]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/core/mmc.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / core / mmc.c
1 /*
2 * linux/drivers/mmc/core/mmc.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
18
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37 };
38
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42 };
43
44 static const unsigned int tacc_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 };
47
48 static const unsigned int tacc_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51 };
52
53 #define UNSTUFF_BITS(resp,start,size) \
54 ({ \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
59 u32 __res; \
60 \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
64 __res & __mask; \
65 })
66
67 /*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
70 static int mmc_decode_cid(struct mmc_card *card)
71 {
72 u32 *resp = card->raw_cid;
73
74 /*
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
77 */
78 switch (card->csd.mmca_vsn) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
92 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
94 break;
95
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
98 case 4: /* MMC v4 */
99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
109 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
111 break;
112
113 default:
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card->host), card->csd.mmca_vsn);
116 return -EINVAL;
117 }
118
119 return 0;
120 }
121
122 static void mmc_set_erase_size(struct mmc_card *card)
123 {
124 if (card->ext_csd.erase_group_def & 1)
125 card->erase_size = card->ext_csd.hc_erase_size;
126 else
127 card->erase_size = card->csd.erase_size;
128
129 mmc_init_erase(card);
130 }
131
132 /*
133 * Given a 128-bit response, decode to our card CSD structure.
134 */
135 static int mmc_decode_csd(struct mmc_card *card)
136 {
137 struct mmc_csd *csd = &card->csd;
138 unsigned int e, m, a, b;
139 u32 *resp = card->raw_csd;
140
141 /*
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
145 */
146 csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 if (csd->structure == 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card->host), csd->structure);
150 return -EINVAL;
151 }
152
153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
154 m = UNSTUFF_BITS(resp, 115, 4);
155 e = UNSTUFF_BITS(resp, 112, 3);
156 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
157 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
158
159 m = UNSTUFF_BITS(resp, 99, 4);
160 e = UNSTUFF_BITS(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
163
164 e = UNSTUFF_BITS(resp, 47, 3);
165 m = UNSTUFF_BITS(resp, 62, 12);
166 csd->capacity = (1 + m) << (e + 2);
167
168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
176
177 if (csd->write_blkbits >= 9) {
178 a = UNSTUFF_BITS(resp, 42, 5);
179 b = UNSTUFF_BITS(resp, 37, 5);
180 csd->erase_size = (a + 1) * (b + 1);
181 csd->erase_size <<= csd->write_blkbits - 9;
182 }
183
184 return 0;
185 }
186
187 static void mmc_select_card_type(struct mmc_card *card)
188 {
189 struct mmc_host *host = card->host;
190 u8 card_type = card->ext_csd.raw_card_type;
191 u32 caps = host->caps, caps2 = host->caps2;
192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 unsigned int avail_type = 0;
194
195 if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
199 }
200
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
205 }
206
207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
211 }
212
213 if (caps & MMC_CAP_1_2V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
217 }
218
219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 hs200_max_dtr = MMC_HS200_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
223 }
224
225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
229 }
230
231 if (caps2 & MMC_CAP2_HS400_1_8V &&
232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
235 }
236
237 if (caps2 & MMC_CAP2_HS400_1_2V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
241 }
242
243 if ((caps2 & MMC_CAP2_HS400_ES) &&
244 card->ext_csd.strobe_support &&
245 (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
247
248 card->ext_csd.hs_max_dtr = hs_max_dtr;
249 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 card->mmc_avail_type = avail_type;
251 }
252
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
254 {
255 u8 hc_erase_grp_sz, hc_wp_grp_sz;
256
257 /*
258 * Disable these attributes by default
259 */
260 card->ext_csd.enhanced_area_offset = -EINVAL;
261 card->ext_csd.enhanced_area_size = -EINVAL;
262
263 /*
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
267 */
268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 if (card->ext_csd.partition_setting_completed) {
271 hc_erase_grp_sz =
272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 hc_wp_grp_sz =
274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
275
276 /*
277 * calculate the enhanced data area offset, in bytes
278 */
279 card->ext_csd.enhanced_area_offset =
280 (((unsigned long long)ext_csd[139]) << 24) +
281 (((unsigned long long)ext_csd[138]) << 16) +
282 (((unsigned long long)ext_csd[137]) << 8) +
283 (((unsigned long long)ext_csd[136]));
284 if (mmc_card_blockaddr(card))
285 card->ext_csd.enhanced_area_offset <<= 9;
286 /*
287 * calculate the enhanced data area size, in kilobytes
288 */
289 card->ext_csd.enhanced_area_size =
290 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 ext_csd[140];
292 card->ext_csd.enhanced_area_size *=
293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 card->ext_csd.enhanced_area_size <<= 9;
295 } else {
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card->host));
298 }
299 }
300 }
301
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 unsigned int part_cfg, char *name, int idx, bool ro,
304 int area_type)
305 {
306 card->part[card->nr_parts].size = size;
307 card->part[card->nr_parts].part_cfg = part_cfg;
308 sprintf(card->part[card->nr_parts].name, name, idx);
309 card->part[card->nr_parts].force_ro = ro;
310 card->part[card->nr_parts].area_type = area_type;
311 card->nr_parts++;
312 }
313
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
315 {
316 int idx;
317 u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 unsigned int part_size;
319
320 /*
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
324 */
325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 EXT_CSD_PART_SUPPORT_PART_EN) {
327 hc_erase_grp_sz =
328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 hc_wp_grp_sz =
330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
331
332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 continue;
337 if (card->ext_csd.partition_setting_completed == 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card->host));
340 break;
341 }
342 part_size =
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 << 16) +
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 << 8) +
347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 part_size *= (size_t)(hc_erase_grp_sz *
349 hc_wp_grp_sz);
350 mmc_part_add(card, part_size << 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 "gp%d", idx, false,
353 MMC_BLK_DATA_AREA_GP);
354 }
355 }
356 }
357
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME 300
360
361 /*
362 * Decode extended CSD.
363 */
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
365 {
366 int err = 0, idx;
367 unsigned int part_size;
368 struct device_node *np;
369 bool broken_hpi = false;
370
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 if (card->csd.structure == 3) {
374 if (card->ext_csd.raw_ext_csd_structure > 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card->host),
377 card->ext_csd.raw_ext_csd_structure);
378 err = -EINVAL;
379 goto out;
380 }
381 }
382
383 np = mmc_of_find_child_device(card->host, 0);
384 if (np && of_device_is_compatible(np, "mmc-card"))
385 broken_hpi = of_property_read_bool(np, "broken-hpi");
386 of_node_put(np);
387
388 /*
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
392 */
393 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
394
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card, mmc_ext_csd_fixups);
397
398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 if (card->ext_csd.rev >= 2) {
403 card->ext_csd.sectors =
404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
408
409 /* Cards with density > 2GiB are sector addressed */
410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card);
412 }
413
414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 mmc_select_card_type(card);
417
418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.raw_erase_timeout_mult =
420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 card->ext_csd.raw_hc_erase_grp_size =
422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
426
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card->ext_csd.part_time &&
431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
433
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift > 0 && sa_shift <= 0x17)
436 card->ext_csd.sa_timeout =
437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 card->ext_csd.erase_group_def =
439 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 card->ext_csd.hc_erase_timeout = 300 *
441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 card->ext_csd.hc_erase_size =
443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
444
445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
446
447 /*
448 * There are two boot regions of equal size, defined in
449 * multiples of 128K.
450 */
451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 mmc_part_add(card, part_size,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 "boot%d", idx, true,
457 MMC_BLK_DATA_AREA_BOOT);
458 }
459 }
460 }
461
462 card->ext_csd.raw_hc_erase_gap_size =
463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 card->ext_csd.raw_sec_trim_mult =
465 ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 card->ext_csd.raw_sec_erase_mult =
467 ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 card->ext_csd.raw_sec_feature_support =
469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 card->ext_csd.raw_trim_mult =
471 ext_csd[EXT_CSD_TRIM_MULT];
472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 if (card->ext_csd.rev >= 4) {
475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 EXT_CSD_PART_SETTING_COMPLETED)
477 card->ext_csd.partition_setting_completed = 1;
478 else
479 card->ext_csd.partition_setting_completed = 0;
480
481 mmc_manage_enhanced_area(card, ext_csd);
482
483 mmc_manage_gp_partitions(card, ext_csd);
484
485 card->ext_csd.sec_trim_mult =
486 ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 card->ext_csd.sec_erase_mult =
488 ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 card->ext_csd.sec_feature_support =
490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 card->ext_csd.trim_timeout = 300 *
492 ext_csd[EXT_CSD_TRIM_MULT];
493
494 /*
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
498 */
499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 card->ext_csd.boot_ro_lockable = true;
501
502 /* Save power class values */
503 card->ext_csd.raw_pwr_cl_52_195 =
504 ext_csd[EXT_CSD_PWR_CL_52_195];
505 card->ext_csd.raw_pwr_cl_26_195 =
506 ext_csd[EXT_CSD_PWR_CL_26_195];
507 card->ext_csd.raw_pwr_cl_52_360 =
508 ext_csd[EXT_CSD_PWR_CL_52_360];
509 card->ext_csd.raw_pwr_cl_26_360 =
510 ext_csd[EXT_CSD_PWR_CL_26_360];
511 card->ext_csd.raw_pwr_cl_200_195 =
512 ext_csd[EXT_CSD_PWR_CL_200_195];
513 card->ext_csd.raw_pwr_cl_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_200_360];
515 card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
521 }
522
523 if (card->ext_csd.rev >= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card->cid.year < 2010)
526 card->cid.year += 16;
527
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card) &&
530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
546 }
547
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
556 /*
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
559 */
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
562 }
563
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
566
567 /*
568 * RPMB regions are defined in multiples of 128K.
569 */
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
576 }
577 }
578
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
584
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
589
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
594
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
600
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
605
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
613 }
614
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
619 } else {
620 card->ext_csd.data_sector_size = 512;
621 }
622
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 MMC_FIRMWARE_LEN);
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
630
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
636 }
637
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
648 }
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
653 }
654 }
655 out:
656 return err;
657 }
658
659 static int mmc_read_ext_csd(struct mmc_card *card)
660 {
661 u8 *ext_csd;
662 int err;
663
664 if (!mmc_can_ext_csd(card))
665 return 0;
666
667 err = mmc_get_ext_csd(card, &ext_csd);
668 if (err) {
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
671 if ((err != -EINVAL)
672 && (err != -ENOSYS)
673 && (err != -EFAULT))
674 return err;
675
676 /*
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
679 */
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
683 } else {
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
686 err = 0;
687 }
688
689 return err;
690 }
691
692 err = mmc_decode_ext_csd(card, ext_csd);
693 kfree(ext_csd);
694 return err;
695 }
696
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
698 {
699 u8 *bw_ext_csd;
700 int err;
701
702 if (bus_width == MMC_BUS_WIDTH_1)
703 return 0;
704
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
706 if (err)
707 return err;
708
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
762
763 if (err)
764 err = -EINVAL;
765
766 kfree(bw_ext_csd);
767 return err;
768 }
769
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(pre_eol_info, "%02x\n", card->ext_csd.pre_eol_info);
784 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
785 card->ext_csd.device_life_time_est_typ_a,
786 card->ext_csd.device_life_time_est_typ_b);
787 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
788 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
789 card->ext_csd.enhanced_area_offset);
790 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
791 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
792 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
793 MMC_DEV_ATTR(ocr, "%08x\n", card->ocr);
794 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
795
796 static ssize_t mmc_fwrev_show(struct device *dev,
797 struct device_attribute *attr,
798 char *buf)
799 {
800 struct mmc_card *card = mmc_dev_to_card(dev);
801
802 if (card->ext_csd.rev < 7) {
803 return sprintf(buf, "0x%x\n", card->cid.fwrev);
804 } else {
805 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
806 card->ext_csd.fwrev);
807 }
808 }
809
810 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
811
812 static ssize_t mmc_dsr_show(struct device *dev,
813 struct device_attribute *attr,
814 char *buf)
815 {
816 struct mmc_card *card = mmc_dev_to_card(dev);
817 struct mmc_host *host = card->host;
818
819 if (card->csd.dsr_imp && host->dsr_req)
820 return sprintf(buf, "0x%x\n", host->dsr);
821 else
822 /* return default DSR value */
823 return sprintf(buf, "0x%x\n", 0x404);
824 }
825
826 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
827
828 static struct attribute *mmc_std_attrs[] = {
829 &dev_attr_cid.attr,
830 &dev_attr_csd.attr,
831 &dev_attr_date.attr,
832 &dev_attr_erase_size.attr,
833 &dev_attr_preferred_erase_size.attr,
834 &dev_attr_fwrev.attr,
835 &dev_attr_ffu_capable.attr,
836 &dev_attr_hwrev.attr,
837 &dev_attr_manfid.attr,
838 &dev_attr_name.attr,
839 &dev_attr_oemid.attr,
840 &dev_attr_prv.attr,
841 &dev_attr_pre_eol_info.attr,
842 &dev_attr_life_time.attr,
843 &dev_attr_serial.attr,
844 &dev_attr_enhanced_area_offset.attr,
845 &dev_attr_enhanced_area_size.attr,
846 &dev_attr_raw_rpmb_size_mult.attr,
847 &dev_attr_rel_sectors.attr,
848 &dev_attr_ocr.attr,
849 &dev_attr_dsr.attr,
850 &dev_attr_cmdq_en.attr,
851 NULL,
852 };
853 ATTRIBUTE_GROUPS(mmc_std);
854
855 static struct device_type mmc_type = {
856 .groups = mmc_std_groups,
857 };
858
859 /*
860 * Select the PowerClass for the current bus width
861 * If power class is defined for 4/8 bit bus in the
862 * extended CSD register, select it by executing the
863 * mmc_switch command.
864 */
865 static int __mmc_select_powerclass(struct mmc_card *card,
866 unsigned int bus_width)
867 {
868 struct mmc_host *host = card->host;
869 struct mmc_ext_csd *ext_csd = &card->ext_csd;
870 unsigned int pwrclass_val = 0;
871 int err = 0;
872
873 switch (1 << host->ios.vdd) {
874 case MMC_VDD_165_195:
875 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
876 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
877 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
878 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
879 ext_csd->raw_pwr_cl_52_195 :
880 ext_csd->raw_pwr_cl_ddr_52_195;
881 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
882 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
883 break;
884 case MMC_VDD_27_28:
885 case MMC_VDD_28_29:
886 case MMC_VDD_29_30:
887 case MMC_VDD_30_31:
888 case MMC_VDD_31_32:
889 case MMC_VDD_32_33:
890 case MMC_VDD_33_34:
891 case MMC_VDD_34_35:
892 case MMC_VDD_35_36:
893 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
894 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
895 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
896 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
897 ext_csd->raw_pwr_cl_52_360 :
898 ext_csd->raw_pwr_cl_ddr_52_360;
899 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
900 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_ddr_200_360 :
902 ext_csd->raw_pwr_cl_200_360;
903 break;
904 default:
905 pr_warn("%s: Voltage range not supported for power class\n",
906 mmc_hostname(host));
907 return -EINVAL;
908 }
909
910 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
911 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
912 EXT_CSD_PWR_CL_8BIT_SHIFT;
913 else
914 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
915 EXT_CSD_PWR_CL_4BIT_SHIFT;
916
917 /* If the power class is different from the default value */
918 if (pwrclass_val > 0) {
919 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
920 EXT_CSD_POWER_CLASS,
921 pwrclass_val,
922 card->ext_csd.generic_cmd6_time);
923 }
924
925 return err;
926 }
927
928 static int mmc_select_powerclass(struct mmc_card *card)
929 {
930 struct mmc_host *host = card->host;
931 u32 bus_width, ext_csd_bits;
932 int err, ddr;
933
934 /* Power class selection is supported for versions >= 4.0 */
935 if (!mmc_can_ext_csd(card))
936 return 0;
937
938 bus_width = host->ios.bus_width;
939 /* Power class values are defined only for 4/8 bit bus */
940 if (bus_width == MMC_BUS_WIDTH_1)
941 return 0;
942
943 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
944 if (ddr)
945 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
946 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
947 else
948 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
949 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
950
951 err = __mmc_select_powerclass(card, ext_csd_bits);
952 if (err)
953 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
954 mmc_hostname(host), 1 << bus_width, ddr);
955
956 return err;
957 }
958
959 /*
960 * Set the bus speed for the selected speed mode.
961 */
962 static void mmc_set_bus_speed(struct mmc_card *card)
963 {
964 unsigned int max_dtr = (unsigned int)-1;
965
966 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
967 max_dtr > card->ext_csd.hs200_max_dtr)
968 max_dtr = card->ext_csd.hs200_max_dtr;
969 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
970 max_dtr = card->ext_csd.hs_max_dtr;
971 else if (max_dtr > card->csd.max_dtr)
972 max_dtr = card->csd.max_dtr;
973
974 mmc_set_clock(card->host, max_dtr);
975 }
976
977 /*
978 * Select the bus width amoung 4-bit and 8-bit(SDR).
979 * If the bus width is changed successfully, return the selected width value.
980 * Zero is returned instead of error value if the wide width is not supported.
981 */
982 static int mmc_select_bus_width(struct mmc_card *card)
983 {
984 static unsigned ext_csd_bits[] = {
985 EXT_CSD_BUS_WIDTH_8,
986 EXT_CSD_BUS_WIDTH_4,
987 };
988 static unsigned bus_widths[] = {
989 MMC_BUS_WIDTH_8,
990 MMC_BUS_WIDTH_4,
991 };
992 struct mmc_host *host = card->host;
993 unsigned idx, bus_width = 0;
994 int err = 0;
995
996 if (!mmc_can_ext_csd(card) ||
997 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
998 return 0;
999
1000 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1001
1002 /*
1003 * Unlike SD, MMC cards dont have a configuration register to notify
1004 * supported bus width. So bus test command should be run to identify
1005 * the supported bus width or compare the ext csd values of current
1006 * bus width and ext csd values of 1 bit mode read earlier.
1007 */
1008 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1009 /*
1010 * Host is capable of 8bit transfer, then switch
1011 * the device to work in 8bit transfer mode. If the
1012 * mmc switch command returns error then switch to
1013 * 4bit transfer mode. On success set the corresponding
1014 * bus width on the host.
1015 */
1016 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1017 EXT_CSD_BUS_WIDTH,
1018 ext_csd_bits[idx],
1019 card->ext_csd.generic_cmd6_time);
1020 if (err)
1021 continue;
1022
1023 bus_width = bus_widths[idx];
1024 mmc_set_bus_width(host, bus_width);
1025
1026 /*
1027 * If controller can't handle bus width test,
1028 * compare ext_csd previously read in 1 bit mode
1029 * against ext_csd at new bus width
1030 */
1031 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1032 err = mmc_compare_ext_csds(card, bus_width);
1033 else
1034 err = mmc_bus_test(card, bus_width);
1035
1036 if (!err) {
1037 err = bus_width;
1038 break;
1039 } else {
1040 pr_warn("%s: switch to bus width %d failed\n",
1041 mmc_hostname(host), 1 << bus_width);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /*
1049 * Switch to the high-speed mode
1050 */
1051 static int mmc_select_hs(struct mmc_card *card)
1052 {
1053 int err;
1054
1055 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1057 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1058 true, true, true);
1059 if (err)
1060 pr_warn("%s: switch to high-speed failed, err:%d\n",
1061 mmc_hostname(card->host), err);
1062
1063 return err;
1064 }
1065
1066 /*
1067 * Activate wide bus and DDR if supported.
1068 */
1069 static int mmc_select_hs_ddr(struct mmc_card *card)
1070 {
1071 struct mmc_host *host = card->host;
1072 u32 bus_width, ext_csd_bits;
1073 int err = 0;
1074
1075 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1076 return 0;
1077
1078 bus_width = host->ios.bus_width;
1079 if (bus_width == MMC_BUS_WIDTH_1)
1080 return 0;
1081
1082 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1083 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1084
1085 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1086 EXT_CSD_BUS_WIDTH,
1087 ext_csd_bits,
1088 card->ext_csd.generic_cmd6_time,
1089 MMC_TIMING_MMC_DDR52,
1090 true, true, true);
1091 if (err) {
1092 pr_err("%s: switch to bus width %d ddr failed\n",
1093 mmc_hostname(host), 1 << bus_width);
1094 return err;
1095 }
1096
1097 /*
1098 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1099 * signaling.
1100 *
1101 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1102 *
1103 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1104 * in the JEDEC spec for DDR.
1105 *
1106 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1107 * host controller can support this, like some of the SDHCI
1108 * controller which connect to an eMMC device. Some of these
1109 * host controller still needs to use 1.8v vccq for supporting
1110 * DDR mode.
1111 *
1112 * So the sequence will be:
1113 * if (host and device can both support 1.2v IO)
1114 * use 1.2v IO;
1115 * else if (host and device can both support 1.8v IO)
1116 * use 1.8v IO;
1117 * so if host and device can only support 3.3v IO, this is the
1118 * last choice.
1119 *
1120 * WARNING: eMMC rules are NOT the same as SD DDR
1121 */
1122 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1123 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1124 if (!err)
1125 return 0;
1126 }
1127
1128 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1129 host->caps & MMC_CAP_1_8V_DDR)
1130 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1131
1132 /* make sure vccq is 3.3v after switching disaster */
1133 if (err)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1135
1136 return err;
1137 }
1138
1139 static int mmc_select_hs400(struct mmc_card *card)
1140 {
1141 struct mmc_host *host = card->host;
1142 unsigned int max_dtr;
1143 int err = 0;
1144 u8 val;
1145
1146 /*
1147 * HS400 mode requires 8-bit bus width
1148 */
1149 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1150 host->ios.bus_width == MMC_BUS_WIDTH_8))
1151 return 0;
1152
1153 /* Switch card to HS mode */
1154 val = EXT_CSD_TIMING_HS;
1155 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1156 EXT_CSD_HS_TIMING, val,
1157 card->ext_csd.generic_cmd6_time, 0,
1158 true, false, true);
1159 if (err) {
1160 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1161 mmc_hostname(host), err);
1162 return err;
1163 }
1164
1165 /* Set host controller to HS timing */
1166 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1167
1168 /* Reduce frequency to HS frequency */
1169 max_dtr = card->ext_csd.hs_max_dtr;
1170 mmc_set_clock(host, max_dtr);
1171
1172 err = mmc_switch_status(card);
1173 if (err)
1174 goto out_err;
1175
1176 /* Switch card to DDR */
1177 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1178 EXT_CSD_BUS_WIDTH,
1179 EXT_CSD_DDR_BUS_WIDTH_8,
1180 card->ext_csd.generic_cmd6_time);
1181 if (err) {
1182 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1183 mmc_hostname(host), err);
1184 return err;
1185 }
1186
1187 /* Switch card to HS400 */
1188 val = EXT_CSD_TIMING_HS400 |
1189 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1190 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 EXT_CSD_HS_TIMING, val,
1192 card->ext_csd.generic_cmd6_time, 0,
1193 true, false, true);
1194 if (err) {
1195 pr_err("%s: switch to hs400 failed, err:%d\n",
1196 mmc_hostname(host), err);
1197 return err;
1198 }
1199
1200 /* Set host controller to HS400 timing and frequency */
1201 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1202 mmc_set_bus_speed(card);
1203
1204 err = mmc_switch_status(card);
1205 if (err)
1206 goto out_err;
1207
1208 return 0;
1209
1210 out_err:
1211 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1212 __func__, err);
1213 return err;
1214 }
1215
1216 int mmc_hs200_to_hs400(struct mmc_card *card)
1217 {
1218 return mmc_select_hs400(card);
1219 }
1220
1221 int mmc_hs400_to_hs200(struct mmc_card *card)
1222 {
1223 struct mmc_host *host = card->host;
1224 unsigned int max_dtr;
1225 int err;
1226 u8 val;
1227
1228 /* Reduce frequency to HS */
1229 max_dtr = card->ext_csd.hs_max_dtr;
1230 mmc_set_clock(host, max_dtr);
1231
1232 /* Switch HS400 to HS DDR */
1233 val = EXT_CSD_TIMING_HS;
1234 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1235 val, card->ext_csd.generic_cmd6_time, 0,
1236 true, false, true);
1237 if (err)
1238 goto out_err;
1239
1240 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1241
1242 err = mmc_switch_status(card);
1243 if (err)
1244 goto out_err;
1245
1246 /* Switch HS DDR to HS */
1247 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1248 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1249 0, true, false, true);
1250 if (err)
1251 goto out_err;
1252
1253 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1254
1255 err = mmc_switch_status(card);
1256 if (err)
1257 goto out_err;
1258
1259 /* Switch HS to HS200 */
1260 val = EXT_CSD_TIMING_HS200 |
1261 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1262 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1263 val, card->ext_csd.generic_cmd6_time, 0,
1264 true, false, true);
1265 if (err)
1266 goto out_err;
1267
1268 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1269
1270 /*
1271 * For HS200, CRC errors are not a reliable way to know the switch
1272 * failed. If there really is a problem, we would expect tuning will
1273 * fail and the result ends up the same.
1274 */
1275 err = __mmc_switch_status(card, false);
1276 if (err)
1277 goto out_err;
1278
1279 mmc_set_bus_speed(card);
1280
1281 return 0;
1282
1283 out_err:
1284 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1285 __func__, err);
1286 return err;
1287 }
1288
1289 static void mmc_select_driver_type(struct mmc_card *card)
1290 {
1291 int card_drv_type, drive_strength, drv_type;
1292
1293 card_drv_type = card->ext_csd.raw_driver_strength |
1294 mmc_driver_type_mask(0);
1295
1296 drive_strength = mmc_select_drive_strength(card,
1297 card->ext_csd.hs200_max_dtr,
1298 card_drv_type, &drv_type);
1299
1300 card->drive_strength = drive_strength;
1301
1302 if (drv_type)
1303 mmc_set_driver_type(card->host, drv_type);
1304 }
1305
1306 static int mmc_select_hs400es(struct mmc_card *card)
1307 {
1308 struct mmc_host *host = card->host;
1309 int err = -EINVAL;
1310 u8 val;
1311
1312 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1313 err = -ENOTSUPP;
1314 goto out_err;
1315 }
1316
1317 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1318 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1319
1320 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1321 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1322
1323 /* If fails try again during next card power cycle */
1324 if (err)
1325 goto out_err;
1326
1327 err = mmc_select_bus_width(card);
1328 if (err < 0)
1329 goto out_err;
1330
1331 /* Switch card to HS mode */
1332 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1333 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1334 card->ext_csd.generic_cmd6_time, 0,
1335 true, false, true);
1336 if (err) {
1337 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1338 mmc_hostname(host), err);
1339 goto out_err;
1340 }
1341
1342 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1343 err = mmc_switch_status(card);
1344 if (err)
1345 goto out_err;
1346
1347 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1348
1349 /* Switch card to DDR with strobe bit */
1350 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1351 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1352 EXT_CSD_BUS_WIDTH,
1353 val,
1354 card->ext_csd.generic_cmd6_time);
1355 if (err) {
1356 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1357 mmc_hostname(host), err);
1358 goto out_err;
1359 }
1360
1361 mmc_select_driver_type(card);
1362
1363 /* Switch card to HS400 */
1364 val = EXT_CSD_TIMING_HS400 |
1365 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1366 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1367 EXT_CSD_HS_TIMING, val,
1368 card->ext_csd.generic_cmd6_time, 0,
1369 true, false, true);
1370 if (err) {
1371 pr_err("%s: switch to hs400es failed, err:%d\n",
1372 mmc_hostname(host), err);
1373 goto out_err;
1374 }
1375
1376 /* Set host controller to HS400 timing and frequency */
1377 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1378
1379 /* Controller enable enhanced strobe function */
1380 host->ios.enhanced_strobe = true;
1381 if (host->ops->hs400_enhanced_strobe)
1382 host->ops->hs400_enhanced_strobe(host, &host->ios);
1383
1384 err = mmc_switch_status(card);
1385 if (err)
1386 goto out_err;
1387
1388 return 0;
1389
1390 out_err:
1391 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1392 __func__, err);
1393 return err;
1394 }
1395
1396 /*
1397 * For device supporting HS200 mode, the following sequence
1398 * should be done before executing the tuning process.
1399 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1400 * 2. switch to HS200 mode
1401 * 3. set the clock to > 52Mhz and <=200MHz
1402 */
1403 static int mmc_select_hs200(struct mmc_card *card)
1404 {
1405 struct mmc_host *host = card->host;
1406 unsigned int old_timing, old_signal_voltage;
1407 int err = -EINVAL;
1408 u8 val;
1409
1410 old_signal_voltage = host->ios.signal_voltage;
1411 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1412 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1413
1414 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1415 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1416
1417 /* If fails try again during next card power cycle */
1418 if (err)
1419 return err;
1420
1421 mmc_select_driver_type(card);
1422
1423 /*
1424 * Set the bus width(4 or 8) with host's support and
1425 * switch to HS200 mode if bus width is set successfully.
1426 */
1427 err = mmc_select_bus_width(card);
1428 if (err > 0) {
1429 val = EXT_CSD_TIMING_HS200 |
1430 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1431 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1432 EXT_CSD_HS_TIMING, val,
1433 card->ext_csd.generic_cmd6_time, 0,
1434 true, false, true);
1435 if (err)
1436 goto err;
1437 old_timing = host->ios.timing;
1438 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1439
1440 /*
1441 * For HS200, CRC errors are not a reliable way to know the
1442 * switch failed. If there really is a problem, we would expect
1443 * tuning will fail and the result ends up the same.
1444 */
1445 err = __mmc_switch_status(card, false);
1446
1447 /*
1448 * mmc_select_timing() assumes timing has not changed if
1449 * it is a switch error.
1450 */
1451 if (err == -EBADMSG)
1452 mmc_set_timing(host, old_timing);
1453 }
1454 err:
1455 if (err) {
1456 /* fall back to the old signal voltage, if fails report error */
1457 if (mmc_set_signal_voltage(host, old_signal_voltage))
1458 err = -EIO;
1459
1460 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1461 __func__, err);
1462 }
1463 return err;
1464 }
1465
1466 /*
1467 * Activate High Speed, HS200 or HS400ES mode if supported.
1468 */
1469 static int mmc_select_timing(struct mmc_card *card)
1470 {
1471 int err = 0;
1472
1473 if (!mmc_can_ext_csd(card))
1474 goto bus_speed;
1475
1476 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1477 err = mmc_select_hs400es(card);
1478 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1479 err = mmc_select_hs200(card);
1480 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1481 err = mmc_select_hs(card);
1482
1483 if (err && err != -EBADMSG)
1484 return err;
1485
1486 bus_speed:
1487 /*
1488 * Set the bus speed to the selected bus timing.
1489 * If timing is not selected, backward compatible is the default.
1490 */
1491 mmc_set_bus_speed(card);
1492 return 0;
1493 }
1494
1495 /*
1496 * Execute tuning sequence to seek the proper bus operating
1497 * conditions for HS200 and HS400, which sends CMD21 to the device.
1498 */
1499 static int mmc_hs200_tuning(struct mmc_card *card)
1500 {
1501 struct mmc_host *host = card->host;
1502
1503 /*
1504 * Timing should be adjusted to the HS400 target
1505 * operation frequency for tuning process
1506 */
1507 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1508 host->ios.bus_width == MMC_BUS_WIDTH_8)
1509 if (host->ops->prepare_hs400_tuning)
1510 host->ops->prepare_hs400_tuning(host, &host->ios);
1511
1512 return mmc_execute_tuning(card);
1513 }
1514
1515 /*
1516 * Handle the detection and initialisation of a card.
1517 *
1518 * In the case of a resume, "oldcard" will contain the card
1519 * we're trying to reinitialise.
1520 */
1521 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1522 struct mmc_card *oldcard)
1523 {
1524 struct mmc_card *card;
1525 int err;
1526 u32 cid[4];
1527 u32 rocr;
1528
1529 WARN_ON(!host->claimed);
1530
1531 /* Set correct bus mode for MMC before attempting init */
1532 if (!mmc_host_is_spi(host))
1533 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1534
1535 /*
1536 * Since we're changing the OCR value, we seem to
1537 * need to tell some cards to go back to the idle
1538 * state. We wait 1ms to give cards time to
1539 * respond.
1540 * mmc_go_idle is needed for eMMC that are asleep
1541 */
1542 mmc_go_idle(host);
1543
1544 /* The extra bit indicates that we support high capacity */
1545 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1546 if (err)
1547 goto err;
1548
1549 /*
1550 * For SPI, enable CRC as appropriate.
1551 */
1552 if (mmc_host_is_spi(host)) {
1553 err = mmc_spi_set_crc(host, use_spi_crc);
1554 if (err)
1555 goto err;
1556 }
1557
1558 /*
1559 * Fetch CID from card.
1560 */
1561 err = mmc_send_cid(host, cid);
1562 if (err)
1563 goto err;
1564
1565 if (oldcard) {
1566 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1567 err = -ENOENT;
1568 goto err;
1569 }
1570
1571 card = oldcard;
1572 } else {
1573 /*
1574 * Allocate card structure.
1575 */
1576 card = mmc_alloc_card(host, &mmc_type);
1577 if (IS_ERR(card)) {
1578 err = PTR_ERR(card);
1579 goto err;
1580 }
1581
1582 card->ocr = ocr;
1583 card->type = MMC_TYPE_MMC;
1584 card->rca = 1;
1585 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1586 }
1587
1588 /*
1589 * Call the optional HC's init_card function to handle quirks.
1590 */
1591 if (host->ops->init_card)
1592 host->ops->init_card(host, card);
1593
1594 /*
1595 * For native busses: set card RCA and quit open drain mode.
1596 */
1597 if (!mmc_host_is_spi(host)) {
1598 err = mmc_set_relative_addr(card);
1599 if (err)
1600 goto free_card;
1601
1602 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1603 }
1604
1605 if (!oldcard) {
1606 /*
1607 * Fetch CSD from card.
1608 */
1609 err = mmc_send_csd(card, card->raw_csd);
1610 if (err)
1611 goto free_card;
1612
1613 err = mmc_decode_csd(card);
1614 if (err)
1615 goto free_card;
1616 err = mmc_decode_cid(card);
1617 if (err)
1618 goto free_card;
1619 }
1620
1621 /*
1622 * handling only for cards supporting DSR and hosts requesting
1623 * DSR configuration
1624 */
1625 if (card->csd.dsr_imp && host->dsr_req)
1626 mmc_set_dsr(host);
1627
1628 /*
1629 * Select card, as all following commands rely on that.
1630 */
1631 if (!mmc_host_is_spi(host)) {
1632 err = mmc_select_card(card);
1633 if (err)
1634 goto free_card;
1635 }
1636
1637 if (!oldcard) {
1638 /* Read extended CSD. */
1639 err = mmc_read_ext_csd(card);
1640 if (err)
1641 goto free_card;
1642
1643 /*
1644 * If doing byte addressing, check if required to do sector
1645 * addressing. Handle the case of <2GB cards needing sector
1646 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1647 * ocr register has bit 30 set for sector addressing.
1648 */
1649 if (rocr & BIT(30))
1650 mmc_card_set_blockaddr(card);
1651
1652 /* Erase size depends on CSD and Extended CSD */
1653 mmc_set_erase_size(card);
1654 }
1655
1656 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1657 if (card->ext_csd.rev >= 3) {
1658 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1659 EXT_CSD_ERASE_GROUP_DEF, 1,
1660 card->ext_csd.generic_cmd6_time);
1661
1662 if (err && err != -EBADMSG)
1663 goto free_card;
1664
1665 if (err) {
1666 err = 0;
1667 /*
1668 * Just disable enhanced area off & sz
1669 * will try to enable ERASE_GROUP_DEF
1670 * during next time reinit
1671 */
1672 card->ext_csd.enhanced_area_offset = -EINVAL;
1673 card->ext_csd.enhanced_area_size = -EINVAL;
1674 } else {
1675 card->ext_csd.erase_group_def = 1;
1676 /*
1677 * enable ERASE_GRP_DEF successfully.
1678 * This will affect the erase size, so
1679 * here need to reset erase size
1680 */
1681 mmc_set_erase_size(card);
1682 }
1683 }
1684
1685 /*
1686 * Ensure eMMC user default partition is enabled
1687 */
1688 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1689 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1690 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1691 card->ext_csd.part_config,
1692 card->ext_csd.part_time);
1693 if (err && err != -EBADMSG)
1694 goto free_card;
1695 }
1696
1697 /*
1698 * Enable power_off_notification byte in the ext_csd register
1699 */
1700 if (card->ext_csd.rev >= 6) {
1701 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1702 EXT_CSD_POWER_OFF_NOTIFICATION,
1703 EXT_CSD_POWER_ON,
1704 card->ext_csd.generic_cmd6_time);
1705 if (err && err != -EBADMSG)
1706 goto free_card;
1707
1708 /*
1709 * The err can be -EBADMSG or 0,
1710 * so check for success and update the flag
1711 */
1712 if (!err)
1713 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1714 }
1715
1716 /*
1717 * Select timing interface
1718 */
1719 err = mmc_select_timing(card);
1720 if (err)
1721 goto free_card;
1722
1723 if (mmc_card_hs200(card)) {
1724 err = mmc_hs200_tuning(card);
1725 if (err)
1726 goto free_card;
1727
1728 err = mmc_select_hs400(card);
1729 if (err)
1730 goto free_card;
1731 } else if (!mmc_card_hs400es(card)) {
1732 /* Select the desired bus width optionally */
1733 err = mmc_select_bus_width(card);
1734 if (err > 0 && mmc_card_hs(card)) {
1735 err = mmc_select_hs_ddr(card);
1736 if (err)
1737 goto free_card;
1738 }
1739 }
1740
1741 /*
1742 * Choose the power class with selected bus interface
1743 */
1744 mmc_select_powerclass(card);
1745
1746 /*
1747 * Enable HPI feature (if supported)
1748 */
1749 if (card->ext_csd.hpi) {
1750 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1751 EXT_CSD_HPI_MGMT, 1,
1752 card->ext_csd.generic_cmd6_time);
1753 if (err && err != -EBADMSG)
1754 goto free_card;
1755 if (err) {
1756 pr_warn("%s: Enabling HPI failed\n",
1757 mmc_hostname(card->host));
1758 err = 0;
1759 } else
1760 card->ext_csd.hpi_en = 1;
1761 }
1762
1763 /*
1764 * If cache size is higher than 0, this indicates
1765 * the existence of cache and it can be turned on.
1766 */
1767 if (!mmc_card_broken_hpi(card) &&
1768 card->ext_csd.cache_size > 0) {
1769 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1770 EXT_CSD_CACHE_CTRL, 1,
1771 card->ext_csd.generic_cmd6_time);
1772 if (err && err != -EBADMSG)
1773 goto free_card;
1774
1775 /*
1776 * Only if no error, cache is turned on successfully.
1777 */
1778 if (err) {
1779 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1780 mmc_hostname(card->host), err);
1781 card->ext_csd.cache_ctrl = 0;
1782 err = 0;
1783 } else {
1784 card->ext_csd.cache_ctrl = 1;
1785 }
1786 }
1787
1788 /*
1789 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1790 * disabled for a time, so a flag is needed to indicate to re-enable the
1791 * Command Queue.
1792 */
1793 card->reenable_cmdq = card->ext_csd.cmdq_en;
1794
1795 /*
1796 * The mandatory minimum values are defined for packed command.
1797 * read: 5, write: 3
1798 */
1799 if (card->ext_csd.max_packed_writes >= 3 &&
1800 card->ext_csd.max_packed_reads >= 5 &&
1801 host->caps2 & MMC_CAP2_PACKED_CMD) {
1802 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1803 EXT_CSD_EXP_EVENTS_CTRL,
1804 EXT_CSD_PACKED_EVENT_EN,
1805 card->ext_csd.generic_cmd6_time);
1806 if (err && err != -EBADMSG)
1807 goto free_card;
1808 if (err) {
1809 pr_warn("%s: Enabling packed event failed\n",
1810 mmc_hostname(card->host));
1811 card->ext_csd.packed_event_en = 0;
1812 err = 0;
1813 } else {
1814 card->ext_csd.packed_event_en = 1;
1815 }
1816 }
1817
1818 if (!oldcard)
1819 host->card = card;
1820
1821 return 0;
1822
1823 free_card:
1824 if (!oldcard)
1825 mmc_remove_card(card);
1826 err:
1827 return err;
1828 }
1829
1830 static int mmc_can_sleep(struct mmc_card *card)
1831 {
1832 return (card && card->ext_csd.rev >= 3);
1833 }
1834
1835 static int mmc_sleep(struct mmc_host *host)
1836 {
1837 struct mmc_command cmd = {};
1838 struct mmc_card *card = host->card;
1839 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1840 int err;
1841
1842 /* Re-tuning can't be done once the card is deselected */
1843 mmc_retune_hold(host);
1844
1845 err = mmc_deselect_cards(host);
1846 if (err)
1847 goto out_release;
1848
1849 cmd.opcode = MMC_SLEEP_AWAKE;
1850 cmd.arg = card->rca << 16;
1851 cmd.arg |= 1 << 15;
1852
1853 /*
1854 * If the max_busy_timeout of the host is specified, validate it against
1855 * the sleep cmd timeout. A failure means we need to prevent the host
1856 * from doing hw busy detection, which is done by converting to a R1
1857 * response instead of a R1B.
1858 */
1859 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1860 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1861 } else {
1862 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1863 cmd.busy_timeout = timeout_ms;
1864 }
1865
1866 err = mmc_wait_for_cmd(host, &cmd, 0);
1867 if (err)
1868 goto out_release;
1869
1870 /*
1871 * If the host does not wait while the card signals busy, then we will
1872 * will have to wait the sleep/awake timeout. Note, we cannot use the
1873 * SEND_STATUS command to poll the status because that command (and most
1874 * others) is invalid while the card sleeps.
1875 */
1876 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1877 mmc_delay(timeout_ms);
1878
1879 out_release:
1880 mmc_retune_release(host);
1881 return err;
1882 }
1883
1884 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1885 {
1886 return card &&
1887 mmc_card_mmc(card) &&
1888 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1889 }
1890
1891 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1892 {
1893 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1894 int err;
1895
1896 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1897 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1898 timeout = card->ext_csd.power_off_longtime;
1899
1900 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1901 EXT_CSD_POWER_OFF_NOTIFICATION,
1902 notify_type, timeout, 0, true, false, false);
1903 if (err)
1904 pr_err("%s: Power Off Notification timed out, %u\n",
1905 mmc_hostname(card->host), timeout);
1906
1907 /* Disable the power off notification after the switch operation. */
1908 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1909
1910 return err;
1911 }
1912
1913 /*
1914 * Host is being removed. Free up the current card.
1915 */
1916 static void mmc_remove(struct mmc_host *host)
1917 {
1918 mmc_remove_card(host->card);
1919 host->card = NULL;
1920 }
1921
1922 /*
1923 * Card detection - card is alive.
1924 */
1925 static int mmc_alive(struct mmc_host *host)
1926 {
1927 return mmc_send_status(host->card, NULL);
1928 }
1929
1930 /*
1931 * Card detection callback from host.
1932 */
1933 static void mmc_detect(struct mmc_host *host)
1934 {
1935 int err;
1936
1937 mmc_get_card(host->card);
1938
1939 /*
1940 * Just check if our card has been removed.
1941 */
1942 err = _mmc_detect_card_removed(host);
1943
1944 mmc_put_card(host->card);
1945
1946 if (err) {
1947 mmc_remove(host);
1948
1949 mmc_claim_host(host);
1950 mmc_detach_bus(host);
1951 mmc_power_off(host);
1952 mmc_release_host(host);
1953 }
1954 }
1955
1956 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1957 {
1958 int err = 0;
1959 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1960 EXT_CSD_POWER_OFF_LONG;
1961
1962 mmc_claim_host(host);
1963
1964 if (mmc_card_suspended(host->card))
1965 goto out;
1966
1967 if (mmc_card_doing_bkops(host->card)) {
1968 err = mmc_stop_bkops(host->card);
1969 if (err)
1970 goto out;
1971 }
1972
1973 err = mmc_flush_cache(host->card);
1974 if (err)
1975 goto out;
1976
1977 if (mmc_can_poweroff_notify(host->card) &&
1978 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
1979 err = mmc_poweroff_notify(host->card, notify_type);
1980 else if (mmc_can_sleep(host->card))
1981 err = mmc_sleep(host);
1982 else if (!mmc_host_is_spi(host))
1983 err = mmc_deselect_cards(host);
1984
1985 if (!err) {
1986 mmc_power_off(host);
1987 mmc_card_set_suspended(host->card);
1988 }
1989 out:
1990 mmc_release_host(host);
1991 return err;
1992 }
1993
1994 /*
1995 * Suspend callback
1996 */
1997 static int mmc_suspend(struct mmc_host *host)
1998 {
1999 int err;
2000
2001 err = _mmc_suspend(host, true);
2002 if (!err) {
2003 pm_runtime_disable(&host->card->dev);
2004 pm_runtime_set_suspended(&host->card->dev);
2005 }
2006
2007 return err;
2008 }
2009
2010 /*
2011 * This function tries to determine if the same card is still present
2012 * and, if so, restore all state to it.
2013 */
2014 static int _mmc_resume(struct mmc_host *host)
2015 {
2016 int err = 0;
2017
2018 mmc_claim_host(host);
2019
2020 if (!mmc_card_suspended(host->card))
2021 goto out;
2022
2023 mmc_power_up(host, host->card->ocr);
2024 err = mmc_init_card(host, host->card->ocr, host->card);
2025 mmc_card_clr_suspended(host->card);
2026
2027 out:
2028 mmc_release_host(host);
2029 return err;
2030 }
2031
2032 /*
2033 * Shutdown callback
2034 */
2035 static int mmc_shutdown(struct mmc_host *host)
2036 {
2037 int err = 0;
2038
2039 /*
2040 * In a specific case for poweroff notify, we need to resume the card
2041 * before we can shutdown it properly.
2042 */
2043 if (mmc_can_poweroff_notify(host->card) &&
2044 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2045 err = _mmc_resume(host);
2046
2047 if (!err)
2048 err = _mmc_suspend(host, false);
2049
2050 return err;
2051 }
2052
2053 /*
2054 * Callback for resume.
2055 */
2056 static int mmc_resume(struct mmc_host *host)
2057 {
2058 pm_runtime_enable(&host->card->dev);
2059 return 0;
2060 }
2061
2062 /*
2063 * Callback for runtime_suspend.
2064 */
2065 static int mmc_runtime_suspend(struct mmc_host *host)
2066 {
2067 int err;
2068
2069 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2070 return 0;
2071
2072 err = _mmc_suspend(host, true);
2073 if (err)
2074 pr_err("%s: error %d doing aggressive suspend\n",
2075 mmc_hostname(host), err);
2076
2077 return err;
2078 }
2079
2080 /*
2081 * Callback for runtime_resume.
2082 */
2083 static int mmc_runtime_resume(struct mmc_host *host)
2084 {
2085 int err;
2086
2087 err = _mmc_resume(host);
2088 if (err && err != -ENOMEDIUM)
2089 pr_err("%s: error %d doing runtime resume\n",
2090 mmc_hostname(host), err);
2091
2092 return 0;
2093 }
2094
2095 static int mmc_can_reset(struct mmc_card *card)
2096 {
2097 u8 rst_n_function;
2098
2099 rst_n_function = card->ext_csd.rst_n_function;
2100 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2101 return 0;
2102 return 1;
2103 }
2104
2105 static int mmc_reset(struct mmc_host *host)
2106 {
2107 struct mmc_card *card = host->card;
2108
2109 /*
2110 * In the case of recovery, we can't expect flushing the cache to work
2111 * always, but we have a go and ignore errors.
2112 */
2113 mmc_flush_cache(host->card);
2114
2115 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2116 mmc_can_reset(card)) {
2117 /* If the card accept RST_n signal, send it. */
2118 mmc_set_clock(host, host->f_init);
2119 host->ops->hw_reset(host);
2120 /* Set initial state and call mmc_set_ios */
2121 mmc_set_initial_state(host);
2122 } else {
2123 /* Do a brute force power cycle */
2124 mmc_power_cycle(host, card->ocr);
2125 mmc_pwrseq_reset(host);
2126 }
2127 return mmc_init_card(host, card->ocr, card);
2128 }
2129
2130 static const struct mmc_bus_ops mmc_ops = {
2131 .remove = mmc_remove,
2132 .detect = mmc_detect,
2133 .suspend = mmc_suspend,
2134 .resume = mmc_resume,
2135 .runtime_suspend = mmc_runtime_suspend,
2136 .runtime_resume = mmc_runtime_resume,
2137 .alive = mmc_alive,
2138 .shutdown = mmc_shutdown,
2139 .reset = mmc_reset,
2140 };
2141
2142 /*
2143 * Starting point for MMC card init.
2144 */
2145 int mmc_attach_mmc(struct mmc_host *host)
2146 {
2147 int err;
2148 u32 ocr, rocr;
2149
2150 WARN_ON(!host->claimed);
2151
2152 /* Set correct bus mode for MMC before attempting attach */
2153 if (!mmc_host_is_spi(host))
2154 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2155
2156 err = mmc_send_op_cond(host, 0, &ocr);
2157 if (err)
2158 return err;
2159
2160 mmc_attach_bus(host, &mmc_ops);
2161 if (host->ocr_avail_mmc)
2162 host->ocr_avail = host->ocr_avail_mmc;
2163
2164 /*
2165 * We need to get OCR a different way for SPI.
2166 */
2167 if (mmc_host_is_spi(host)) {
2168 err = mmc_spi_read_ocr(host, 1, &ocr);
2169 if (err)
2170 goto err;
2171 }
2172
2173 rocr = mmc_select_voltage(host, ocr);
2174
2175 /*
2176 * Can we support the voltage of the card?
2177 */
2178 if (!rocr) {
2179 err = -EINVAL;
2180 goto err;
2181 }
2182
2183 /*
2184 * Detect and init the card.
2185 */
2186 err = mmc_init_card(host, rocr, NULL);
2187 if (err)
2188 goto err;
2189
2190 mmc_release_host(host);
2191 err = mmc_add_card(host->card);
2192 if (err)
2193 goto remove_card;
2194
2195 mmc_claim_host(host);
2196 return 0;
2197
2198 remove_card:
2199 mmc_remove_card(host->card);
2200 mmc_claim_host(host);
2201 host->card = NULL;
2202 err:
2203 mmc_detach_bus(host);
2204
2205 pr_err("%s: error %d whilst initialising MMC card\n",
2206 mmc_hostname(host), err);
2207
2208 return err;
2209 }