]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/core/mmc_test.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / core / mmc_test.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2007-2008 Pierre Ossman
4 */
5
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11
12 #include <linux/scatterlist.h>
13 #include <linux/swap.h> /* For nr_free_buffer_pages() */
14 #include <linux/list.h>
15
16 #include <linux/debugfs.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/module.h>
20
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26
27 #define RESULT_OK 0
28 #define RESULT_FAIL 1
29 #define RESULT_UNSUP_HOST 2
30 #define RESULT_UNSUP_CARD 3
31
32 #define BUFFER_ORDER 2
33 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
34
35 #define TEST_ALIGN_END 8
36
37 /*
38 * Limit the test area size to the maximum MMC HC erase group size. Note that
39 * the maximum SD allocation unit size is just 4MiB.
40 */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42
43 /**
44 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45 * @page: first page in the allocation
46 * @order: order of the number of pages allocated
47 */
48 struct mmc_test_pages {
49 struct page *page;
50 unsigned int order;
51 };
52
53 /**
54 * struct mmc_test_mem - allocated memory.
55 * @arr: array of allocations
56 * @cnt: number of allocations
57 */
58 struct mmc_test_mem {
59 struct mmc_test_pages *arr;
60 unsigned int cnt;
61 };
62
63 /**
64 * struct mmc_test_area - information for performance tests.
65 * @max_sz: test area size (in bytes)
66 * @dev_addr: address on card at which to do performance tests
67 * @max_tfr: maximum transfer size allowed by driver (in bytes)
68 * @max_segs: maximum segments allowed by driver in scatterlist @sg
69 * @max_seg_sz: maximum segment size allowed by driver
70 * @blocks: number of (512 byte) blocks currently mapped by @sg
71 * @sg_len: length of currently mapped scatterlist @sg
72 * @mem: allocated memory
73 * @sg: scatterlist
74 */
75 struct mmc_test_area {
76 unsigned long max_sz;
77 unsigned int dev_addr;
78 unsigned int max_tfr;
79 unsigned int max_segs;
80 unsigned int max_seg_sz;
81 unsigned int blocks;
82 unsigned int sg_len;
83 struct mmc_test_mem *mem;
84 struct scatterlist *sg;
85 };
86
87 /**
88 * struct mmc_test_transfer_result - transfer results for performance tests.
89 * @link: double-linked list
90 * @count: amount of group of sectors to check
91 * @sectors: amount of sectors to check in one group
92 * @ts: time values of transfer
93 * @rate: calculated transfer rate
94 * @iops: I/O operations per second (times 100)
95 */
96 struct mmc_test_transfer_result {
97 struct list_head link;
98 unsigned int count;
99 unsigned int sectors;
100 struct timespec64 ts;
101 unsigned int rate;
102 unsigned int iops;
103 };
104
105 /**
106 * struct mmc_test_general_result - results for tests.
107 * @link: double-linked list
108 * @card: card under test
109 * @testcase: number of test case
110 * @result: result of test run
111 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
112 */
113 struct mmc_test_general_result {
114 struct list_head link;
115 struct mmc_card *card;
116 int testcase;
117 int result;
118 struct list_head tr_lst;
119 };
120
121 /**
122 * struct mmc_test_dbgfs_file - debugfs related file.
123 * @link: double-linked list
124 * @card: card under test
125 * @file: file created under debugfs
126 */
127 struct mmc_test_dbgfs_file {
128 struct list_head link;
129 struct mmc_card *card;
130 struct dentry *file;
131 };
132
133 /**
134 * struct mmc_test_card - test information.
135 * @card: card under test
136 * @scratch: transfer buffer
137 * @buffer: transfer buffer
138 * @highmem: buffer for highmem tests
139 * @area: information for performance tests
140 * @gr: pointer to results of current testcase
141 */
142 struct mmc_test_card {
143 struct mmc_card *card;
144
145 u8 scratch[BUFFER_SIZE];
146 u8 *buffer;
147 #ifdef CONFIG_HIGHMEM
148 struct page *highmem;
149 #endif
150 struct mmc_test_area area;
151 struct mmc_test_general_result *gr;
152 };
153
154 enum mmc_test_prep_media {
155 MMC_TEST_PREP_NONE = 0,
156 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
157 MMC_TEST_PREP_ERASE = 1 << 1,
158 };
159
160 struct mmc_test_multiple_rw {
161 unsigned int *sg_len;
162 unsigned int *bs;
163 unsigned int len;
164 unsigned int size;
165 bool do_write;
166 bool do_nonblock_req;
167 enum mmc_test_prep_media prepare;
168 };
169
170 /*******************************************************************/
171 /* General helper functions */
172 /*******************************************************************/
173
174 /*
175 * Configure correct block size in card
176 */
177 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
178 {
179 return mmc_set_blocklen(test->card, size);
180 }
181
182 static bool mmc_test_card_cmd23(struct mmc_card *card)
183 {
184 return mmc_card_mmc(card) ||
185 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
186 }
187
188 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
189 struct mmc_request *mrq, unsigned int blocks)
190 {
191 struct mmc_card *card = test->card;
192
193 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
194 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
195 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
196 mrq->sbc = NULL;
197 return;
198 }
199
200 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
201 mrq->sbc->arg = blocks;
202 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
203 }
204
205 /*
206 * Fill in the mmc_request structure given a set of transfer parameters.
207 */
208 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
209 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
210 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
211 {
212 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
213 return;
214
215 if (blocks > 1) {
216 mrq->cmd->opcode = write ?
217 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
218 } else {
219 mrq->cmd->opcode = write ?
220 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
221 }
222
223 mrq->cmd->arg = dev_addr;
224 if (!mmc_card_blockaddr(test->card))
225 mrq->cmd->arg <<= 9;
226
227 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
228
229 if (blocks == 1)
230 mrq->stop = NULL;
231 else {
232 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
233 mrq->stop->arg = 0;
234 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
235 }
236
237 mrq->data->blksz = blksz;
238 mrq->data->blocks = blocks;
239 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
240 mrq->data->sg = sg;
241 mrq->data->sg_len = sg_len;
242
243 mmc_test_prepare_sbc(test, mrq, blocks);
244
245 mmc_set_data_timeout(mrq->data, test->card);
246 }
247
248 static int mmc_test_busy(struct mmc_command *cmd)
249 {
250 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
251 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
252 }
253
254 /*
255 * Wait for the card to finish the busy state
256 */
257 static int mmc_test_wait_busy(struct mmc_test_card *test)
258 {
259 int ret, busy;
260 struct mmc_command cmd = {};
261
262 busy = 0;
263 do {
264 memset(&cmd, 0, sizeof(struct mmc_command));
265
266 cmd.opcode = MMC_SEND_STATUS;
267 cmd.arg = test->card->rca << 16;
268 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
269
270 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
271 if (ret)
272 break;
273
274 if (!busy && mmc_test_busy(&cmd)) {
275 busy = 1;
276 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
277 pr_info("%s: Warning: Host did not wait for busy state to end.\n",
278 mmc_hostname(test->card->host));
279 }
280 } while (mmc_test_busy(&cmd));
281
282 return ret;
283 }
284
285 /*
286 * Transfer a single sector of kernel addressable data
287 */
288 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
289 u8 *buffer, unsigned addr, unsigned blksz, int write)
290 {
291 struct mmc_request mrq = {};
292 struct mmc_command cmd = {};
293 struct mmc_command stop = {};
294 struct mmc_data data = {};
295
296 struct scatterlist sg;
297
298 mrq.cmd = &cmd;
299 mrq.data = &data;
300 mrq.stop = &stop;
301
302 sg_init_one(&sg, buffer, blksz);
303
304 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
305
306 mmc_wait_for_req(test->card->host, &mrq);
307
308 if (cmd.error)
309 return cmd.error;
310 if (data.error)
311 return data.error;
312
313 return mmc_test_wait_busy(test);
314 }
315
316 static void mmc_test_free_mem(struct mmc_test_mem *mem)
317 {
318 if (!mem)
319 return;
320 while (mem->cnt--)
321 __free_pages(mem->arr[mem->cnt].page,
322 mem->arr[mem->cnt].order);
323 kfree(mem->arr);
324 kfree(mem);
325 }
326
327 /*
328 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
329 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
330 * not exceed a maximum number of segments and try not to make segments much
331 * bigger than maximum segment size.
332 */
333 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
334 unsigned long max_sz,
335 unsigned int max_segs,
336 unsigned int max_seg_sz)
337 {
338 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
339 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
340 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
341 unsigned long page_cnt = 0;
342 unsigned long limit = nr_free_buffer_pages() >> 4;
343 struct mmc_test_mem *mem;
344
345 if (max_page_cnt > limit)
346 max_page_cnt = limit;
347 if (min_page_cnt > max_page_cnt)
348 min_page_cnt = max_page_cnt;
349
350 if (max_seg_page_cnt > max_page_cnt)
351 max_seg_page_cnt = max_page_cnt;
352
353 if (max_segs > max_page_cnt)
354 max_segs = max_page_cnt;
355
356 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
357 if (!mem)
358 return NULL;
359
360 mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
361 if (!mem->arr)
362 goto out_free;
363
364 while (max_page_cnt) {
365 struct page *page;
366 unsigned int order;
367 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
368 __GFP_NORETRY;
369
370 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
371 while (1) {
372 page = alloc_pages(flags, order);
373 if (page || !order)
374 break;
375 order -= 1;
376 }
377 if (!page) {
378 if (page_cnt < min_page_cnt)
379 goto out_free;
380 break;
381 }
382 mem->arr[mem->cnt].page = page;
383 mem->arr[mem->cnt].order = order;
384 mem->cnt += 1;
385 if (max_page_cnt <= (1UL << order))
386 break;
387 max_page_cnt -= 1UL << order;
388 page_cnt += 1UL << order;
389 if (mem->cnt >= max_segs) {
390 if (page_cnt < min_page_cnt)
391 goto out_free;
392 break;
393 }
394 }
395
396 return mem;
397
398 out_free:
399 mmc_test_free_mem(mem);
400 return NULL;
401 }
402
403 /*
404 * Map memory into a scatterlist. Optionally allow the same memory to be
405 * mapped more than once.
406 */
407 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
408 struct scatterlist *sglist, int repeat,
409 unsigned int max_segs, unsigned int max_seg_sz,
410 unsigned int *sg_len, int min_sg_len)
411 {
412 struct scatterlist *sg = NULL;
413 unsigned int i;
414 unsigned long sz = size;
415
416 sg_init_table(sglist, max_segs);
417 if (min_sg_len > max_segs)
418 min_sg_len = max_segs;
419
420 *sg_len = 0;
421 do {
422 for (i = 0; i < mem->cnt; i++) {
423 unsigned long len = PAGE_SIZE << mem->arr[i].order;
424
425 if (min_sg_len && (size / min_sg_len < len))
426 len = ALIGN(size / min_sg_len, 512);
427 if (len > sz)
428 len = sz;
429 if (len > max_seg_sz)
430 len = max_seg_sz;
431 if (sg)
432 sg = sg_next(sg);
433 else
434 sg = sglist;
435 if (!sg)
436 return -EINVAL;
437 sg_set_page(sg, mem->arr[i].page, len, 0);
438 sz -= len;
439 *sg_len += 1;
440 if (!sz)
441 break;
442 }
443 } while (sz && repeat);
444
445 if (sz)
446 return -EINVAL;
447
448 if (sg)
449 sg_mark_end(sg);
450
451 return 0;
452 }
453
454 /*
455 * Map memory into a scatterlist so that no pages are contiguous. Allow the
456 * same memory to be mapped more than once.
457 */
458 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
459 unsigned long sz,
460 struct scatterlist *sglist,
461 unsigned int max_segs,
462 unsigned int max_seg_sz,
463 unsigned int *sg_len)
464 {
465 struct scatterlist *sg = NULL;
466 unsigned int i = mem->cnt, cnt;
467 unsigned long len;
468 void *base, *addr, *last_addr = NULL;
469
470 sg_init_table(sglist, max_segs);
471
472 *sg_len = 0;
473 while (sz) {
474 base = page_address(mem->arr[--i].page);
475 cnt = 1 << mem->arr[i].order;
476 while (sz && cnt) {
477 addr = base + PAGE_SIZE * --cnt;
478 if (last_addr && last_addr + PAGE_SIZE == addr)
479 continue;
480 last_addr = addr;
481 len = PAGE_SIZE;
482 if (len > max_seg_sz)
483 len = max_seg_sz;
484 if (len > sz)
485 len = sz;
486 if (sg)
487 sg = sg_next(sg);
488 else
489 sg = sglist;
490 if (!sg)
491 return -EINVAL;
492 sg_set_page(sg, virt_to_page(addr), len, 0);
493 sz -= len;
494 *sg_len += 1;
495 }
496 if (i == 0)
497 i = mem->cnt;
498 }
499
500 if (sg)
501 sg_mark_end(sg);
502
503 return 0;
504 }
505
506 /*
507 * Calculate transfer rate in bytes per second.
508 */
509 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
510 {
511 uint64_t ns;
512
513 ns = timespec64_to_ns(ts);
514 bytes *= 1000000000;
515
516 while (ns > UINT_MAX) {
517 bytes >>= 1;
518 ns >>= 1;
519 }
520
521 if (!ns)
522 return 0;
523
524 do_div(bytes, (uint32_t)ns);
525
526 return bytes;
527 }
528
529 /*
530 * Save transfer results for future usage
531 */
532 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
533 unsigned int count, unsigned int sectors, struct timespec64 ts,
534 unsigned int rate, unsigned int iops)
535 {
536 struct mmc_test_transfer_result *tr;
537
538 if (!test->gr)
539 return;
540
541 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
542 if (!tr)
543 return;
544
545 tr->count = count;
546 tr->sectors = sectors;
547 tr->ts = ts;
548 tr->rate = rate;
549 tr->iops = iops;
550
551 list_add_tail(&tr->link, &test->gr->tr_lst);
552 }
553
554 /*
555 * Print the transfer rate.
556 */
557 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
558 struct timespec64 *ts1, struct timespec64 *ts2)
559 {
560 unsigned int rate, iops, sectors = bytes >> 9;
561 struct timespec64 ts;
562
563 ts = timespec64_sub(*ts2, *ts1);
564
565 rate = mmc_test_rate(bytes, &ts);
566 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
567
568 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
569 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
570 mmc_hostname(test->card->host), sectors, sectors >> 1,
571 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
572 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
573 iops / 100, iops % 100);
574
575 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
576 }
577
578 /*
579 * Print the average transfer rate.
580 */
581 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
582 unsigned int count, struct timespec64 *ts1,
583 struct timespec64 *ts2)
584 {
585 unsigned int rate, iops, sectors = bytes >> 9;
586 uint64_t tot = bytes * count;
587 struct timespec64 ts;
588
589 ts = timespec64_sub(*ts2, *ts1);
590
591 rate = mmc_test_rate(tot, &ts);
592 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
593
594 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
595 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
596 "%u.%02u IOPS, sg_len %d)\n",
597 mmc_hostname(test->card->host), count, sectors, count,
598 sectors >> 1, (sectors & 1 ? ".5" : ""),
599 (u64)ts.tv_sec, (u32)ts.tv_nsec,
600 rate / 1000, rate / 1024, iops / 100, iops % 100,
601 test->area.sg_len);
602
603 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
604 }
605
606 /*
607 * Return the card size in sectors.
608 */
609 static unsigned int mmc_test_capacity(struct mmc_card *card)
610 {
611 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
612 return card->ext_csd.sectors;
613 else
614 return card->csd.capacity << (card->csd.read_blkbits - 9);
615 }
616
617 /*******************************************************************/
618 /* Test preparation and cleanup */
619 /*******************************************************************/
620
621 /*
622 * Fill the first couple of sectors of the card with known data
623 * so that bad reads/writes can be detected
624 */
625 static int __mmc_test_prepare(struct mmc_test_card *test, int write)
626 {
627 int ret, i;
628
629 ret = mmc_test_set_blksize(test, 512);
630 if (ret)
631 return ret;
632
633 if (write)
634 memset(test->buffer, 0xDF, 512);
635 else {
636 for (i = 0; i < 512; i++)
637 test->buffer[i] = i;
638 }
639
640 for (i = 0; i < BUFFER_SIZE / 512; i++) {
641 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
642 if (ret)
643 return ret;
644 }
645
646 return 0;
647 }
648
649 static int mmc_test_prepare_write(struct mmc_test_card *test)
650 {
651 return __mmc_test_prepare(test, 1);
652 }
653
654 static int mmc_test_prepare_read(struct mmc_test_card *test)
655 {
656 return __mmc_test_prepare(test, 0);
657 }
658
659 static int mmc_test_cleanup(struct mmc_test_card *test)
660 {
661 int ret, i;
662
663 ret = mmc_test_set_blksize(test, 512);
664 if (ret)
665 return ret;
666
667 memset(test->buffer, 0, 512);
668
669 for (i = 0; i < BUFFER_SIZE / 512; i++) {
670 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
671 if (ret)
672 return ret;
673 }
674
675 return 0;
676 }
677
678 /*******************************************************************/
679 /* Test execution helpers */
680 /*******************************************************************/
681
682 /*
683 * Modifies the mmc_request to perform the "short transfer" tests
684 */
685 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
686 struct mmc_request *mrq, int write)
687 {
688 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
689 return;
690
691 if (mrq->data->blocks > 1) {
692 mrq->cmd->opcode = write ?
693 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
694 mrq->stop = NULL;
695 } else {
696 mrq->cmd->opcode = MMC_SEND_STATUS;
697 mrq->cmd->arg = test->card->rca << 16;
698 }
699 }
700
701 /*
702 * Checks that a normal transfer didn't have any errors
703 */
704 static int mmc_test_check_result(struct mmc_test_card *test,
705 struct mmc_request *mrq)
706 {
707 int ret;
708
709 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
710 return -EINVAL;
711
712 ret = 0;
713
714 if (mrq->sbc && mrq->sbc->error)
715 ret = mrq->sbc->error;
716 if (!ret && mrq->cmd->error)
717 ret = mrq->cmd->error;
718 if (!ret && mrq->data->error)
719 ret = mrq->data->error;
720 if (!ret && mrq->stop && mrq->stop->error)
721 ret = mrq->stop->error;
722 if (!ret && mrq->data->bytes_xfered !=
723 mrq->data->blocks * mrq->data->blksz)
724 ret = RESULT_FAIL;
725
726 if (ret == -EINVAL)
727 ret = RESULT_UNSUP_HOST;
728
729 return ret;
730 }
731
732 /*
733 * Checks that a "short transfer" behaved as expected
734 */
735 static int mmc_test_check_broken_result(struct mmc_test_card *test,
736 struct mmc_request *mrq)
737 {
738 int ret;
739
740 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
741 return -EINVAL;
742
743 ret = 0;
744
745 if (!ret && mrq->cmd->error)
746 ret = mrq->cmd->error;
747 if (!ret && mrq->data->error == 0)
748 ret = RESULT_FAIL;
749 if (!ret && mrq->data->error != -ETIMEDOUT)
750 ret = mrq->data->error;
751 if (!ret && mrq->stop && mrq->stop->error)
752 ret = mrq->stop->error;
753 if (mrq->data->blocks > 1) {
754 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
755 ret = RESULT_FAIL;
756 } else {
757 if (!ret && mrq->data->bytes_xfered > 0)
758 ret = RESULT_FAIL;
759 }
760
761 if (ret == -EINVAL)
762 ret = RESULT_UNSUP_HOST;
763
764 return ret;
765 }
766
767 struct mmc_test_req {
768 struct mmc_request mrq;
769 struct mmc_command sbc;
770 struct mmc_command cmd;
771 struct mmc_command stop;
772 struct mmc_command status;
773 struct mmc_data data;
774 };
775
776 /*
777 * Tests nonblock transfer with certain parameters
778 */
779 static void mmc_test_req_reset(struct mmc_test_req *rq)
780 {
781 memset(rq, 0, sizeof(struct mmc_test_req));
782
783 rq->mrq.cmd = &rq->cmd;
784 rq->mrq.data = &rq->data;
785 rq->mrq.stop = &rq->stop;
786 }
787
788 static struct mmc_test_req *mmc_test_req_alloc(void)
789 {
790 struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
791
792 if (rq)
793 mmc_test_req_reset(rq);
794
795 return rq;
796 }
797
798 static void mmc_test_wait_done(struct mmc_request *mrq)
799 {
800 complete(&mrq->completion);
801 }
802
803 static int mmc_test_start_areq(struct mmc_test_card *test,
804 struct mmc_request *mrq,
805 struct mmc_request *prev_mrq)
806 {
807 struct mmc_host *host = test->card->host;
808 int err = 0;
809
810 if (mrq) {
811 init_completion(&mrq->completion);
812 mrq->done = mmc_test_wait_done;
813 mmc_pre_req(host, mrq);
814 }
815
816 if (prev_mrq) {
817 wait_for_completion(&prev_mrq->completion);
818 err = mmc_test_wait_busy(test);
819 if (!err)
820 err = mmc_test_check_result(test, prev_mrq);
821 }
822
823 if (!err && mrq) {
824 err = mmc_start_request(host, mrq);
825 if (err)
826 mmc_retune_release(host);
827 }
828
829 if (prev_mrq)
830 mmc_post_req(host, prev_mrq, 0);
831
832 if (err && mrq)
833 mmc_post_req(host, mrq, err);
834
835 return err;
836 }
837
838 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
839 struct scatterlist *sg, unsigned sg_len,
840 unsigned dev_addr, unsigned blocks,
841 unsigned blksz, int write, int count)
842 {
843 struct mmc_test_req *rq1, *rq2;
844 struct mmc_request *mrq, *prev_mrq;
845 int i;
846 int ret = RESULT_OK;
847
848 rq1 = mmc_test_req_alloc();
849 rq2 = mmc_test_req_alloc();
850 if (!rq1 || !rq2) {
851 ret = RESULT_FAIL;
852 goto err;
853 }
854
855 mrq = &rq1->mrq;
856 prev_mrq = NULL;
857
858 for (i = 0; i < count; i++) {
859 mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
860 mmc_test_prepare_mrq(test, mrq, sg, sg_len, dev_addr, blocks,
861 blksz, write);
862 ret = mmc_test_start_areq(test, mrq, prev_mrq);
863 if (ret)
864 goto err;
865
866 if (!prev_mrq)
867 prev_mrq = &rq2->mrq;
868
869 swap(mrq, prev_mrq);
870 dev_addr += blocks;
871 }
872
873 ret = mmc_test_start_areq(test, NULL, prev_mrq);
874 err:
875 kfree(rq1);
876 kfree(rq2);
877 return ret;
878 }
879
880 /*
881 * Tests a basic transfer with certain parameters
882 */
883 static int mmc_test_simple_transfer(struct mmc_test_card *test,
884 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
885 unsigned blocks, unsigned blksz, int write)
886 {
887 struct mmc_request mrq = {};
888 struct mmc_command cmd = {};
889 struct mmc_command stop = {};
890 struct mmc_data data = {};
891
892 mrq.cmd = &cmd;
893 mrq.data = &data;
894 mrq.stop = &stop;
895
896 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
897 blocks, blksz, write);
898
899 mmc_wait_for_req(test->card->host, &mrq);
900
901 mmc_test_wait_busy(test);
902
903 return mmc_test_check_result(test, &mrq);
904 }
905
906 /*
907 * Tests a transfer where the card will fail completely or partly
908 */
909 static int mmc_test_broken_transfer(struct mmc_test_card *test,
910 unsigned blocks, unsigned blksz, int write)
911 {
912 struct mmc_request mrq = {};
913 struct mmc_command cmd = {};
914 struct mmc_command stop = {};
915 struct mmc_data data = {};
916
917 struct scatterlist sg;
918
919 mrq.cmd = &cmd;
920 mrq.data = &data;
921 mrq.stop = &stop;
922
923 sg_init_one(&sg, test->buffer, blocks * blksz);
924
925 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
926 mmc_test_prepare_broken_mrq(test, &mrq, write);
927
928 mmc_wait_for_req(test->card->host, &mrq);
929
930 mmc_test_wait_busy(test);
931
932 return mmc_test_check_broken_result(test, &mrq);
933 }
934
935 /*
936 * Does a complete transfer test where data is also validated
937 *
938 * Note: mmc_test_prepare() must have been done before this call
939 */
940 static int mmc_test_transfer(struct mmc_test_card *test,
941 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
942 unsigned blocks, unsigned blksz, int write)
943 {
944 int ret, i;
945 unsigned long flags;
946
947 if (write) {
948 for (i = 0; i < blocks * blksz; i++)
949 test->scratch[i] = i;
950 } else {
951 memset(test->scratch, 0, BUFFER_SIZE);
952 }
953 local_irq_save(flags);
954 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
955 local_irq_restore(flags);
956
957 ret = mmc_test_set_blksize(test, blksz);
958 if (ret)
959 return ret;
960
961 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
962 blocks, blksz, write);
963 if (ret)
964 return ret;
965
966 if (write) {
967 int sectors;
968
969 ret = mmc_test_set_blksize(test, 512);
970 if (ret)
971 return ret;
972
973 sectors = (blocks * blksz + 511) / 512;
974 if ((sectors * 512) == (blocks * blksz))
975 sectors++;
976
977 if ((sectors * 512) > BUFFER_SIZE)
978 return -EINVAL;
979
980 memset(test->buffer, 0, sectors * 512);
981
982 for (i = 0; i < sectors; i++) {
983 ret = mmc_test_buffer_transfer(test,
984 test->buffer + i * 512,
985 dev_addr + i, 512, 0);
986 if (ret)
987 return ret;
988 }
989
990 for (i = 0; i < blocks * blksz; i++) {
991 if (test->buffer[i] != (u8)i)
992 return RESULT_FAIL;
993 }
994
995 for (; i < sectors * 512; i++) {
996 if (test->buffer[i] != 0xDF)
997 return RESULT_FAIL;
998 }
999 } else {
1000 local_irq_save(flags);
1001 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
1002 local_irq_restore(flags);
1003 for (i = 0; i < blocks * blksz; i++) {
1004 if (test->scratch[i] != (u8)i)
1005 return RESULT_FAIL;
1006 }
1007 }
1008
1009 return 0;
1010 }
1011
1012 /*******************************************************************/
1013 /* Tests */
1014 /*******************************************************************/
1015
1016 struct mmc_test_case {
1017 const char *name;
1018
1019 int (*prepare)(struct mmc_test_card *);
1020 int (*run)(struct mmc_test_card *);
1021 int (*cleanup)(struct mmc_test_card *);
1022 };
1023
1024 static int mmc_test_basic_write(struct mmc_test_card *test)
1025 {
1026 int ret;
1027 struct scatterlist sg;
1028
1029 ret = mmc_test_set_blksize(test, 512);
1030 if (ret)
1031 return ret;
1032
1033 sg_init_one(&sg, test->buffer, 512);
1034
1035 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1036 }
1037
1038 static int mmc_test_basic_read(struct mmc_test_card *test)
1039 {
1040 int ret;
1041 struct scatterlist sg;
1042
1043 ret = mmc_test_set_blksize(test, 512);
1044 if (ret)
1045 return ret;
1046
1047 sg_init_one(&sg, test->buffer, 512);
1048
1049 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1050 }
1051
1052 static int mmc_test_verify_write(struct mmc_test_card *test)
1053 {
1054 struct scatterlist sg;
1055
1056 sg_init_one(&sg, test->buffer, 512);
1057
1058 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1059 }
1060
1061 static int mmc_test_verify_read(struct mmc_test_card *test)
1062 {
1063 struct scatterlist sg;
1064
1065 sg_init_one(&sg, test->buffer, 512);
1066
1067 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1068 }
1069
1070 static int mmc_test_multi_write(struct mmc_test_card *test)
1071 {
1072 unsigned int size;
1073 struct scatterlist sg;
1074
1075 if (test->card->host->max_blk_count == 1)
1076 return RESULT_UNSUP_HOST;
1077
1078 size = PAGE_SIZE * 2;
1079 size = min(size, test->card->host->max_req_size);
1080 size = min(size, test->card->host->max_seg_size);
1081 size = min(size, test->card->host->max_blk_count * 512);
1082
1083 if (size < 1024)
1084 return RESULT_UNSUP_HOST;
1085
1086 sg_init_one(&sg, test->buffer, size);
1087
1088 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1089 }
1090
1091 static int mmc_test_multi_read(struct mmc_test_card *test)
1092 {
1093 unsigned int size;
1094 struct scatterlist sg;
1095
1096 if (test->card->host->max_blk_count == 1)
1097 return RESULT_UNSUP_HOST;
1098
1099 size = PAGE_SIZE * 2;
1100 size = min(size, test->card->host->max_req_size);
1101 size = min(size, test->card->host->max_seg_size);
1102 size = min(size, test->card->host->max_blk_count * 512);
1103
1104 if (size < 1024)
1105 return RESULT_UNSUP_HOST;
1106
1107 sg_init_one(&sg, test->buffer, size);
1108
1109 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1110 }
1111
1112 static int mmc_test_pow2_write(struct mmc_test_card *test)
1113 {
1114 int ret, i;
1115 struct scatterlist sg;
1116
1117 if (!test->card->csd.write_partial)
1118 return RESULT_UNSUP_CARD;
1119
1120 for (i = 1; i < 512; i <<= 1) {
1121 sg_init_one(&sg, test->buffer, i);
1122 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1123 if (ret)
1124 return ret;
1125 }
1126
1127 return 0;
1128 }
1129
1130 static int mmc_test_pow2_read(struct mmc_test_card *test)
1131 {
1132 int ret, i;
1133 struct scatterlist sg;
1134
1135 if (!test->card->csd.read_partial)
1136 return RESULT_UNSUP_CARD;
1137
1138 for (i = 1; i < 512; i <<= 1) {
1139 sg_init_one(&sg, test->buffer, i);
1140 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1141 if (ret)
1142 return ret;
1143 }
1144
1145 return 0;
1146 }
1147
1148 static int mmc_test_weird_write(struct mmc_test_card *test)
1149 {
1150 int ret, i;
1151 struct scatterlist sg;
1152
1153 if (!test->card->csd.write_partial)
1154 return RESULT_UNSUP_CARD;
1155
1156 for (i = 3; i < 512; i += 7) {
1157 sg_init_one(&sg, test->buffer, i);
1158 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1159 if (ret)
1160 return ret;
1161 }
1162
1163 return 0;
1164 }
1165
1166 static int mmc_test_weird_read(struct mmc_test_card *test)
1167 {
1168 int ret, i;
1169 struct scatterlist sg;
1170
1171 if (!test->card->csd.read_partial)
1172 return RESULT_UNSUP_CARD;
1173
1174 for (i = 3; i < 512; i += 7) {
1175 sg_init_one(&sg, test->buffer, i);
1176 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1177 if (ret)
1178 return ret;
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int mmc_test_align_write(struct mmc_test_card *test)
1185 {
1186 int ret, i;
1187 struct scatterlist sg;
1188
1189 for (i = 1; i < TEST_ALIGN_END; i++) {
1190 sg_init_one(&sg, test->buffer + i, 512);
1191 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1192 if (ret)
1193 return ret;
1194 }
1195
1196 return 0;
1197 }
1198
1199 static int mmc_test_align_read(struct mmc_test_card *test)
1200 {
1201 int ret, i;
1202 struct scatterlist sg;
1203
1204 for (i = 1; i < TEST_ALIGN_END; i++) {
1205 sg_init_one(&sg, test->buffer + i, 512);
1206 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1207 if (ret)
1208 return ret;
1209 }
1210
1211 return 0;
1212 }
1213
1214 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1215 {
1216 int ret, i;
1217 unsigned int size;
1218 struct scatterlist sg;
1219
1220 if (test->card->host->max_blk_count == 1)
1221 return RESULT_UNSUP_HOST;
1222
1223 size = PAGE_SIZE * 2;
1224 size = min(size, test->card->host->max_req_size);
1225 size = min(size, test->card->host->max_seg_size);
1226 size = min(size, test->card->host->max_blk_count * 512);
1227
1228 if (size < 1024)
1229 return RESULT_UNSUP_HOST;
1230
1231 for (i = 1; i < TEST_ALIGN_END; i++) {
1232 sg_init_one(&sg, test->buffer + i, size);
1233 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1234 if (ret)
1235 return ret;
1236 }
1237
1238 return 0;
1239 }
1240
1241 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1242 {
1243 int ret, i;
1244 unsigned int size;
1245 struct scatterlist sg;
1246
1247 if (test->card->host->max_blk_count == 1)
1248 return RESULT_UNSUP_HOST;
1249
1250 size = PAGE_SIZE * 2;
1251 size = min(size, test->card->host->max_req_size);
1252 size = min(size, test->card->host->max_seg_size);
1253 size = min(size, test->card->host->max_blk_count * 512);
1254
1255 if (size < 1024)
1256 return RESULT_UNSUP_HOST;
1257
1258 for (i = 1; i < TEST_ALIGN_END; i++) {
1259 sg_init_one(&sg, test->buffer + i, size);
1260 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1261 if (ret)
1262 return ret;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1269 {
1270 int ret;
1271
1272 ret = mmc_test_set_blksize(test, 512);
1273 if (ret)
1274 return ret;
1275
1276 return mmc_test_broken_transfer(test, 1, 512, 1);
1277 }
1278
1279 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1280 {
1281 int ret;
1282
1283 ret = mmc_test_set_blksize(test, 512);
1284 if (ret)
1285 return ret;
1286
1287 return mmc_test_broken_transfer(test, 1, 512, 0);
1288 }
1289
1290 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1291 {
1292 int ret;
1293
1294 if (test->card->host->max_blk_count == 1)
1295 return RESULT_UNSUP_HOST;
1296
1297 ret = mmc_test_set_blksize(test, 512);
1298 if (ret)
1299 return ret;
1300
1301 return mmc_test_broken_transfer(test, 2, 512, 1);
1302 }
1303
1304 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1305 {
1306 int ret;
1307
1308 if (test->card->host->max_blk_count == 1)
1309 return RESULT_UNSUP_HOST;
1310
1311 ret = mmc_test_set_blksize(test, 512);
1312 if (ret)
1313 return ret;
1314
1315 return mmc_test_broken_transfer(test, 2, 512, 0);
1316 }
1317
1318 #ifdef CONFIG_HIGHMEM
1319
1320 static int mmc_test_write_high(struct mmc_test_card *test)
1321 {
1322 struct scatterlist sg;
1323
1324 sg_init_table(&sg, 1);
1325 sg_set_page(&sg, test->highmem, 512, 0);
1326
1327 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1328 }
1329
1330 static int mmc_test_read_high(struct mmc_test_card *test)
1331 {
1332 struct scatterlist sg;
1333
1334 sg_init_table(&sg, 1);
1335 sg_set_page(&sg, test->highmem, 512, 0);
1336
1337 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1338 }
1339
1340 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1341 {
1342 unsigned int size;
1343 struct scatterlist sg;
1344
1345 if (test->card->host->max_blk_count == 1)
1346 return RESULT_UNSUP_HOST;
1347
1348 size = PAGE_SIZE * 2;
1349 size = min(size, test->card->host->max_req_size);
1350 size = min(size, test->card->host->max_seg_size);
1351 size = min(size, test->card->host->max_blk_count * 512);
1352
1353 if (size < 1024)
1354 return RESULT_UNSUP_HOST;
1355
1356 sg_init_table(&sg, 1);
1357 sg_set_page(&sg, test->highmem, size, 0);
1358
1359 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1360 }
1361
1362 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1363 {
1364 unsigned int size;
1365 struct scatterlist sg;
1366
1367 if (test->card->host->max_blk_count == 1)
1368 return RESULT_UNSUP_HOST;
1369
1370 size = PAGE_SIZE * 2;
1371 size = min(size, test->card->host->max_req_size);
1372 size = min(size, test->card->host->max_seg_size);
1373 size = min(size, test->card->host->max_blk_count * 512);
1374
1375 if (size < 1024)
1376 return RESULT_UNSUP_HOST;
1377
1378 sg_init_table(&sg, 1);
1379 sg_set_page(&sg, test->highmem, size, 0);
1380
1381 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1382 }
1383
1384 #else
1385
1386 static int mmc_test_no_highmem(struct mmc_test_card *test)
1387 {
1388 pr_info("%s: Highmem not configured - test skipped\n",
1389 mmc_hostname(test->card->host));
1390 return 0;
1391 }
1392
1393 #endif /* CONFIG_HIGHMEM */
1394
1395 /*
1396 * Map sz bytes so that it can be transferred.
1397 */
1398 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1399 int max_scatter, int min_sg_len)
1400 {
1401 struct mmc_test_area *t = &test->area;
1402 int err;
1403
1404 t->blocks = sz >> 9;
1405
1406 if (max_scatter) {
1407 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1408 t->max_segs, t->max_seg_sz,
1409 &t->sg_len);
1410 } else {
1411 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1412 t->max_seg_sz, &t->sg_len, min_sg_len);
1413 }
1414 if (err)
1415 pr_info("%s: Failed to map sg list\n",
1416 mmc_hostname(test->card->host));
1417 return err;
1418 }
1419
1420 /*
1421 * Transfer bytes mapped by mmc_test_area_map().
1422 */
1423 static int mmc_test_area_transfer(struct mmc_test_card *test,
1424 unsigned int dev_addr, int write)
1425 {
1426 struct mmc_test_area *t = &test->area;
1427
1428 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1429 t->blocks, 512, write);
1430 }
1431
1432 /*
1433 * Map and transfer bytes for multiple transfers.
1434 */
1435 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1436 unsigned int dev_addr, int write,
1437 int max_scatter, int timed, int count,
1438 bool nonblock, int min_sg_len)
1439 {
1440 struct timespec64 ts1, ts2;
1441 int ret = 0;
1442 int i;
1443 struct mmc_test_area *t = &test->area;
1444
1445 /*
1446 * In the case of a maximally scattered transfer, the maximum transfer
1447 * size is further limited by using PAGE_SIZE segments.
1448 */
1449 if (max_scatter) {
1450 struct mmc_test_area *t = &test->area;
1451 unsigned long max_tfr;
1452
1453 if (t->max_seg_sz >= PAGE_SIZE)
1454 max_tfr = t->max_segs * PAGE_SIZE;
1455 else
1456 max_tfr = t->max_segs * t->max_seg_sz;
1457 if (sz > max_tfr)
1458 sz = max_tfr;
1459 }
1460
1461 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len);
1462 if (ret)
1463 return ret;
1464
1465 if (timed)
1466 ktime_get_ts64(&ts1);
1467 if (nonblock)
1468 ret = mmc_test_nonblock_transfer(test, t->sg, t->sg_len,
1469 dev_addr, t->blocks, 512, write, count);
1470 else
1471 for (i = 0; i < count && ret == 0; i++) {
1472 ret = mmc_test_area_transfer(test, dev_addr, write);
1473 dev_addr += sz >> 9;
1474 }
1475
1476 if (ret)
1477 return ret;
1478
1479 if (timed)
1480 ktime_get_ts64(&ts2);
1481
1482 if (timed)
1483 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1484
1485 return 0;
1486 }
1487
1488 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1489 unsigned int dev_addr, int write, int max_scatter,
1490 int timed)
1491 {
1492 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1493 timed, 1, false, 0);
1494 }
1495
1496 /*
1497 * Write the test area entirely.
1498 */
1499 static int mmc_test_area_fill(struct mmc_test_card *test)
1500 {
1501 struct mmc_test_area *t = &test->area;
1502
1503 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1504 }
1505
1506 /*
1507 * Erase the test area entirely.
1508 */
1509 static int mmc_test_area_erase(struct mmc_test_card *test)
1510 {
1511 struct mmc_test_area *t = &test->area;
1512
1513 if (!mmc_can_erase(test->card))
1514 return 0;
1515
1516 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1517 MMC_ERASE_ARG);
1518 }
1519
1520 /*
1521 * Cleanup struct mmc_test_area.
1522 */
1523 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1524 {
1525 struct mmc_test_area *t = &test->area;
1526
1527 kfree(t->sg);
1528 mmc_test_free_mem(t->mem);
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * Initialize an area for testing large transfers. The test area is set to the
1535 * middle of the card because cards may have different characteristics at the
1536 * front (for FAT file system optimization). Optionally, the area is erased
1537 * (if the card supports it) which may improve write performance. Optionally,
1538 * the area is filled with data for subsequent read tests.
1539 */
1540 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1541 {
1542 struct mmc_test_area *t = &test->area;
1543 unsigned long min_sz = 64 * 1024, sz;
1544 int ret;
1545
1546 ret = mmc_test_set_blksize(test, 512);
1547 if (ret)
1548 return ret;
1549
1550 /* Make the test area size about 4MiB */
1551 sz = (unsigned long)test->card->pref_erase << 9;
1552 t->max_sz = sz;
1553 while (t->max_sz < 4 * 1024 * 1024)
1554 t->max_sz += sz;
1555 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1556 t->max_sz -= sz;
1557
1558 t->max_segs = test->card->host->max_segs;
1559 t->max_seg_sz = test->card->host->max_seg_size;
1560 t->max_seg_sz -= t->max_seg_sz % 512;
1561
1562 t->max_tfr = t->max_sz;
1563 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1564 t->max_tfr = test->card->host->max_blk_count << 9;
1565 if (t->max_tfr > test->card->host->max_req_size)
1566 t->max_tfr = test->card->host->max_req_size;
1567 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1568 t->max_tfr = t->max_segs * t->max_seg_sz;
1569
1570 /*
1571 * Try to allocate enough memory for a max. sized transfer. Less is OK
1572 * because the same memory can be mapped into the scatterlist more than
1573 * once. Also, take into account the limits imposed on scatterlist
1574 * segments by the host driver.
1575 */
1576 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1577 t->max_seg_sz);
1578 if (!t->mem)
1579 return -ENOMEM;
1580
1581 t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1582 if (!t->sg) {
1583 ret = -ENOMEM;
1584 goto out_free;
1585 }
1586
1587 t->dev_addr = mmc_test_capacity(test->card) / 2;
1588 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1589
1590 if (erase) {
1591 ret = mmc_test_area_erase(test);
1592 if (ret)
1593 goto out_free;
1594 }
1595
1596 if (fill) {
1597 ret = mmc_test_area_fill(test);
1598 if (ret)
1599 goto out_free;
1600 }
1601
1602 return 0;
1603
1604 out_free:
1605 mmc_test_area_cleanup(test);
1606 return ret;
1607 }
1608
1609 /*
1610 * Prepare for large transfers. Do not erase the test area.
1611 */
1612 static int mmc_test_area_prepare(struct mmc_test_card *test)
1613 {
1614 return mmc_test_area_init(test, 0, 0);
1615 }
1616
1617 /*
1618 * Prepare for large transfers. Do erase the test area.
1619 */
1620 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1621 {
1622 return mmc_test_area_init(test, 1, 0);
1623 }
1624
1625 /*
1626 * Prepare for large transfers. Erase and fill the test area.
1627 */
1628 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1629 {
1630 return mmc_test_area_init(test, 1, 1);
1631 }
1632
1633 /*
1634 * Test best-case performance. Best-case performance is expected from
1635 * a single large transfer.
1636 *
1637 * An additional option (max_scatter) allows the measurement of the same
1638 * transfer but with no contiguous pages in the scatter list. This tests
1639 * the efficiency of DMA to handle scattered pages.
1640 */
1641 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1642 int max_scatter)
1643 {
1644 struct mmc_test_area *t = &test->area;
1645
1646 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1647 max_scatter, 1);
1648 }
1649
1650 /*
1651 * Best-case read performance.
1652 */
1653 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1654 {
1655 return mmc_test_best_performance(test, 0, 0);
1656 }
1657
1658 /*
1659 * Best-case write performance.
1660 */
1661 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1662 {
1663 return mmc_test_best_performance(test, 1, 0);
1664 }
1665
1666 /*
1667 * Best-case read performance into scattered pages.
1668 */
1669 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1670 {
1671 return mmc_test_best_performance(test, 0, 1);
1672 }
1673
1674 /*
1675 * Best-case write performance from scattered pages.
1676 */
1677 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1678 {
1679 return mmc_test_best_performance(test, 1, 1);
1680 }
1681
1682 /*
1683 * Single read performance by transfer size.
1684 */
1685 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1686 {
1687 struct mmc_test_area *t = &test->area;
1688 unsigned long sz;
1689 unsigned int dev_addr;
1690 int ret;
1691
1692 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1693 dev_addr = t->dev_addr + (sz >> 9);
1694 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1695 if (ret)
1696 return ret;
1697 }
1698 sz = t->max_tfr;
1699 dev_addr = t->dev_addr;
1700 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1701 }
1702
1703 /*
1704 * Single write performance by transfer size.
1705 */
1706 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1707 {
1708 struct mmc_test_area *t = &test->area;
1709 unsigned long sz;
1710 unsigned int dev_addr;
1711 int ret;
1712
1713 ret = mmc_test_area_erase(test);
1714 if (ret)
1715 return ret;
1716 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1717 dev_addr = t->dev_addr + (sz >> 9);
1718 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1719 if (ret)
1720 return ret;
1721 }
1722 ret = mmc_test_area_erase(test);
1723 if (ret)
1724 return ret;
1725 sz = t->max_tfr;
1726 dev_addr = t->dev_addr;
1727 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1728 }
1729
1730 /*
1731 * Single trim performance by transfer size.
1732 */
1733 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1734 {
1735 struct mmc_test_area *t = &test->area;
1736 unsigned long sz;
1737 unsigned int dev_addr;
1738 struct timespec64 ts1, ts2;
1739 int ret;
1740
1741 if (!mmc_can_trim(test->card))
1742 return RESULT_UNSUP_CARD;
1743
1744 if (!mmc_can_erase(test->card))
1745 return RESULT_UNSUP_HOST;
1746
1747 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1748 dev_addr = t->dev_addr + (sz >> 9);
1749 ktime_get_ts64(&ts1);
1750 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1751 if (ret)
1752 return ret;
1753 ktime_get_ts64(&ts2);
1754 mmc_test_print_rate(test, sz, &ts1, &ts2);
1755 }
1756 dev_addr = t->dev_addr;
1757 ktime_get_ts64(&ts1);
1758 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1759 if (ret)
1760 return ret;
1761 ktime_get_ts64(&ts2);
1762 mmc_test_print_rate(test, sz, &ts1, &ts2);
1763 return 0;
1764 }
1765
1766 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1767 {
1768 struct mmc_test_area *t = &test->area;
1769 unsigned int dev_addr, i, cnt;
1770 struct timespec64 ts1, ts2;
1771 int ret;
1772
1773 cnt = t->max_sz / sz;
1774 dev_addr = t->dev_addr;
1775 ktime_get_ts64(&ts1);
1776 for (i = 0; i < cnt; i++) {
1777 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1778 if (ret)
1779 return ret;
1780 dev_addr += (sz >> 9);
1781 }
1782 ktime_get_ts64(&ts2);
1783 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1784 return 0;
1785 }
1786
1787 /*
1788 * Consecutive read performance by transfer size.
1789 */
1790 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1791 {
1792 struct mmc_test_area *t = &test->area;
1793 unsigned long sz;
1794 int ret;
1795
1796 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1797 ret = mmc_test_seq_read_perf(test, sz);
1798 if (ret)
1799 return ret;
1800 }
1801 sz = t->max_tfr;
1802 return mmc_test_seq_read_perf(test, sz);
1803 }
1804
1805 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1806 {
1807 struct mmc_test_area *t = &test->area;
1808 unsigned int dev_addr, i, cnt;
1809 struct timespec64 ts1, ts2;
1810 int ret;
1811
1812 ret = mmc_test_area_erase(test);
1813 if (ret)
1814 return ret;
1815 cnt = t->max_sz / sz;
1816 dev_addr = t->dev_addr;
1817 ktime_get_ts64(&ts1);
1818 for (i = 0; i < cnt; i++) {
1819 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1820 if (ret)
1821 return ret;
1822 dev_addr += (sz >> 9);
1823 }
1824 ktime_get_ts64(&ts2);
1825 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1826 return 0;
1827 }
1828
1829 /*
1830 * Consecutive write performance by transfer size.
1831 */
1832 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1833 {
1834 struct mmc_test_area *t = &test->area;
1835 unsigned long sz;
1836 int ret;
1837
1838 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1839 ret = mmc_test_seq_write_perf(test, sz);
1840 if (ret)
1841 return ret;
1842 }
1843 sz = t->max_tfr;
1844 return mmc_test_seq_write_perf(test, sz);
1845 }
1846
1847 /*
1848 * Consecutive trim performance by transfer size.
1849 */
1850 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1851 {
1852 struct mmc_test_area *t = &test->area;
1853 unsigned long sz;
1854 unsigned int dev_addr, i, cnt;
1855 struct timespec64 ts1, ts2;
1856 int ret;
1857
1858 if (!mmc_can_trim(test->card))
1859 return RESULT_UNSUP_CARD;
1860
1861 if (!mmc_can_erase(test->card))
1862 return RESULT_UNSUP_HOST;
1863
1864 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1865 ret = mmc_test_area_erase(test);
1866 if (ret)
1867 return ret;
1868 ret = mmc_test_area_fill(test);
1869 if (ret)
1870 return ret;
1871 cnt = t->max_sz / sz;
1872 dev_addr = t->dev_addr;
1873 ktime_get_ts64(&ts1);
1874 for (i = 0; i < cnt; i++) {
1875 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1876 MMC_TRIM_ARG);
1877 if (ret)
1878 return ret;
1879 dev_addr += (sz >> 9);
1880 }
1881 ktime_get_ts64(&ts2);
1882 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1883 }
1884 return 0;
1885 }
1886
1887 static unsigned int rnd_next = 1;
1888
1889 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1890 {
1891 uint64_t r;
1892
1893 rnd_next = rnd_next * 1103515245 + 12345;
1894 r = (rnd_next >> 16) & 0x7fff;
1895 return (r * rnd_cnt) >> 15;
1896 }
1897
1898 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1899 unsigned long sz)
1900 {
1901 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1902 unsigned int ssz;
1903 struct timespec64 ts1, ts2, ts;
1904 int ret;
1905
1906 ssz = sz >> 9;
1907
1908 rnd_addr = mmc_test_capacity(test->card) / 4;
1909 range1 = rnd_addr / test->card->pref_erase;
1910 range2 = range1 / ssz;
1911
1912 ktime_get_ts64(&ts1);
1913 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1914 ktime_get_ts64(&ts2);
1915 ts = timespec64_sub(ts2, ts1);
1916 if (ts.tv_sec >= 10)
1917 break;
1918 ea = mmc_test_rnd_num(range1);
1919 if (ea == last_ea)
1920 ea -= 1;
1921 last_ea = ea;
1922 dev_addr = rnd_addr + test->card->pref_erase * ea +
1923 ssz * mmc_test_rnd_num(range2);
1924 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1925 if (ret)
1926 return ret;
1927 }
1928 if (print)
1929 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1930 return 0;
1931 }
1932
1933 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1934 {
1935 struct mmc_test_area *t = &test->area;
1936 unsigned int next;
1937 unsigned long sz;
1938 int ret;
1939
1940 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1941 /*
1942 * When writing, try to get more consistent results by running
1943 * the test twice with exactly the same I/O but outputting the
1944 * results only for the 2nd run.
1945 */
1946 if (write) {
1947 next = rnd_next;
1948 ret = mmc_test_rnd_perf(test, write, 0, sz);
1949 if (ret)
1950 return ret;
1951 rnd_next = next;
1952 }
1953 ret = mmc_test_rnd_perf(test, write, 1, sz);
1954 if (ret)
1955 return ret;
1956 }
1957 sz = t->max_tfr;
1958 if (write) {
1959 next = rnd_next;
1960 ret = mmc_test_rnd_perf(test, write, 0, sz);
1961 if (ret)
1962 return ret;
1963 rnd_next = next;
1964 }
1965 return mmc_test_rnd_perf(test, write, 1, sz);
1966 }
1967
1968 /*
1969 * Random read performance by transfer size.
1970 */
1971 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1972 {
1973 return mmc_test_random_perf(test, 0);
1974 }
1975
1976 /*
1977 * Random write performance by transfer size.
1978 */
1979 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1980 {
1981 return mmc_test_random_perf(test, 1);
1982 }
1983
1984 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1985 unsigned int tot_sz, int max_scatter)
1986 {
1987 struct mmc_test_area *t = &test->area;
1988 unsigned int dev_addr, i, cnt, sz, ssz;
1989 struct timespec64 ts1, ts2;
1990 int ret;
1991
1992 sz = t->max_tfr;
1993
1994 /*
1995 * In the case of a maximally scattered transfer, the maximum transfer
1996 * size is further limited by using PAGE_SIZE segments.
1997 */
1998 if (max_scatter) {
1999 unsigned long max_tfr;
2000
2001 if (t->max_seg_sz >= PAGE_SIZE)
2002 max_tfr = t->max_segs * PAGE_SIZE;
2003 else
2004 max_tfr = t->max_segs * t->max_seg_sz;
2005 if (sz > max_tfr)
2006 sz = max_tfr;
2007 }
2008
2009 ssz = sz >> 9;
2010 dev_addr = mmc_test_capacity(test->card) / 4;
2011 if (tot_sz > dev_addr << 9)
2012 tot_sz = dev_addr << 9;
2013 cnt = tot_sz / sz;
2014 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2015
2016 ktime_get_ts64(&ts1);
2017 for (i = 0; i < cnt; i++) {
2018 ret = mmc_test_area_io(test, sz, dev_addr, write,
2019 max_scatter, 0);
2020 if (ret)
2021 return ret;
2022 dev_addr += ssz;
2023 }
2024 ktime_get_ts64(&ts2);
2025
2026 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2027
2028 return 0;
2029 }
2030
2031 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2032 {
2033 int ret, i;
2034
2035 for (i = 0; i < 10; i++) {
2036 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2037 if (ret)
2038 return ret;
2039 }
2040 for (i = 0; i < 5; i++) {
2041 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2042 if (ret)
2043 return ret;
2044 }
2045 for (i = 0; i < 3; i++) {
2046 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2047 if (ret)
2048 return ret;
2049 }
2050
2051 return ret;
2052 }
2053
2054 /*
2055 * Large sequential read performance.
2056 */
2057 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2058 {
2059 return mmc_test_large_seq_perf(test, 0);
2060 }
2061
2062 /*
2063 * Large sequential write performance.
2064 */
2065 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2066 {
2067 return mmc_test_large_seq_perf(test, 1);
2068 }
2069
2070 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2071 struct mmc_test_multiple_rw *tdata,
2072 unsigned int reqsize, unsigned int size,
2073 int min_sg_len)
2074 {
2075 unsigned int dev_addr;
2076 struct mmc_test_area *t = &test->area;
2077 int ret = 0;
2078
2079 /* Set up test area */
2080 if (size > mmc_test_capacity(test->card) / 2 * 512)
2081 size = mmc_test_capacity(test->card) / 2 * 512;
2082 if (reqsize > t->max_tfr)
2083 reqsize = t->max_tfr;
2084 dev_addr = mmc_test_capacity(test->card) / 4;
2085 if ((dev_addr & 0xffff0000))
2086 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2087 else
2088 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2089 if (!dev_addr)
2090 goto err;
2091
2092 if (reqsize > size)
2093 return 0;
2094
2095 /* prepare test area */
2096 if (mmc_can_erase(test->card) &&
2097 tdata->prepare & MMC_TEST_PREP_ERASE) {
2098 ret = mmc_erase(test->card, dev_addr,
2099 size / 512, MMC_SECURE_ERASE_ARG);
2100 if (ret)
2101 ret = mmc_erase(test->card, dev_addr,
2102 size / 512, MMC_ERASE_ARG);
2103 if (ret)
2104 goto err;
2105 }
2106
2107 /* Run test */
2108 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2109 tdata->do_write, 0, 1, size / reqsize,
2110 tdata->do_nonblock_req, min_sg_len);
2111 if (ret)
2112 goto err;
2113
2114 return ret;
2115 err:
2116 pr_info("[%s] error\n", __func__);
2117 return ret;
2118 }
2119
2120 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2121 struct mmc_test_multiple_rw *rw)
2122 {
2123 int ret = 0;
2124 int i;
2125 void *pre_req = test->card->host->ops->pre_req;
2126 void *post_req = test->card->host->ops->post_req;
2127
2128 if (rw->do_nonblock_req &&
2129 ((!pre_req && post_req) || (pre_req && !post_req))) {
2130 pr_info("error: only one of pre/post is defined\n");
2131 return -EINVAL;
2132 }
2133
2134 for (i = 0 ; i < rw->len && ret == 0; i++) {
2135 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2136 if (ret)
2137 break;
2138 }
2139 return ret;
2140 }
2141
2142 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2143 struct mmc_test_multiple_rw *rw)
2144 {
2145 int ret = 0;
2146 int i;
2147
2148 for (i = 0 ; i < rw->len && ret == 0; i++) {
2149 ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2150 rw->sg_len[i]);
2151 if (ret)
2152 break;
2153 }
2154 return ret;
2155 }
2156
2157 /*
2158 * Multiple blocking write 4k to 4 MB chunks
2159 */
2160 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2161 {
2162 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2163 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2164 struct mmc_test_multiple_rw test_data = {
2165 .bs = bs,
2166 .size = TEST_AREA_MAX_SIZE,
2167 .len = ARRAY_SIZE(bs),
2168 .do_write = true,
2169 .do_nonblock_req = false,
2170 .prepare = MMC_TEST_PREP_ERASE,
2171 };
2172
2173 return mmc_test_rw_multiple_size(test, &test_data);
2174 };
2175
2176 /*
2177 * Multiple non-blocking write 4k to 4 MB chunks
2178 */
2179 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2180 {
2181 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2182 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2183 struct mmc_test_multiple_rw test_data = {
2184 .bs = bs,
2185 .size = TEST_AREA_MAX_SIZE,
2186 .len = ARRAY_SIZE(bs),
2187 .do_write = true,
2188 .do_nonblock_req = true,
2189 .prepare = MMC_TEST_PREP_ERASE,
2190 };
2191
2192 return mmc_test_rw_multiple_size(test, &test_data);
2193 }
2194
2195 /*
2196 * Multiple blocking read 4k to 4 MB chunks
2197 */
2198 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2199 {
2200 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2201 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2202 struct mmc_test_multiple_rw test_data = {
2203 .bs = bs,
2204 .size = TEST_AREA_MAX_SIZE,
2205 .len = ARRAY_SIZE(bs),
2206 .do_write = false,
2207 .do_nonblock_req = false,
2208 .prepare = MMC_TEST_PREP_NONE,
2209 };
2210
2211 return mmc_test_rw_multiple_size(test, &test_data);
2212 }
2213
2214 /*
2215 * Multiple non-blocking read 4k to 4 MB chunks
2216 */
2217 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2218 {
2219 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2220 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2221 struct mmc_test_multiple_rw test_data = {
2222 .bs = bs,
2223 .size = TEST_AREA_MAX_SIZE,
2224 .len = ARRAY_SIZE(bs),
2225 .do_write = false,
2226 .do_nonblock_req = true,
2227 .prepare = MMC_TEST_PREP_NONE,
2228 };
2229
2230 return mmc_test_rw_multiple_size(test, &test_data);
2231 }
2232
2233 /*
2234 * Multiple blocking write 1 to 512 sg elements
2235 */
2236 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2237 {
2238 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2239 1 << 7, 1 << 8, 1 << 9};
2240 struct mmc_test_multiple_rw test_data = {
2241 .sg_len = sg_len,
2242 .size = TEST_AREA_MAX_SIZE,
2243 .len = ARRAY_SIZE(sg_len),
2244 .do_write = true,
2245 .do_nonblock_req = false,
2246 .prepare = MMC_TEST_PREP_ERASE,
2247 };
2248
2249 return mmc_test_rw_multiple_sg_len(test, &test_data);
2250 };
2251
2252 /*
2253 * Multiple non-blocking write 1 to 512 sg elements
2254 */
2255 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2256 {
2257 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2258 1 << 7, 1 << 8, 1 << 9};
2259 struct mmc_test_multiple_rw test_data = {
2260 .sg_len = sg_len,
2261 .size = TEST_AREA_MAX_SIZE,
2262 .len = ARRAY_SIZE(sg_len),
2263 .do_write = true,
2264 .do_nonblock_req = true,
2265 .prepare = MMC_TEST_PREP_ERASE,
2266 };
2267
2268 return mmc_test_rw_multiple_sg_len(test, &test_data);
2269 }
2270
2271 /*
2272 * Multiple blocking read 1 to 512 sg elements
2273 */
2274 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2275 {
2276 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2277 1 << 7, 1 << 8, 1 << 9};
2278 struct mmc_test_multiple_rw test_data = {
2279 .sg_len = sg_len,
2280 .size = TEST_AREA_MAX_SIZE,
2281 .len = ARRAY_SIZE(sg_len),
2282 .do_write = false,
2283 .do_nonblock_req = false,
2284 .prepare = MMC_TEST_PREP_NONE,
2285 };
2286
2287 return mmc_test_rw_multiple_sg_len(test, &test_data);
2288 }
2289
2290 /*
2291 * Multiple non-blocking read 1 to 512 sg elements
2292 */
2293 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2294 {
2295 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2296 1 << 7, 1 << 8, 1 << 9};
2297 struct mmc_test_multiple_rw test_data = {
2298 .sg_len = sg_len,
2299 .size = TEST_AREA_MAX_SIZE,
2300 .len = ARRAY_SIZE(sg_len),
2301 .do_write = false,
2302 .do_nonblock_req = true,
2303 .prepare = MMC_TEST_PREP_NONE,
2304 };
2305
2306 return mmc_test_rw_multiple_sg_len(test, &test_data);
2307 }
2308
2309 /*
2310 * eMMC hardware reset.
2311 */
2312 static int mmc_test_reset(struct mmc_test_card *test)
2313 {
2314 struct mmc_card *card = test->card;
2315 struct mmc_host *host = card->host;
2316 int err;
2317
2318 err = mmc_hw_reset(host);
2319 if (!err) {
2320 /*
2321 * Reset will re-enable the card's command queue, but tests
2322 * expect it to be disabled.
2323 */
2324 if (card->ext_csd.cmdq_en)
2325 mmc_cmdq_disable(card);
2326 return RESULT_OK;
2327 } else if (err == -EOPNOTSUPP) {
2328 return RESULT_UNSUP_HOST;
2329 }
2330
2331 return RESULT_FAIL;
2332 }
2333
2334 static int mmc_test_send_status(struct mmc_test_card *test,
2335 struct mmc_command *cmd)
2336 {
2337 memset(cmd, 0, sizeof(*cmd));
2338
2339 cmd->opcode = MMC_SEND_STATUS;
2340 if (!mmc_host_is_spi(test->card->host))
2341 cmd->arg = test->card->rca << 16;
2342 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2343
2344 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2345 }
2346
2347 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2348 unsigned int dev_addr, int use_sbc,
2349 int repeat_cmd, int write, int use_areq)
2350 {
2351 struct mmc_test_req *rq = mmc_test_req_alloc();
2352 struct mmc_host *host = test->card->host;
2353 struct mmc_test_area *t = &test->area;
2354 struct mmc_request *mrq;
2355 unsigned long timeout;
2356 bool expired = false;
2357 int ret = 0, cmd_ret;
2358 u32 status = 0;
2359 int count = 0;
2360
2361 if (!rq)
2362 return -ENOMEM;
2363
2364 mrq = &rq->mrq;
2365 if (use_sbc)
2366 mrq->sbc = &rq->sbc;
2367 mrq->cap_cmd_during_tfr = true;
2368
2369 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2370 512, write);
2371
2372 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2373 ret = mmc_host_cmd23(host) ?
2374 RESULT_UNSUP_CARD :
2375 RESULT_UNSUP_HOST;
2376 goto out_free;
2377 }
2378
2379 /* Start ongoing data request */
2380 if (use_areq) {
2381 ret = mmc_test_start_areq(test, mrq, NULL);
2382 if (ret)
2383 goto out_free;
2384 } else {
2385 mmc_wait_for_req(host, mrq);
2386 }
2387
2388 timeout = jiffies + msecs_to_jiffies(3000);
2389 do {
2390 count += 1;
2391
2392 /* Send status command while data transfer in progress */
2393 cmd_ret = mmc_test_send_status(test, &rq->status);
2394 if (cmd_ret)
2395 break;
2396
2397 status = rq->status.resp[0];
2398 if (status & R1_ERROR) {
2399 cmd_ret = -EIO;
2400 break;
2401 }
2402
2403 if (mmc_is_req_done(host, mrq))
2404 break;
2405
2406 expired = time_after(jiffies, timeout);
2407 if (expired) {
2408 pr_info("%s: timeout waiting for Tran state status %#x\n",
2409 mmc_hostname(host), status);
2410 cmd_ret = -ETIMEDOUT;
2411 break;
2412 }
2413 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2414
2415 /* Wait for data request to complete */
2416 if (use_areq) {
2417 ret = mmc_test_start_areq(test, NULL, mrq);
2418 } else {
2419 mmc_wait_for_req_done(test->card->host, mrq);
2420 }
2421
2422 /*
2423 * For cap_cmd_during_tfr request, upper layer must send stop if
2424 * required.
2425 */
2426 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2427 if (ret)
2428 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2429 else
2430 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2431 }
2432
2433 if (ret)
2434 goto out_free;
2435
2436 if (cmd_ret) {
2437 pr_info("%s: Send Status failed: status %#x, error %d\n",
2438 mmc_hostname(test->card->host), status, cmd_ret);
2439 }
2440
2441 ret = mmc_test_check_result(test, mrq);
2442 if (ret)
2443 goto out_free;
2444
2445 ret = mmc_test_wait_busy(test);
2446 if (ret)
2447 goto out_free;
2448
2449 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2450 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2451 mmc_hostname(test->card->host), count, t->blocks);
2452
2453 if (cmd_ret)
2454 ret = cmd_ret;
2455 out_free:
2456 kfree(rq);
2457
2458 return ret;
2459 }
2460
2461 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2462 unsigned long sz, int use_sbc, int write,
2463 int use_areq)
2464 {
2465 struct mmc_test_area *t = &test->area;
2466 int ret;
2467
2468 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2469 return RESULT_UNSUP_HOST;
2470
2471 ret = mmc_test_area_map(test, sz, 0, 0);
2472 if (ret)
2473 return ret;
2474
2475 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2476 use_areq);
2477 if (ret)
2478 return ret;
2479
2480 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2481 use_areq);
2482 }
2483
2484 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2485 int write, int use_areq)
2486 {
2487 struct mmc_test_area *t = &test->area;
2488 unsigned long sz;
2489 int ret;
2490
2491 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2492 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2493 use_areq);
2494 if (ret)
2495 return ret;
2496 }
2497 return 0;
2498 }
2499
2500 /*
2501 * Commands during read - no Set Block Count (CMD23).
2502 */
2503 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2504 {
2505 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2506 }
2507
2508 /*
2509 * Commands during write - no Set Block Count (CMD23).
2510 */
2511 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2512 {
2513 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2514 }
2515
2516 /*
2517 * Commands during read - use Set Block Count (CMD23).
2518 */
2519 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2520 {
2521 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2522 }
2523
2524 /*
2525 * Commands during write - use Set Block Count (CMD23).
2526 */
2527 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2528 {
2529 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2530 }
2531
2532 /*
2533 * Commands during non-blocking read - use Set Block Count (CMD23).
2534 */
2535 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2536 {
2537 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2538 }
2539
2540 /*
2541 * Commands during non-blocking write - use Set Block Count (CMD23).
2542 */
2543 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2544 {
2545 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2546 }
2547
2548 static const struct mmc_test_case mmc_test_cases[] = {
2549 {
2550 .name = "Basic write (no data verification)",
2551 .run = mmc_test_basic_write,
2552 },
2553
2554 {
2555 .name = "Basic read (no data verification)",
2556 .run = mmc_test_basic_read,
2557 },
2558
2559 {
2560 .name = "Basic write (with data verification)",
2561 .prepare = mmc_test_prepare_write,
2562 .run = mmc_test_verify_write,
2563 .cleanup = mmc_test_cleanup,
2564 },
2565
2566 {
2567 .name = "Basic read (with data verification)",
2568 .prepare = mmc_test_prepare_read,
2569 .run = mmc_test_verify_read,
2570 .cleanup = mmc_test_cleanup,
2571 },
2572
2573 {
2574 .name = "Multi-block write",
2575 .prepare = mmc_test_prepare_write,
2576 .run = mmc_test_multi_write,
2577 .cleanup = mmc_test_cleanup,
2578 },
2579
2580 {
2581 .name = "Multi-block read",
2582 .prepare = mmc_test_prepare_read,
2583 .run = mmc_test_multi_read,
2584 .cleanup = mmc_test_cleanup,
2585 },
2586
2587 {
2588 .name = "Power of two block writes",
2589 .prepare = mmc_test_prepare_write,
2590 .run = mmc_test_pow2_write,
2591 .cleanup = mmc_test_cleanup,
2592 },
2593
2594 {
2595 .name = "Power of two block reads",
2596 .prepare = mmc_test_prepare_read,
2597 .run = mmc_test_pow2_read,
2598 .cleanup = mmc_test_cleanup,
2599 },
2600
2601 {
2602 .name = "Weird sized block writes",
2603 .prepare = mmc_test_prepare_write,
2604 .run = mmc_test_weird_write,
2605 .cleanup = mmc_test_cleanup,
2606 },
2607
2608 {
2609 .name = "Weird sized block reads",
2610 .prepare = mmc_test_prepare_read,
2611 .run = mmc_test_weird_read,
2612 .cleanup = mmc_test_cleanup,
2613 },
2614
2615 {
2616 .name = "Badly aligned write",
2617 .prepare = mmc_test_prepare_write,
2618 .run = mmc_test_align_write,
2619 .cleanup = mmc_test_cleanup,
2620 },
2621
2622 {
2623 .name = "Badly aligned read",
2624 .prepare = mmc_test_prepare_read,
2625 .run = mmc_test_align_read,
2626 .cleanup = mmc_test_cleanup,
2627 },
2628
2629 {
2630 .name = "Badly aligned multi-block write",
2631 .prepare = mmc_test_prepare_write,
2632 .run = mmc_test_align_multi_write,
2633 .cleanup = mmc_test_cleanup,
2634 },
2635
2636 {
2637 .name = "Badly aligned multi-block read",
2638 .prepare = mmc_test_prepare_read,
2639 .run = mmc_test_align_multi_read,
2640 .cleanup = mmc_test_cleanup,
2641 },
2642
2643 {
2644 .name = "Correct xfer_size at write (start failure)",
2645 .run = mmc_test_xfersize_write,
2646 },
2647
2648 {
2649 .name = "Correct xfer_size at read (start failure)",
2650 .run = mmc_test_xfersize_read,
2651 },
2652
2653 {
2654 .name = "Correct xfer_size at write (midway failure)",
2655 .run = mmc_test_multi_xfersize_write,
2656 },
2657
2658 {
2659 .name = "Correct xfer_size at read (midway failure)",
2660 .run = mmc_test_multi_xfersize_read,
2661 },
2662
2663 #ifdef CONFIG_HIGHMEM
2664
2665 {
2666 .name = "Highmem write",
2667 .prepare = mmc_test_prepare_write,
2668 .run = mmc_test_write_high,
2669 .cleanup = mmc_test_cleanup,
2670 },
2671
2672 {
2673 .name = "Highmem read",
2674 .prepare = mmc_test_prepare_read,
2675 .run = mmc_test_read_high,
2676 .cleanup = mmc_test_cleanup,
2677 },
2678
2679 {
2680 .name = "Multi-block highmem write",
2681 .prepare = mmc_test_prepare_write,
2682 .run = mmc_test_multi_write_high,
2683 .cleanup = mmc_test_cleanup,
2684 },
2685
2686 {
2687 .name = "Multi-block highmem read",
2688 .prepare = mmc_test_prepare_read,
2689 .run = mmc_test_multi_read_high,
2690 .cleanup = mmc_test_cleanup,
2691 },
2692
2693 #else
2694
2695 {
2696 .name = "Highmem write",
2697 .run = mmc_test_no_highmem,
2698 },
2699
2700 {
2701 .name = "Highmem read",
2702 .run = mmc_test_no_highmem,
2703 },
2704
2705 {
2706 .name = "Multi-block highmem write",
2707 .run = mmc_test_no_highmem,
2708 },
2709
2710 {
2711 .name = "Multi-block highmem read",
2712 .run = mmc_test_no_highmem,
2713 },
2714
2715 #endif /* CONFIG_HIGHMEM */
2716
2717 {
2718 .name = "Best-case read performance",
2719 .prepare = mmc_test_area_prepare_fill,
2720 .run = mmc_test_best_read_performance,
2721 .cleanup = mmc_test_area_cleanup,
2722 },
2723
2724 {
2725 .name = "Best-case write performance",
2726 .prepare = mmc_test_area_prepare_erase,
2727 .run = mmc_test_best_write_performance,
2728 .cleanup = mmc_test_area_cleanup,
2729 },
2730
2731 {
2732 .name = "Best-case read performance into scattered pages",
2733 .prepare = mmc_test_area_prepare_fill,
2734 .run = mmc_test_best_read_perf_max_scatter,
2735 .cleanup = mmc_test_area_cleanup,
2736 },
2737
2738 {
2739 .name = "Best-case write performance from scattered pages",
2740 .prepare = mmc_test_area_prepare_erase,
2741 .run = mmc_test_best_write_perf_max_scatter,
2742 .cleanup = mmc_test_area_cleanup,
2743 },
2744
2745 {
2746 .name = "Single read performance by transfer size",
2747 .prepare = mmc_test_area_prepare_fill,
2748 .run = mmc_test_profile_read_perf,
2749 .cleanup = mmc_test_area_cleanup,
2750 },
2751
2752 {
2753 .name = "Single write performance by transfer size",
2754 .prepare = mmc_test_area_prepare,
2755 .run = mmc_test_profile_write_perf,
2756 .cleanup = mmc_test_area_cleanup,
2757 },
2758
2759 {
2760 .name = "Single trim performance by transfer size",
2761 .prepare = mmc_test_area_prepare_fill,
2762 .run = mmc_test_profile_trim_perf,
2763 .cleanup = mmc_test_area_cleanup,
2764 },
2765
2766 {
2767 .name = "Consecutive read performance by transfer size",
2768 .prepare = mmc_test_area_prepare_fill,
2769 .run = mmc_test_profile_seq_read_perf,
2770 .cleanup = mmc_test_area_cleanup,
2771 },
2772
2773 {
2774 .name = "Consecutive write performance by transfer size",
2775 .prepare = mmc_test_area_prepare,
2776 .run = mmc_test_profile_seq_write_perf,
2777 .cleanup = mmc_test_area_cleanup,
2778 },
2779
2780 {
2781 .name = "Consecutive trim performance by transfer size",
2782 .prepare = mmc_test_area_prepare,
2783 .run = mmc_test_profile_seq_trim_perf,
2784 .cleanup = mmc_test_area_cleanup,
2785 },
2786
2787 {
2788 .name = "Random read performance by transfer size",
2789 .prepare = mmc_test_area_prepare,
2790 .run = mmc_test_random_read_perf,
2791 .cleanup = mmc_test_area_cleanup,
2792 },
2793
2794 {
2795 .name = "Random write performance by transfer size",
2796 .prepare = mmc_test_area_prepare,
2797 .run = mmc_test_random_write_perf,
2798 .cleanup = mmc_test_area_cleanup,
2799 },
2800
2801 {
2802 .name = "Large sequential read into scattered pages",
2803 .prepare = mmc_test_area_prepare,
2804 .run = mmc_test_large_seq_read_perf,
2805 .cleanup = mmc_test_area_cleanup,
2806 },
2807
2808 {
2809 .name = "Large sequential write from scattered pages",
2810 .prepare = mmc_test_area_prepare,
2811 .run = mmc_test_large_seq_write_perf,
2812 .cleanup = mmc_test_area_cleanup,
2813 },
2814
2815 {
2816 .name = "Write performance with blocking req 4k to 4MB",
2817 .prepare = mmc_test_area_prepare,
2818 .run = mmc_test_profile_mult_write_blocking_perf,
2819 .cleanup = mmc_test_area_cleanup,
2820 },
2821
2822 {
2823 .name = "Write performance with non-blocking req 4k to 4MB",
2824 .prepare = mmc_test_area_prepare,
2825 .run = mmc_test_profile_mult_write_nonblock_perf,
2826 .cleanup = mmc_test_area_cleanup,
2827 },
2828
2829 {
2830 .name = "Read performance with blocking req 4k to 4MB",
2831 .prepare = mmc_test_area_prepare,
2832 .run = mmc_test_profile_mult_read_blocking_perf,
2833 .cleanup = mmc_test_area_cleanup,
2834 },
2835
2836 {
2837 .name = "Read performance with non-blocking req 4k to 4MB",
2838 .prepare = mmc_test_area_prepare,
2839 .run = mmc_test_profile_mult_read_nonblock_perf,
2840 .cleanup = mmc_test_area_cleanup,
2841 },
2842
2843 {
2844 .name = "Write performance blocking req 1 to 512 sg elems",
2845 .prepare = mmc_test_area_prepare,
2846 .run = mmc_test_profile_sglen_wr_blocking_perf,
2847 .cleanup = mmc_test_area_cleanup,
2848 },
2849
2850 {
2851 .name = "Write performance non-blocking req 1 to 512 sg elems",
2852 .prepare = mmc_test_area_prepare,
2853 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2854 .cleanup = mmc_test_area_cleanup,
2855 },
2856
2857 {
2858 .name = "Read performance blocking req 1 to 512 sg elems",
2859 .prepare = mmc_test_area_prepare,
2860 .run = mmc_test_profile_sglen_r_blocking_perf,
2861 .cleanup = mmc_test_area_cleanup,
2862 },
2863
2864 {
2865 .name = "Read performance non-blocking req 1 to 512 sg elems",
2866 .prepare = mmc_test_area_prepare,
2867 .run = mmc_test_profile_sglen_r_nonblock_perf,
2868 .cleanup = mmc_test_area_cleanup,
2869 },
2870
2871 {
2872 .name = "Reset test",
2873 .run = mmc_test_reset,
2874 },
2875
2876 {
2877 .name = "Commands during read - no Set Block Count (CMD23)",
2878 .prepare = mmc_test_area_prepare,
2879 .run = mmc_test_cmds_during_read,
2880 .cleanup = mmc_test_area_cleanup,
2881 },
2882
2883 {
2884 .name = "Commands during write - no Set Block Count (CMD23)",
2885 .prepare = mmc_test_area_prepare,
2886 .run = mmc_test_cmds_during_write,
2887 .cleanup = mmc_test_area_cleanup,
2888 },
2889
2890 {
2891 .name = "Commands during read - use Set Block Count (CMD23)",
2892 .prepare = mmc_test_area_prepare,
2893 .run = mmc_test_cmds_during_read_cmd23,
2894 .cleanup = mmc_test_area_cleanup,
2895 },
2896
2897 {
2898 .name = "Commands during write - use Set Block Count (CMD23)",
2899 .prepare = mmc_test_area_prepare,
2900 .run = mmc_test_cmds_during_write_cmd23,
2901 .cleanup = mmc_test_area_cleanup,
2902 },
2903
2904 {
2905 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2906 .prepare = mmc_test_area_prepare,
2907 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2908 .cleanup = mmc_test_area_cleanup,
2909 },
2910
2911 {
2912 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2913 .prepare = mmc_test_area_prepare,
2914 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2915 .cleanup = mmc_test_area_cleanup,
2916 },
2917 };
2918
2919 static DEFINE_MUTEX(mmc_test_lock);
2920
2921 static LIST_HEAD(mmc_test_result);
2922
2923 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2924 {
2925 int i, ret;
2926
2927 pr_info("%s: Starting tests of card %s...\n",
2928 mmc_hostname(test->card->host), mmc_card_id(test->card));
2929
2930 mmc_claim_host(test->card->host);
2931
2932 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2933 struct mmc_test_general_result *gr;
2934
2935 if (testcase && ((i + 1) != testcase))
2936 continue;
2937
2938 pr_info("%s: Test case %d. %s...\n",
2939 mmc_hostname(test->card->host), i + 1,
2940 mmc_test_cases[i].name);
2941
2942 if (mmc_test_cases[i].prepare) {
2943 ret = mmc_test_cases[i].prepare(test);
2944 if (ret) {
2945 pr_info("%s: Result: Prepare stage failed! (%d)\n",
2946 mmc_hostname(test->card->host),
2947 ret);
2948 continue;
2949 }
2950 }
2951
2952 gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2953 if (gr) {
2954 INIT_LIST_HEAD(&gr->tr_lst);
2955
2956 /* Assign data what we know already */
2957 gr->card = test->card;
2958 gr->testcase = i;
2959
2960 /* Append container to global one */
2961 list_add_tail(&gr->link, &mmc_test_result);
2962
2963 /*
2964 * Save the pointer to created container in our private
2965 * structure.
2966 */
2967 test->gr = gr;
2968 }
2969
2970 ret = mmc_test_cases[i].run(test);
2971 switch (ret) {
2972 case RESULT_OK:
2973 pr_info("%s: Result: OK\n",
2974 mmc_hostname(test->card->host));
2975 break;
2976 case RESULT_FAIL:
2977 pr_info("%s: Result: FAILED\n",
2978 mmc_hostname(test->card->host));
2979 break;
2980 case RESULT_UNSUP_HOST:
2981 pr_info("%s: Result: UNSUPPORTED (by host)\n",
2982 mmc_hostname(test->card->host));
2983 break;
2984 case RESULT_UNSUP_CARD:
2985 pr_info("%s: Result: UNSUPPORTED (by card)\n",
2986 mmc_hostname(test->card->host));
2987 break;
2988 default:
2989 pr_info("%s: Result: ERROR (%d)\n",
2990 mmc_hostname(test->card->host), ret);
2991 }
2992
2993 /* Save the result */
2994 if (gr)
2995 gr->result = ret;
2996
2997 if (mmc_test_cases[i].cleanup) {
2998 ret = mmc_test_cases[i].cleanup(test);
2999 if (ret) {
3000 pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3001 mmc_hostname(test->card->host),
3002 ret);
3003 }
3004 }
3005 }
3006
3007 mmc_release_host(test->card->host);
3008
3009 pr_info("%s: Tests completed.\n",
3010 mmc_hostname(test->card->host));
3011 }
3012
3013 static void mmc_test_free_result(struct mmc_card *card)
3014 {
3015 struct mmc_test_general_result *gr, *grs;
3016
3017 mutex_lock(&mmc_test_lock);
3018
3019 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3020 struct mmc_test_transfer_result *tr, *trs;
3021
3022 if (card && gr->card != card)
3023 continue;
3024
3025 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3026 list_del(&tr->link);
3027 kfree(tr);
3028 }
3029
3030 list_del(&gr->link);
3031 kfree(gr);
3032 }
3033
3034 mutex_unlock(&mmc_test_lock);
3035 }
3036
3037 static LIST_HEAD(mmc_test_file_test);
3038
3039 static int mtf_test_show(struct seq_file *sf, void *data)
3040 {
3041 struct mmc_card *card = (struct mmc_card *)sf->private;
3042 struct mmc_test_general_result *gr;
3043
3044 mutex_lock(&mmc_test_lock);
3045
3046 list_for_each_entry(gr, &mmc_test_result, link) {
3047 struct mmc_test_transfer_result *tr;
3048
3049 if (gr->card != card)
3050 continue;
3051
3052 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3053
3054 list_for_each_entry(tr, &gr->tr_lst, link) {
3055 seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3056 tr->count, tr->sectors,
3057 (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3058 tr->rate, tr->iops / 100, tr->iops % 100);
3059 }
3060 }
3061
3062 mutex_unlock(&mmc_test_lock);
3063
3064 return 0;
3065 }
3066
3067 static int mtf_test_open(struct inode *inode, struct file *file)
3068 {
3069 return single_open(file, mtf_test_show, inode->i_private);
3070 }
3071
3072 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3073 size_t count, loff_t *pos)
3074 {
3075 struct seq_file *sf = (struct seq_file *)file->private_data;
3076 struct mmc_card *card = (struct mmc_card *)sf->private;
3077 struct mmc_test_card *test;
3078 long testcase;
3079 int ret;
3080
3081 ret = kstrtol_from_user(buf, count, 10, &testcase);
3082 if (ret)
3083 return ret;
3084
3085 test = kzalloc(sizeof(*test), GFP_KERNEL);
3086 if (!test)
3087 return -ENOMEM;
3088
3089 /*
3090 * Remove all test cases associated with given card. Thus we have only
3091 * actual data of the last run.
3092 */
3093 mmc_test_free_result(card);
3094
3095 test->card = card;
3096
3097 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3098 #ifdef CONFIG_HIGHMEM
3099 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3100 #endif
3101
3102 #ifdef CONFIG_HIGHMEM
3103 if (test->buffer && test->highmem) {
3104 #else
3105 if (test->buffer) {
3106 #endif
3107 mutex_lock(&mmc_test_lock);
3108 mmc_test_run(test, testcase);
3109 mutex_unlock(&mmc_test_lock);
3110 }
3111
3112 #ifdef CONFIG_HIGHMEM
3113 __free_pages(test->highmem, BUFFER_ORDER);
3114 #endif
3115 kfree(test->buffer);
3116 kfree(test);
3117
3118 return count;
3119 }
3120
3121 static const struct file_operations mmc_test_fops_test = {
3122 .open = mtf_test_open,
3123 .read = seq_read,
3124 .write = mtf_test_write,
3125 .llseek = seq_lseek,
3126 .release = single_release,
3127 };
3128
3129 static int mtf_testlist_show(struct seq_file *sf, void *data)
3130 {
3131 int i;
3132
3133 mutex_lock(&mmc_test_lock);
3134
3135 seq_puts(sf, "0:\tRun all tests\n");
3136 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3137 seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3138
3139 mutex_unlock(&mmc_test_lock);
3140
3141 return 0;
3142 }
3143
3144 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3145
3146 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3147 {
3148 struct mmc_test_dbgfs_file *df, *dfs;
3149
3150 mutex_lock(&mmc_test_lock);
3151
3152 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3153 if (card && df->card != card)
3154 continue;
3155 debugfs_remove(df->file);
3156 list_del(&df->link);
3157 kfree(df);
3158 }
3159
3160 mutex_unlock(&mmc_test_lock);
3161 }
3162
3163 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3164 const char *name, umode_t mode, const struct file_operations *fops)
3165 {
3166 struct dentry *file = NULL;
3167 struct mmc_test_dbgfs_file *df;
3168
3169 if (card->debugfs_root)
3170 file = debugfs_create_file(name, mode, card->debugfs_root,
3171 card, fops);
3172
3173 if (IS_ERR_OR_NULL(file)) {
3174 dev_err(&card->dev,
3175 "Can't create %s. Perhaps debugfs is disabled.\n",
3176 name);
3177 return -ENODEV;
3178 }
3179
3180 df = kmalloc(sizeof(*df), GFP_KERNEL);
3181 if (!df) {
3182 debugfs_remove(file);
3183 return -ENOMEM;
3184 }
3185
3186 df->card = card;
3187 df->file = file;
3188
3189 list_add(&df->link, &mmc_test_file_test);
3190 return 0;
3191 }
3192
3193 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3194 {
3195 int ret;
3196
3197 mutex_lock(&mmc_test_lock);
3198
3199 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3200 &mmc_test_fops_test);
3201 if (ret)
3202 goto err;
3203
3204 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3205 &mtf_testlist_fops);
3206 if (ret)
3207 goto err;
3208
3209 err:
3210 mutex_unlock(&mmc_test_lock);
3211
3212 return ret;
3213 }
3214
3215 static int mmc_test_probe(struct mmc_card *card)
3216 {
3217 int ret;
3218
3219 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3220 return -ENODEV;
3221
3222 ret = mmc_test_register_dbgfs_file(card);
3223 if (ret)
3224 return ret;
3225
3226 if (card->ext_csd.cmdq_en) {
3227 mmc_claim_host(card->host);
3228 ret = mmc_cmdq_disable(card);
3229 mmc_release_host(card->host);
3230 if (ret)
3231 return ret;
3232 }
3233
3234 dev_info(&card->dev, "Card claimed for testing.\n");
3235
3236 return 0;
3237 }
3238
3239 static void mmc_test_remove(struct mmc_card *card)
3240 {
3241 if (card->reenable_cmdq) {
3242 mmc_claim_host(card->host);
3243 mmc_cmdq_enable(card);
3244 mmc_release_host(card->host);
3245 }
3246 mmc_test_free_result(card);
3247 mmc_test_free_dbgfs_file(card);
3248 }
3249
3250 static void mmc_test_shutdown(struct mmc_card *card)
3251 {
3252 }
3253
3254 static struct mmc_driver mmc_driver = {
3255 .drv = {
3256 .name = "mmc_test",
3257 },
3258 .probe = mmc_test_probe,
3259 .remove = mmc_test_remove,
3260 .shutdown = mmc_test_shutdown,
3261 };
3262
3263 static int __init mmc_test_init(void)
3264 {
3265 return mmc_register_driver(&mmc_driver);
3266 }
3267
3268 static void __exit mmc_test_exit(void)
3269 {
3270 /* Clear stalled data if card is still plugged */
3271 mmc_test_free_result(NULL);
3272 mmc_test_free_dbgfs_file(NULL);
3273
3274 mmc_unregister_driver(&mmc_driver);
3275 }
3276
3277 module_init(mmc_test_init);
3278 module_exit(mmc_test_exit);
3279
3280 MODULE_LICENSE("GPL");
3281 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3282 MODULE_AUTHOR("Pierre Ossman");