]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/mmc/host/dw_mmc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/ioport.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/seq_file.h>
28 #include <linux/slab.h>
29 #include <linux/stat.h>
30 #include <linux/delay.h>
31 #include <linux/irq.h>
32 #include <linux/mmc/card.h>
33 #include <linux/mmc/host.h>
34 #include <linux/mmc/mmc.h>
35 #include <linux/mmc/sd.h>
36 #include <linux/mmc/sdio.h>
37 #include <linux/bitops.h>
38 #include <linux/regulator/consumer.h>
39 #include <linux/of.h>
40 #include <linux/of_gpio.h>
41 #include <linux/mmc/slot-gpio.h>
42
43 #include "dw_mmc.h"
44
45 /* Common flag combinations */
46 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
47 SDMMC_INT_HTO | SDMMC_INT_SBE | \
48 SDMMC_INT_EBE | SDMMC_INT_HLE)
49 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
50 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
51 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
52 DW_MCI_CMD_ERROR_FLAGS)
53 #define DW_MCI_SEND_STATUS 1
54 #define DW_MCI_RECV_STATUS 2
55 #define DW_MCI_DMA_THRESHOLD 16
56
57 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
58 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
59
60 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
61 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
62 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
63 SDMMC_IDMAC_INT_TI)
64
65 #define DESC_RING_BUF_SZ PAGE_SIZE
66
67 struct idmac_desc_64addr {
68 u32 des0; /* Control Descriptor */
69 #define IDMAC_OWN_CLR64(x) \
70 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
71
72 u32 des1; /* Reserved */
73
74 u32 des2; /*Buffer sizes */
75 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
76 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
77 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
78
79 u32 des3; /* Reserved */
80
81 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
82 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
83
84 u32 des6; /* Lower 32-bits of Next Descriptor Address */
85 u32 des7; /* Upper 32-bits of Next Descriptor Address */
86 };
87
88 struct idmac_desc {
89 __le32 des0; /* Control Descriptor */
90 #define IDMAC_DES0_DIC BIT(1)
91 #define IDMAC_DES0_LD BIT(2)
92 #define IDMAC_DES0_FD BIT(3)
93 #define IDMAC_DES0_CH BIT(4)
94 #define IDMAC_DES0_ER BIT(5)
95 #define IDMAC_DES0_CES BIT(30)
96 #define IDMAC_DES0_OWN BIT(31)
97
98 __le32 des1; /* Buffer sizes */
99 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
100 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
101
102 __le32 des2; /* buffer 1 physical address */
103
104 __le32 des3; /* buffer 2 physical address */
105 };
106
107 /* Each descriptor can transfer up to 4KB of data in chained mode */
108 #define DW_MCI_DESC_DATA_LENGTH 0x1000
109
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 struct dw_mci *host = s->private;
167
168 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
169 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
170 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
171 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
172 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
173 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
174
175 return 0;
176 }
177
178 static int dw_mci_regs_open(struct inode *inode, struct file *file)
179 {
180 return single_open(file, dw_mci_regs_show, inode->i_private);
181 }
182
183 static const struct file_operations dw_mci_regs_fops = {
184 .owner = THIS_MODULE,
185 .open = dw_mci_regs_open,
186 .read = seq_read,
187 .llseek = seq_lseek,
188 .release = single_release,
189 };
190
191 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
192 {
193 struct mmc_host *mmc = slot->mmc;
194 struct dw_mci *host = slot->host;
195 struct dentry *root;
196 struct dentry *node;
197
198 root = mmc->debugfs_root;
199 if (!root)
200 return;
201
202 node = debugfs_create_file("regs", S_IRUSR, root, host,
203 &dw_mci_regs_fops);
204 if (!node)
205 goto err;
206
207 node = debugfs_create_file("req", S_IRUSR, root, slot,
208 &dw_mci_req_fops);
209 if (!node)
210 goto err;
211
212 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
213 if (!node)
214 goto err;
215
216 node = debugfs_create_x32("pending_events", S_IRUSR, root,
217 (u32 *)&host->pending_events);
218 if (!node)
219 goto err;
220
221 node = debugfs_create_x32("completed_events", S_IRUSR, root,
222 (u32 *)&host->completed_events);
223 if (!node)
224 goto err;
225
226 return;
227
228 err:
229 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
230 }
231 #endif /* defined(CONFIG_DEBUG_FS) */
232
233 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
234 {
235 u32 ctrl;
236
237 ctrl = mci_readl(host, CTRL);
238 ctrl |= reset;
239 mci_writel(host, CTRL, ctrl);
240
241 /* wait till resets clear */
242 if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl,
243 !(ctrl & reset),
244 1, 500 * USEC_PER_MSEC)) {
245 dev_err(host->dev,
246 "Timeout resetting block (ctrl reset %#x)\n",
247 ctrl & reset);
248 return false;
249 }
250
251 return true;
252 }
253
254 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
255 {
256 u32 status;
257
258 /*
259 * Databook says that before issuing a new data transfer command
260 * we need to check to see if the card is busy. Data transfer commands
261 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
262 *
263 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
264 * expected.
265 */
266 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
267 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
268 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
269 status,
270 !(status & SDMMC_STATUS_BUSY),
271 10, 500 * USEC_PER_MSEC))
272 dev_err(host->dev, "Busy; trying anyway\n");
273 }
274 }
275
276 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
277 {
278 struct dw_mci *host = slot->host;
279 unsigned int cmd_status = 0;
280
281 mci_writel(host, CMDARG, arg);
282 wmb(); /* drain writebuffer */
283 dw_mci_wait_while_busy(host, cmd);
284 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
285
286 if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status,
287 !(cmd_status & SDMMC_CMD_START),
288 1, 500 * USEC_PER_MSEC))
289 dev_err(&slot->mmc->class_dev,
290 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
291 cmd, arg, cmd_status);
292 }
293
294 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
295 {
296 struct dw_mci_slot *slot = mmc_priv(mmc);
297 struct dw_mci *host = slot->host;
298 u32 cmdr;
299
300 cmd->error = -EINPROGRESS;
301 cmdr = cmd->opcode;
302
303 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
304 cmd->opcode == MMC_GO_IDLE_STATE ||
305 cmd->opcode == MMC_GO_INACTIVE_STATE ||
306 (cmd->opcode == SD_IO_RW_DIRECT &&
307 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
308 cmdr |= SDMMC_CMD_STOP;
309 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
310 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
311
312 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
313 u32 clk_en_a;
314
315 /* Special bit makes CMD11 not die */
316 cmdr |= SDMMC_CMD_VOLT_SWITCH;
317
318 /* Change state to continue to handle CMD11 weirdness */
319 WARN_ON(slot->host->state != STATE_SENDING_CMD);
320 slot->host->state = STATE_SENDING_CMD11;
321
322 /*
323 * We need to disable low power mode (automatic clock stop)
324 * while doing voltage switch so we don't confuse the card,
325 * since stopping the clock is a specific part of the UHS
326 * voltage change dance.
327 *
328 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
329 * unconditionally turned back on in dw_mci_setup_bus() if it's
330 * ever called with a non-zero clock. That shouldn't happen
331 * until the voltage change is all done.
332 */
333 clk_en_a = mci_readl(host, CLKENA);
334 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
335 mci_writel(host, CLKENA, clk_en_a);
336 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
337 SDMMC_CMD_PRV_DAT_WAIT, 0);
338 }
339
340 if (cmd->flags & MMC_RSP_PRESENT) {
341 /* We expect a response, so set this bit */
342 cmdr |= SDMMC_CMD_RESP_EXP;
343 if (cmd->flags & MMC_RSP_136)
344 cmdr |= SDMMC_CMD_RESP_LONG;
345 }
346
347 if (cmd->flags & MMC_RSP_CRC)
348 cmdr |= SDMMC_CMD_RESP_CRC;
349
350 if (cmd->data) {
351 cmdr |= SDMMC_CMD_DAT_EXP;
352 if (cmd->data->flags & MMC_DATA_WRITE)
353 cmdr |= SDMMC_CMD_DAT_WR;
354 }
355
356 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
357 cmdr |= SDMMC_CMD_USE_HOLD_REG;
358
359 return cmdr;
360 }
361
362 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
363 {
364 struct mmc_command *stop;
365 u32 cmdr;
366
367 if (!cmd->data)
368 return 0;
369
370 stop = &host->stop_abort;
371 cmdr = cmd->opcode;
372 memset(stop, 0, sizeof(struct mmc_command));
373
374 if (cmdr == MMC_READ_SINGLE_BLOCK ||
375 cmdr == MMC_READ_MULTIPLE_BLOCK ||
376 cmdr == MMC_WRITE_BLOCK ||
377 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
378 cmdr == MMC_SEND_TUNING_BLOCK ||
379 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
380 stop->opcode = MMC_STOP_TRANSMISSION;
381 stop->arg = 0;
382 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
383 } else if (cmdr == SD_IO_RW_EXTENDED) {
384 stop->opcode = SD_IO_RW_DIRECT;
385 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
386 ((cmd->arg >> 28) & 0x7);
387 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
388 } else {
389 return 0;
390 }
391
392 cmdr = stop->opcode | SDMMC_CMD_STOP |
393 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
394
395 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags))
396 cmdr |= SDMMC_CMD_USE_HOLD_REG;
397
398 return cmdr;
399 }
400
401 static void dw_mci_start_command(struct dw_mci *host,
402 struct mmc_command *cmd, u32 cmd_flags)
403 {
404 host->cmd = cmd;
405 dev_vdbg(host->dev,
406 "start command: ARGR=0x%08x CMDR=0x%08x\n",
407 cmd->arg, cmd_flags);
408
409 mci_writel(host, CMDARG, cmd->arg);
410 wmb(); /* drain writebuffer */
411 dw_mci_wait_while_busy(host, cmd_flags);
412
413 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
414 }
415
416 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
417 {
418 struct mmc_command *stop = &host->stop_abort;
419
420 dw_mci_start_command(host, stop, host->stop_cmdr);
421 }
422
423 /* DMA interface functions */
424 static void dw_mci_stop_dma(struct dw_mci *host)
425 {
426 if (host->using_dma) {
427 host->dma_ops->stop(host);
428 host->dma_ops->cleanup(host);
429 }
430
431 /* Data transfer was stopped by the interrupt handler */
432 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
433 }
434
435 static void dw_mci_dma_cleanup(struct dw_mci *host)
436 {
437 struct mmc_data *data = host->data;
438
439 if (data && data->host_cookie == COOKIE_MAPPED) {
440 dma_unmap_sg(host->dev,
441 data->sg,
442 data->sg_len,
443 mmc_get_dma_dir(data));
444 data->host_cookie = COOKIE_UNMAPPED;
445 }
446 }
447
448 static void dw_mci_idmac_reset(struct dw_mci *host)
449 {
450 u32 bmod = mci_readl(host, BMOD);
451 /* Software reset of DMA */
452 bmod |= SDMMC_IDMAC_SWRESET;
453 mci_writel(host, BMOD, bmod);
454 }
455
456 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
457 {
458 u32 temp;
459
460 /* Disable and reset the IDMAC interface */
461 temp = mci_readl(host, CTRL);
462 temp &= ~SDMMC_CTRL_USE_IDMAC;
463 temp |= SDMMC_CTRL_DMA_RESET;
464 mci_writel(host, CTRL, temp);
465
466 /* Stop the IDMAC running */
467 temp = mci_readl(host, BMOD);
468 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
469 temp |= SDMMC_IDMAC_SWRESET;
470 mci_writel(host, BMOD, temp);
471 }
472
473 static void dw_mci_dmac_complete_dma(void *arg)
474 {
475 struct dw_mci *host = arg;
476 struct mmc_data *data = host->data;
477
478 dev_vdbg(host->dev, "DMA complete\n");
479
480 if ((host->use_dma == TRANS_MODE_EDMAC) &&
481 data && (data->flags & MMC_DATA_READ))
482 /* Invalidate cache after read */
483 dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc),
484 data->sg,
485 data->sg_len,
486 DMA_FROM_DEVICE);
487
488 host->dma_ops->cleanup(host);
489
490 /*
491 * If the card was removed, data will be NULL. No point in trying to
492 * send the stop command or waiting for NBUSY in this case.
493 */
494 if (data) {
495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
496 tasklet_schedule(&host->tasklet);
497 }
498 }
499
500 static int dw_mci_idmac_init(struct dw_mci *host)
501 {
502 int i;
503
504 if (host->dma_64bit_address == 1) {
505 struct idmac_desc_64addr *p;
506 /* Number of descriptors in the ring buffer */
507 host->ring_size =
508 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
509
510 /* Forward link the descriptor list */
511 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
512 i++, p++) {
513 p->des6 = (host->sg_dma +
514 (sizeof(struct idmac_desc_64addr) *
515 (i + 1))) & 0xffffffff;
516
517 p->des7 = (u64)(host->sg_dma +
518 (sizeof(struct idmac_desc_64addr) *
519 (i + 1))) >> 32;
520 /* Initialize reserved and buffer size fields to "0" */
521 p->des1 = 0;
522 p->des2 = 0;
523 p->des3 = 0;
524 }
525
526 /* Set the last descriptor as the end-of-ring descriptor */
527 p->des6 = host->sg_dma & 0xffffffff;
528 p->des7 = (u64)host->sg_dma >> 32;
529 p->des0 = IDMAC_DES0_ER;
530
531 } else {
532 struct idmac_desc *p;
533 /* Number of descriptors in the ring buffer */
534 host->ring_size =
535 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
536
537 /* Forward link the descriptor list */
538 for (i = 0, p = host->sg_cpu;
539 i < host->ring_size - 1;
540 i++, p++) {
541 p->des3 = cpu_to_le32(host->sg_dma +
542 (sizeof(struct idmac_desc) * (i + 1)));
543 p->des1 = 0;
544 }
545
546 /* Set the last descriptor as the end-of-ring descriptor */
547 p->des3 = cpu_to_le32(host->sg_dma);
548 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
549 }
550
551 dw_mci_idmac_reset(host);
552
553 if (host->dma_64bit_address == 1) {
554 /* Mask out interrupts - get Tx & Rx complete only */
555 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
556 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
557 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
558
559 /* Set the descriptor base address */
560 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
561 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
562
563 } else {
564 /* Mask out interrupts - get Tx & Rx complete only */
565 mci_writel(host, IDSTS, IDMAC_INT_CLR);
566 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
567 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
568
569 /* Set the descriptor base address */
570 mci_writel(host, DBADDR, host->sg_dma);
571 }
572
573 return 0;
574 }
575
576 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
577 struct mmc_data *data,
578 unsigned int sg_len)
579 {
580 unsigned int desc_len;
581 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
582 u32 val;
583 int i;
584
585 desc_first = desc_last = desc = host->sg_cpu;
586
587 for (i = 0; i < sg_len; i++) {
588 unsigned int length = sg_dma_len(&data->sg[i]);
589
590 u64 mem_addr = sg_dma_address(&data->sg[i]);
591
592 for ( ; length ; desc++) {
593 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
594 length : DW_MCI_DESC_DATA_LENGTH;
595
596 length -= desc_len;
597
598 /*
599 * Wait for the former clear OWN bit operation
600 * of IDMAC to make sure that this descriptor
601 * isn't still owned by IDMAC as IDMAC's write
602 * ops and CPU's read ops are asynchronous.
603 */
604 if (readl_poll_timeout_atomic(&desc->des0, val,
605 !(val & IDMAC_DES0_OWN),
606 10, 100 * USEC_PER_MSEC))
607 goto err_own_bit;
608
609 /*
610 * Set the OWN bit and disable interrupts
611 * for this descriptor
612 */
613 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
614 IDMAC_DES0_CH;
615
616 /* Buffer length */
617 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
618
619 /* Physical address to DMA to/from */
620 desc->des4 = mem_addr & 0xffffffff;
621 desc->des5 = mem_addr >> 32;
622
623 /* Update physical address for the next desc */
624 mem_addr += desc_len;
625
626 /* Save pointer to the last descriptor */
627 desc_last = desc;
628 }
629 }
630
631 /* Set first descriptor */
632 desc_first->des0 |= IDMAC_DES0_FD;
633
634 /* Set last descriptor */
635 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
636 desc_last->des0 |= IDMAC_DES0_LD;
637
638 return 0;
639 err_own_bit:
640 /* restore the descriptor chain as it's polluted */
641 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
642 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
643 dw_mci_idmac_init(host);
644 return -EINVAL;
645 }
646
647
648 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
649 struct mmc_data *data,
650 unsigned int sg_len)
651 {
652 unsigned int desc_len;
653 struct idmac_desc *desc_first, *desc_last, *desc;
654 u32 val;
655 int i;
656
657 desc_first = desc_last = desc = host->sg_cpu;
658
659 for (i = 0; i < sg_len; i++) {
660 unsigned int length = sg_dma_len(&data->sg[i]);
661
662 u32 mem_addr = sg_dma_address(&data->sg[i]);
663
664 for ( ; length ; desc++) {
665 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
666 length : DW_MCI_DESC_DATA_LENGTH;
667
668 length -= desc_len;
669
670 /*
671 * Wait for the former clear OWN bit operation
672 * of IDMAC to make sure that this descriptor
673 * isn't still owned by IDMAC as IDMAC's write
674 * ops and CPU's read ops are asynchronous.
675 */
676 if (readl_poll_timeout_atomic(&desc->des0, val,
677 IDMAC_OWN_CLR64(val),
678 10,
679 100 * USEC_PER_MSEC))
680 goto err_own_bit;
681
682 /*
683 * Set the OWN bit and disable interrupts
684 * for this descriptor
685 */
686 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
687 IDMAC_DES0_DIC |
688 IDMAC_DES0_CH);
689
690 /* Buffer length */
691 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
692
693 /* Physical address to DMA to/from */
694 desc->des2 = cpu_to_le32(mem_addr);
695
696 /* Update physical address for the next desc */
697 mem_addr += desc_len;
698
699 /* Save pointer to the last descriptor */
700 desc_last = desc;
701 }
702 }
703
704 /* Set first descriptor */
705 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
706
707 /* Set last descriptor */
708 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
709 IDMAC_DES0_DIC));
710 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
711
712 return 0;
713 err_own_bit:
714 /* restore the descriptor chain as it's polluted */
715 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
716 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
717 dw_mci_idmac_init(host);
718 return -EINVAL;
719 }
720
721 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
722 {
723 u32 temp;
724 int ret;
725
726 if (host->dma_64bit_address == 1)
727 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
728 else
729 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
730
731 if (ret)
732 goto out;
733
734 /* drain writebuffer */
735 wmb();
736
737 /* Make sure to reset DMA in case we did PIO before this */
738 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
739 dw_mci_idmac_reset(host);
740
741 /* Select IDMAC interface */
742 temp = mci_readl(host, CTRL);
743 temp |= SDMMC_CTRL_USE_IDMAC;
744 mci_writel(host, CTRL, temp);
745
746 /* drain writebuffer */
747 wmb();
748
749 /* Enable the IDMAC */
750 temp = mci_readl(host, BMOD);
751 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
752 mci_writel(host, BMOD, temp);
753
754 /* Start it running */
755 mci_writel(host, PLDMND, 1);
756
757 out:
758 return ret;
759 }
760
761 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
762 .init = dw_mci_idmac_init,
763 .start = dw_mci_idmac_start_dma,
764 .stop = dw_mci_idmac_stop_dma,
765 .complete = dw_mci_dmac_complete_dma,
766 .cleanup = dw_mci_dma_cleanup,
767 };
768
769 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
770 {
771 dmaengine_terminate_async(host->dms->ch);
772 }
773
774 static int dw_mci_edmac_start_dma(struct dw_mci *host,
775 unsigned int sg_len)
776 {
777 struct dma_slave_config cfg;
778 struct dma_async_tx_descriptor *desc = NULL;
779 struct scatterlist *sgl = host->data->sg;
780 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
781 u32 sg_elems = host->data->sg_len;
782 u32 fifoth_val;
783 u32 fifo_offset = host->fifo_reg - host->regs;
784 int ret = 0;
785
786 /* Set external dma config: burst size, burst width */
787 cfg.dst_addr = host->phy_regs + fifo_offset;
788 cfg.src_addr = cfg.dst_addr;
789 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
791
792 /* Match burst msize with external dma config */
793 fifoth_val = mci_readl(host, FIFOTH);
794 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
795 cfg.src_maxburst = cfg.dst_maxburst;
796
797 if (host->data->flags & MMC_DATA_WRITE)
798 cfg.direction = DMA_MEM_TO_DEV;
799 else
800 cfg.direction = DMA_DEV_TO_MEM;
801
802 ret = dmaengine_slave_config(host->dms->ch, &cfg);
803 if (ret) {
804 dev_err(host->dev, "Failed to config edmac.\n");
805 return -EBUSY;
806 }
807
808 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
809 sg_len, cfg.direction,
810 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
811 if (!desc) {
812 dev_err(host->dev, "Can't prepare slave sg.\n");
813 return -EBUSY;
814 }
815
816 /* Set dw_mci_dmac_complete_dma as callback */
817 desc->callback = dw_mci_dmac_complete_dma;
818 desc->callback_param = (void *)host;
819 dmaengine_submit(desc);
820
821 /* Flush cache before write */
822 if (host->data->flags & MMC_DATA_WRITE)
823 dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl,
824 sg_elems, DMA_TO_DEVICE);
825
826 dma_async_issue_pending(host->dms->ch);
827
828 return 0;
829 }
830
831 static int dw_mci_edmac_init(struct dw_mci *host)
832 {
833 /* Request external dma channel */
834 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
835 if (!host->dms)
836 return -ENOMEM;
837
838 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
839 if (!host->dms->ch) {
840 dev_err(host->dev, "Failed to get external DMA channel.\n");
841 kfree(host->dms);
842 host->dms = NULL;
843 return -ENXIO;
844 }
845
846 return 0;
847 }
848
849 static void dw_mci_edmac_exit(struct dw_mci *host)
850 {
851 if (host->dms) {
852 if (host->dms->ch) {
853 dma_release_channel(host->dms->ch);
854 host->dms->ch = NULL;
855 }
856 kfree(host->dms);
857 host->dms = NULL;
858 }
859 }
860
861 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
862 .init = dw_mci_edmac_init,
863 .exit = dw_mci_edmac_exit,
864 .start = dw_mci_edmac_start_dma,
865 .stop = dw_mci_edmac_stop_dma,
866 .complete = dw_mci_dmac_complete_dma,
867 .cleanup = dw_mci_dma_cleanup,
868 };
869
870 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
871 struct mmc_data *data,
872 int cookie)
873 {
874 struct scatterlist *sg;
875 unsigned int i, sg_len;
876
877 if (data->host_cookie == COOKIE_PRE_MAPPED)
878 return data->sg_len;
879
880 /*
881 * We don't do DMA on "complex" transfers, i.e. with
882 * non-word-aligned buffers or lengths. Also, we don't bother
883 * with all the DMA setup overhead for short transfers.
884 */
885 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
886 return -EINVAL;
887
888 if (data->blksz & 3)
889 return -EINVAL;
890
891 for_each_sg(data->sg, sg, data->sg_len, i) {
892 if (sg->offset & 3 || sg->length & 3)
893 return -EINVAL;
894 }
895
896 sg_len = dma_map_sg(host->dev,
897 data->sg,
898 data->sg_len,
899 mmc_get_dma_dir(data));
900 if (sg_len == 0)
901 return -EINVAL;
902
903 data->host_cookie = cookie;
904
905 return sg_len;
906 }
907
908 static void dw_mci_pre_req(struct mmc_host *mmc,
909 struct mmc_request *mrq)
910 {
911 struct dw_mci_slot *slot = mmc_priv(mmc);
912 struct mmc_data *data = mrq->data;
913
914 if (!slot->host->use_dma || !data)
915 return;
916
917 /* This data might be unmapped at this time */
918 data->host_cookie = COOKIE_UNMAPPED;
919
920 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
921 COOKIE_PRE_MAPPED) < 0)
922 data->host_cookie = COOKIE_UNMAPPED;
923 }
924
925 static void dw_mci_post_req(struct mmc_host *mmc,
926 struct mmc_request *mrq,
927 int err)
928 {
929 struct dw_mci_slot *slot = mmc_priv(mmc);
930 struct mmc_data *data = mrq->data;
931
932 if (!slot->host->use_dma || !data)
933 return;
934
935 if (data->host_cookie != COOKIE_UNMAPPED)
936 dma_unmap_sg(slot->host->dev,
937 data->sg,
938 data->sg_len,
939 mmc_get_dma_dir(data));
940 data->host_cookie = COOKIE_UNMAPPED;
941 }
942
943 static int dw_mci_get_cd(struct mmc_host *mmc)
944 {
945 int present;
946 struct dw_mci_slot *slot = mmc_priv(mmc);
947 struct dw_mci *host = slot->host;
948 int gpio_cd = mmc_gpio_get_cd(mmc);
949
950 /* Use platform get_cd function, else try onboard card detect */
951 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
952 || !mmc_card_is_removable(mmc))) {
953 present = 1;
954
955 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
956 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
957 dev_info(&mmc->class_dev,
958 "card is polling.\n");
959 } else {
960 dev_info(&mmc->class_dev,
961 "card is non-removable.\n");
962 }
963 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
964 }
965
966 return present;
967 } else if (gpio_cd >= 0)
968 present = gpio_cd;
969 else
970 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
971 == 0 ? 1 : 0;
972
973 spin_lock_bh(&host->lock);
974 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
975 dev_dbg(&mmc->class_dev, "card is present\n");
976 else if (!present &&
977 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
978 dev_dbg(&mmc->class_dev, "card is not present\n");
979 spin_unlock_bh(&host->lock);
980
981 return present;
982 }
983
984 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
985 {
986 unsigned int blksz = data->blksz;
987 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
988 u32 fifo_width = 1 << host->data_shift;
989 u32 blksz_depth = blksz / fifo_width, fifoth_val;
990 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
991 int idx = ARRAY_SIZE(mszs) - 1;
992
993 /* pio should ship this scenario */
994 if (!host->use_dma)
995 return;
996
997 tx_wmark = (host->fifo_depth) / 2;
998 tx_wmark_invers = host->fifo_depth - tx_wmark;
999
1000 /*
1001 * MSIZE is '1',
1002 * if blksz is not a multiple of the FIFO width
1003 */
1004 if (blksz % fifo_width)
1005 goto done;
1006
1007 do {
1008 if (!((blksz_depth % mszs[idx]) ||
1009 (tx_wmark_invers % mszs[idx]))) {
1010 msize = idx;
1011 rx_wmark = mszs[idx] - 1;
1012 break;
1013 }
1014 } while (--idx > 0);
1015 /*
1016 * If idx is '0', it won't be tried
1017 * Thus, initial values are uesed
1018 */
1019 done:
1020 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
1021 mci_writel(host, FIFOTH, fifoth_val);
1022 }
1023
1024 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
1025 {
1026 unsigned int blksz = data->blksz;
1027 u32 blksz_depth, fifo_depth;
1028 u16 thld_size;
1029 u8 enable;
1030
1031 /*
1032 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1033 * in the FIFO region, so we really shouldn't access it).
1034 */
1035 if (host->verid < DW_MMC_240A ||
1036 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
1037 return;
1038
1039 /*
1040 * Card write Threshold is introduced since 2.80a
1041 * It's used when HS400 mode is enabled.
1042 */
1043 if (data->flags & MMC_DATA_WRITE &&
1044 !(host->timing != MMC_TIMING_MMC_HS400))
1045 return;
1046
1047 if (data->flags & MMC_DATA_WRITE)
1048 enable = SDMMC_CARD_WR_THR_EN;
1049 else
1050 enable = SDMMC_CARD_RD_THR_EN;
1051
1052 if (host->timing != MMC_TIMING_MMC_HS200 &&
1053 host->timing != MMC_TIMING_UHS_SDR104)
1054 goto disable;
1055
1056 blksz_depth = blksz / (1 << host->data_shift);
1057 fifo_depth = host->fifo_depth;
1058
1059 if (blksz_depth > fifo_depth)
1060 goto disable;
1061
1062 /*
1063 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1064 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1065 * Currently just choose blksz.
1066 */
1067 thld_size = blksz;
1068 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1069 return;
1070
1071 disable:
1072 mci_writel(host, CDTHRCTL, 0);
1073 }
1074
1075 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1076 {
1077 unsigned long irqflags;
1078 int sg_len;
1079 u32 temp;
1080
1081 host->using_dma = 0;
1082
1083 /* If we don't have a channel, we can't do DMA */
1084 if (!host->use_dma)
1085 return -ENODEV;
1086
1087 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1088 if (sg_len < 0) {
1089 host->dma_ops->stop(host);
1090 return sg_len;
1091 }
1092
1093 host->using_dma = 1;
1094
1095 if (host->use_dma == TRANS_MODE_IDMAC)
1096 dev_vdbg(host->dev,
1097 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1098 (unsigned long)host->sg_cpu,
1099 (unsigned long)host->sg_dma,
1100 sg_len);
1101
1102 /*
1103 * Decide the MSIZE and RX/TX Watermark.
1104 * If current block size is same with previous size,
1105 * no need to update fifoth.
1106 */
1107 if (host->prev_blksz != data->blksz)
1108 dw_mci_adjust_fifoth(host, data);
1109
1110 /* Enable the DMA interface */
1111 temp = mci_readl(host, CTRL);
1112 temp |= SDMMC_CTRL_DMA_ENABLE;
1113 mci_writel(host, CTRL, temp);
1114
1115 /* Disable RX/TX IRQs, let DMA handle it */
1116 spin_lock_irqsave(&host->irq_lock, irqflags);
1117 temp = mci_readl(host, INTMASK);
1118 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1119 mci_writel(host, INTMASK, temp);
1120 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1121
1122 if (host->dma_ops->start(host, sg_len)) {
1123 host->dma_ops->stop(host);
1124 /* We can't do DMA, try PIO for this one */
1125 dev_dbg(host->dev,
1126 "%s: fall back to PIO mode for current transfer\n",
1127 __func__);
1128 return -ENODEV;
1129 }
1130
1131 return 0;
1132 }
1133
1134 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1135 {
1136 unsigned long irqflags;
1137 int flags = SG_MITER_ATOMIC;
1138 u32 temp;
1139
1140 data->error = -EINPROGRESS;
1141
1142 WARN_ON(host->data);
1143 host->sg = NULL;
1144 host->data = data;
1145
1146 if (data->flags & MMC_DATA_READ)
1147 host->dir_status = DW_MCI_RECV_STATUS;
1148 else
1149 host->dir_status = DW_MCI_SEND_STATUS;
1150
1151 dw_mci_ctrl_thld(host, data);
1152
1153 if (dw_mci_submit_data_dma(host, data)) {
1154 if (host->data->flags & MMC_DATA_READ)
1155 flags |= SG_MITER_TO_SG;
1156 else
1157 flags |= SG_MITER_FROM_SG;
1158
1159 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1160 host->sg = data->sg;
1161 host->part_buf_start = 0;
1162 host->part_buf_count = 0;
1163
1164 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1165
1166 spin_lock_irqsave(&host->irq_lock, irqflags);
1167 temp = mci_readl(host, INTMASK);
1168 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1169 mci_writel(host, INTMASK, temp);
1170 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1171
1172 temp = mci_readl(host, CTRL);
1173 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1174 mci_writel(host, CTRL, temp);
1175
1176 /*
1177 * Use the initial fifoth_val for PIO mode. If wm_algined
1178 * is set, we set watermark same as data size.
1179 * If next issued data may be transfered by DMA mode,
1180 * prev_blksz should be invalidated.
1181 */
1182 if (host->wm_aligned)
1183 dw_mci_adjust_fifoth(host, data);
1184 else
1185 mci_writel(host, FIFOTH, host->fifoth_val);
1186 host->prev_blksz = 0;
1187 } else {
1188 /*
1189 * Keep the current block size.
1190 * It will be used to decide whether to update
1191 * fifoth register next time.
1192 */
1193 host->prev_blksz = data->blksz;
1194 }
1195 }
1196
1197 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1198 {
1199 struct dw_mci *host = slot->host;
1200 unsigned int clock = slot->clock;
1201 u32 div;
1202 u32 clk_en_a;
1203 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1204
1205 /* We must continue to set bit 28 in CMD until the change is complete */
1206 if (host->state == STATE_WAITING_CMD11_DONE)
1207 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1208
1209 if (!clock) {
1210 mci_writel(host, CLKENA, 0);
1211 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1212 } else if (clock != host->current_speed || force_clkinit) {
1213 div = host->bus_hz / clock;
1214 if (host->bus_hz % clock && host->bus_hz > clock)
1215 /*
1216 * move the + 1 after the divide to prevent
1217 * over-clocking the card.
1218 */
1219 div += 1;
1220
1221 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1222
1223 if ((clock != slot->__clk_old &&
1224 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1225 force_clkinit) {
1226 /* Silent the verbose log if calling from PM context */
1227 if (!force_clkinit)
1228 dev_info(&slot->mmc->class_dev,
1229 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1230 slot->id, host->bus_hz, clock,
1231 div ? ((host->bus_hz / div) >> 1) :
1232 host->bus_hz, div);
1233
1234 /*
1235 * If card is polling, display the message only
1236 * one time at boot time.
1237 */
1238 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1239 slot->mmc->f_min == clock)
1240 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1241 }
1242
1243 /* disable clock */
1244 mci_writel(host, CLKENA, 0);
1245 mci_writel(host, CLKSRC, 0);
1246
1247 /* inform CIU */
1248 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1249
1250 /* set clock to desired speed */
1251 mci_writel(host, CLKDIV, div);
1252
1253 /* inform CIU */
1254 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1255
1256 /* enable clock; only low power if no SDIO */
1257 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1258 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1259 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1260 mci_writel(host, CLKENA, clk_en_a);
1261
1262 /* inform CIU */
1263 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1264
1265 /* keep the last clock value that was requested from core */
1266 slot->__clk_old = clock;
1267 }
1268
1269 host->current_speed = clock;
1270
1271 /* Set the current slot bus width */
1272 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1273 }
1274
1275 static void __dw_mci_start_request(struct dw_mci *host,
1276 struct dw_mci_slot *slot,
1277 struct mmc_command *cmd)
1278 {
1279 struct mmc_request *mrq;
1280 struct mmc_data *data;
1281 u32 cmdflags;
1282
1283 mrq = slot->mrq;
1284
1285 host->mrq = mrq;
1286
1287 host->pending_events = 0;
1288 host->completed_events = 0;
1289 host->cmd_status = 0;
1290 host->data_status = 0;
1291 host->dir_status = 0;
1292
1293 data = cmd->data;
1294 if (data) {
1295 mci_writel(host, TMOUT, 0xFFFFFFFF);
1296 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1297 mci_writel(host, BLKSIZ, data->blksz);
1298 }
1299
1300 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1301
1302 /* this is the first command, send the initialization clock */
1303 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1304 cmdflags |= SDMMC_CMD_INIT;
1305
1306 if (data) {
1307 dw_mci_submit_data(host, data);
1308 wmb(); /* drain writebuffer */
1309 }
1310
1311 dw_mci_start_command(host, cmd, cmdflags);
1312
1313 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1314 unsigned long irqflags;
1315
1316 /*
1317 * Databook says to fail after 2ms w/ no response, but evidence
1318 * shows that sometimes the cmd11 interrupt takes over 130ms.
1319 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1320 * is just about to roll over.
1321 *
1322 * We do this whole thing under spinlock and only if the
1323 * command hasn't already completed (indicating the the irq
1324 * already ran so we don't want the timeout).
1325 */
1326 spin_lock_irqsave(&host->irq_lock, irqflags);
1327 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1328 mod_timer(&host->cmd11_timer,
1329 jiffies + msecs_to_jiffies(500) + 1);
1330 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1331 }
1332
1333 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1334 }
1335
1336 static void dw_mci_start_request(struct dw_mci *host,
1337 struct dw_mci_slot *slot)
1338 {
1339 struct mmc_request *mrq = slot->mrq;
1340 struct mmc_command *cmd;
1341
1342 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1343 __dw_mci_start_request(host, slot, cmd);
1344 }
1345
1346 /* must be called with host->lock held */
1347 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1348 struct mmc_request *mrq)
1349 {
1350 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1351 host->state);
1352
1353 slot->mrq = mrq;
1354
1355 if (host->state == STATE_WAITING_CMD11_DONE) {
1356 dev_warn(&slot->mmc->class_dev,
1357 "Voltage change didn't complete\n");
1358 /*
1359 * this case isn't expected to happen, so we can
1360 * either crash here or just try to continue on
1361 * in the closest possible state
1362 */
1363 host->state = STATE_IDLE;
1364 }
1365
1366 if (host->state == STATE_IDLE) {
1367 host->state = STATE_SENDING_CMD;
1368 dw_mci_start_request(host, slot);
1369 } else {
1370 list_add_tail(&slot->queue_node, &host->queue);
1371 }
1372 }
1373
1374 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1375 {
1376 struct dw_mci_slot *slot = mmc_priv(mmc);
1377 struct dw_mci *host = slot->host;
1378
1379 WARN_ON(slot->mrq);
1380
1381 /*
1382 * The check for card presence and queueing of the request must be
1383 * atomic, otherwise the card could be removed in between and the
1384 * request wouldn't fail until another card was inserted.
1385 */
1386
1387 if (!dw_mci_get_cd(mmc)) {
1388 mrq->cmd->error = -ENOMEDIUM;
1389 mmc_request_done(mmc, mrq);
1390 return;
1391 }
1392
1393 spin_lock_bh(&host->lock);
1394
1395 dw_mci_queue_request(host, slot, mrq);
1396
1397 spin_unlock_bh(&host->lock);
1398 }
1399
1400 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1401 {
1402 struct dw_mci_slot *slot = mmc_priv(mmc);
1403 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1404 u32 regs;
1405 int ret;
1406
1407 switch (ios->bus_width) {
1408 case MMC_BUS_WIDTH_4:
1409 slot->ctype = SDMMC_CTYPE_4BIT;
1410 break;
1411 case MMC_BUS_WIDTH_8:
1412 slot->ctype = SDMMC_CTYPE_8BIT;
1413 break;
1414 default:
1415 /* set default 1 bit mode */
1416 slot->ctype = SDMMC_CTYPE_1BIT;
1417 }
1418
1419 regs = mci_readl(slot->host, UHS_REG);
1420
1421 /* DDR mode set */
1422 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1423 ios->timing == MMC_TIMING_UHS_DDR50 ||
1424 ios->timing == MMC_TIMING_MMC_HS400)
1425 regs |= ((0x1 << slot->id) << 16);
1426 else
1427 regs &= ~((0x1 << slot->id) << 16);
1428
1429 mci_writel(slot->host, UHS_REG, regs);
1430 slot->host->timing = ios->timing;
1431
1432 /*
1433 * Use mirror of ios->clock to prevent race with mmc
1434 * core ios update when finding the minimum.
1435 */
1436 slot->clock = ios->clock;
1437
1438 if (drv_data && drv_data->set_ios)
1439 drv_data->set_ios(slot->host, ios);
1440
1441 switch (ios->power_mode) {
1442 case MMC_POWER_UP:
1443 if (!IS_ERR(mmc->supply.vmmc)) {
1444 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1445 ios->vdd);
1446 if (ret) {
1447 dev_err(slot->host->dev,
1448 "failed to enable vmmc regulator\n");
1449 /*return, if failed turn on vmmc*/
1450 return;
1451 }
1452 }
1453 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1454 regs = mci_readl(slot->host, PWREN);
1455 regs |= (1 << slot->id);
1456 mci_writel(slot->host, PWREN, regs);
1457 break;
1458 case MMC_POWER_ON:
1459 if (!slot->host->vqmmc_enabled) {
1460 if (!IS_ERR(mmc->supply.vqmmc)) {
1461 ret = regulator_enable(mmc->supply.vqmmc);
1462 if (ret < 0)
1463 dev_err(slot->host->dev,
1464 "failed to enable vqmmc\n");
1465 else
1466 slot->host->vqmmc_enabled = true;
1467
1468 } else {
1469 /* Keep track so we don't reset again */
1470 slot->host->vqmmc_enabled = true;
1471 }
1472
1473 /* Reset our state machine after powering on */
1474 dw_mci_ctrl_reset(slot->host,
1475 SDMMC_CTRL_ALL_RESET_FLAGS);
1476 }
1477
1478 /* Adjust clock / bus width after power is up */
1479 dw_mci_setup_bus(slot, false);
1480
1481 break;
1482 case MMC_POWER_OFF:
1483 /* Turn clock off before power goes down */
1484 dw_mci_setup_bus(slot, false);
1485
1486 if (!IS_ERR(mmc->supply.vmmc))
1487 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1488
1489 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1490 regulator_disable(mmc->supply.vqmmc);
1491 slot->host->vqmmc_enabled = false;
1492
1493 regs = mci_readl(slot->host, PWREN);
1494 regs &= ~(1 << slot->id);
1495 mci_writel(slot->host, PWREN, regs);
1496 break;
1497 default:
1498 break;
1499 }
1500
1501 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1502 slot->host->state = STATE_IDLE;
1503 }
1504
1505 static int dw_mci_card_busy(struct mmc_host *mmc)
1506 {
1507 struct dw_mci_slot *slot = mmc_priv(mmc);
1508 u32 status;
1509
1510 /*
1511 * Check the busy bit which is low when DAT[3:0]
1512 * (the data lines) are 0000
1513 */
1514 status = mci_readl(slot->host, STATUS);
1515
1516 return !!(status & SDMMC_STATUS_BUSY);
1517 }
1518
1519 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1520 {
1521 struct dw_mci_slot *slot = mmc_priv(mmc);
1522 struct dw_mci *host = slot->host;
1523 const struct dw_mci_drv_data *drv_data = host->drv_data;
1524 u32 uhs;
1525 u32 v18 = SDMMC_UHS_18V << slot->id;
1526 int ret;
1527
1528 if (drv_data && drv_data->switch_voltage)
1529 return drv_data->switch_voltage(mmc, ios);
1530
1531 /*
1532 * Program the voltage. Note that some instances of dw_mmc may use
1533 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1534 * does no harm but you need to set the regulator directly. Try both.
1535 */
1536 uhs = mci_readl(host, UHS_REG);
1537 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1538 uhs &= ~v18;
1539 else
1540 uhs |= v18;
1541
1542 if (!IS_ERR(mmc->supply.vqmmc)) {
1543 ret = mmc_regulator_set_vqmmc(mmc, ios);
1544
1545 if (ret) {
1546 dev_dbg(&mmc->class_dev,
1547 "Regulator set error %d - %s V\n",
1548 ret, uhs & v18 ? "1.8" : "3.3");
1549 return ret;
1550 }
1551 }
1552 mci_writel(host, UHS_REG, uhs);
1553
1554 return 0;
1555 }
1556
1557 static int dw_mci_get_ro(struct mmc_host *mmc)
1558 {
1559 int read_only;
1560 struct dw_mci_slot *slot = mmc_priv(mmc);
1561 int gpio_ro = mmc_gpio_get_ro(mmc);
1562
1563 /* Use platform get_ro function, else try on board write protect */
1564 if (gpio_ro >= 0)
1565 read_only = gpio_ro;
1566 else
1567 read_only =
1568 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1569
1570 dev_dbg(&mmc->class_dev, "card is %s\n",
1571 read_only ? "read-only" : "read-write");
1572
1573 return read_only;
1574 }
1575
1576 static void dw_mci_hw_reset(struct mmc_host *mmc)
1577 {
1578 struct dw_mci_slot *slot = mmc_priv(mmc);
1579 struct dw_mci *host = slot->host;
1580 int reset;
1581
1582 if (host->use_dma == TRANS_MODE_IDMAC)
1583 dw_mci_idmac_reset(host);
1584
1585 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1586 SDMMC_CTRL_FIFO_RESET))
1587 return;
1588
1589 /*
1590 * According to eMMC spec, card reset procedure:
1591 * tRstW >= 1us: RST_n pulse width
1592 * tRSCA >= 200us: RST_n to Command time
1593 * tRSTH >= 1us: RST_n high period
1594 */
1595 reset = mci_readl(host, RST_N);
1596 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1597 mci_writel(host, RST_N, reset);
1598 usleep_range(1, 2);
1599 reset |= SDMMC_RST_HWACTIVE << slot->id;
1600 mci_writel(host, RST_N, reset);
1601 usleep_range(200, 300);
1602 }
1603
1604 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1605 {
1606 struct dw_mci_slot *slot = mmc_priv(mmc);
1607 struct dw_mci *host = slot->host;
1608
1609 /*
1610 * Low power mode will stop the card clock when idle. According to the
1611 * description of the CLKENA register we should disable low power mode
1612 * for SDIO cards if we need SDIO interrupts to work.
1613 */
1614 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1615 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1616 u32 clk_en_a_old;
1617 u32 clk_en_a;
1618
1619 clk_en_a_old = mci_readl(host, CLKENA);
1620
1621 if (card->type == MMC_TYPE_SDIO ||
1622 card->type == MMC_TYPE_SD_COMBO) {
1623 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1624 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1625 } else {
1626 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1627 clk_en_a = clk_en_a_old | clken_low_pwr;
1628 }
1629
1630 if (clk_en_a != clk_en_a_old) {
1631 mci_writel(host, CLKENA, clk_en_a);
1632 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1633 SDMMC_CMD_PRV_DAT_WAIT, 0);
1634 }
1635 }
1636 }
1637
1638 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb)
1639 {
1640 struct dw_mci *host = slot->host;
1641 unsigned long irqflags;
1642 u32 int_mask;
1643
1644 spin_lock_irqsave(&host->irq_lock, irqflags);
1645
1646 /* Enable/disable Slot Specific SDIO interrupt */
1647 int_mask = mci_readl(host, INTMASK);
1648 if (enb)
1649 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1650 else
1651 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1652 mci_writel(host, INTMASK, int_mask);
1653
1654 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1655 }
1656
1657 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1658 {
1659 struct dw_mci_slot *slot = mmc_priv(mmc);
1660 struct dw_mci *host = slot->host;
1661
1662 __dw_mci_enable_sdio_irq(slot, enb);
1663
1664 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1665 if (enb)
1666 pm_runtime_get_noresume(host->dev);
1667 else
1668 pm_runtime_put_noidle(host->dev);
1669 }
1670
1671 static void dw_mci_ack_sdio_irq(struct mmc_host *mmc)
1672 {
1673 struct dw_mci_slot *slot = mmc_priv(mmc);
1674
1675 __dw_mci_enable_sdio_irq(slot, 1);
1676 }
1677
1678 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1679 {
1680 struct dw_mci_slot *slot = mmc_priv(mmc);
1681 struct dw_mci *host = slot->host;
1682 const struct dw_mci_drv_data *drv_data = host->drv_data;
1683 int err = -EINVAL;
1684
1685 if (drv_data && drv_data->execute_tuning)
1686 err = drv_data->execute_tuning(slot, opcode);
1687 return err;
1688 }
1689
1690 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1691 struct mmc_ios *ios)
1692 {
1693 struct dw_mci_slot *slot = mmc_priv(mmc);
1694 struct dw_mci *host = slot->host;
1695 const struct dw_mci_drv_data *drv_data = host->drv_data;
1696
1697 if (drv_data && drv_data->prepare_hs400_tuning)
1698 return drv_data->prepare_hs400_tuning(host, ios);
1699
1700 return 0;
1701 }
1702
1703 static bool dw_mci_reset(struct dw_mci *host)
1704 {
1705 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
1706 bool ret = false;
1707 u32 status = 0;
1708
1709 /*
1710 * Resetting generates a block interrupt, hence setting
1711 * the scatter-gather pointer to NULL.
1712 */
1713 if (host->sg) {
1714 sg_miter_stop(&host->sg_miter);
1715 host->sg = NULL;
1716 }
1717
1718 if (host->use_dma)
1719 flags |= SDMMC_CTRL_DMA_RESET;
1720
1721 if (dw_mci_ctrl_reset(host, flags)) {
1722 /*
1723 * In all cases we clear the RAWINTS
1724 * register to clear any interrupts.
1725 */
1726 mci_writel(host, RINTSTS, 0xFFFFFFFF);
1727
1728 if (!host->use_dma) {
1729 ret = true;
1730 goto ciu_out;
1731 }
1732
1733 /* Wait for dma_req to be cleared */
1734 if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS,
1735 status,
1736 !(status & SDMMC_STATUS_DMA_REQ),
1737 1, 500 * USEC_PER_MSEC)) {
1738 dev_err(host->dev,
1739 "%s: Timeout waiting for dma_req to be cleared\n",
1740 __func__);
1741 goto ciu_out;
1742 }
1743
1744 /* when using DMA next we reset the fifo again */
1745 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
1746 goto ciu_out;
1747 } else {
1748 /* if the controller reset bit did clear, then set clock regs */
1749 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
1750 dev_err(host->dev,
1751 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1752 __func__);
1753 goto ciu_out;
1754 }
1755 }
1756
1757 if (host->use_dma == TRANS_MODE_IDMAC)
1758 /* It is also recommended that we reset and reprogram idmac */
1759 dw_mci_idmac_reset(host);
1760
1761 ret = true;
1762
1763 ciu_out:
1764 /* After a CTRL reset we need to have CIU set clock registers */
1765 mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0);
1766
1767 return ret;
1768 }
1769
1770 static const struct mmc_host_ops dw_mci_ops = {
1771 .request = dw_mci_request,
1772 .pre_req = dw_mci_pre_req,
1773 .post_req = dw_mci_post_req,
1774 .set_ios = dw_mci_set_ios,
1775 .get_ro = dw_mci_get_ro,
1776 .get_cd = dw_mci_get_cd,
1777 .hw_reset = dw_mci_hw_reset,
1778 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1779 .ack_sdio_irq = dw_mci_ack_sdio_irq,
1780 .execute_tuning = dw_mci_execute_tuning,
1781 .card_busy = dw_mci_card_busy,
1782 .start_signal_voltage_switch = dw_mci_switch_voltage,
1783 .init_card = dw_mci_init_card,
1784 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1785 };
1786
1787 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1788 __releases(&host->lock)
1789 __acquires(&host->lock)
1790 {
1791 struct dw_mci_slot *slot;
1792 struct mmc_host *prev_mmc = host->slot->mmc;
1793
1794 WARN_ON(host->cmd || host->data);
1795
1796 host->slot->mrq = NULL;
1797 host->mrq = NULL;
1798 if (!list_empty(&host->queue)) {
1799 slot = list_entry(host->queue.next,
1800 struct dw_mci_slot, queue_node);
1801 list_del(&slot->queue_node);
1802 dev_vdbg(host->dev, "list not empty: %s is next\n",
1803 mmc_hostname(slot->mmc));
1804 host->state = STATE_SENDING_CMD;
1805 dw_mci_start_request(host, slot);
1806 } else {
1807 dev_vdbg(host->dev, "list empty\n");
1808
1809 if (host->state == STATE_SENDING_CMD11)
1810 host->state = STATE_WAITING_CMD11_DONE;
1811 else
1812 host->state = STATE_IDLE;
1813 }
1814
1815 spin_unlock(&host->lock);
1816 mmc_request_done(prev_mmc, mrq);
1817 spin_lock(&host->lock);
1818 }
1819
1820 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1821 {
1822 u32 status = host->cmd_status;
1823
1824 host->cmd_status = 0;
1825
1826 /* Read the response from the card (up to 16 bytes) */
1827 if (cmd->flags & MMC_RSP_PRESENT) {
1828 if (cmd->flags & MMC_RSP_136) {
1829 cmd->resp[3] = mci_readl(host, RESP0);
1830 cmd->resp[2] = mci_readl(host, RESP1);
1831 cmd->resp[1] = mci_readl(host, RESP2);
1832 cmd->resp[0] = mci_readl(host, RESP3);
1833 } else {
1834 cmd->resp[0] = mci_readl(host, RESP0);
1835 cmd->resp[1] = 0;
1836 cmd->resp[2] = 0;
1837 cmd->resp[3] = 0;
1838 }
1839 }
1840
1841 if (status & SDMMC_INT_RTO)
1842 cmd->error = -ETIMEDOUT;
1843 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1844 cmd->error = -EILSEQ;
1845 else if (status & SDMMC_INT_RESP_ERR)
1846 cmd->error = -EIO;
1847 else
1848 cmd->error = 0;
1849
1850 return cmd->error;
1851 }
1852
1853 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1854 {
1855 u32 status = host->data_status;
1856
1857 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1858 if (status & SDMMC_INT_DRTO) {
1859 data->error = -ETIMEDOUT;
1860 } else if (status & SDMMC_INT_DCRC) {
1861 data->error = -EILSEQ;
1862 } else if (status & SDMMC_INT_EBE) {
1863 if (host->dir_status ==
1864 DW_MCI_SEND_STATUS) {
1865 /*
1866 * No data CRC status was returned.
1867 * The number of bytes transferred
1868 * will be exaggerated in PIO mode.
1869 */
1870 data->bytes_xfered = 0;
1871 data->error = -ETIMEDOUT;
1872 } else if (host->dir_status ==
1873 DW_MCI_RECV_STATUS) {
1874 data->error = -EILSEQ;
1875 }
1876 } else {
1877 /* SDMMC_INT_SBE is included */
1878 data->error = -EILSEQ;
1879 }
1880
1881 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1882
1883 /*
1884 * After an error, there may be data lingering
1885 * in the FIFO
1886 */
1887 dw_mci_reset(host);
1888 } else {
1889 data->bytes_xfered = data->blocks * data->blksz;
1890 data->error = 0;
1891 }
1892
1893 return data->error;
1894 }
1895
1896 static void dw_mci_set_drto(struct dw_mci *host)
1897 {
1898 unsigned int drto_clks;
1899 unsigned int drto_ms;
1900
1901 drto_clks = mci_readl(host, TMOUT) >> 8;
1902 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1903
1904 /* add a bit spare time */
1905 drto_ms += 10;
1906
1907 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1908 }
1909
1910 static void dw_mci_tasklet_func(unsigned long priv)
1911 {
1912 struct dw_mci *host = (struct dw_mci *)priv;
1913 struct mmc_data *data;
1914 struct mmc_command *cmd;
1915 struct mmc_request *mrq;
1916 enum dw_mci_state state;
1917 enum dw_mci_state prev_state;
1918 unsigned int err;
1919
1920 spin_lock(&host->lock);
1921
1922 state = host->state;
1923 data = host->data;
1924 mrq = host->mrq;
1925
1926 do {
1927 prev_state = state;
1928
1929 switch (state) {
1930 case STATE_IDLE:
1931 case STATE_WAITING_CMD11_DONE:
1932 break;
1933
1934 case STATE_SENDING_CMD11:
1935 case STATE_SENDING_CMD:
1936 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1937 &host->pending_events))
1938 break;
1939
1940 cmd = host->cmd;
1941 host->cmd = NULL;
1942 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1943 err = dw_mci_command_complete(host, cmd);
1944 if (cmd == mrq->sbc && !err) {
1945 prev_state = state = STATE_SENDING_CMD;
1946 __dw_mci_start_request(host, host->slot,
1947 mrq->cmd);
1948 goto unlock;
1949 }
1950
1951 if (cmd->data && err) {
1952 /*
1953 * During UHS tuning sequence, sending the stop
1954 * command after the response CRC error would
1955 * throw the system into a confused state
1956 * causing all future tuning phases to report
1957 * failure.
1958 *
1959 * In such case controller will move into a data
1960 * transfer state after a response error or
1961 * response CRC error. Let's let that finish
1962 * before trying to send a stop, so we'll go to
1963 * STATE_SENDING_DATA.
1964 *
1965 * Although letting the data transfer take place
1966 * will waste a bit of time (we already know
1967 * the command was bad), it can't cause any
1968 * errors since it's possible it would have
1969 * taken place anyway if this tasklet got
1970 * delayed. Allowing the transfer to take place
1971 * avoids races and keeps things simple.
1972 */
1973 if ((err != -ETIMEDOUT) &&
1974 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1975 state = STATE_SENDING_DATA;
1976 continue;
1977 }
1978
1979 dw_mci_stop_dma(host);
1980 send_stop_abort(host, data);
1981 state = STATE_SENDING_STOP;
1982 break;
1983 }
1984
1985 if (!cmd->data || err) {
1986 dw_mci_request_end(host, mrq);
1987 goto unlock;
1988 }
1989
1990 prev_state = state = STATE_SENDING_DATA;
1991 /* fall through */
1992
1993 case STATE_SENDING_DATA:
1994 /*
1995 * We could get a data error and never a transfer
1996 * complete so we'd better check for it here.
1997 *
1998 * Note that we don't really care if we also got a
1999 * transfer complete; stopping the DMA and sending an
2000 * abort won't hurt.
2001 */
2002 if (test_and_clear_bit(EVENT_DATA_ERROR,
2003 &host->pending_events)) {
2004 dw_mci_stop_dma(host);
2005 if (!(host->data_status & (SDMMC_INT_DRTO |
2006 SDMMC_INT_EBE)))
2007 send_stop_abort(host, data);
2008 state = STATE_DATA_ERROR;
2009 break;
2010 }
2011
2012 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2013 &host->pending_events)) {
2014 /*
2015 * If all data-related interrupts don't come
2016 * within the given time in reading data state.
2017 */
2018 if (host->dir_status == DW_MCI_RECV_STATUS)
2019 dw_mci_set_drto(host);
2020 break;
2021 }
2022
2023 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
2024
2025 /*
2026 * Handle an EVENT_DATA_ERROR that might have shown up
2027 * before the transfer completed. This might not have
2028 * been caught by the check above because the interrupt
2029 * could have gone off between the previous check and
2030 * the check for transfer complete.
2031 *
2032 * Technically this ought not be needed assuming we
2033 * get a DATA_COMPLETE eventually (we'll notice the
2034 * error and end the request), but it shouldn't hurt.
2035 *
2036 * This has the advantage of sending the stop command.
2037 */
2038 if (test_and_clear_bit(EVENT_DATA_ERROR,
2039 &host->pending_events)) {
2040 dw_mci_stop_dma(host);
2041 if (!(host->data_status & (SDMMC_INT_DRTO |
2042 SDMMC_INT_EBE)))
2043 send_stop_abort(host, data);
2044 state = STATE_DATA_ERROR;
2045 break;
2046 }
2047 prev_state = state = STATE_DATA_BUSY;
2048
2049 /* fall through */
2050
2051 case STATE_DATA_BUSY:
2052 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
2053 &host->pending_events)) {
2054 /*
2055 * If data error interrupt comes but data over
2056 * interrupt doesn't come within the given time.
2057 * in reading data state.
2058 */
2059 if (host->dir_status == DW_MCI_RECV_STATUS)
2060 dw_mci_set_drto(host);
2061 break;
2062 }
2063
2064 host->data = NULL;
2065 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
2066 err = dw_mci_data_complete(host, data);
2067
2068 if (!err) {
2069 if (!data->stop || mrq->sbc) {
2070 if (mrq->sbc && data->stop)
2071 data->stop->error = 0;
2072 dw_mci_request_end(host, mrq);
2073 goto unlock;
2074 }
2075
2076 /* stop command for open-ended transfer*/
2077 if (data->stop)
2078 send_stop_abort(host, data);
2079 } else {
2080 /*
2081 * If we don't have a command complete now we'll
2082 * never get one since we just reset everything;
2083 * better end the request.
2084 *
2085 * If we do have a command complete we'll fall
2086 * through to the SENDING_STOP command and
2087 * everything will be peachy keen.
2088 */
2089 if (!test_bit(EVENT_CMD_COMPLETE,
2090 &host->pending_events)) {
2091 host->cmd = NULL;
2092 dw_mci_request_end(host, mrq);
2093 goto unlock;
2094 }
2095 }
2096
2097 /*
2098 * If err has non-zero,
2099 * stop-abort command has been already issued.
2100 */
2101 prev_state = state = STATE_SENDING_STOP;
2102
2103 /* fall through */
2104
2105 case STATE_SENDING_STOP:
2106 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2107 &host->pending_events))
2108 break;
2109
2110 /* CMD error in data command */
2111 if (mrq->cmd->error && mrq->data)
2112 dw_mci_reset(host);
2113
2114 host->cmd = NULL;
2115 host->data = NULL;
2116
2117 if (!mrq->sbc && mrq->stop)
2118 dw_mci_command_complete(host, mrq->stop);
2119 else
2120 host->cmd_status = 0;
2121
2122 dw_mci_request_end(host, mrq);
2123 goto unlock;
2124
2125 case STATE_DATA_ERROR:
2126 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2127 &host->pending_events))
2128 break;
2129
2130 state = STATE_DATA_BUSY;
2131 break;
2132 }
2133 } while (state != prev_state);
2134
2135 host->state = state;
2136 unlock:
2137 spin_unlock(&host->lock);
2138
2139 }
2140
2141 /* push final bytes to part_buf, only use during push */
2142 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2143 {
2144 memcpy((void *)&host->part_buf, buf, cnt);
2145 host->part_buf_count = cnt;
2146 }
2147
2148 /* append bytes to part_buf, only use during push */
2149 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2150 {
2151 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2152 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2153 host->part_buf_count += cnt;
2154 return cnt;
2155 }
2156
2157 /* pull first bytes from part_buf, only use during pull */
2158 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2159 {
2160 cnt = min_t(int, cnt, host->part_buf_count);
2161 if (cnt) {
2162 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2163 cnt);
2164 host->part_buf_count -= cnt;
2165 host->part_buf_start += cnt;
2166 }
2167 return cnt;
2168 }
2169
2170 /* pull final bytes from the part_buf, assuming it's just been filled */
2171 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2172 {
2173 memcpy(buf, &host->part_buf, cnt);
2174 host->part_buf_start = cnt;
2175 host->part_buf_count = (1 << host->data_shift) - cnt;
2176 }
2177
2178 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2179 {
2180 struct mmc_data *data = host->data;
2181 int init_cnt = cnt;
2182
2183 /* try and push anything in the part_buf */
2184 if (unlikely(host->part_buf_count)) {
2185 int len = dw_mci_push_part_bytes(host, buf, cnt);
2186
2187 buf += len;
2188 cnt -= len;
2189 if (host->part_buf_count == 2) {
2190 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2191 host->part_buf_count = 0;
2192 }
2193 }
2194 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2195 if (unlikely((unsigned long)buf & 0x1)) {
2196 while (cnt >= 2) {
2197 u16 aligned_buf[64];
2198 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2199 int items = len >> 1;
2200 int i;
2201 /* memcpy from input buffer into aligned buffer */
2202 memcpy(aligned_buf, buf, len);
2203 buf += len;
2204 cnt -= len;
2205 /* push data from aligned buffer into fifo */
2206 for (i = 0; i < items; ++i)
2207 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2208 }
2209 } else
2210 #endif
2211 {
2212 u16 *pdata = buf;
2213
2214 for (; cnt >= 2; cnt -= 2)
2215 mci_fifo_writew(host->fifo_reg, *pdata++);
2216 buf = pdata;
2217 }
2218 /* put anything remaining in the part_buf */
2219 if (cnt) {
2220 dw_mci_set_part_bytes(host, buf, cnt);
2221 /* Push data if we have reached the expected data length */
2222 if ((data->bytes_xfered + init_cnt) ==
2223 (data->blksz * data->blocks))
2224 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2225 }
2226 }
2227
2228 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2229 {
2230 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2231 if (unlikely((unsigned long)buf & 0x1)) {
2232 while (cnt >= 2) {
2233 /* pull data from fifo into aligned buffer */
2234 u16 aligned_buf[64];
2235 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2236 int items = len >> 1;
2237 int i;
2238
2239 for (i = 0; i < items; ++i)
2240 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2241 /* memcpy from aligned buffer into output buffer */
2242 memcpy(buf, aligned_buf, len);
2243 buf += len;
2244 cnt -= len;
2245 }
2246 } else
2247 #endif
2248 {
2249 u16 *pdata = buf;
2250
2251 for (; cnt >= 2; cnt -= 2)
2252 *pdata++ = mci_fifo_readw(host->fifo_reg);
2253 buf = pdata;
2254 }
2255 if (cnt) {
2256 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2257 dw_mci_pull_final_bytes(host, buf, cnt);
2258 }
2259 }
2260
2261 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2262 {
2263 struct mmc_data *data = host->data;
2264 int init_cnt = cnt;
2265
2266 /* try and push anything in the part_buf */
2267 if (unlikely(host->part_buf_count)) {
2268 int len = dw_mci_push_part_bytes(host, buf, cnt);
2269
2270 buf += len;
2271 cnt -= len;
2272 if (host->part_buf_count == 4) {
2273 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2274 host->part_buf_count = 0;
2275 }
2276 }
2277 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2278 if (unlikely((unsigned long)buf & 0x3)) {
2279 while (cnt >= 4) {
2280 u32 aligned_buf[32];
2281 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2282 int items = len >> 2;
2283 int i;
2284 /* memcpy from input buffer into aligned buffer */
2285 memcpy(aligned_buf, buf, len);
2286 buf += len;
2287 cnt -= len;
2288 /* push data from aligned buffer into fifo */
2289 for (i = 0; i < items; ++i)
2290 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2291 }
2292 } else
2293 #endif
2294 {
2295 u32 *pdata = buf;
2296
2297 for (; cnt >= 4; cnt -= 4)
2298 mci_fifo_writel(host->fifo_reg, *pdata++);
2299 buf = pdata;
2300 }
2301 /* put anything remaining in the part_buf */
2302 if (cnt) {
2303 dw_mci_set_part_bytes(host, buf, cnt);
2304 /* Push data if we have reached the expected data length */
2305 if ((data->bytes_xfered + init_cnt) ==
2306 (data->blksz * data->blocks))
2307 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2308 }
2309 }
2310
2311 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2312 {
2313 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2314 if (unlikely((unsigned long)buf & 0x3)) {
2315 while (cnt >= 4) {
2316 /* pull data from fifo into aligned buffer */
2317 u32 aligned_buf[32];
2318 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2319 int items = len >> 2;
2320 int i;
2321
2322 for (i = 0; i < items; ++i)
2323 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2324 /* memcpy from aligned buffer into output buffer */
2325 memcpy(buf, aligned_buf, len);
2326 buf += len;
2327 cnt -= len;
2328 }
2329 } else
2330 #endif
2331 {
2332 u32 *pdata = buf;
2333
2334 for (; cnt >= 4; cnt -= 4)
2335 *pdata++ = mci_fifo_readl(host->fifo_reg);
2336 buf = pdata;
2337 }
2338 if (cnt) {
2339 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2340 dw_mci_pull_final_bytes(host, buf, cnt);
2341 }
2342 }
2343
2344 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2345 {
2346 struct mmc_data *data = host->data;
2347 int init_cnt = cnt;
2348
2349 /* try and push anything in the part_buf */
2350 if (unlikely(host->part_buf_count)) {
2351 int len = dw_mci_push_part_bytes(host, buf, cnt);
2352
2353 buf += len;
2354 cnt -= len;
2355
2356 if (host->part_buf_count == 8) {
2357 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2358 host->part_buf_count = 0;
2359 }
2360 }
2361 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2362 if (unlikely((unsigned long)buf & 0x7)) {
2363 while (cnt >= 8) {
2364 u64 aligned_buf[16];
2365 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2366 int items = len >> 3;
2367 int i;
2368 /* memcpy from input buffer into aligned buffer */
2369 memcpy(aligned_buf, buf, len);
2370 buf += len;
2371 cnt -= len;
2372 /* push data from aligned buffer into fifo */
2373 for (i = 0; i < items; ++i)
2374 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2375 }
2376 } else
2377 #endif
2378 {
2379 u64 *pdata = buf;
2380
2381 for (; cnt >= 8; cnt -= 8)
2382 mci_fifo_writeq(host->fifo_reg, *pdata++);
2383 buf = pdata;
2384 }
2385 /* put anything remaining in the part_buf */
2386 if (cnt) {
2387 dw_mci_set_part_bytes(host, buf, cnt);
2388 /* Push data if we have reached the expected data length */
2389 if ((data->bytes_xfered + init_cnt) ==
2390 (data->blksz * data->blocks))
2391 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2392 }
2393 }
2394
2395 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2396 {
2397 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2398 if (unlikely((unsigned long)buf & 0x7)) {
2399 while (cnt >= 8) {
2400 /* pull data from fifo into aligned buffer */
2401 u64 aligned_buf[16];
2402 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2403 int items = len >> 3;
2404 int i;
2405
2406 for (i = 0; i < items; ++i)
2407 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2408
2409 /* memcpy from aligned buffer into output buffer */
2410 memcpy(buf, aligned_buf, len);
2411 buf += len;
2412 cnt -= len;
2413 }
2414 } else
2415 #endif
2416 {
2417 u64 *pdata = buf;
2418
2419 for (; cnt >= 8; cnt -= 8)
2420 *pdata++ = mci_fifo_readq(host->fifo_reg);
2421 buf = pdata;
2422 }
2423 if (cnt) {
2424 host->part_buf = mci_fifo_readq(host->fifo_reg);
2425 dw_mci_pull_final_bytes(host, buf, cnt);
2426 }
2427 }
2428
2429 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2430 {
2431 int len;
2432
2433 /* get remaining partial bytes */
2434 len = dw_mci_pull_part_bytes(host, buf, cnt);
2435 if (unlikely(len == cnt))
2436 return;
2437 buf += len;
2438 cnt -= len;
2439
2440 /* get the rest of the data */
2441 host->pull_data(host, buf, cnt);
2442 }
2443
2444 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2445 {
2446 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2447 void *buf;
2448 unsigned int offset;
2449 struct mmc_data *data = host->data;
2450 int shift = host->data_shift;
2451 u32 status;
2452 unsigned int len;
2453 unsigned int remain, fcnt;
2454
2455 do {
2456 if (!sg_miter_next(sg_miter))
2457 goto done;
2458
2459 host->sg = sg_miter->piter.sg;
2460 buf = sg_miter->addr;
2461 remain = sg_miter->length;
2462 offset = 0;
2463
2464 do {
2465 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2466 << shift) + host->part_buf_count;
2467 len = min(remain, fcnt);
2468 if (!len)
2469 break;
2470 dw_mci_pull_data(host, (void *)(buf + offset), len);
2471 data->bytes_xfered += len;
2472 offset += len;
2473 remain -= len;
2474 } while (remain);
2475
2476 sg_miter->consumed = offset;
2477 status = mci_readl(host, MINTSTS);
2478 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2479 /* if the RXDR is ready read again */
2480 } while ((status & SDMMC_INT_RXDR) ||
2481 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2482
2483 if (!remain) {
2484 if (!sg_miter_next(sg_miter))
2485 goto done;
2486 sg_miter->consumed = 0;
2487 }
2488 sg_miter_stop(sg_miter);
2489 return;
2490
2491 done:
2492 sg_miter_stop(sg_miter);
2493 host->sg = NULL;
2494 smp_wmb(); /* drain writebuffer */
2495 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2496 }
2497
2498 static void dw_mci_write_data_pio(struct dw_mci *host)
2499 {
2500 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2501 void *buf;
2502 unsigned int offset;
2503 struct mmc_data *data = host->data;
2504 int shift = host->data_shift;
2505 u32 status;
2506 unsigned int len;
2507 unsigned int fifo_depth = host->fifo_depth;
2508 unsigned int remain, fcnt;
2509
2510 do {
2511 if (!sg_miter_next(sg_miter))
2512 goto done;
2513
2514 host->sg = sg_miter->piter.sg;
2515 buf = sg_miter->addr;
2516 remain = sg_miter->length;
2517 offset = 0;
2518
2519 do {
2520 fcnt = ((fifo_depth -
2521 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2522 << shift) - host->part_buf_count;
2523 len = min(remain, fcnt);
2524 if (!len)
2525 break;
2526 host->push_data(host, (void *)(buf + offset), len);
2527 data->bytes_xfered += len;
2528 offset += len;
2529 remain -= len;
2530 } while (remain);
2531
2532 sg_miter->consumed = offset;
2533 status = mci_readl(host, MINTSTS);
2534 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2535 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2536
2537 if (!remain) {
2538 if (!sg_miter_next(sg_miter))
2539 goto done;
2540 sg_miter->consumed = 0;
2541 }
2542 sg_miter_stop(sg_miter);
2543 return;
2544
2545 done:
2546 sg_miter_stop(sg_miter);
2547 host->sg = NULL;
2548 smp_wmb(); /* drain writebuffer */
2549 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2550 }
2551
2552 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2553 {
2554 if (!host->cmd_status)
2555 host->cmd_status = status;
2556
2557 smp_wmb(); /* drain writebuffer */
2558
2559 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2560 tasklet_schedule(&host->tasklet);
2561 }
2562
2563 static void dw_mci_handle_cd(struct dw_mci *host)
2564 {
2565 struct dw_mci_slot *slot = host->slot;
2566
2567 if (slot->mmc->ops->card_event)
2568 slot->mmc->ops->card_event(slot->mmc);
2569 mmc_detect_change(slot->mmc,
2570 msecs_to_jiffies(host->pdata->detect_delay_ms));
2571 }
2572
2573 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2574 {
2575 struct dw_mci *host = dev_id;
2576 u32 pending;
2577 struct dw_mci_slot *slot = host->slot;
2578
2579 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2580
2581 if (pending) {
2582 /* Check volt switch first, since it can look like an error */
2583 if ((host->state == STATE_SENDING_CMD11) &&
2584 (pending & SDMMC_INT_VOLT_SWITCH)) {
2585 unsigned long irqflags;
2586
2587 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2588 pending &= ~SDMMC_INT_VOLT_SWITCH;
2589
2590 /*
2591 * Hold the lock; we know cmd11_timer can't be kicked
2592 * off after the lock is released, so safe to delete.
2593 */
2594 spin_lock_irqsave(&host->irq_lock, irqflags);
2595 dw_mci_cmd_interrupt(host, pending);
2596 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2597
2598 del_timer(&host->cmd11_timer);
2599 }
2600
2601 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2602 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2603 host->cmd_status = pending;
2604 smp_wmb(); /* drain writebuffer */
2605 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2606 }
2607
2608 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2609 /* if there is an error report DATA_ERROR */
2610 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2611 host->data_status = pending;
2612 smp_wmb(); /* drain writebuffer */
2613 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2614 tasklet_schedule(&host->tasklet);
2615 }
2616
2617 if (pending & SDMMC_INT_DATA_OVER) {
2618 del_timer(&host->dto_timer);
2619
2620 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2621 if (!host->data_status)
2622 host->data_status = pending;
2623 smp_wmb(); /* drain writebuffer */
2624 if (host->dir_status == DW_MCI_RECV_STATUS) {
2625 if (host->sg != NULL)
2626 dw_mci_read_data_pio(host, true);
2627 }
2628 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2629 tasklet_schedule(&host->tasklet);
2630 }
2631
2632 if (pending & SDMMC_INT_RXDR) {
2633 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2634 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2635 dw_mci_read_data_pio(host, false);
2636 }
2637
2638 if (pending & SDMMC_INT_TXDR) {
2639 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2640 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2641 dw_mci_write_data_pio(host);
2642 }
2643
2644 if (pending & SDMMC_INT_CMD_DONE) {
2645 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2646 dw_mci_cmd_interrupt(host, pending);
2647 }
2648
2649 if (pending & SDMMC_INT_CD) {
2650 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2651 dw_mci_handle_cd(host);
2652 }
2653
2654 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2655 mci_writel(host, RINTSTS,
2656 SDMMC_INT_SDIO(slot->sdio_id));
2657 __dw_mci_enable_sdio_irq(slot, 0);
2658 sdio_signal_irq(slot->mmc);
2659 }
2660
2661 }
2662
2663 if (host->use_dma != TRANS_MODE_IDMAC)
2664 return IRQ_HANDLED;
2665
2666 /* Handle IDMA interrupts */
2667 if (host->dma_64bit_address == 1) {
2668 pending = mci_readl(host, IDSTS64);
2669 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2670 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2671 SDMMC_IDMAC_INT_RI);
2672 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2673 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2674 host->dma_ops->complete((void *)host);
2675 }
2676 } else {
2677 pending = mci_readl(host, IDSTS);
2678 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2679 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2680 SDMMC_IDMAC_INT_RI);
2681 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2682 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2683 host->dma_ops->complete((void *)host);
2684 }
2685 }
2686
2687 return IRQ_HANDLED;
2688 }
2689
2690 static int dw_mci_init_slot(struct dw_mci *host)
2691 {
2692 struct mmc_host *mmc;
2693 struct dw_mci_slot *slot;
2694 const struct dw_mci_drv_data *drv_data = host->drv_data;
2695 int ctrl_id, ret;
2696 u32 freq[2];
2697
2698 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2699 if (!mmc)
2700 return -ENOMEM;
2701
2702 slot = mmc_priv(mmc);
2703 slot->id = 0;
2704 slot->sdio_id = host->sdio_id0 + slot->id;
2705 slot->mmc = mmc;
2706 slot->host = host;
2707 host->slot = slot;
2708
2709 mmc->ops = &dw_mci_ops;
2710 if (device_property_read_u32_array(host->dev, "clock-freq-min-max",
2711 freq, 2)) {
2712 mmc->f_min = DW_MCI_FREQ_MIN;
2713 mmc->f_max = DW_MCI_FREQ_MAX;
2714 } else {
2715 dev_info(host->dev,
2716 "'clock-freq-min-max' property was deprecated.\n");
2717 mmc->f_min = freq[0];
2718 mmc->f_max = freq[1];
2719 }
2720
2721 /*if there are external regulators, get them*/
2722 ret = mmc_regulator_get_supply(mmc);
2723 if (ret == -EPROBE_DEFER)
2724 goto err_host_allocated;
2725
2726 if (!mmc->ocr_avail)
2727 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2728
2729 if (host->pdata->caps)
2730 mmc->caps = host->pdata->caps;
2731
2732 /*
2733 * Support MMC_CAP_ERASE by default.
2734 * It needs to use trim/discard/erase commands.
2735 */
2736 mmc->caps |= MMC_CAP_ERASE;
2737
2738 if (host->pdata->pm_caps)
2739 mmc->pm_caps = host->pdata->pm_caps;
2740
2741 if (host->dev->of_node) {
2742 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2743 if (ctrl_id < 0)
2744 ctrl_id = 0;
2745 } else {
2746 ctrl_id = to_platform_device(host->dev)->id;
2747 }
2748 if (drv_data && drv_data->caps)
2749 mmc->caps |= drv_data->caps[ctrl_id];
2750
2751 if (host->pdata->caps2)
2752 mmc->caps2 = host->pdata->caps2;
2753
2754 ret = mmc_of_parse(mmc);
2755 if (ret)
2756 goto err_host_allocated;
2757
2758 /* Process SDIO IRQs through the sdio_irq_work. */
2759 if (mmc->caps & MMC_CAP_SDIO_IRQ)
2760 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2761
2762 /* Useful defaults if platform data is unset. */
2763 if (host->use_dma == TRANS_MODE_IDMAC) {
2764 mmc->max_segs = host->ring_size;
2765 mmc->max_blk_size = 65535;
2766 mmc->max_seg_size = 0x1000;
2767 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2768 mmc->max_blk_count = mmc->max_req_size / 512;
2769 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2770 mmc->max_segs = 64;
2771 mmc->max_blk_size = 65535;
2772 mmc->max_blk_count = 65535;
2773 mmc->max_req_size =
2774 mmc->max_blk_size * mmc->max_blk_count;
2775 mmc->max_seg_size = mmc->max_req_size;
2776 } else {
2777 /* TRANS_MODE_PIO */
2778 mmc->max_segs = 64;
2779 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2780 mmc->max_blk_count = 512;
2781 mmc->max_req_size = mmc->max_blk_size *
2782 mmc->max_blk_count;
2783 mmc->max_seg_size = mmc->max_req_size;
2784 }
2785
2786 dw_mci_get_cd(mmc);
2787
2788 ret = mmc_add_host(mmc);
2789 if (ret)
2790 goto err_host_allocated;
2791
2792 #if defined(CONFIG_DEBUG_FS)
2793 dw_mci_init_debugfs(slot);
2794 #endif
2795
2796 return 0;
2797
2798 err_host_allocated:
2799 mmc_free_host(mmc);
2800 return ret;
2801 }
2802
2803 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot)
2804 {
2805 /* Debugfs stuff is cleaned up by mmc core */
2806 mmc_remove_host(slot->mmc);
2807 slot->host->slot = NULL;
2808 mmc_free_host(slot->mmc);
2809 }
2810
2811 static void dw_mci_init_dma(struct dw_mci *host)
2812 {
2813 int addr_config;
2814 struct device *dev = host->dev;
2815
2816 /*
2817 * Check tansfer mode from HCON[17:16]
2818 * Clear the ambiguous description of dw_mmc databook:
2819 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2820 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2821 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2822 * 2b'11: Non DW DMA Interface -> pio only
2823 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2824 * simpler request/acknowledge handshake mechanism and both of them
2825 * are regarded as external dma master for dw_mmc.
2826 */
2827 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2828 if (host->use_dma == DMA_INTERFACE_IDMA) {
2829 host->use_dma = TRANS_MODE_IDMAC;
2830 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2831 host->use_dma == DMA_INTERFACE_GDMA) {
2832 host->use_dma = TRANS_MODE_EDMAC;
2833 } else {
2834 goto no_dma;
2835 }
2836
2837 /* Determine which DMA interface to use */
2838 if (host->use_dma == TRANS_MODE_IDMAC) {
2839 /*
2840 * Check ADDR_CONFIG bit in HCON to find
2841 * IDMAC address bus width
2842 */
2843 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2844
2845 if (addr_config == 1) {
2846 /* host supports IDMAC in 64-bit address mode */
2847 host->dma_64bit_address = 1;
2848 dev_info(host->dev,
2849 "IDMAC supports 64-bit address mode.\n");
2850 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2851 dma_set_coherent_mask(host->dev,
2852 DMA_BIT_MASK(64));
2853 } else {
2854 /* host supports IDMAC in 32-bit address mode */
2855 host->dma_64bit_address = 0;
2856 dev_info(host->dev,
2857 "IDMAC supports 32-bit address mode.\n");
2858 }
2859
2860 /* Alloc memory for sg translation */
2861 host->sg_cpu = dmam_alloc_coherent(host->dev,
2862 DESC_RING_BUF_SZ,
2863 &host->sg_dma, GFP_KERNEL);
2864 if (!host->sg_cpu) {
2865 dev_err(host->dev,
2866 "%s: could not alloc DMA memory\n",
2867 __func__);
2868 goto no_dma;
2869 }
2870
2871 host->dma_ops = &dw_mci_idmac_ops;
2872 dev_info(host->dev, "Using internal DMA controller.\n");
2873 } else {
2874 /* TRANS_MODE_EDMAC: check dma bindings again */
2875 if ((device_property_read_string_array(dev, "dma-names",
2876 NULL, 0) < 0) ||
2877 !device_property_present(dev, "dmas")) {
2878 goto no_dma;
2879 }
2880 host->dma_ops = &dw_mci_edmac_ops;
2881 dev_info(host->dev, "Using external DMA controller.\n");
2882 }
2883
2884 if (host->dma_ops->init && host->dma_ops->start &&
2885 host->dma_ops->stop && host->dma_ops->cleanup) {
2886 if (host->dma_ops->init(host)) {
2887 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2888 __func__);
2889 goto no_dma;
2890 }
2891 } else {
2892 dev_err(host->dev, "DMA initialization not found.\n");
2893 goto no_dma;
2894 }
2895
2896 return;
2897
2898 no_dma:
2899 dev_info(host->dev, "Using PIO mode.\n");
2900 host->use_dma = TRANS_MODE_PIO;
2901 }
2902
2903 static void dw_mci_cmd11_timer(unsigned long arg)
2904 {
2905 struct dw_mci *host = (struct dw_mci *)arg;
2906
2907 if (host->state != STATE_SENDING_CMD11) {
2908 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2909 return;
2910 }
2911
2912 host->cmd_status = SDMMC_INT_RTO;
2913 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2914 tasklet_schedule(&host->tasklet);
2915 }
2916
2917 static void dw_mci_dto_timer(unsigned long arg)
2918 {
2919 struct dw_mci *host = (struct dw_mci *)arg;
2920
2921 switch (host->state) {
2922 case STATE_SENDING_DATA:
2923 case STATE_DATA_BUSY:
2924 /*
2925 * If DTO interrupt does NOT come in sending data state,
2926 * we should notify the driver to terminate current transfer
2927 * and report a data timeout to the core.
2928 */
2929 host->data_status = SDMMC_INT_DRTO;
2930 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2931 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2932 tasklet_schedule(&host->tasklet);
2933 break;
2934 default:
2935 break;
2936 }
2937 }
2938
2939 #ifdef CONFIG_OF
2940 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2941 {
2942 struct dw_mci_board *pdata;
2943 struct device *dev = host->dev;
2944 const struct dw_mci_drv_data *drv_data = host->drv_data;
2945 int ret;
2946 u32 clock_frequency;
2947
2948 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2949 if (!pdata)
2950 return ERR_PTR(-ENOMEM);
2951
2952 /* find reset controller when exist */
2953 pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2954 if (IS_ERR(pdata->rstc)) {
2955 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2956 return ERR_PTR(-EPROBE_DEFER);
2957 }
2958
2959 /* find out number of slots supported */
2960 if (!device_property_read_u32(dev, "num-slots", &pdata->num_slots))
2961 dev_info(dev, "'num-slots' was deprecated.\n");
2962
2963 if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth))
2964 dev_info(dev,
2965 "fifo-depth property not found, using value of FIFOTH register as default\n");
2966
2967 device_property_read_u32(dev, "card-detect-delay",
2968 &pdata->detect_delay_ms);
2969
2970 device_property_read_u32(dev, "data-addr", &host->data_addr_override);
2971
2972 if (device_property_present(dev, "fifo-watermark-aligned"))
2973 host->wm_aligned = true;
2974
2975 if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency))
2976 pdata->bus_hz = clock_frequency;
2977
2978 if (drv_data && drv_data->parse_dt) {
2979 ret = drv_data->parse_dt(host);
2980 if (ret)
2981 return ERR_PTR(ret);
2982 }
2983
2984 return pdata;
2985 }
2986
2987 #else /* CONFIG_OF */
2988 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2989 {
2990 return ERR_PTR(-EINVAL);
2991 }
2992 #endif /* CONFIG_OF */
2993
2994 static void dw_mci_enable_cd(struct dw_mci *host)
2995 {
2996 unsigned long irqflags;
2997 u32 temp;
2998
2999 /*
3000 * No need for CD if all slots have a non-error GPIO
3001 * as well as broken card detection is found.
3002 */
3003 if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3004 return;
3005
3006 if (mmc_gpio_get_cd(host->slot->mmc) < 0) {
3007 spin_lock_irqsave(&host->irq_lock, irqflags);
3008 temp = mci_readl(host, INTMASK);
3009 temp |= SDMMC_INT_CD;
3010 mci_writel(host, INTMASK, temp);
3011 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3012 }
3013 }
3014
3015 int dw_mci_probe(struct dw_mci *host)
3016 {
3017 const struct dw_mci_drv_data *drv_data = host->drv_data;
3018 int width, i, ret = 0;
3019 u32 fifo_size;
3020
3021 if (!host->pdata) {
3022 host->pdata = dw_mci_parse_dt(host);
3023 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3024 return -EPROBE_DEFER;
3025 } else if (IS_ERR(host->pdata)) {
3026 dev_err(host->dev, "platform data not available\n");
3027 return -EINVAL;
3028 }
3029 }
3030
3031 host->biu_clk = devm_clk_get(host->dev, "biu");
3032 if (IS_ERR(host->biu_clk)) {
3033 dev_dbg(host->dev, "biu clock not available\n");
3034 } else {
3035 ret = clk_prepare_enable(host->biu_clk);
3036 if (ret) {
3037 dev_err(host->dev, "failed to enable biu clock\n");
3038 return ret;
3039 }
3040 }
3041
3042 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3043 if (IS_ERR(host->ciu_clk)) {
3044 dev_dbg(host->dev, "ciu clock not available\n");
3045 host->bus_hz = host->pdata->bus_hz;
3046 } else {
3047 ret = clk_prepare_enable(host->ciu_clk);
3048 if (ret) {
3049 dev_err(host->dev, "failed to enable ciu clock\n");
3050 goto err_clk_biu;
3051 }
3052
3053 if (host->pdata->bus_hz) {
3054 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3055 if (ret)
3056 dev_warn(host->dev,
3057 "Unable to set bus rate to %uHz\n",
3058 host->pdata->bus_hz);
3059 }
3060 host->bus_hz = clk_get_rate(host->ciu_clk);
3061 }
3062
3063 if (!host->bus_hz) {
3064 dev_err(host->dev,
3065 "Platform data must supply bus speed\n");
3066 ret = -ENODEV;
3067 goto err_clk_ciu;
3068 }
3069
3070 if (drv_data && drv_data->init) {
3071 ret = drv_data->init(host);
3072 if (ret) {
3073 dev_err(host->dev,
3074 "implementation specific init failed\n");
3075 goto err_clk_ciu;
3076 }
3077 }
3078
3079 if (!IS_ERR(host->pdata->rstc)) {
3080 reset_control_assert(host->pdata->rstc);
3081 usleep_range(10, 50);
3082 reset_control_deassert(host->pdata->rstc);
3083 }
3084
3085 setup_timer(&host->cmd11_timer,
3086 dw_mci_cmd11_timer, (unsigned long)host);
3087
3088 setup_timer(&host->dto_timer,
3089 dw_mci_dto_timer, (unsigned long)host);
3090
3091 spin_lock_init(&host->lock);
3092 spin_lock_init(&host->irq_lock);
3093 INIT_LIST_HEAD(&host->queue);
3094
3095 /*
3096 * Get the host data width - this assumes that HCON has been set with
3097 * the correct values.
3098 */
3099 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3100 if (!i) {
3101 host->push_data = dw_mci_push_data16;
3102 host->pull_data = dw_mci_pull_data16;
3103 width = 16;
3104 host->data_shift = 1;
3105 } else if (i == 2) {
3106 host->push_data = dw_mci_push_data64;
3107 host->pull_data = dw_mci_pull_data64;
3108 width = 64;
3109 host->data_shift = 3;
3110 } else {
3111 /* Check for a reserved value, and warn if it is */
3112 WARN((i != 1),
3113 "HCON reports a reserved host data width!\n"
3114 "Defaulting to 32-bit access.\n");
3115 host->push_data = dw_mci_push_data32;
3116 host->pull_data = dw_mci_pull_data32;
3117 width = 32;
3118 host->data_shift = 2;
3119 }
3120
3121 /* Reset all blocks */
3122 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3123 ret = -ENODEV;
3124 goto err_clk_ciu;
3125 }
3126
3127 host->dma_ops = host->pdata->dma_ops;
3128 dw_mci_init_dma(host);
3129
3130 /* Clear the interrupts for the host controller */
3131 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3132 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3133
3134 /* Put in max timeout */
3135 mci_writel(host, TMOUT, 0xFFFFFFFF);
3136
3137 /*
3138 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3139 * Tx Mark = fifo_size / 2 DMA Size = 8
3140 */
3141 if (!host->pdata->fifo_depth) {
3142 /*
3143 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3144 * have been overwritten by the bootloader, just like we're
3145 * about to do, so if you know the value for your hardware, you
3146 * should put it in the platform data.
3147 */
3148 fifo_size = mci_readl(host, FIFOTH);
3149 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3150 } else {
3151 fifo_size = host->pdata->fifo_depth;
3152 }
3153 host->fifo_depth = fifo_size;
3154 host->fifoth_val =
3155 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3156 mci_writel(host, FIFOTH, host->fifoth_val);
3157
3158 /* disable clock to CIU */
3159 mci_writel(host, CLKENA, 0);
3160 mci_writel(host, CLKSRC, 0);
3161
3162 /*
3163 * In 2.40a spec, Data offset is changed.
3164 * Need to check the version-id and set data-offset for DATA register.
3165 */
3166 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3167 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3168
3169 if (host->data_addr_override)
3170 host->fifo_reg = host->regs + host->data_addr_override;
3171 else if (host->verid < DW_MMC_240A)
3172 host->fifo_reg = host->regs + DATA_OFFSET;
3173 else
3174 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3175
3176 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3177 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3178 host->irq_flags, "dw-mci", host);
3179 if (ret)
3180 goto err_dmaunmap;
3181
3182 /*
3183 * Enable interrupts for command done, data over, data empty,
3184 * receive ready and error such as transmit, receive timeout, crc error
3185 */
3186 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3187 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3188 DW_MCI_ERROR_FLAGS);
3189 /* Enable mci interrupt */
3190 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3191
3192 dev_info(host->dev,
3193 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3194 host->irq, width, fifo_size);
3195
3196 /* We need at least one slot to succeed */
3197 ret = dw_mci_init_slot(host);
3198 if (ret) {
3199 dev_dbg(host->dev, "slot %d init failed\n", i);
3200 goto err_dmaunmap;
3201 }
3202
3203 /* Now that slots are all setup, we can enable card detect */
3204 dw_mci_enable_cd(host);
3205
3206 return 0;
3207
3208 err_dmaunmap:
3209 if (host->use_dma && host->dma_ops->exit)
3210 host->dma_ops->exit(host);
3211
3212 if (!IS_ERR(host->pdata->rstc))
3213 reset_control_assert(host->pdata->rstc);
3214
3215 err_clk_ciu:
3216 clk_disable_unprepare(host->ciu_clk);
3217
3218 err_clk_biu:
3219 clk_disable_unprepare(host->biu_clk);
3220
3221 return ret;
3222 }
3223 EXPORT_SYMBOL(dw_mci_probe);
3224
3225 void dw_mci_remove(struct dw_mci *host)
3226 {
3227 dev_dbg(host->dev, "remove slot\n");
3228 if (host->slot)
3229 dw_mci_cleanup_slot(host->slot);
3230
3231 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3232 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3233
3234 /* disable clock to CIU */
3235 mci_writel(host, CLKENA, 0);
3236 mci_writel(host, CLKSRC, 0);
3237
3238 if (host->use_dma && host->dma_ops->exit)
3239 host->dma_ops->exit(host);
3240
3241 if (!IS_ERR(host->pdata->rstc))
3242 reset_control_assert(host->pdata->rstc);
3243
3244 clk_disable_unprepare(host->ciu_clk);
3245 clk_disable_unprepare(host->biu_clk);
3246 }
3247 EXPORT_SYMBOL(dw_mci_remove);
3248
3249
3250
3251 #ifdef CONFIG_PM
3252 int dw_mci_runtime_suspend(struct device *dev)
3253 {
3254 struct dw_mci *host = dev_get_drvdata(dev);
3255
3256 if (host->use_dma && host->dma_ops->exit)
3257 host->dma_ops->exit(host);
3258
3259 clk_disable_unprepare(host->ciu_clk);
3260
3261 if (host->slot &&
3262 (mmc_can_gpio_cd(host->slot->mmc) ||
3263 !mmc_card_is_removable(host->slot->mmc)))
3264 clk_disable_unprepare(host->biu_clk);
3265
3266 return 0;
3267 }
3268 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3269
3270 int dw_mci_runtime_resume(struct device *dev)
3271 {
3272 int ret = 0;
3273 struct dw_mci *host = dev_get_drvdata(dev);
3274
3275 if (host->slot &&
3276 (mmc_can_gpio_cd(host->slot->mmc) ||
3277 !mmc_card_is_removable(host->slot->mmc))) {
3278 ret = clk_prepare_enable(host->biu_clk);
3279 if (ret)
3280 return ret;
3281 }
3282
3283 ret = clk_prepare_enable(host->ciu_clk);
3284 if (ret)
3285 goto err;
3286
3287 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3288 clk_disable_unprepare(host->ciu_clk);
3289 ret = -ENODEV;
3290 goto err;
3291 }
3292
3293 if (host->use_dma && host->dma_ops->init)
3294 host->dma_ops->init(host);
3295
3296 /*
3297 * Restore the initial value at FIFOTH register
3298 * And Invalidate the prev_blksz with zero
3299 */
3300 mci_writel(host, FIFOTH, host->fifoth_val);
3301 host->prev_blksz = 0;
3302
3303 /* Put in max timeout */
3304 mci_writel(host, TMOUT, 0xFFFFFFFF);
3305
3306 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3307 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3308 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3309 DW_MCI_ERROR_FLAGS);
3310 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3311
3312
3313 if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3314 dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios);
3315
3316 /* Force setup bus to guarantee available clock output */
3317 dw_mci_setup_bus(host->slot, true);
3318
3319 /* Now that slots are all setup, we can enable card detect */
3320 dw_mci_enable_cd(host);
3321
3322 return 0;
3323
3324 err:
3325 if (host->slot &&
3326 (mmc_can_gpio_cd(host->slot->mmc) ||
3327 !mmc_card_is_removable(host->slot->mmc)))
3328 clk_disable_unprepare(host->biu_clk);
3329
3330 return ret;
3331 }
3332 EXPORT_SYMBOL(dw_mci_runtime_resume);
3333 #endif /* CONFIG_PM */
3334
3335 static int __init dw_mci_init(void)
3336 {
3337 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3338 return 0;
3339 }
3340
3341 static void __exit dw_mci_exit(void)
3342 {
3343 }
3344
3345 module_init(dw_mci_init);
3346 module_exit(dw_mci_exit);
3347
3348 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3349 MODULE_AUTHOR("NXP Semiconductor VietNam");
3350 MODULE_AUTHOR("Imagination Technologies Ltd");
3351 MODULE_LICENSE("GPL v2");