct mmc_host *host,
419 struct mmc_request *mrq)
420 {
421 struct mmc_command *cmd;
422
423 while (1) {
424 wait_for_completion(&mrq->completion);
425
426 cmd = mrq->cmd;
427
428 /*
429 * If host has timed out waiting for the sanitize
430 * to complete, card might be still in programming state
431 * so let's try to bring the card out of programming
432 * state.
433 */
434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 if (!mmc_interrupt_hpi(host->card)) {
436 pr_warning("%s: %s: Interrupted sanitize\n",
437 mmc_hostname(host), __func__);
438 cmd->error = 0;
439 break;
440 } else {
441 pr_err("%s: %s: Failed to interrupt sanitize\n",
442 mmc_hostname(host), __func__);
443 }
444 }
445 if (!cmd->error || !cmd->retries ||
446 mmc_card_removed(host->card))
447 break;
448
449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 mmc_hostname(host), cmd->opcode, cmd->error);
451 cmd->retries--;
452 cmd->error = 0;
453 host->ops->request(host, mrq);
454 }
455 }
456
457 /**
458 * mmc_pre_req - Prepare for a new request
459 * @host: MMC host to prepare command
460 * @mrq: MMC request to prepare for
461 * @is_first_req: true if there is no previous started request
462 * that may run in parellel to this call, otherwise false
463 *
464 * mmc_pre_req() is called in prior to mmc_start_req() to let
465 * host prepare for the new request. Preparation of a request may be
466 * performed while another request is running on the host.
467 */
468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 bool is_first_req)
470 {
471 if (host->ops->pre_req) {
472 mmc_host_clk_hold(host);
473 host->ops->pre_req(host, mrq, is_first_req);
474 mmc_host_clk_release(host);
475 }
476 }
477
478 /**
479 * mmc_post_req - Post process a completed request
480 * @host: MMC host to post process command
481 * @mrq: MMC request to post process for
482 * @err: Error, if non zero, clean up any resources made in pre_req
483 *
484 * Let the host post process a completed request. Post processing of
485 * a request may be performed while another reuqest is running.
486 */
487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 int err)
489 {
490 if (host->ops->post_req) {
491 mmc_host_clk_hold(host);
492 host->ops->post_req(host, mrq, err);
493 mmc_host_clk_release(host);
494 }
495 }
496
497 /**
498 * mmc_start_req - start a non-blocking request
499 * @host: MMC host to start command
500 * @areq: async request to start
501 * @error: out parameter returns 0 for success, otherwise non zero
502 *
503 * Start a new MMC custom command request for a host.
504 * If there is on ongoing async request wait for completion
505 * of that request and start the new one and return.
506 * Does not wait for the new request to complete.
507 *
508 * Returns the completed request, NULL in case of none completed.
509 * Wait for the an ongoing request (previoulsy started) to complete and
510 * return the completed request. If there is no ongoing request, NULL
511 * is returned without waiting. NULL is not an error condition.
512 */
513 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 struct mmc_async_req *areq, int *error)
515 {
516 int err = 0;
517 int start_err = 0;
518 struct mmc_async_req *data = host->areq;
519
520 /* Prepare a new request */
521 if (areq)
522 mmc_pre_req(host, areq->mrq, !host->areq);
523
524 if (host->areq) {
525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
526 if (err == MMC_BLK_NEW_REQUEST) {
527 if (error)
528 *error = err;
529 /*
530 * The previous request was not completed,
531 * nothing to return
532 */
533 return NULL;
534 }
535 /*
536 * Check BKOPS urgency for each R1 response
537 */
538 if (host->card && mmc_card_mmc(host->card) &&
539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 mmc_start_bkops(host->card, true);
543 }
544
545 if (!err && areq)
546 start_err = __mmc_start_data_req(host, areq->mrq);
547
548 if (host->areq)
549 mmc_post_req(host, host->areq->mrq, 0);
550
551 /* Cancel a prepared request if it was not started. */
552 if ((err || start_err) && areq)
553 mmc_post_req(host, areq->mrq, -EINVAL);
554
555 if (err)
556 host->areq = NULL;
557 else
558 host->areq = areq;
559
560 if (error)
561 *error = err;
562 return data;
563 }
564 EXPORT_SYMBOL(mmc_start_req);
565
566 /**
567 * mmc_wait_for_req - start a request and wait for completion
568 * @host: MMC host to start command
569 * @mrq: MMC request to start
570 *
571 * Start a new MMC custom command request for a host, and wait
572 * for the command to complete. Does not attempt to parse the
573 * response.
574 */
575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576 {
577 __mmc_start_req(host, mrq);
578 mmc_wait_for_req_done(host, mrq);
579 }
580 EXPORT_SYMBOL(mmc_wait_for_req);
581
582 /**
583 * mmc_interrupt_hpi - Issue for High priority Interrupt
584 * @card: the MMC card associated with the HPI transfer
585 *
586 * Issued High Priority Interrupt, and check for card status
587 * until out-of prg-state.
588 */
589 int mmc_interrupt_hpi(struct mmc_card *card)
590 {
591 int err;
592 u32 status;
593 unsigned long prg_wait;
594
595 BUG_ON(!card);
596
597 if (!card->ext_csd.hpi_en) {
598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 return 1;
600 }
601
602 mmc_claim_host(card->host);
603 err = mmc_send_status(card, &status);
604 if (err) {
605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 goto out;
607 }
608
609 switch (R1_CURRENT_STATE(status)) {
610 case R1_STATE_IDLE:
611 case R1_STATE_READY:
612 case R1_STATE_STBY:
613 case R1_STATE_TRAN:
614 /*
615 * In idle and transfer states, HPI is not needed and the caller
616 * can issue the next intended command immediately
617 */
618 goto out;
619 case R1_STATE_PRG:
620 break;
621 default:
622 /* In all other states, it's illegal to issue HPI */
623 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 err = -EINVAL;
626 goto out;
627 }
628
629 err = mmc_send_hpi_cmd(card, &status);
630 if (err)
631 goto out;
632
633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 do {
635 err = mmc_send_status(card, &status);
636
637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 break;
639 if (time_after(jiffies, prg_wait))
640 err = -ETIMEDOUT;
641 } while (!err);
642
643 out:
644 mmc_release_host(card->host);
645 return err;
646 }
647 EXPORT_SYMBOL(mmc_interrupt_hpi);
648
649 /**
650 * mmc_wait_for_cmd - start a command and wait for completion
651 * @host: MMC host to start command
652 * @cmd: MMC command to start
653 * @retries: maximum number of retries
654 *
655 * Start a new MMC command for a host, and wait for the command
656 * to complete. Return any error that occurred while the command
657 * was executing. Do not attempt to parse the response.
658 */
659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660 {
661 struct mmc_request mrq = {NULL};
662
663 WARN_ON(!host->claimed);
664
665 memset(cmd->resp, 0, sizeof(cmd->resp));
666 cmd->retries = retries;
667
668 mrq.cmd = cmd;
669 cmd->data = NULL;
670
671 mmc_wait_for_req(host, &mrq);
672
673 return cmd->error;
674 }
675
676 EXPORT_SYMBOL(mmc_wait_for_cmd);
677
678 /**
679 * mmc_stop_bkops - stop ongoing BKOPS
680 * @card: MMC card to check BKOPS
681 *
682 * Send HPI command to stop ongoing background operations to
683 * allow rapid servicing of foreground operations, e.g. read/
684 * writes. Wait until the card comes out of the programming state
685 * to avoid errors in servicing read/write requests.
686 */
687 int mmc_stop_bkops(struct mmc_card *card)
688 {
689 int err = 0;
690
691 BUG_ON(!card);
692 err = mmc_interrupt_hpi(card);
693
694 /*
695 * If err is EINVAL, we can't issue an HPI.
696 * It should complete the BKOPS.
697 */
698 if (!err || (err == -EINVAL)) {
699 mmc_card_clr_doing_bkops(card);
700 err = 0;
701 }
702
703 return err;
704 }
705 EXPORT_SYMBOL(mmc_stop_bkops);
706
707 int mmc_read_bkops_status(struct mmc_card *card)
708 {
709 int err;
710 u8 *ext_csd;
711
712 /*
713 * In future work, we should consider storing the entire ext_csd.
714 */
715 ext_csd = kmalloc(512, GFP_KERNEL);
716 if (!ext_csd) {
717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 mmc_hostname(card->host));
719 return -ENOMEM;
720 }
721
722 mmc_claim_host(card->host);
723 err = mmc_send_ext_csd(card, ext_csd);
724 mmc_release_host(card->host);
725 if (err)
726 goto out;
727
728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730 out:
731 kfree(ext_csd);
732 return err;
733 }
734 EXPORT_SYMBOL(mmc_read_bkops_status);
735
736 /**
737 * mmc_set_data_timeout - set the timeout for a data command
738 * @data: data phase for command
739 * @card: the MMC card associated with the data transfer
740 *
741 * Computes the data timeout parameters according to the
742 * correct algorithm given the card type.
743 */
744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745 {
746 unsigned int mult;
747
748 /*
749 * SDIO cards only define an upper 1 s limit on access.
750 */
751 if (mmc_card_sdio(card)) {
752 data->timeout_ns = 1000000000;
753 data->timeout_clks = 0;
754 return;
755 }
756
757 /*
758 * SD cards use a 100 multiplier rather than 10
759 */
760 mult = mmc_card_sd(card) ? 100 : 10;
761
762 /*
763 * Scale up the multiplier (and therefore the timeout) by
764 * the r2w factor for writes.
765 */
766 if (data->flags & MMC_DATA_WRITE)
767 mult <<= card->csd.r2w_factor;
768
769 data->timeout_ns = card->csd.tacc_ns * mult;
770 data->timeout_clks = card->csd.tacc_clks * mult;
771
772 /*
773 * SD cards also have an upper limit on the timeout.
774 */
775 if (mmc_card_sd(card)) {
776 unsigned int timeout_us, limit_us;
777
778 timeout_us = data->timeout_ns / 1000;
779 if (mmc_host_clk_rate(card->host))
780 timeout_us += data->timeout_clks * 1000 /
781 (mmc_host_clk_rate(card->host) / 1000);
782
783 if (data->flags & MMC_DATA_WRITE)
784 /*
785 * The MMC spec "It is strongly recommended
786 * for hosts to implement more than 500ms
787 * timeout value even if the card indicates
788 * the 250ms maximum busy length." Even the
789 * previous value of 300ms is known to be
790 * insufficient for some cards.
791 */
792 limit_us = 3000000;
793 else
794 limit_us = 100000;
795
796 /*
797 * SDHC cards always use these fixed values.
798 */
799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 data->timeout_ns = limit_us * 1000;
801 data->timeout_clks = 0;
802 }
803 }
804
805 /*
806 * Some cards require longer data read timeout than indicated in CSD.
807 * Address this by setting the read timeout to a "reasonably high"
808 * value. For the cards tested, 300ms has proven enough. If necessary,
809 * this value can be increased if other problematic cards require this.
810 */
811 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
812 data->timeout_ns = 300000000;
813 data->timeout_clks = 0;
814 }
815
816 /*
817 * Some cards need very high timeouts if driven in SPI mode.
818 * The worst observed timeout was 900ms after writing a
819 * continuous stream of data until the internal logic
820 * overflowed.
821 */
822 if (mmc_host_is_spi(card->host)) {
823 if (data->flags & MMC_DATA_WRITE) {
824 if (data->timeout_ns < 1000000000)
825 data->timeout_ns = 1000000000; /* 1s */
826 } else {
827 if (data->timeout_ns < 100000000)
828 data->timeout_ns = 100000000; /* 100ms */
829 }
830 }
831 }
832 EXPORT_SYMBOL(mmc_set_data_timeout);
833
834 /**
835 * mmc_align_data_size - pads a transfer size to a more optimal value
836 * @card: the MMC card associated with the data transfer
837 * @sz: original transfer size
838 *
839 * Pads the original data size with a number of extra bytes in
840 * order to avoid controller bugs and/or performance hits
841 * (e.g. some controllers revert to PIO for certain sizes).
842 *
843 * Returns the improved size, which might be unmodified.
844 *
845 * Note that this function is only relevant when issuing a
846 * single scatter gather entry.
847 */
848 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
849 {
850 /*
851 * FIXME: We don't have a system for the controller to tell
852 * the core about its problems yet, so for now we just 32-bit
853 * align the size.
854 */
855 sz = ((sz + 3) / 4) * 4;
856
857 return sz;
858 }
859 EXPORT_SYMBOL(mmc_align_data_size);
860
861 /**
862 * __mmc_claim_host - exclusively claim a host
863 * @host: mmc host to claim
864 * @abort: whether or not the operation should be aborted
865 *
866 * Claim a host for a set of operations. If @abort is non null and
867 * dereference a non-zero value then this will return prematurely with
868 * that non-zero value without acquiring the lock. Returns zero
869 * with the lock held otherwise.
870 */
871 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
872 {
873 DECLARE_WAITQUEUE(wait, current);
874 unsigned long flags;
875 int stop;
876
877 might_sleep();
878
879 add_wait_queue(&host->wq, &wait);
880 spin_lock_irqsave(&host->lock, flags);
881 while (1) {
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 stop = abort ? atomic_read(abort) : 0;
884 if (stop || !host->claimed || host->claimer == current)
885 break;
886 spin_unlock_irqrestore(&host->lock, flags);
887 schedule();
888 spin_lock_irqsave(&host->lock, flags);
889 }
890 set_current_state(TASK_RUNNING);
891 if (!stop) {
892 host->claimed = 1;
893 host->claimer = current;
894 host->claim_cnt += 1;
895 } else
896 wake_up(&host->wq);
897 spin_unlock_irqrestore(&host->lock, flags);
898 remove_wait_queue(&host->wq, &wait);
899 if (host->ops->enable && !stop && host->claim_cnt == 1)
900 host->ops->enable(host);
901 return stop;
902 }
903
904 EXPORT_SYMBOL(__mmc_claim_host);
905
906 /**
907 * mmc_release_host - release a host
908 * @host: mmc host to release
909 *
910 * Release a MMC host, allowing others to claim the host
911 * for their operations.
912 */
913 void mmc_release_host(struct mmc_host *host)
914 {
915 unsigned long flags;
916
917 WARN_ON(!host->claimed);
918
919 if (host->ops->disable && host->claim_cnt == 1)
920 host->ops->disable(host);
921
922 spin_lock_irqsave(&host->lock, flags);
923 if (--host->claim_cnt) {
924 /* Release for nested claim */
925 spin_unlock_irqrestore(&host->lock, flags);
926 } else {
927 host->claimed = 0;
928 host->claimer = NULL;
929 spin_unlock_irqrestore(&host->lock, flags);
930 wake_up(&host->wq);
931 }
932 }
933 EXPORT_SYMBOL(mmc_release_host);
934
935 /*
936 * This is a helper function, which fetches a runtime pm reference for the
937 * card device and also claims the host.
938 */
939 void mmc_get_card(struct mmc_card *card)
940 {
941 pm_runtime_get_sync(&card->dev);
942 mmc_claim_host(card->host);
943 }
944 EXPORT_SYMBOL(mmc_get_card);
945
946 /*
947 * This is a helper function, which releases the host and drops the runtime
948 * pm reference for the card device.
949 */
950 void mmc_put_card(struct mmc_card *card)
951 {
952 mmc_release_host(card->host);
953 pm_runtime_mark_last_busy(&card->dev);
954 pm_runtime_put_autosuspend(&card->dev);
955 }
956 EXPORT_SYMBOL(mmc_put_card);
957
958 /*
959 * Internal function that does the actual ios call to the host driver,
960 * optionally printing some debug output.
961 */
962 static inline void mmc_set_ios(struct mmc_host *host)
963 {
964 struct mmc_ios *ios = &host->ios;
965
966 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
967 "width %u timing %u\n",
968 mmc_hostname(host), ios->clock, ios->bus_mode,
969 ios->power_mode, ios->chip_select, ios->vdd,
970 ios->bus_width, ios->timing);
971
972 if (ios->clock > 0)
973 mmc_set_ungated(host);
974 host->ops->set_ios(host, ios);
975 }
976
977 /*
978 * Control chip select pin on a host.
979 */
980 void mmc_set_chip_select(struct mmc_host *host, int mode)
981 {
982 mmc_host_clk_hold(host);
983 host->ios.chip_select = mode;
984 mmc_set_ios(host);
985 mmc_host_clk_release(host);
986 }
987
988 /*
989 * Sets the host clock to the highest possible frequency that
990 * is below "hz".
991 */
992 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
993 {
994 WARN_ON(hz < host->f_min);
995
996 if (hz > host->f_max)
997 hz = host->f_max;
998
999 host->ios.clock = hz;
1000 mmc_set_ios(host);
1001 }
1002
1003 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1004 {
1005 mmc_host_clk_hold(host);
1006 __mmc_set_clock(host, hz);
1007 mmc_host_clk_release(host);
1008 }
1009
1010 #ifdef CONFIG_MMC_CLKGATE
1011 /*
1012 * This gates the clock by setting it to 0 Hz.
1013 */
1014 void mmc_gate_clock(struct mmc_host *host)
1015 {
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&host->clk_lock, flags);
1019 host->clk_old = host->ios.clock;
1020 host->ios.clock = 0;
1021 host->clk_gated = true;
1022 spin_unlock_irqrestore(&host->clk_lock, flags);
1023 mmc_set_ios(host);
1024 }
1025
1026 /*
1027 * This restores the clock from gating by using the cached
1028 * clock value.
1029 */
1030 void mmc_ungate_clock(struct mmc_host *host)
1031 {
1032 /*
1033 * We should previously have gated the clock, so the clock shall
1034 * be 0 here! The clock may however be 0 during initialization,
1035 * when some request operations are performed before setting
1036 * the frequency. When ungate is requested in that situation
1037 * we just ignore the call.
1038 */
1039 if (host->clk_old) {
1040 BUG_ON(host->ios.clock);
1041 /* This call will also set host->clk_gated to false */
1042 __mmc_set_clock(host, host->clk_old);
1043 }
1044 }
1045
1046 void mmc_set_ungated(struct mmc_host *host)
1047 {
1048 unsigned long flags;
1049
1050 /*
1051 * We've been given a new frequency while the clock is gated,
1052 * so make sure we regard this as ungating it.
1053 */
1054 spin_lock_irqsave(&host->clk_lock, flags);
1055 host->clk_gated = false;
1056 spin_unlock_irqrestore(&host->clk_lock, flags);
1057 }
1058
1059 #else
1060 void mmc_set_ungated(struct mmc_host *host)
1061 {
1062 }
1063 #endif
1064
1065 /*
1066 * Change the bus mode (open drain/push-pull) of a host.
1067 */
1068 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1069 {
1070 mmc_host_clk_hold(host);
1071 host->ios.bus_mode = mode;
1072 mmc_set_ios(host);
1073 mmc_host_clk_release(host);
1074 }
1075
1076 /*
1077 * Change data bus width of a host.
1078 */
1079 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1080 {
1081 mmc_host_clk_hold(host);
1082 host->ios.bus_width = width;
1083 mmc_set_ios(host);
1084 mmc_host_clk_release(host);
1085 }
1086
1087 /**
1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1089 * @vdd: voltage (mV)
1090 * @low_bits: prefer low bits in boundary cases
1091 *
1092 * This function returns the OCR bit number according to the provided @vdd
1093 * value. If conversion is not possible a negative errno value returned.
1094 *
1095 * Depending on the @low_bits flag the function prefers low or high OCR bits
1096 * on boundary voltages. For example,
1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1099 *
1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1101 */
1102 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1103 {
1104 const int max_bit = ilog2(MMC_VDD_35_36);
1105 int bit;
1106
1107 if (vdd < 1650 || vdd > 3600)
1108 return -EINVAL;
1109
1110 if (vdd >= 1650 && vdd <= 1950)
1111 return ilog2(MMC_VDD_165_195);
1112
1113 if (low_bits)
1114 vdd -= 1;
1115
1116 /* Base 2000 mV, step 100 mV, bit's base 8. */
1117 bit = (vdd - 2000) / 100 + 8;
1118 if (bit > max_bit)
1119 return max_bit;
1120 return bit;
1121 }
1122
1123 /**
1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1125 * @vdd_min: minimum voltage value (mV)
1126 * @vdd_max: maximum voltage value (mV)
1127 *
1128 * This function returns the OCR mask bits according to the provided @vdd_min
1129 * and @vdd_max values. If conversion is not possible the function returns 0.
1130 *
1131 * Notes wrt boundary cases:
1132 * This function sets the OCR bits for all boundary voltages, for example
1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1134 * MMC_VDD_34_35 mask.
1135 */
1136 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1137 {
1138 u32 mask = 0;
1139
1140 if (vdd_max < vdd_min)
1141 return 0;
1142
1143 /* Prefer high bits for the boundary vdd_max values. */
1144 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1145 if (vdd_max < 0)
1146 return 0;
1147
1148 /* Prefer low bits for the boundary vdd_min values. */
1149 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1150 if (vdd_min < 0)
1151 return 0;
1152
1153 /* Fill the mask, from max bit to min bit. */
1154 while (vdd_max >= vdd_min)
1155 mask |= 1 << vdd_max--;
1156
1157 return mask;
1158 }
1159 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1160
1161 #ifdef CONFIG_OF
1162
1163 /**
1164 * mmc_of_parse_voltage - return mask of supported voltages
1165 * @np: The device node need to be parsed.
1166 * @mask: mask of voltages available for MMC/SD/SDIO
1167 *
1168 * 1. Return zero on success.
1169 * 2. Return negative errno: voltage-range is invalid.
1170 */
1171 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1172 {
1173 const u32 *voltage_ranges;
1174 int num_ranges, i;
1175
1176 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1177 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1178 if (!voltage_ranges || !num_ranges) {
1179 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1180 return -EINVAL;
1181 }
1182
1183 for (i = 0; i < num_ranges; i++) {
1184 const int j = i * 2;
1185 u32 ocr_mask;
1186
1187 ocr_mask = mmc_vddrange_to_ocrmask(
1188 be32_to_cpu(voltage_ranges[j]),
1189 be32_to_cpu(voltage_ranges[j + 1]));
1190 if (!ocr_mask) {
1191 pr_err("%s: voltage-range #%d is invalid\n",
1192 np->full_name, i);
1193 return -EINVAL;
1194 }
1195 *mask |= ocr_mask;
1196 }
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL(mmc_of_parse_voltage);
1201
1202 #endif /* CONFIG_OF */
1203
1204 #ifdef CONFIG_REGULATOR
1205
1206 /**
1207 * mmc_regulator_get_ocrmask - return mask of supported voltages
1208 * @supply: regulator to use
1209 *
1210 * This returns either a negative errno, or a mask of voltages that
1211 * can be provided to MMC/SD/SDIO devices using the specified voltage
1212 * regulator. This would normally be called before registering the
1213 * MMC host adapter.
1214 */
1215 int mmc_regulator_get_ocrmask(struct regulator *supply)
1216 {
1217 int result = 0;
1218 int count;
1219 int i;
1220
1221 count = regulator_count_voltages(supply);
1222 if (count < 0)
1223 return count;
1224
1225 for (i = 0; i < count; i++) {
1226 int vdd_uV;
1227 int vdd_mV;
1228
1229 vdd_uV = regulator_list_voltage(supply, i);
1230 if (vdd_uV <= 0)
1231 continue;
1232
1233 vdd_mV = vdd_uV / 1000;
1234 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1235 }
1236
1237 return result;
1238 }
1239 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1240
1241 /**
1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1243 * @mmc: the host to regulate
1244 * @supply: regulator to use
1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1246 *
1247 * Returns zero on success, else negative errno.
1248 *
1249 * MMC host drivers may use this to enable or disable a regulator using
1250 * a particular supply voltage. This would normally be called from the
1251 * set_ios() method.
1252 */
1253 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1254 struct regulator *supply,
1255 unsigned short vdd_bit)
1256 {
1257 int result = 0;
1258 int min_uV, max_uV;
1259
1260 if (vdd_bit) {
1261 int tmp;
1262 int voltage;
1263
1264 /*
1265 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1266 * bits this regulator doesn't quite support ... don't
1267 * be too picky, most cards and regulators are OK with
1268 * a 0.1V range goof (it's a small error percentage).
1269 */
1270 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1271 if (tmp == 0) {
1272 min_uV = 1650 * 1000;
1273 max_uV = 1950 * 1000;
1274 } else {
1275 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1276 max_uV = min_uV + 100 * 1000;
1277 }
1278
1279 /*
1280 * If we're using a fixed/static regulator, don't call
1281 * regulator_set_voltage; it would fail.
1282 */
1283 voltage = regulator_get_voltage(supply);
1284
1285 if (!regulator_can_change_voltage(supply))
1286 min_uV = max_uV = voltage;
1287
1288 if (voltage < 0)
1289 result = voltage;
1290 else if (voltage < min_uV || voltage > max_uV)
1291 result = regulator_set_voltage(supply, min_uV, max_uV);
1292 else
1293 result = 0;
1294
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310 }
1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313 int mmc_regulator_get_supply(struct mmc_host *mmc)
1314 {
1315 struct device *dev = mmc_dev(mmc);
1316 struct regulator *supply;
1317 int ret;
1318
1319 supply = devm_regulator_get(dev, "vmmc");
1320 mmc->supply.vmmc = supply;
1321 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1322
1323 if (IS_ERR(supply))
1324 return PTR_ERR(supply);
1325
1326 ret = mmc_regulator_get_ocrmask(supply);
1327 if (ret > 0)
1328 mmc->ocr_avail = ret;
1329 else
1330 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1331
1332 return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1335
1336 #endif /* CONFIG_REGULATOR */
1337
1338 /*
1339 * Mask off any voltages we don't support and select
1340 * the lowest voltage
1341 */
1342 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1343 {
1344 int bit;
1345
1346 /*
1347 * Sanity check the voltages that the card claims to
1348 * support.
1349 */
1350 if (ocr & 0x7F) {
1351 dev_warn(mmc_dev(host),
1352 "card claims to support voltages below defined range\n");
1353 ocr &= ~0x7F;
1354 }
1355
1356 ocr &= host->ocr_avail;
1357 if (!ocr) {
1358 dev_warn(mmc_dev(host), "no support for card's volts\n");
1359 return 0;
1360 }
1361
1362 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1363 bit = ffs(ocr) - 1;
1364 ocr &= 3 << bit;
1365 mmc_power_cycle(host, ocr);
1366 } else {
1367 bit = fls(ocr) - 1;
1368 ocr &= 3 << bit;
1369 if (bit != host->ios.vdd)
1370 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1371 }
1372
1373 return ocr;
1374 }
1375
1376 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1377 {
1378 int err = 0;
1379 int old_signal_voltage = host->ios.signal_voltage;
1380
1381 host->ios.signal_voltage = signal_voltage;
1382 if (host->ops->start_signal_voltage_switch) {
1383 mmc_host_clk_hold(host);
1384 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1385 mmc_host_clk_release(host);
1386 }
1387
1388 if (err)
1389 host->ios.signal_voltage = old_signal_voltage;
1390
1391 return err;
1392
1393 }
1394
1395 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1396 {
1397 struct mmc_command cmd = {0};
1398 int err = 0;
1399 u32 clock;
1400
1401 BUG_ON(!host);
1402
1403 /*
1404 * Send CMD11 only if the request is to switch the card to
1405 * 1.8V signalling.
1406 */
1407 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1408 return __mmc_set_signal_voltage(host, signal_voltage);
1409
1410 /*
1411 * If we cannot switch voltages, return failure so the caller
1412 * can continue without UHS mode
1413 */
1414 if (!host->ops->start_signal_voltage_switch)
1415 return -EPERM;
1416 if (!host->ops->card_busy)
1417 pr_warning("%s: cannot verify signal voltage switch\n",
1418 mmc_hostname(host));
1419
1420 cmd.opcode = SD_SWITCH_VOLTAGE;
1421 cmd.arg = 0;
1422 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1423
1424 err = mmc_wait_for_cmd(host, &cmd, 0);
1425 if (err)
1426 return err;
1427
1428 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1429 return -EIO;
1430
1431 mmc_host_clk_hold(host);
1432 /*
1433 * The card should drive cmd and dat[0:3] low immediately
1434 * after the response of cmd11, but wait 1 ms to be sure
1435 */
1436 mmc_delay(1);
1437 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1438 err = -EAGAIN;
1439 goto power_cycle;
1440 }
1441 /*
1442 * During a signal voltage level switch, the clock must be gated
1443 * for 5 ms according to the SD spec
1444 */
1445 clock = host->ios.clock;
1446 host->ios.clock = 0;
1447 mmc_set_ios(host);
1448
1449 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1450 /*
1451 * Voltages may not have been switched, but we've already
1452 * sent CMD11, so a power cycle is required anyway
1453 */
1454 err = -EAGAIN;
1455 goto power_cycle;
1456 }
1457
1458 /* Keep clock gated for at least 5 ms */
1459 mmc_delay(5);
1460 host->ios.clock = clock;
1461 mmc_set_ios(host);
1462
1463 /* Wait for at least 1 ms according to spec */
1464 mmc_delay(1);
1465
1466 /*
1467 * Failure to switch is indicated by the card holding
1468 * dat[0:3] low
1469 */
1470 if (host->ops->card_busy && host->ops->card_busy(host))
1471 err = -EAGAIN;
1472
1473 power_cycle:
1474 if (err) {
1475 pr_debug("%s: Signal voltage switch failed, "
1476 "power cycling card\n", mmc_hostname(host));
1477 mmc_power_cycle(host, ocr);
1478 }
1479
1480 mmc_host_clk_release(host);
1481
1482 return err;
1483 }
1484
1485 /*
1486 * Select timing parameters for host.
1487 */
1488 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1489 {
1490 mmc_host_clk_hold(host);
1491 host->ios.timing = timing;
1492 mmc_set_ios(host);
1493 mmc_host_clk_release(host);
1494 }
1495
1496 /*
1497 * Select appropriate driver type for host.
1498 */
1499 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1500 {
1501 mmc_host_clk_hold(host);
1502 host->ios.drv_type = drv_type;
1503 mmc_set_ios(host);
1504 mmc_host_clk_release(host);
1505 }
1506
1507 /*
1508 * Apply power to the MMC stack. This is a two-stage process.
1509 * First, we enable power to the card without the clock running.
1510 * We then wait a bit for the power to stabilise. Finally,
1511 * enable the bus drivers and clock to the card.
1512 *
1513 * We must _NOT_ enable the clock prior to power stablising.
1514 *
1515 * If a host does all the power sequencing itself, ignore the
1516 * initial MMC_POWER_UP stage.
1517 */
1518 void mmc_power_up(struct mmc_host *host, u32 ocr)
1519 {
1520 if (host->ios.power_mode == MMC_POWER_ON)
1521 return;
1522
1523 mmc_host_clk_hold(host);
1524
1525 host->ios.vdd = fls(ocr) - 1;
1526 if (mmc_host_is_spi(host))
1527 host->ios.chip_select = MMC_CS_HIGH;
1528 else
1529 host->ios.chip_select = MMC_CS_DONTCARE;
1530 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1531 host->ios.power_mode = MMC_POWER_UP;
1532 host->ios.bus_width = MMC_BUS_WIDTH_1;
1533 host->ios.timing = MMC_TIMING_LEGACY;
1534 mmc_set_ios(host);
1535
1536 /* Set signal voltage to 3.3V */
1537 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1538
1539 /*
1540 * This delay should be sufficient to allow the power supply
1541 * to reach the minimum voltage.
1542 */
1543 mmc_delay(10);
1544
1545 host->ios.clock = host->f_init;
1546
1547 host->ios.power_mode = MMC_POWER_ON;
1548 mmc_set_ios(host);
1549
1550 /*
1551 * This delay must be at least 74 clock sizes, or 1 ms, or the
1552 * time required to reach a stable voltage.
1553 */
1554 mmc_delay(10);
1555
1556 mmc_host_clk_release(host);
1557 }
1558
1559 void mmc_power_off(struct mmc_host *host)
1560 {
1561 if (host->ios.power_mode == MMC_POWER_OFF)
1562 return;
1563
1564 mmc_host_clk_hold(host);
1565
1566 host->ios.clock = 0;
1567 host->ios.vdd = 0;
1568
1569 if (!mmc_host_is_spi(host)) {
1570 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1571 host->ios.chip_select = MMC_CS_DONTCARE;
1572 }
1573 host->ios.power_mode = MMC_POWER_OFF;
1574 host->ios.bus_width = MMC_BUS_WIDTH_1;
1575 host->ios.timing = MMC_TIMING_LEGACY;
1576 mmc_set_ios(host);
1577
1578 /*
1579 * Some configurations, such as the 802.11 SDIO card in the OLPC
1580 * XO-1.5, require a short delay after poweroff before the card
1581 * can be successfully turned on again.
1582 */
1583 mmc_delay(1);
1584
1585 mmc_host_clk_release(host);
1586 }
1587
1588 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1589 {
1590 mmc_power_off(host);
1591 /* Wait at least 1 ms according to SD spec */
1592 mmc_delay(1);
1593 mmc_power_up(host, ocr);
1594 }
1595
1596 /*
1597 * Cleanup when the last reference to the bus operator is dropped.
1598 */
1599 static void __mmc_release_bus(struct mmc_host *host)
1600 {
1601 BUG_ON(!host);
1602 BUG_ON(host->bus_refs);
1603 BUG_ON(!host->bus_dead);
1604
1605 host->bus_ops = NULL;
1606 }
1607
1608 /*
1609 * Increase reference count of bus operator
1610 */
1611 static inline void mmc_bus_get(struct mmc_host *host)
1612 {
1613 unsigned long flags;
1614
1615 spin_lock_irqsave(&host->lock, flags);
1616 host->bus_refs++;
1617 spin_unlock_irqrestore(&host->lock, flags);
1618 }
1619
1620 /*
1621 * Decrease reference count of bus operator and free it if
1622 * it is the last reference.
1623 */
1624 static inline void mmc_bus_put(struct mmc_host *host)
1625 {
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&host->lock, flags);
1629 host->bus_refs--;
1630 if ((host->bus_refs == 0) && host->bus_ops)
1631 __mmc_release_bus(host);
1632 spin_unlock_irqrestore(&host->lock, flags);
1633 }
1634
1635 /*
1636 * Assign a mmc bus handler to a host. Only one bus handler may control a
1637 * host at any given time.
1638 */
1639 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1640 {
1641 unsigned long flags;
1642
1643 BUG_ON(!host);
1644 BUG_ON(!ops);
1645
1646 WARN_ON(!host->claimed);
1647
1648 spin_lock_irqsave(&host->lock, flags);
1649
1650 BUG_ON(host->bus_ops);
1651 BUG_ON(host->bus_refs);
1652
1653 host->bus_ops = ops;
1654 host->bus_refs = 1;
1655 host->bus_dead = 0;
1656
1657 spin_unlock_irqrestore(&host->lock, flags);
1658 }
1659
1660 /*
1661 * Remove the current bus handler from a host.
1662 */
1663 void mmc_detach_bus(struct mmc_host *host)
1664 {
1665 unsigned long flags;
1666
1667 BUG_ON(!host);
1668
1669 WARN_ON(!host->claimed);
1670 WARN_ON(!host->bus_ops);
1671
1672 spin_lock_irqsave(&host->lock, flags);
1673
1674 host->bus_dead = 1;
1675
1676 spin_unlock_irqrestore(&host->lock, flags);
1677
1678 mmc_bus_put(host);
1679 }
1680
1681 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1682 bool cd_irq)
1683 {
1684 #ifdef CONFIG_MMC_DEBUG
1685 unsigned long flags;
1686 spin_lock_irqsave(&host->lock, flags);
1687 WARN_ON(host->removed);
1688 spin_unlock_irqrestore(&host->lock, flags);
1689 #endif
1690
1691 /*
1692 * If the device is configured as wakeup, we prevent a new sleep for
1693 * 5 s to give provision for user space to consume the event.
1694 */
1695 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1696 device_can_wakeup(mmc_dev(host)))
1697 pm_wakeup_event(mmc_dev(host), 5000);
1698
1699 host->detect_change = 1;
1700 mmc_schedule_delayed_work(&host->detect, delay);
1701 }
1702
1703 /**
1704 * mmc_detect_change - process change of state on a MMC socket
1705 * @host: host which changed state.
1706 * @delay: optional delay to wait before detection (jiffies)
1707 *
1708 * MMC drivers should call this when they detect a card has been
1709 * inserted or removed. The MMC layer will confirm that any
1710 * present card is still functional, and initialize any newly
1711 * inserted.
1712 */
1713 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1714 {
1715 _mmc_detect_change(host, delay, true);
1716 }
1717 EXPORT_SYMBOL(mmc_detect_change);
1718
1719 void mmc_init_erase(struct mmc_card *card)
1720 {
1721 unsigned int sz;
1722
1723 if (is_power_of_2(card->erase_size))
1724 card->erase_shift = ffs(card->erase_size) - 1;
1725 else
1726 card->erase_shift = 0;
1727
1728 /*
1729 * It is possible to erase an arbitrarily large area of an SD or MMC
1730 * card. That is not desirable because it can take a long time
1731 * (minutes) potentially delaying more important I/O, and also the
1732 * timeout calculations become increasingly hugely over-estimated.
1733 * Consequently, 'pref_erase' is defined as a guide to limit erases
1734 * to that size and alignment.
1735 *
1736 * For SD cards that define Allocation Unit size, limit erases to one
1737 * Allocation Unit at a time. For MMC cards that define High Capacity
1738 * Erase Size, whether it is switched on or not, limit to that size.
1739 * Otherwise just have a stab at a good value. For modern cards it
1740 * will end up being 4MiB. Note that if the value is too small, it
1741 * can end up taking longer to erase.
1742 */
1743 if (mmc_card_sd(card) && card->ssr.au) {
1744 card->pref_erase = card->ssr.au;
1745 card->erase_shift = ffs(card->ssr.au) - 1;
1746 } else if (card->ext_csd.hc_erase_size) {
1747 card->pref_erase = card->ext_csd.hc_erase_size;
1748 } else {
1749 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1750 if (sz < 128)
1751 card->pref_erase = 512 * 1024 / 512;
1752 else if (sz < 512)
1753 card->pref_erase = 1024 * 1024 / 512;
1754 else if (sz < 1024)
1755 card->pref_erase = 2 * 1024 * 1024 / 512;
1756 else
1757 card->pref_erase = 4 * 1024 * 1024 / 512;
1758 if (card->pref_erase < card->erase_size)
1759 card->pref_erase = card->erase_size;
1760 else {
1761 sz = card->pref_erase % card->erase_size;
1762 if (sz)
1763 card->pref_erase += card->erase_size - sz;
1764 }
1765 }
1766 }
1767
1768 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1769 unsigned int arg, unsigned int qty)
1770 {
1771 unsigned int erase_timeout;
1772
1773 if (arg == MMC_DISCARD_ARG ||
1774 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1775 erase_timeout = card->ext_csd.trim_timeout;
1776 } else if (card->ext_csd.erase_group_def & 1) {
1777 /* High Capacity Erase Group Size uses HC timeouts */
1778 if (arg == MMC_TRIM_ARG)
1779 erase_timeout = card->ext_csd.trim_timeout;
1780 else
1781 erase_timeout = card->ext_csd.hc_erase_timeout;
1782 } else {
1783 /* CSD Erase Group Size uses write timeout */
1784 unsigned int mult = (10 << card->csd.r2w_factor);
1785 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1786 unsigned int timeout_us;
1787
1788 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1789 if (card->csd.tacc_ns < 1000000)
1790 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1791 else
1792 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1793
1794 /*
1795 * ios.clock is only a target. The real clock rate might be
1796 * less but not that much less, so fudge it by multiplying by 2.
1797 */
1798 timeout_clks <<= 1;
1799 timeout_us += (timeout_clks * 1000) /
1800 (mmc_host_clk_rate(card->host) / 1000);
1801
1802 erase_timeout = timeout_us / 1000;
1803
1804 /*
1805 * Theoretically, the calculation could underflow so round up
1806 * to 1ms in that case.
1807 */
1808 if (!erase_timeout)
1809 erase_timeout = 1;
1810 }
1811
1812 /* Multiplier for secure operations */
1813 if (arg & MMC_SECURE_ARGS) {
1814 if (arg == MMC_SECURE_ERASE_ARG)
1815 erase_timeout *= card->ext_csd.sec_erase_mult;
1816 else
1817 erase_timeout *= card->ext_csd.sec_trim_mult;
1818 }
1819
1820 erase_timeout *= qty;
1821
1822 /*
1823 * Ensure at least a 1 second timeout for SPI as per
1824 * 'mmc_set_data_timeout()'
1825 */
1826 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1827 erase_timeout = 1000;
1828
1829 return erase_timeout;
1830 }
1831
1832 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1833 unsigned int arg,
1834 unsigned int qty)
1835 {
1836 unsigned int erase_timeout;
1837
1838 if (card->ssr.erase_timeout) {
1839 /* Erase timeout specified in SD Status Register (SSR) */
1840 erase_timeout = card->ssr.erase_timeout * qty +
1841 card->ssr.erase_offset;
1842 } else {
1843 /*
1844 * Erase timeout not specified in SD Status Register (SSR) so
1845 * use 250ms per write block.
1846 */
1847 erase_timeout = 250 * qty;
1848 }
1849
1850 /* Must not be less than 1 second */
1851 if (erase_timeout < 1000)
1852 erase_timeout = 1000;
1853
1854 return erase_timeout;
1855 }
1856
1857 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1858 unsigned int arg,
1859 unsigned int qty)
1860 {
1861 if (mmc_card_sd(card))
1862 return mmc_sd_erase_timeout(card, arg, qty);
1863 else
1864 return mmc_mmc_erase_timeout(card, arg, qty);
1865 }
1866
1867 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1868 unsigned int to, unsigned int arg)
1869 {
1870 struct mmc_command cmd = {0};
1871 unsigned int qty = 0;
1872 unsigned long timeout;
1873 int err;
1874
1875 /*
1876 * qty is used to calculate the erase timeout which depends on how many
1877 * erase groups (or allocation units in SD terminology) are affected.
1878 * We count erasing part of an erase group as one erase group.
1879 * For SD, the allocation units are always a power of 2. For MMC, the
1880 * erase group size is almost certainly also power of 2, but it does not
1881 * seem to insist on that in the JEDEC standard, so we fall back to
1882 * division in that case. SD may not specify an allocation unit size,
1883 * in which case the timeout is based on the number of write blocks.
1884 *
1885 * Note that the timeout for secure trim 2 will only be correct if the
1886 * number of erase groups specified is the same as the total of all
1887 * preceding secure trim 1 commands. Since the power may have been
1888 * lost since the secure trim 1 commands occurred, it is generally
1889 * impossible to calculate the secure trim 2 timeout correctly.
1890 */
1891 if (card->erase_shift)
1892 qty += ((to >> card->erase_shift) -
1893 (from >> card->erase_shift)) + 1;
1894 else if (mmc_card_sd(card))
1895 qty += to - from + 1;
1896 else
1897 qty += ((to / card->erase_size) -
1898 (from / card->erase_size)) + 1;
1899
1900 if (!mmc_card_blockaddr(card)) {
1901 from <<= 9;
1902 to <<= 9;
1903 }
1904
1905 if (mmc_card_sd(card))
1906 cmd.opcode = SD_ERASE_WR_BLK_START;
1907 else
1908 cmd.opcode = MMC_ERASE_GROUP_START;
1909 cmd.arg = from;
1910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1911 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1912 if (err) {
1913 pr_err("mmc_erase: group start error %d, "
1914 "status %#x\n", err, cmd.resp[0]);
1915 err = -EIO;
1916 goto out;
1917 }
1918
1919 memset(&cmd, 0, sizeof(struct mmc_command));
1920 if (mmc_card_sd(card))
1921 cmd.opcode = SD_ERASE_WR_BLK_END;
1922 else
1923 cmd.opcode = MMC_ERASE_GROUP_END;
1924 cmd.arg = to;
1925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
1928 pr_err("mmc_erase: group end error %d, status %#x\n",
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1932 }
1933
1934 memset(&cmd, 0, sizeof(struct mmc_command));
1935 cmd.opcode = MMC_ERASE;
1936 cmd.arg = arg;
1937 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1938 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1939 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1940 if (err) {
1941 pr_err("mmc_erase: erase error %d, status %#x\n",
1942 err, cmd.resp[0]);
1943 err = -EIO;
1944 goto out;
1945 }
1946
1947 if (mmc_host_is_spi(card->host))
1948 goto out;
1949
1950 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1951 do {
1952 memset(&cmd, 0, sizeof(struct mmc_command));
1953 cmd.opcode = MMC_SEND_STATUS;
1954 cmd.arg = card->rca << 16;
1955 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1956 /* Do not retry else we can't see errors */
1957 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1958 if (err || (cmd.resp[0] & 0xFDF92000)) {
1959 pr_err("error %d requesting status %#x\n",
1960 err, cmd.resp[0]);
1961 err = -EIO;
1962 goto out;
1963 }
1964
1965 /* Timeout if the device never becomes ready for data and
1966 * never leaves the program state.
1967 */
1968 if (time_after(jiffies, timeout)) {
1969 pr_err("%s: Card stuck in programming state! %s\n",
1970 mmc_hostname(card->host), __func__);
1971 err = -EIO;
1972 goto out;
1973 }
1974
1975 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1976 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1977 out:
1978 return err;
1979 }
1980
1981 /**
1982 * mmc_erase - erase sectors.
1983 * @card: card to erase
1984 * @from: first sector to erase
1985 * @nr: number of sectors to erase
1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1987 *
1988 * Caller must claim host before calling this function.
1989 */
1990 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1991 unsigned int arg)
1992 {
1993 unsigned int rem, to = from + nr;
1994
1995 if (!(card->host->caps & MMC_CAP_ERASE) ||
1996 !(card->csd.cmdclass & CCC_ERASE))
1997 return -EOPNOTSUPP;
1998
1999 if (!card->erase_size)
2000 return -EOPNOTSUPP;
2001
2002 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2003 return -EOPNOTSUPP;
2004
2005 if ((arg & MMC_SECURE_ARGS) &&
2006 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2007 return -EOPNOTSUPP;
2008
2009 if ((arg & MMC_TRIM_ARGS) &&
2010 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2011 return -EOPNOTSUPP;
2012
2013 if (arg == MMC_SECURE_ERASE_ARG) {
2014 if (from % card->erase_size || nr % card->erase_size)
2015 return -EINVAL;
2016 }
2017
2018 if (arg == MMC_ERASE_ARG) {
2019 rem = from % card->erase_size;
2020 if (rem) {
2021 rem = card->erase_size - rem;
2022 from += rem;
2023 if (nr > rem)
2024 nr -= rem;
2025 else
2026 return 0;
2027 }
2028 rem = nr % card->erase_size;
2029 if (rem)
2030 nr -= rem;
2031 }
2032
2033 if (nr == 0)
2034 return 0;
2035
2036 to = from + nr;
2037
2038 if (to <= from)
2039 return -EINVAL;
2040
2041 /* 'from' and 'to' are inclusive */
2042 to -= 1;
2043
2044 return mmc_do_erase(card, from, to, arg);
2045 }
2046 EXPORT_SYMBOL(mmc_erase);
2047
2048 int mmc_can_erase(struct mmc_card *card)
2049 {
2050 if ((card->host->caps & MMC_CAP_ERASE) &&
2051 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2052 return 1;
2053 return 0;
2054 }
2055 EXPORT_SYMBOL(mmc_can_erase);
2056
2057 int mmc_can_trim(struct mmc_card *card)
2058 {
2059 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2060 return 1;
2061 return 0;
2062 }
2063 EXPORT_SYMBOL(mmc_can_trim);
2064
2065 int mmc_can_discard(struct mmc_card *card)
2066 {
2067 /*
2068 * As there's no way to detect the discard support bit at v4.5
2069 * use the s/w feature support filed.
2070 */
2071 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2072 return 1;
2073 return 0;
2074 }
2075 EXPORT_SYMBOL(mmc_can_discard);
2076
2077 int mmc_can_sanitize(struct mmc_card *card)
2078 {
2079 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2080 return 0;
2081 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2082 return 1;
2083 return 0;
2084 }
2085 EXPORT_SYMBOL(mmc_can_sanitize);
2086
2087 int mmc_can_secure_erase_trim(struct mmc_card *card)
2088 {
2089 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2090 return 1;
2091 return 0;
2092 }
2093 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2094
2095 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2096 unsigned int nr)
2097 {
2098 if (!card->erase_size)
2099 return 0;
2100 if (from % card->erase_size || nr % card->erase_size)
2101 return 0;
2102 return 1;
2103 }
2104 EXPORT_SYMBOL(mmc_erase_group_aligned);
2105
2106 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2107 unsigned int arg)
2108 {
2109 struct mmc_host *host = card->host;
2110 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2111 unsigned int last_timeout = 0;
2112
2113 if (card->erase_shift)
2114 max_qty = UINT_MAX >> card->erase_shift;
2115 else if (mmc_card_sd(card))
2116 max_qty = UINT_MAX;
2117 else
2118 max_qty = UINT_MAX / card->erase_size;
2119
2120 /* Find the largest qty with an OK timeout */
2121 do {
2122 y = 0;
2123 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2124 timeout = mmc_erase_timeout(card, arg, qty + x);
2125 if (timeout > host->max_busy_timeout)
2126 break;
2127 if (timeout < last_timeout)
2128 break;
2129 last_timeout = timeout;
2130 y = x;
2131 }
2132 qty += y;
2133 } while (y);
2134
2135 if (!qty)
2136 return 0;
2137
2138 if (qty == 1)
2139 return 1;
2140
2141 /* Convert qty to sectors */
2142 if (card->erase_shift)
2143 max_discard = --qty << card->erase_shift;
2144 else if (mmc_card_sd(card))
2145 max_discard = qty;
2146 else
2147 max_discard = --qty * card->erase_size;
2148
2149 return max_discard;
2150 }
2151
2152 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2153 {
2154 struct mmc_host *host = card->host;
2155 unsigned int max_discard, max_trim;
2156
2157 if (!host->max_busy_timeout)
2158 return UINT_MAX;
2159
2160 /*
2161 * Without erase_group_def set, MMC erase timeout depends on clock
2162 * frequence which can change. In that case, the best choice is
2163 * just the preferred erase size.
2164 */
2165 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2166 return card->pref_erase;
2167
2168 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2169 if (mmc_can_trim(card)) {
2170 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2171 if (max_trim < max_discard)
2172 max_discard = max_trim;
2173 } else if (max_discard < card->erase_size) {
2174 max_discard = 0;
2175 }
2176 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2177 mmc_hostname(host), max_discard, host->max_busy_timeout);
2178 return max_discard;
2179 }
2180 EXPORT_SYMBOL(mmc_calc_max_discard);
2181
2182 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2183 {
2184 struct mmc_command cmd = {0};
2185
2186 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2187 return 0;
2188
2189 cmd.opcode = MMC_SET_BLOCKLEN;
2190 cmd.arg = blocklen;
2191 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2192 return mmc_wait_for_cmd(card->host, &cmd, 5);
2193 }
2194 EXPORT_SYMBOL(mmc_set_blocklen);
2195
2196 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2197 bool is_rel_write)
2198 {
2199 struct mmc_command cmd = {0};
2200
2201 cmd.opcode = MMC_SET_BLOCK_COUNT;
2202 cmd.arg = blockcount & 0x0000FFFF;
2203 if (is_rel_write)
2204 cmd.arg |= 1 << 31;
2205 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2206 return mmc_wait_for_cmd(card->host, &cmd, 5);
2207 }
2208 EXPORT_SYMBOL(mmc_set_blockcount);
2209
2210 static void mmc_hw_reset_for_init(struct mmc_host *host)
2211 {
2212 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2213 return;
2214 mmc_host_clk_hold(host);
2215 host->ops->hw_reset(host);
2216 mmc_host_clk_release(host);
2217 }
2218
2219 int mmc_can_reset(struct mmc_card *card)
2220 {
2221 u8 rst_n_function;
2222
2223 if (!mmc_card_mmc(card))
2224 return 0;
2225 rst_n_function = card->ext_csd.rst_n_function;
2226 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2227 return 0;
2228 return 1;
2229 }
2230 EXPORT_SYMBOL(mmc_can_reset);
2231
2232 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2233 {
2234 struct mmc_card *card = host->card;
2235
2236 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2237 return -EOPNOTSUPP;
2238
2239 if (!card)
2240 return -EINVAL;
2241
2242 if (!mmc_can_reset(card))
2243 return -EOPNOTSUPP;
2244
2245 mmc_host_clk_hold(host);
2246 mmc_set_clock(host, host->f_init);
2247
2248 host->ops->hw_reset(host);
2249
2250 /* If the reset has happened, then a status command will fail */
2251 if (check) {
2252 struct mmc_command cmd = {0};
2253 int err;
2254
2255 cmd.opcode = MMC_SEND_STATUS;
2256 if (!mmc_host_is_spi(card->host))
2257 cmd.arg = card->rca << 16;
2258 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2259 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2260 if (!err) {
2261 mmc_host_clk_release(host);
2262 return -ENOSYS;
2263 }
2264 }
2265
2266 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2267 if (mmc_host_is_spi(host)) {
2268 host->ios.chip_select = MMC_CS_HIGH;
2269 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2270 } else {
2271 host->ios.chip_select = MMC_CS_DONTCARE;
2272 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2273 }
2274 host->ios.bus_width = MMC_BUS_WIDTH_1;
2275 host->ios.timing = MMC_TIMING_LEGACY;
2276 mmc_set_ios(host);
2277
2278 mmc_host_clk_release(host);
2279
2280 return host->bus_ops->power_restore(host);
2281 }
2282
2283 int mmc_hw_reset(struct mmc_host *host)
2284 {
2285 return mmc_do_hw_reset(host, 0);
2286 }
2287 EXPORT_SYMBOL(mmc_hw_reset);
2288
2289 int mmc_hw_reset_check(struct mmc_host *host)
2290 {
2291 return mmc_do_hw_reset(host, 1);
2292 }
2293 EXPORT_SYMBOL(mmc_hw_reset_check);
2294
2295 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2296 {
2297 host->f_init = freq;
2298
2299 #ifdef CONFIG_MMC_DEBUG
2300 pr_info("%s: %s: trying to init card at %u Hz\n",
2301 mmc_hostname(host), __func__, host->f_init);
2302 #endif
2303 mmc_power_up(host, host->ocr_avail);
2304
2305 /*
2306 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2307 * do a hardware reset if possible.
2308 */
2309 mmc_hw_reset_for_init(host);
2310
2311 /*
2312 * sdio_reset sends CMD52 to reset card. Since we do not know
2313 * if the card is being re-initialized, just send it. CMD52
2314 * should be ignored by SD/eMMC cards.
2315 */
2316 sdio_reset(host);
2317 mmc_go_idle(host);
2318
2319 mmc_send_if_cond(host, host->ocr_avail);
2320
2321 /* Order's important: probe SDIO, then SD, then MMC */
2322 if (!mmc_attach_sdio(host))
2323 return 0;
2324 if (!mmc_attach_sd(host))
2325 return 0;
2326 if (!mmc_attach_mmc(host))
2327 return 0;
2328
2329 mmc_power_off(host);
2330 return -EIO;
2331 }
2332
2333 int _mmc_detect_card_removed(struct mmc_host *host)
2334 {
2335 int ret;
2336
2337 if (host->caps & MMC_CAP_NONREMOVABLE)
2338 return 0;
2339
2340 if (!host->card || mmc_card_removed(host->card))
2341 return 1;
2342
2343 ret = host->bus_ops->alive(host);
2344
2345 /*
2346 * Card detect status and alive check may be out of sync if card is
2347 * removed slowly, when card detect switch changes while card/slot
2348 * pads are still contacted in hardware (refer to "SD Card Mechanical
2349 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2350 * detect work 200ms later for this case.
2351 */
2352 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2353 mmc_detect_change(host, msecs_to_jiffies(200));
2354 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2355 }
2356
2357 if (ret) {
2358 mmc_card_set_removed(host->card);
2359 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2360 }
2361
2362 return ret;
2363 }
2364
2365 int mmc_detect_card_removed(struct mmc_host *host)
2366 {
2367 struct mmc_card *card = host->card;
2368 int ret;
2369
2370 WARN_ON(!host->claimed);
2371
2372 if (!card)
2373 return 1;
2374
2375 ret = mmc_card_removed(card);
2376 /*
2377 * The card will be considered unchanged unless we have been asked to
2378 * detect a change or host requires polling to provide card detection.
2379 */
2380 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2381 return ret;
2382
2383 host->detect_change = 0;
2384 if (!ret) {
2385 ret = _mmc_detect_card_removed(host);
2386 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2387 /*
2388 * Schedule a detect work as soon as possible to let a
2389 * rescan handle the card removal.
2390 */
2391 cancel_delayed_work(&host->detect);
2392 _mmc_detect_change(host, 0, false);
2393 }
2394 }
2395
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(mmc_detect_card_removed);
2399
2400 void mmc_rescan(struct work_struct *work)
2401 {
2402 struct mmc_host *host =
2403 container_of(work, struct mmc_host, detect.work);
2404 int i;
2405
2406 if (host->rescan_disable)
2407 return;
2408
2409 /* If there is a non-removable card registered, only scan once */
2410 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2411 return;
2412 host->rescan_entered = 1;
2413
2414 mmc_bus_get(host);
2415
2416 /*
2417 * if there is a _removable_ card registered, check whether it is
2418 * still present
2419 */
2420 if (host->bus_ops && !host->bus_dead
2421 && !(host->caps & MMC_CAP_NONREMOVABLE))
2422 host->bus_ops->detect(host);
2423
2424 host->detect_change = 0;
2425
2426 /*
2427 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2428 * the card is no longer present.
2429 */
2430 mmc_bus_put(host);
2431 mmc_bus_get(host);
2432
2433 /* if there still is a card present, stop here */
2434 if (host->bus_ops != NULL) {
2435 mmc_bus_put(host);
2436 goto out;
2437 }
2438
2439 /*
2440 * Only we can add a new handler, so it's safe to
2441 * release the lock here.
2442 */
2443 mmc_bus_put(host);
2444
2445 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2446 host->ops->get_cd(host) == 0) {
2447 mmc_claim_host(host);
2448 mmc_power_off(host);
2449 mmc_release_host(host);
2450 goto out;
2451 }
2452
2453 mmc_claim_host(host);
2454 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2455 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2456 break;
2457 if (freqs[i] <= host->f_min)
2458 break;
2459 }
2460 mmc_release_host(host);
2461
2462 out:
2463 if (host->caps & MMC_CAP_NEEDS_POLL)
2464 mmc_schedule_delayed_work(&host->detect, HZ);
2465 }
2466
2467 void mmc_start_host(struct mmc_host *host)
2468 {
2469 host->f_init = max(freqs[0], host->f_min);
2470 host->rescan_disable = 0;
2471 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2472 mmc_power_off(host);
2473 else
2474 mmc_power_up(host, host->ocr_avail);
2475 mmc_gpiod_request_cd_irq(host);
2476 _mmc_detect_change(host, 0, false);
2477 }
2478
2479 void mmc_stop_host(struct mmc_host *host)
2480 {
2481 #ifdef CONFIG_MMC_DEBUG
2482 unsigned long flags;
2483 spin_lock_irqsave(&host->lock, flags);
2484 host->removed = 1;
2485 spin_unlock_irqrestore(&host->lock, flags);
2486 #endif
2487 if (host->slot.cd_irq >= 0)
2488 disable_irq(host->slot.cd_irq);
2489
2490 host->rescan_disable = 1;
2491 cancel_delayed_work_sync(&host->detect);
2492 mmc_flush_scheduled_work();
2493
2494 /* clear pm flags now and let card drivers set them as needed */
2495 host->pm_flags = 0;
2496
2497 mmc_bus_get(host);
2498 if (host->bus_ops && !host->bus_dead) {
2499 /* Calling bus_ops->remove() with a claimed host can deadlock */
2500 host->bus_ops->remove(host);
2501 mmc_claim_host(host);
2502 mmc_detach_bus(host);
2503 mmc_power_off(host);
2504 mmc_release_host(host);
2505 mmc_bus_put(host);
2506 return;
2507 }
2508 mmc_bus_put(host);
2509
2510 BUG_ON(host->card);
2511
2512 mmc_power_off(host);
2513 }
2514
2515 int mmc_power_save_host(struct mmc_host *host)
2516 {
2517 int ret = 0;
2518
2519 #ifdef CONFIG_MMC_DEBUG
2520 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2521 #endif
2522
2523 mmc_bus_get(host);
2524
2525 if (!host->bus_ops || host->bus_dead) {
2526 mmc_bus_put(host);
2527 return -EINVAL;
2528 }
2529
2530 if (host->bus_ops->power_save)
2531 ret = host->bus_ops->power_save(host);
2532
2533 mmc_bus_put(host);
2534
2535 mmc_power_off(host);
2536
2537 return ret;
2538 }
2539 EXPORT_SYMBOL(mmc_power_save_host);
2540
2541 int mmc_power_restore_host(struct mmc_host *host)
2542 {
2543 int ret;
2544
2545 #ifdef CONFIG_MMC_DEBUG
2546 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2547 #endif
2548
2549 mmc_bus_get(host);
2550
2551 if (!host->bus_ops || host->bus_dead) {
2552 mmc_bus_put(host);
2553 return -EINVAL;
2554 }
2555
2556 mmc_power_up(host, host->card->ocr);
2557 ret = host->bus_ops->power_restore(host);
2558
2559 mmc_bus_put(host);
2560
2561 return ret;
2562 }
2563 EXPORT_SYMBOL(mmc_power_restore_host);
2564
2565 /*
2566 * Flush the cache to the non-volatile storage.
2567 */
2568 int mmc_flush_cache(struct mmc_card *card)
2569 {
2570 int err = 0;
2571
2572 if (mmc_card_mmc(card) &&
2573 (card->ext_csd.cache_size > 0) &&
2574 (card->ext_csd.cache_ctrl & 1)) {
2575 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2576 EXT_CSD_FLUSH_CACHE, 1, 0);
2577 if (err)
2578 pr_err("%s: cache flush error %d\n",
2579 mmc_hostname(card->host), err);
2580 }
2581
2582 return err;
2583 }
2584 EXPORT_SYMBOL(mmc_flush_cache);
2585
2586 #ifdef CONFIG_PM
2587
2588 /* Do the card removal on suspend if card is assumed removeable
2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2590 to sync the card.
2591 */
2592 int mmc_pm_notify(struct notifier_block *notify_block,
2593 unsigned long mode, void *unused)
2594 {
2595 struct mmc_host *host = container_of(
2596 notify_block, struct mmc_host, pm_notify);
2597 unsigned long flags;
2598 int err = 0;
2599
2600 switch (mode) {
2601 case PM_HIBERNATION_PREPARE:
2602 case PM_SUSPEND_PREPARE:
2603 spin_lock_irqsave(&host->lock, flags);
2604 host->rescan_disable = 1;
2605 spin_unlock_irqrestore(&host->lock, flags);
2606 cancel_delayed_work_sync(&host->detect);
2607
2608 if (!host->bus_ops)
2609 break;
2610
2611 /* Validate prerequisites for suspend */
2612 if (host->bus_ops->pre_suspend)
2613 err = host->bus_ops->pre_suspend(host);
2614 if (!err)
2615 break;
2616
2617 /* Calling bus_ops->remove() with a claimed host can deadlock */
2618 host->bus_ops->remove(host);
2619 mmc_claim_host(host);
2620 mmc_detach_bus(host);
2621 mmc_power_off(host);
2622 mmc_release_host(host);
2623 host->pm_flags = 0;
2624 break;
2625
2626 case PM_POST_SUSPEND:
2627 case PM_POST_HIBERNATION:
2628 case PM_POST_RESTORE:
2629
2630 spin_lock_irqsave(&host->lock, flags);
2631 host->rescan_disable = 0;
2632 spin_unlock_irqrestore(&host->lock, flags);
2633 _mmc_detect_change(host, 0, false);
2634
2635 }
2636
2637 return 0;
2638 }
2639 #endif
2640
2641 /**
2642 * mmc_init_context_info() - init synchronization context
2643 * @host: mmc host
2644 *
2645 * Init struct context_info needed to implement asynchronous
2646 * request mechanism, used by mmc core, host driver and mmc requests
2647 * supplier.
2648 */
2649 void mmc_init_context_info(struct mmc_host *host)
2650 {
2651 spin_lock_init(&host->context_info.lock);
2652 host->context_info.is_new_req = false;
2653 host->context_info.is_done_rcv = false;
2654 host->context_info.is_waiting_last_req = false;
2655 init_waitqueue_head(&host->context_info.wait);
2656 }
2657
2658 static int __init mmc_init(void)
2659 {
2660 int ret;
2661
2662 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2663 if (!workqueue)
2664 return -ENOMEM;
2665
2666 ret = mmc_register_bus();
2667 if (ret)
2668 goto destroy_workqueue;
2669
2670 ret = mmc_register_host_class();
2671 if (ret)
2672 goto unregister_bus;
2673
2674 ret = sdio_register_bus();
2675 if (ret)
2676 goto unregister_host_class;
2677
2678 return 0;
2679
2680 unregister_host_class:
2681 mmc_unregister_host_class();
2682 unregister_bus:
2683 mmc_unregister_bus();
2684 destroy_workqueue:
2685 destroy_workqueue(workqueue);
2686
2687 return ret;
2688 }
2689
2690 static void __exit mmc_exit(void)
2691 {
2692 sdio_unregister_bus();
2693 mmc_unregister_host_class();
2694 mmc_unregister_bus();
2695 destroy_workqueue(workqueue);
2696 }
2697
2698 subsys_initcall(mmc_init);
2699 module_exit(mmc_exit);
2700
2701 MODULE_LICENSE("GPL");