]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/mmc/host/dw_mmc.c
Merge remote-tracking branches 'regulator/topic/of', 'regulator/topic/pv88080', ...
[mirror_ubuntu-hirsute-kernel.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "dw_mmc.h"
43
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
55
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
58
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
63
64 struct idmac_desc_64addr {
65 u32 des0; /* Control Descriptor */
66
67 u32 des1; /* Reserved */
68
69 u32 des2; /*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73
74 u32 des3; /* Reserved */
75
76 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
77 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
78
79 u32 des6; /* Lower 32-bits of Next Descriptor Address */
80 u32 des7; /* Upper 32-bits of Next Descriptor Address */
81 };
82
83 struct idmac_desc {
84 __le32 des0; /* Control Descriptor */
85 #define IDMAC_DES0_DIC BIT(1)
86 #define IDMAC_DES0_LD BIT(2)
87 #define IDMAC_DES0_FD BIT(3)
88 #define IDMAC_DES0_CH BIT(4)
89 #define IDMAC_DES0_ER BIT(5)
90 #define IDMAC_DES0_CES BIT(30)
91 #define IDMAC_DES0_OWN BIT(31)
92
93 __le32 des1; /* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
96
97 __le32 des2; /* buffer 1 physical address */
98
99 __le32 des3; /* buffer 2 physical address */
100 };
101
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH 0x1000
104
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108 static int dw_mci_get_cd(struct mmc_host *mmc);
109
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
167 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
168 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
169 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
170 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
171 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
172
173 return 0;
174 }
175
176 static int dw_mci_regs_open(struct inode *inode, struct file *file)
177 {
178 return single_open(file, dw_mci_regs_show, inode->i_private);
179 }
180
181 static const struct file_operations dw_mci_regs_fops = {
182 .owner = THIS_MODULE,
183 .open = dw_mci_regs_open,
184 .read = seq_read,
185 .llseek = seq_lseek,
186 .release = single_release,
187 };
188
189 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
190 {
191 struct mmc_host *mmc = slot->mmc;
192 struct dw_mci *host = slot->host;
193 struct dentry *root;
194 struct dentry *node;
195
196 root = mmc->debugfs_root;
197 if (!root)
198 return;
199
200 node = debugfs_create_file("regs", S_IRUSR, root, host,
201 &dw_mci_regs_fops);
202 if (!node)
203 goto err;
204
205 node = debugfs_create_file("req", S_IRUSR, root, slot,
206 &dw_mci_req_fops);
207 if (!node)
208 goto err;
209
210 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
211 if (!node)
212 goto err;
213
214 node = debugfs_create_x32("pending_events", S_IRUSR, root,
215 (u32 *)&host->pending_events);
216 if (!node)
217 goto err;
218
219 node = debugfs_create_x32("completed_events", S_IRUSR, root,
220 (u32 *)&host->completed_events);
221 if (!node)
222 goto err;
223
224 return;
225
226 err:
227 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
228 }
229 #endif /* defined(CONFIG_DEBUG_FS) */
230
231 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
232
233 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
234 {
235 struct mmc_data *data;
236 struct dw_mci_slot *slot = mmc_priv(mmc);
237 struct dw_mci *host = slot->host;
238 u32 cmdr;
239
240 cmd->error = -EINPROGRESS;
241 cmdr = cmd->opcode;
242
243 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 cmd->opcode == MMC_GO_IDLE_STATE ||
245 cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 (cmd->opcode == SD_IO_RW_DIRECT &&
247 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 cmdr |= SDMMC_CMD_STOP;
249 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251
252 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 u32 clk_en_a;
254
255 /* Special bit makes CMD11 not die */
256 cmdr |= SDMMC_CMD_VOLT_SWITCH;
257
258 /* Change state to continue to handle CMD11 weirdness */
259 WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 slot->host->state = STATE_SENDING_CMD11;
261
262 /*
263 * We need to disable low power mode (automatic clock stop)
264 * while doing voltage switch so we don't confuse the card,
265 * since stopping the clock is a specific part of the UHS
266 * voltage change dance.
267 *
268 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 * ever called with a non-zero clock. That shouldn't happen
271 * until the voltage change is all done.
272 */
273 clk_en_a = mci_readl(host, CLKENA);
274 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 mci_writel(host, CLKENA, clk_en_a);
276 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 SDMMC_CMD_PRV_DAT_WAIT, 0);
278 }
279
280 if (cmd->flags & MMC_RSP_PRESENT) {
281 /* We expect a response, so set this bit */
282 cmdr |= SDMMC_CMD_RESP_EXP;
283 if (cmd->flags & MMC_RSP_136)
284 cmdr |= SDMMC_CMD_RESP_LONG;
285 }
286
287 if (cmd->flags & MMC_RSP_CRC)
288 cmdr |= SDMMC_CMD_RESP_CRC;
289
290 data = cmd->data;
291 if (data) {
292 cmdr |= SDMMC_CMD_DAT_EXP;
293 if (data->flags & MMC_DATA_WRITE)
294 cmdr |= SDMMC_CMD_DAT_WR;
295 }
296
297 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
298 cmdr |= SDMMC_CMD_USE_HOLD_REG;
299
300 return cmdr;
301 }
302
303 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
304 {
305 struct mmc_command *stop;
306 u32 cmdr;
307
308 if (!cmd->data)
309 return 0;
310
311 stop = &host->stop_abort;
312 cmdr = cmd->opcode;
313 memset(stop, 0, sizeof(struct mmc_command));
314
315 if (cmdr == MMC_READ_SINGLE_BLOCK ||
316 cmdr == MMC_READ_MULTIPLE_BLOCK ||
317 cmdr == MMC_WRITE_BLOCK ||
318 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
319 cmdr == MMC_SEND_TUNING_BLOCK ||
320 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
321 stop->opcode = MMC_STOP_TRANSMISSION;
322 stop->arg = 0;
323 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
324 } else if (cmdr == SD_IO_RW_EXTENDED) {
325 stop->opcode = SD_IO_RW_DIRECT;
326 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
327 ((cmd->arg >> 28) & 0x7);
328 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
329 } else {
330 return 0;
331 }
332
333 cmdr = stop->opcode | SDMMC_CMD_STOP |
334 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
335
336 return cmdr;
337 }
338
339 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
340 {
341 unsigned long timeout = jiffies + msecs_to_jiffies(500);
342
343 /*
344 * Databook says that before issuing a new data transfer command
345 * we need to check to see if the card is busy. Data transfer commands
346 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
347 *
348 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
349 * expected.
350 */
351 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
352 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
353 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
354 if (time_after(jiffies, timeout)) {
355 /* Command will fail; we'll pass error then */
356 dev_err(host->dev, "Busy; trying anyway\n");
357 break;
358 }
359 udelay(10);
360 }
361 }
362 }
363
364 static void dw_mci_start_command(struct dw_mci *host,
365 struct mmc_command *cmd, u32 cmd_flags)
366 {
367 host->cmd = cmd;
368 dev_vdbg(host->dev,
369 "start command: ARGR=0x%08x CMDR=0x%08x\n",
370 cmd->arg, cmd_flags);
371
372 mci_writel(host, CMDARG, cmd->arg);
373 wmb(); /* drain writebuffer */
374 dw_mci_wait_while_busy(host, cmd_flags);
375
376 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
377 }
378
379 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
380 {
381 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
382
383 dw_mci_start_command(host, stop, host->stop_cmdr);
384 }
385
386 /* DMA interface functions */
387 static void dw_mci_stop_dma(struct dw_mci *host)
388 {
389 if (host->using_dma) {
390 host->dma_ops->stop(host);
391 host->dma_ops->cleanup(host);
392 }
393
394 /* Data transfer was stopped by the interrupt handler */
395 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
396 }
397
398 static int dw_mci_get_dma_dir(struct mmc_data *data)
399 {
400 if (data->flags & MMC_DATA_WRITE)
401 return DMA_TO_DEVICE;
402 else
403 return DMA_FROM_DEVICE;
404 }
405
406 static void dw_mci_dma_cleanup(struct dw_mci *host)
407 {
408 struct mmc_data *data = host->data;
409
410 if (data)
411 if (!data->host_cookie)
412 dma_unmap_sg(host->dev,
413 data->sg,
414 data->sg_len,
415 dw_mci_get_dma_dir(data));
416 }
417
418 static void dw_mci_idmac_reset(struct dw_mci *host)
419 {
420 u32 bmod = mci_readl(host, BMOD);
421 /* Software reset of DMA */
422 bmod |= SDMMC_IDMAC_SWRESET;
423 mci_writel(host, BMOD, bmod);
424 }
425
426 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
427 {
428 u32 temp;
429
430 /* Disable and reset the IDMAC interface */
431 temp = mci_readl(host, CTRL);
432 temp &= ~SDMMC_CTRL_USE_IDMAC;
433 temp |= SDMMC_CTRL_DMA_RESET;
434 mci_writel(host, CTRL, temp);
435
436 /* Stop the IDMAC running */
437 temp = mci_readl(host, BMOD);
438 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
439 temp |= SDMMC_IDMAC_SWRESET;
440 mci_writel(host, BMOD, temp);
441 }
442
443 static void dw_mci_dmac_complete_dma(void *arg)
444 {
445 struct dw_mci *host = arg;
446 struct mmc_data *data = host->data;
447
448 dev_vdbg(host->dev, "DMA complete\n");
449
450 if ((host->use_dma == TRANS_MODE_EDMAC) &&
451 data && (data->flags & MMC_DATA_READ))
452 /* Invalidate cache after read */
453 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
454 data->sg,
455 data->sg_len,
456 DMA_FROM_DEVICE);
457
458 host->dma_ops->cleanup(host);
459
460 /*
461 * If the card was removed, data will be NULL. No point in trying to
462 * send the stop command or waiting for NBUSY in this case.
463 */
464 if (data) {
465 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
466 tasklet_schedule(&host->tasklet);
467 }
468 }
469
470 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
471 unsigned int sg_len)
472 {
473 unsigned int desc_len;
474 int i;
475
476 if (host->dma_64bit_address == 1) {
477 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
478
479 desc_first = desc_last = desc = host->sg_cpu;
480
481 for (i = 0; i < sg_len; i++) {
482 unsigned int length = sg_dma_len(&data->sg[i]);
483
484 u64 mem_addr = sg_dma_address(&data->sg[i]);
485
486 for ( ; length ; desc++) {
487 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
488 length : DW_MCI_DESC_DATA_LENGTH;
489
490 length -= desc_len;
491
492 /*
493 * Set the OWN bit and disable interrupts
494 * for this descriptor
495 */
496 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
497 IDMAC_DES0_CH;
498
499 /* Buffer length */
500 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
501
502 /* Physical address to DMA to/from */
503 desc->des4 = mem_addr & 0xffffffff;
504 desc->des5 = mem_addr >> 32;
505
506 /* Update physical address for the next desc */
507 mem_addr += desc_len;
508
509 /* Save pointer to the last descriptor */
510 desc_last = desc;
511 }
512 }
513
514 /* Set first descriptor */
515 desc_first->des0 |= IDMAC_DES0_FD;
516
517 /* Set last descriptor */
518 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
519 desc_last->des0 |= IDMAC_DES0_LD;
520
521 } else {
522 struct idmac_desc *desc_first, *desc_last, *desc;
523
524 desc_first = desc_last = desc = host->sg_cpu;
525
526 for (i = 0; i < sg_len; i++) {
527 unsigned int length = sg_dma_len(&data->sg[i]);
528
529 u32 mem_addr = sg_dma_address(&data->sg[i]);
530
531 for ( ; length ; desc++) {
532 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
533 length : DW_MCI_DESC_DATA_LENGTH;
534
535 length -= desc_len;
536
537 /*
538 * Set the OWN bit and disable interrupts
539 * for this descriptor
540 */
541 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
542 IDMAC_DES0_DIC |
543 IDMAC_DES0_CH);
544
545 /* Buffer length */
546 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
547
548 /* Physical address to DMA to/from */
549 desc->des2 = cpu_to_le32(mem_addr);
550
551 /* Update physical address for the next desc */
552 mem_addr += desc_len;
553
554 /* Save pointer to the last descriptor */
555 desc_last = desc;
556 }
557 }
558
559 /* Set first descriptor */
560 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
561
562 /* Set last descriptor */
563 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
564 IDMAC_DES0_DIC));
565 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
566 }
567
568 wmb(); /* drain writebuffer */
569 }
570
571 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
572 {
573 u32 temp;
574
575 dw_mci_translate_sglist(host, host->data, sg_len);
576
577 /* Make sure to reset DMA in case we did PIO before this */
578 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
579 dw_mci_idmac_reset(host);
580
581 /* Select IDMAC interface */
582 temp = mci_readl(host, CTRL);
583 temp |= SDMMC_CTRL_USE_IDMAC;
584 mci_writel(host, CTRL, temp);
585
586 /* drain writebuffer */
587 wmb();
588
589 /* Enable the IDMAC */
590 temp = mci_readl(host, BMOD);
591 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
592 mci_writel(host, BMOD, temp);
593
594 /* Start it running */
595 mci_writel(host, PLDMND, 1);
596
597 return 0;
598 }
599
600 static int dw_mci_idmac_init(struct dw_mci *host)
601 {
602 int i;
603
604 if (host->dma_64bit_address == 1) {
605 struct idmac_desc_64addr *p;
606 /* Number of descriptors in the ring buffer */
607 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
608
609 /* Forward link the descriptor list */
610 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
611 i++, p++) {
612 p->des6 = (host->sg_dma +
613 (sizeof(struct idmac_desc_64addr) *
614 (i + 1))) & 0xffffffff;
615
616 p->des7 = (u64)(host->sg_dma +
617 (sizeof(struct idmac_desc_64addr) *
618 (i + 1))) >> 32;
619 /* Initialize reserved and buffer size fields to "0" */
620 p->des1 = 0;
621 p->des2 = 0;
622 p->des3 = 0;
623 }
624
625 /* Set the last descriptor as the end-of-ring descriptor */
626 p->des6 = host->sg_dma & 0xffffffff;
627 p->des7 = (u64)host->sg_dma >> 32;
628 p->des0 = IDMAC_DES0_ER;
629
630 } else {
631 struct idmac_desc *p;
632 /* Number of descriptors in the ring buffer */
633 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
634
635 /* Forward link the descriptor list */
636 for (i = 0, p = host->sg_cpu;
637 i < host->ring_size - 1;
638 i++, p++) {
639 p->des3 = cpu_to_le32(host->sg_dma +
640 (sizeof(struct idmac_desc) * (i + 1)));
641 p->des1 = 0;
642 }
643
644 /* Set the last descriptor as the end-of-ring descriptor */
645 p->des3 = cpu_to_le32(host->sg_dma);
646 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
647 }
648
649 dw_mci_idmac_reset(host);
650
651 if (host->dma_64bit_address == 1) {
652 /* Mask out interrupts - get Tx & Rx complete only */
653 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
654 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
655 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
656
657 /* Set the descriptor base address */
658 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
659 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
660
661 } else {
662 /* Mask out interrupts - get Tx & Rx complete only */
663 mci_writel(host, IDSTS, IDMAC_INT_CLR);
664 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
665 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
666
667 /* Set the descriptor base address */
668 mci_writel(host, DBADDR, host->sg_dma);
669 }
670
671 return 0;
672 }
673
674 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
675 .init = dw_mci_idmac_init,
676 .start = dw_mci_idmac_start_dma,
677 .stop = dw_mci_idmac_stop_dma,
678 .complete = dw_mci_dmac_complete_dma,
679 .cleanup = dw_mci_dma_cleanup,
680 };
681
682 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
683 {
684 dmaengine_terminate_async(host->dms->ch);
685 }
686
687 static int dw_mci_edmac_start_dma(struct dw_mci *host,
688 unsigned int sg_len)
689 {
690 struct dma_slave_config cfg;
691 struct dma_async_tx_descriptor *desc = NULL;
692 struct scatterlist *sgl = host->data->sg;
693 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
694 u32 sg_elems = host->data->sg_len;
695 u32 fifoth_val;
696 u32 fifo_offset = host->fifo_reg - host->regs;
697 int ret = 0;
698
699 /* Set external dma config: burst size, burst width */
700 cfg.dst_addr = host->phy_regs + fifo_offset;
701 cfg.src_addr = cfg.dst_addr;
702 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
704
705 /* Match burst msize with external dma config */
706 fifoth_val = mci_readl(host, FIFOTH);
707 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
708 cfg.src_maxburst = cfg.dst_maxburst;
709
710 if (host->data->flags & MMC_DATA_WRITE)
711 cfg.direction = DMA_MEM_TO_DEV;
712 else
713 cfg.direction = DMA_DEV_TO_MEM;
714
715 ret = dmaengine_slave_config(host->dms->ch, &cfg);
716 if (ret) {
717 dev_err(host->dev, "Failed to config edmac.\n");
718 return -EBUSY;
719 }
720
721 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
722 sg_len, cfg.direction,
723 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 if (!desc) {
725 dev_err(host->dev, "Can't prepare slave sg.\n");
726 return -EBUSY;
727 }
728
729 /* Set dw_mci_dmac_complete_dma as callback */
730 desc->callback = dw_mci_dmac_complete_dma;
731 desc->callback_param = (void *)host;
732 dmaengine_submit(desc);
733
734 /* Flush cache before write */
735 if (host->data->flags & MMC_DATA_WRITE)
736 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
737 sg_elems, DMA_TO_DEVICE);
738
739 dma_async_issue_pending(host->dms->ch);
740
741 return 0;
742 }
743
744 static int dw_mci_edmac_init(struct dw_mci *host)
745 {
746 /* Request external dma channel */
747 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
748 if (!host->dms)
749 return -ENOMEM;
750
751 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
752 if (!host->dms->ch) {
753 dev_err(host->dev, "Failed to get external DMA channel.\n");
754 kfree(host->dms);
755 host->dms = NULL;
756 return -ENXIO;
757 }
758
759 return 0;
760 }
761
762 static void dw_mci_edmac_exit(struct dw_mci *host)
763 {
764 if (host->dms) {
765 if (host->dms->ch) {
766 dma_release_channel(host->dms->ch);
767 host->dms->ch = NULL;
768 }
769 kfree(host->dms);
770 host->dms = NULL;
771 }
772 }
773
774 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
775 .init = dw_mci_edmac_init,
776 .exit = dw_mci_edmac_exit,
777 .start = dw_mci_edmac_start_dma,
778 .stop = dw_mci_edmac_stop_dma,
779 .complete = dw_mci_dmac_complete_dma,
780 .cleanup = dw_mci_dma_cleanup,
781 };
782
783 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
784 struct mmc_data *data,
785 bool next)
786 {
787 struct scatterlist *sg;
788 unsigned int i, sg_len;
789
790 if (!next && data->host_cookie)
791 return data->host_cookie;
792
793 /*
794 * We don't do DMA on "complex" transfers, i.e. with
795 * non-word-aligned buffers or lengths. Also, we don't bother
796 * with all the DMA setup overhead for short transfers.
797 */
798 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
799 return -EINVAL;
800
801 if (data->blksz & 3)
802 return -EINVAL;
803
804 for_each_sg(data->sg, sg, data->sg_len, i) {
805 if (sg->offset & 3 || sg->length & 3)
806 return -EINVAL;
807 }
808
809 sg_len = dma_map_sg(host->dev,
810 data->sg,
811 data->sg_len,
812 dw_mci_get_dma_dir(data));
813 if (sg_len == 0)
814 return -EINVAL;
815
816 if (next)
817 data->host_cookie = sg_len;
818
819 return sg_len;
820 }
821
822 static void dw_mci_pre_req(struct mmc_host *mmc,
823 struct mmc_request *mrq,
824 bool is_first_req)
825 {
826 struct dw_mci_slot *slot = mmc_priv(mmc);
827 struct mmc_data *data = mrq->data;
828
829 if (!slot->host->use_dma || !data)
830 return;
831
832 if (data->host_cookie) {
833 data->host_cookie = 0;
834 return;
835 }
836
837 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
838 data->host_cookie = 0;
839 }
840
841 static void dw_mci_post_req(struct mmc_host *mmc,
842 struct mmc_request *mrq,
843 int err)
844 {
845 struct dw_mci_slot *slot = mmc_priv(mmc);
846 struct mmc_data *data = mrq->data;
847
848 if (!slot->host->use_dma || !data)
849 return;
850
851 if (data->host_cookie)
852 dma_unmap_sg(slot->host->dev,
853 data->sg,
854 data->sg_len,
855 dw_mci_get_dma_dir(data));
856 data->host_cookie = 0;
857 }
858
859 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
860 {
861 unsigned int blksz = data->blksz;
862 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
863 u32 fifo_width = 1 << host->data_shift;
864 u32 blksz_depth = blksz / fifo_width, fifoth_val;
865 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
866 int idx = ARRAY_SIZE(mszs) - 1;
867
868 /* pio should ship this scenario */
869 if (!host->use_dma)
870 return;
871
872 tx_wmark = (host->fifo_depth) / 2;
873 tx_wmark_invers = host->fifo_depth - tx_wmark;
874
875 /*
876 * MSIZE is '1',
877 * if blksz is not a multiple of the FIFO width
878 */
879 if (blksz % fifo_width) {
880 msize = 0;
881 rx_wmark = 1;
882 goto done;
883 }
884
885 do {
886 if (!((blksz_depth % mszs[idx]) ||
887 (tx_wmark_invers % mszs[idx]))) {
888 msize = idx;
889 rx_wmark = mszs[idx] - 1;
890 break;
891 }
892 } while (--idx > 0);
893 /*
894 * If idx is '0', it won't be tried
895 * Thus, initial values are uesed
896 */
897 done:
898 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
899 mci_writel(host, FIFOTH, fifoth_val);
900 }
901
902 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
903 {
904 unsigned int blksz = data->blksz;
905 u32 blksz_depth, fifo_depth;
906 u16 thld_size;
907 u8 enable;
908
909 /*
910 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
911 * in the FIFO region, so we really shouldn't access it).
912 */
913 if (host->verid < DW_MMC_240A ||
914 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
915 return;
916
917 /*
918 * Card write Threshold is introduced since 2.80a
919 * It's used when HS400 mode is enabled.
920 */
921 if (data->flags & MMC_DATA_WRITE &&
922 !(host->timing != MMC_TIMING_MMC_HS400))
923 return;
924
925 if (data->flags & MMC_DATA_WRITE)
926 enable = SDMMC_CARD_WR_THR_EN;
927 else
928 enable = SDMMC_CARD_RD_THR_EN;
929
930 if (host->timing != MMC_TIMING_MMC_HS200 &&
931 host->timing != MMC_TIMING_UHS_SDR104)
932 goto disable;
933
934 blksz_depth = blksz / (1 << host->data_shift);
935 fifo_depth = host->fifo_depth;
936
937 if (blksz_depth > fifo_depth)
938 goto disable;
939
940 /*
941 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
942 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
943 * Currently just choose blksz.
944 */
945 thld_size = blksz;
946 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
947 return;
948
949 disable:
950 mci_writel(host, CDTHRCTL, 0);
951 }
952
953 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
954 {
955 unsigned long irqflags;
956 int sg_len;
957 u32 temp;
958
959 host->using_dma = 0;
960
961 /* If we don't have a channel, we can't do DMA */
962 if (!host->use_dma)
963 return -ENODEV;
964
965 sg_len = dw_mci_pre_dma_transfer(host, data, 0);
966 if (sg_len < 0) {
967 host->dma_ops->stop(host);
968 return sg_len;
969 }
970
971 host->using_dma = 1;
972
973 if (host->use_dma == TRANS_MODE_IDMAC)
974 dev_vdbg(host->dev,
975 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
976 (unsigned long)host->sg_cpu,
977 (unsigned long)host->sg_dma,
978 sg_len);
979
980 /*
981 * Decide the MSIZE and RX/TX Watermark.
982 * If current block size is same with previous size,
983 * no need to update fifoth.
984 */
985 if (host->prev_blksz != data->blksz)
986 dw_mci_adjust_fifoth(host, data);
987
988 /* Enable the DMA interface */
989 temp = mci_readl(host, CTRL);
990 temp |= SDMMC_CTRL_DMA_ENABLE;
991 mci_writel(host, CTRL, temp);
992
993 /* Disable RX/TX IRQs, let DMA handle it */
994 spin_lock_irqsave(&host->irq_lock, irqflags);
995 temp = mci_readl(host, INTMASK);
996 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
997 mci_writel(host, INTMASK, temp);
998 spin_unlock_irqrestore(&host->irq_lock, irqflags);
999
1000 if (host->dma_ops->start(host, sg_len)) {
1001 /* We can't do DMA */
1002 dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
1003 return -ENODEV;
1004 }
1005
1006 return 0;
1007 }
1008
1009 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1010 {
1011 unsigned long irqflags;
1012 int flags = SG_MITER_ATOMIC;
1013 u32 temp;
1014
1015 data->error = -EINPROGRESS;
1016
1017 WARN_ON(host->data);
1018 host->sg = NULL;
1019 host->data = data;
1020
1021 if (data->flags & MMC_DATA_READ)
1022 host->dir_status = DW_MCI_RECV_STATUS;
1023 else
1024 host->dir_status = DW_MCI_SEND_STATUS;
1025
1026 dw_mci_ctrl_thld(host, data);
1027
1028 if (dw_mci_submit_data_dma(host, data)) {
1029 if (host->data->flags & MMC_DATA_READ)
1030 flags |= SG_MITER_TO_SG;
1031 else
1032 flags |= SG_MITER_FROM_SG;
1033
1034 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1035 host->sg = data->sg;
1036 host->part_buf_start = 0;
1037 host->part_buf_count = 0;
1038
1039 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1040
1041 spin_lock_irqsave(&host->irq_lock, irqflags);
1042 temp = mci_readl(host, INTMASK);
1043 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1044 mci_writel(host, INTMASK, temp);
1045 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1046
1047 temp = mci_readl(host, CTRL);
1048 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1049 mci_writel(host, CTRL, temp);
1050
1051 /*
1052 * Use the initial fifoth_val for PIO mode.
1053 * If next issued data may be transfered by DMA mode,
1054 * prev_blksz should be invalidated.
1055 */
1056 mci_writel(host, FIFOTH, host->fifoth_val);
1057 host->prev_blksz = 0;
1058 } else {
1059 /*
1060 * Keep the current block size.
1061 * It will be used to decide whether to update
1062 * fifoth register next time.
1063 */
1064 host->prev_blksz = data->blksz;
1065 }
1066 }
1067
1068 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1069 {
1070 struct dw_mci *host = slot->host;
1071 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1072 unsigned int cmd_status = 0;
1073
1074 mci_writel(host, CMDARG, arg);
1075 wmb(); /* drain writebuffer */
1076 dw_mci_wait_while_busy(host, cmd);
1077 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1078
1079 while (time_before(jiffies, timeout)) {
1080 cmd_status = mci_readl(host, CMD);
1081 if (!(cmd_status & SDMMC_CMD_START))
1082 return;
1083 }
1084 dev_err(&slot->mmc->class_dev,
1085 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1086 cmd, arg, cmd_status);
1087 }
1088
1089 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1090 {
1091 struct dw_mci *host = slot->host;
1092 unsigned int clock = slot->clock;
1093 u32 div;
1094 u32 clk_en_a;
1095 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1096
1097 /* We must continue to set bit 28 in CMD until the change is complete */
1098 if (host->state == STATE_WAITING_CMD11_DONE)
1099 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1100
1101 if (!clock) {
1102 mci_writel(host, CLKENA, 0);
1103 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1104 } else if (clock != host->current_speed || force_clkinit) {
1105 div = host->bus_hz / clock;
1106 if (host->bus_hz % clock && host->bus_hz > clock)
1107 /*
1108 * move the + 1 after the divide to prevent
1109 * over-clocking the card.
1110 */
1111 div += 1;
1112
1113 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1114
1115 if (clock != slot->__clk_old || force_clkinit)
1116 dev_info(&slot->mmc->class_dev,
1117 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1118 slot->id, host->bus_hz, clock,
1119 div ? ((host->bus_hz / div) >> 1) :
1120 host->bus_hz, div);
1121
1122 /* disable clock */
1123 mci_writel(host, CLKENA, 0);
1124 mci_writel(host, CLKSRC, 0);
1125
1126 /* inform CIU */
1127 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1128
1129 /* set clock to desired speed */
1130 mci_writel(host, CLKDIV, div);
1131
1132 /* inform CIU */
1133 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1134
1135 /* enable clock; only low power if no SDIO */
1136 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1137 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1138 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1139 mci_writel(host, CLKENA, clk_en_a);
1140
1141 /* inform CIU */
1142 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1143
1144 /* keep the last clock value that was requested from core */
1145 slot->__clk_old = clock;
1146 }
1147
1148 host->current_speed = clock;
1149
1150 /* Set the current slot bus width */
1151 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1152 }
1153
1154 static void __dw_mci_start_request(struct dw_mci *host,
1155 struct dw_mci_slot *slot,
1156 struct mmc_command *cmd)
1157 {
1158 struct mmc_request *mrq;
1159 struct mmc_data *data;
1160 u32 cmdflags;
1161
1162 mrq = slot->mrq;
1163
1164 host->cur_slot = slot;
1165 host->mrq = mrq;
1166
1167 host->pending_events = 0;
1168 host->completed_events = 0;
1169 host->cmd_status = 0;
1170 host->data_status = 0;
1171 host->dir_status = 0;
1172
1173 data = cmd->data;
1174 if (data) {
1175 mci_writel(host, TMOUT, 0xFFFFFFFF);
1176 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1177 mci_writel(host, BLKSIZ, data->blksz);
1178 }
1179
1180 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1181
1182 /* this is the first command, send the initialization clock */
1183 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1184 cmdflags |= SDMMC_CMD_INIT;
1185
1186 if (data) {
1187 dw_mci_submit_data(host, data);
1188 wmb(); /* drain writebuffer */
1189 }
1190
1191 dw_mci_start_command(host, cmd, cmdflags);
1192
1193 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1194 unsigned long irqflags;
1195
1196 /*
1197 * Databook says to fail after 2ms w/ no response, but evidence
1198 * shows that sometimes the cmd11 interrupt takes over 130ms.
1199 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1200 * is just about to roll over.
1201 *
1202 * We do this whole thing under spinlock and only if the
1203 * command hasn't already completed (indicating the the irq
1204 * already ran so we don't want the timeout).
1205 */
1206 spin_lock_irqsave(&host->irq_lock, irqflags);
1207 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1208 mod_timer(&host->cmd11_timer,
1209 jiffies + msecs_to_jiffies(500) + 1);
1210 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1211 }
1212
1213 if (mrq->stop)
1214 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1215 else
1216 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1217 }
1218
1219 static void dw_mci_start_request(struct dw_mci *host,
1220 struct dw_mci_slot *slot)
1221 {
1222 struct mmc_request *mrq = slot->mrq;
1223 struct mmc_command *cmd;
1224
1225 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1226 __dw_mci_start_request(host, slot, cmd);
1227 }
1228
1229 /* must be called with host->lock held */
1230 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1231 struct mmc_request *mrq)
1232 {
1233 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1234 host->state);
1235
1236 slot->mrq = mrq;
1237
1238 if (host->state == STATE_WAITING_CMD11_DONE) {
1239 dev_warn(&slot->mmc->class_dev,
1240 "Voltage change didn't complete\n");
1241 /*
1242 * this case isn't expected to happen, so we can
1243 * either crash here or just try to continue on
1244 * in the closest possible state
1245 */
1246 host->state = STATE_IDLE;
1247 }
1248
1249 if (host->state == STATE_IDLE) {
1250 host->state = STATE_SENDING_CMD;
1251 dw_mci_start_request(host, slot);
1252 } else {
1253 list_add_tail(&slot->queue_node, &host->queue);
1254 }
1255 }
1256
1257 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1258 {
1259 struct dw_mci_slot *slot = mmc_priv(mmc);
1260 struct dw_mci *host = slot->host;
1261
1262 WARN_ON(slot->mrq);
1263
1264 /*
1265 * The check for card presence and queueing of the request must be
1266 * atomic, otherwise the card could be removed in between and the
1267 * request wouldn't fail until another card was inserted.
1268 */
1269
1270 if (!dw_mci_get_cd(mmc)) {
1271 mrq->cmd->error = -ENOMEDIUM;
1272 mmc_request_done(mmc, mrq);
1273 return;
1274 }
1275
1276 spin_lock_bh(&host->lock);
1277
1278 dw_mci_queue_request(host, slot, mrq);
1279
1280 spin_unlock_bh(&host->lock);
1281 }
1282
1283 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1284 {
1285 struct dw_mci_slot *slot = mmc_priv(mmc);
1286 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1287 u32 regs;
1288 int ret;
1289
1290 switch (ios->bus_width) {
1291 case MMC_BUS_WIDTH_4:
1292 slot->ctype = SDMMC_CTYPE_4BIT;
1293 break;
1294 case MMC_BUS_WIDTH_8:
1295 slot->ctype = SDMMC_CTYPE_8BIT;
1296 break;
1297 default:
1298 /* set default 1 bit mode */
1299 slot->ctype = SDMMC_CTYPE_1BIT;
1300 }
1301
1302 regs = mci_readl(slot->host, UHS_REG);
1303
1304 /* DDR mode set */
1305 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1306 ios->timing == MMC_TIMING_UHS_DDR50 ||
1307 ios->timing == MMC_TIMING_MMC_HS400)
1308 regs |= ((0x1 << slot->id) << 16);
1309 else
1310 regs &= ~((0x1 << slot->id) << 16);
1311
1312 mci_writel(slot->host, UHS_REG, regs);
1313 slot->host->timing = ios->timing;
1314
1315 /*
1316 * Use mirror of ios->clock to prevent race with mmc
1317 * core ios update when finding the minimum.
1318 */
1319 slot->clock = ios->clock;
1320
1321 if (drv_data && drv_data->set_ios)
1322 drv_data->set_ios(slot->host, ios);
1323
1324 switch (ios->power_mode) {
1325 case MMC_POWER_UP:
1326 if (!IS_ERR(mmc->supply.vmmc)) {
1327 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1328 ios->vdd);
1329 if (ret) {
1330 dev_err(slot->host->dev,
1331 "failed to enable vmmc regulator\n");
1332 /*return, if failed turn on vmmc*/
1333 return;
1334 }
1335 }
1336 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1337 regs = mci_readl(slot->host, PWREN);
1338 regs |= (1 << slot->id);
1339 mci_writel(slot->host, PWREN, regs);
1340 break;
1341 case MMC_POWER_ON:
1342 if (!slot->host->vqmmc_enabled) {
1343 if (!IS_ERR(mmc->supply.vqmmc)) {
1344 ret = regulator_enable(mmc->supply.vqmmc);
1345 if (ret < 0)
1346 dev_err(slot->host->dev,
1347 "failed to enable vqmmc\n");
1348 else
1349 slot->host->vqmmc_enabled = true;
1350
1351 } else {
1352 /* Keep track so we don't reset again */
1353 slot->host->vqmmc_enabled = true;
1354 }
1355
1356 /* Reset our state machine after powering on */
1357 dw_mci_ctrl_reset(slot->host,
1358 SDMMC_CTRL_ALL_RESET_FLAGS);
1359 }
1360
1361 /* Adjust clock / bus width after power is up */
1362 dw_mci_setup_bus(slot, false);
1363
1364 break;
1365 case MMC_POWER_OFF:
1366 /* Turn clock off before power goes down */
1367 dw_mci_setup_bus(slot, false);
1368
1369 if (!IS_ERR(mmc->supply.vmmc))
1370 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1371
1372 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1373 regulator_disable(mmc->supply.vqmmc);
1374 slot->host->vqmmc_enabled = false;
1375
1376 regs = mci_readl(slot->host, PWREN);
1377 regs &= ~(1 << slot->id);
1378 mci_writel(slot->host, PWREN, regs);
1379 break;
1380 default:
1381 break;
1382 }
1383
1384 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1385 slot->host->state = STATE_IDLE;
1386 }
1387
1388 static int dw_mci_card_busy(struct mmc_host *mmc)
1389 {
1390 struct dw_mci_slot *slot = mmc_priv(mmc);
1391 u32 status;
1392
1393 /*
1394 * Check the busy bit which is low when DAT[3:0]
1395 * (the data lines) are 0000
1396 */
1397 status = mci_readl(slot->host, STATUS);
1398
1399 return !!(status & SDMMC_STATUS_BUSY);
1400 }
1401
1402 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1403 {
1404 struct dw_mci_slot *slot = mmc_priv(mmc);
1405 struct dw_mci *host = slot->host;
1406 const struct dw_mci_drv_data *drv_data = host->drv_data;
1407 u32 uhs;
1408 u32 v18 = SDMMC_UHS_18V << slot->id;
1409 int ret;
1410
1411 if (drv_data && drv_data->switch_voltage)
1412 return drv_data->switch_voltage(mmc, ios);
1413
1414 /*
1415 * Program the voltage. Note that some instances of dw_mmc may use
1416 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1417 * does no harm but you need to set the regulator directly. Try both.
1418 */
1419 uhs = mci_readl(host, UHS_REG);
1420 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1421 uhs &= ~v18;
1422 else
1423 uhs |= v18;
1424
1425 if (!IS_ERR(mmc->supply.vqmmc)) {
1426 ret = mmc_regulator_set_vqmmc(mmc, ios);
1427
1428 if (ret) {
1429 dev_dbg(&mmc->class_dev,
1430 "Regulator set error %d - %s V\n",
1431 ret, uhs & v18 ? "1.8" : "3.3");
1432 return ret;
1433 }
1434 }
1435 mci_writel(host, UHS_REG, uhs);
1436
1437 return 0;
1438 }
1439
1440 static int dw_mci_get_ro(struct mmc_host *mmc)
1441 {
1442 int read_only;
1443 struct dw_mci_slot *slot = mmc_priv(mmc);
1444 int gpio_ro = mmc_gpio_get_ro(mmc);
1445
1446 /* Use platform get_ro function, else try on board write protect */
1447 if (gpio_ro >= 0)
1448 read_only = gpio_ro;
1449 else
1450 read_only =
1451 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1452
1453 dev_dbg(&mmc->class_dev, "card is %s\n",
1454 read_only ? "read-only" : "read-write");
1455
1456 return read_only;
1457 }
1458
1459 static int dw_mci_get_cd(struct mmc_host *mmc)
1460 {
1461 int present;
1462 struct dw_mci_slot *slot = mmc_priv(mmc);
1463 struct dw_mci *host = slot->host;
1464 int gpio_cd = mmc_gpio_get_cd(mmc);
1465
1466 /* Use platform get_cd function, else try onboard card detect */
1467 if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1468 present = 1;
1469 else if (gpio_cd >= 0)
1470 present = gpio_cd;
1471 else
1472 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1473 == 0 ? 1 : 0;
1474
1475 spin_lock_bh(&host->lock);
1476 if (present) {
1477 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1478 dev_dbg(&mmc->class_dev, "card is present\n");
1479 } else {
1480 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1481 dev_dbg(&mmc->class_dev, "card is not present\n");
1482 }
1483 spin_unlock_bh(&host->lock);
1484
1485 return present;
1486 }
1487
1488 static void dw_mci_hw_reset(struct mmc_host *mmc)
1489 {
1490 struct dw_mci_slot *slot = mmc_priv(mmc);
1491 struct dw_mci *host = slot->host;
1492 int reset;
1493
1494 if (host->use_dma == TRANS_MODE_IDMAC)
1495 dw_mci_idmac_reset(host);
1496
1497 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1498 SDMMC_CTRL_FIFO_RESET))
1499 return;
1500
1501 /*
1502 * According to eMMC spec, card reset procedure:
1503 * tRstW >= 1us: RST_n pulse width
1504 * tRSCA >= 200us: RST_n to Command time
1505 * tRSTH >= 1us: RST_n high period
1506 */
1507 reset = mci_readl(host, RST_N);
1508 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1509 mci_writel(host, RST_N, reset);
1510 usleep_range(1, 2);
1511 reset |= SDMMC_RST_HWACTIVE << slot->id;
1512 mci_writel(host, RST_N, reset);
1513 usleep_range(200, 300);
1514 }
1515
1516 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1517 {
1518 struct dw_mci_slot *slot = mmc_priv(mmc);
1519 struct dw_mci *host = slot->host;
1520
1521 /*
1522 * Low power mode will stop the card clock when idle. According to the
1523 * description of the CLKENA register we should disable low power mode
1524 * for SDIO cards if we need SDIO interrupts to work.
1525 */
1526 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1527 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1528 u32 clk_en_a_old;
1529 u32 clk_en_a;
1530
1531 clk_en_a_old = mci_readl(host, CLKENA);
1532
1533 if (card->type == MMC_TYPE_SDIO ||
1534 card->type == MMC_TYPE_SD_COMBO) {
1535 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1536 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1537 } else {
1538 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1539 clk_en_a = clk_en_a_old | clken_low_pwr;
1540 }
1541
1542 if (clk_en_a != clk_en_a_old) {
1543 mci_writel(host, CLKENA, clk_en_a);
1544 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1545 SDMMC_CMD_PRV_DAT_WAIT, 0);
1546 }
1547 }
1548 }
1549
1550 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1551 {
1552 struct dw_mci_slot *slot = mmc_priv(mmc);
1553 struct dw_mci *host = slot->host;
1554 unsigned long irqflags;
1555 u32 int_mask;
1556
1557 spin_lock_irqsave(&host->irq_lock, irqflags);
1558
1559 /* Enable/disable Slot Specific SDIO interrupt */
1560 int_mask = mci_readl(host, INTMASK);
1561 if (enb)
1562 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1563 else
1564 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1565 mci_writel(host, INTMASK, int_mask);
1566
1567 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1568 }
1569
1570 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1571 {
1572 struct dw_mci_slot *slot = mmc_priv(mmc);
1573 struct dw_mci *host = slot->host;
1574 const struct dw_mci_drv_data *drv_data = host->drv_data;
1575 int err = -EINVAL;
1576
1577 if (drv_data && drv_data->execute_tuning)
1578 err = drv_data->execute_tuning(slot, opcode);
1579 return err;
1580 }
1581
1582 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1583 struct mmc_ios *ios)
1584 {
1585 struct dw_mci_slot *slot = mmc_priv(mmc);
1586 struct dw_mci *host = slot->host;
1587 const struct dw_mci_drv_data *drv_data = host->drv_data;
1588
1589 if (drv_data && drv_data->prepare_hs400_tuning)
1590 return drv_data->prepare_hs400_tuning(host, ios);
1591
1592 return 0;
1593 }
1594
1595 static const struct mmc_host_ops dw_mci_ops = {
1596 .request = dw_mci_request,
1597 .pre_req = dw_mci_pre_req,
1598 .post_req = dw_mci_post_req,
1599 .set_ios = dw_mci_set_ios,
1600 .get_ro = dw_mci_get_ro,
1601 .get_cd = dw_mci_get_cd,
1602 .hw_reset = dw_mci_hw_reset,
1603 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1604 .execute_tuning = dw_mci_execute_tuning,
1605 .card_busy = dw_mci_card_busy,
1606 .start_signal_voltage_switch = dw_mci_switch_voltage,
1607 .init_card = dw_mci_init_card,
1608 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1609 };
1610
1611 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1612 __releases(&host->lock)
1613 __acquires(&host->lock)
1614 {
1615 struct dw_mci_slot *slot;
1616 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1617
1618 WARN_ON(host->cmd || host->data);
1619
1620 host->cur_slot->mrq = NULL;
1621 host->mrq = NULL;
1622 if (!list_empty(&host->queue)) {
1623 slot = list_entry(host->queue.next,
1624 struct dw_mci_slot, queue_node);
1625 list_del(&slot->queue_node);
1626 dev_vdbg(host->dev, "list not empty: %s is next\n",
1627 mmc_hostname(slot->mmc));
1628 host->state = STATE_SENDING_CMD;
1629 dw_mci_start_request(host, slot);
1630 } else {
1631 dev_vdbg(host->dev, "list empty\n");
1632
1633 if (host->state == STATE_SENDING_CMD11)
1634 host->state = STATE_WAITING_CMD11_DONE;
1635 else
1636 host->state = STATE_IDLE;
1637 }
1638
1639 spin_unlock(&host->lock);
1640 mmc_request_done(prev_mmc, mrq);
1641 spin_lock(&host->lock);
1642 }
1643
1644 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1645 {
1646 u32 status = host->cmd_status;
1647
1648 host->cmd_status = 0;
1649
1650 /* Read the response from the card (up to 16 bytes) */
1651 if (cmd->flags & MMC_RSP_PRESENT) {
1652 if (cmd->flags & MMC_RSP_136) {
1653 cmd->resp[3] = mci_readl(host, RESP0);
1654 cmd->resp[2] = mci_readl(host, RESP1);
1655 cmd->resp[1] = mci_readl(host, RESP2);
1656 cmd->resp[0] = mci_readl(host, RESP3);
1657 } else {
1658 cmd->resp[0] = mci_readl(host, RESP0);
1659 cmd->resp[1] = 0;
1660 cmd->resp[2] = 0;
1661 cmd->resp[3] = 0;
1662 }
1663 }
1664
1665 if (status & SDMMC_INT_RTO)
1666 cmd->error = -ETIMEDOUT;
1667 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1668 cmd->error = -EILSEQ;
1669 else if (status & SDMMC_INT_RESP_ERR)
1670 cmd->error = -EIO;
1671 else
1672 cmd->error = 0;
1673
1674 return cmd->error;
1675 }
1676
1677 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1678 {
1679 u32 status = host->data_status;
1680
1681 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1682 if (status & SDMMC_INT_DRTO) {
1683 data->error = -ETIMEDOUT;
1684 } else if (status & SDMMC_INT_DCRC) {
1685 data->error = -EILSEQ;
1686 } else if (status & SDMMC_INT_EBE) {
1687 if (host->dir_status ==
1688 DW_MCI_SEND_STATUS) {
1689 /*
1690 * No data CRC status was returned.
1691 * The number of bytes transferred
1692 * will be exaggerated in PIO mode.
1693 */
1694 data->bytes_xfered = 0;
1695 data->error = -ETIMEDOUT;
1696 } else if (host->dir_status ==
1697 DW_MCI_RECV_STATUS) {
1698 data->error = -EIO;
1699 }
1700 } else {
1701 /* SDMMC_INT_SBE is included */
1702 data->error = -EIO;
1703 }
1704
1705 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1706
1707 /*
1708 * After an error, there may be data lingering
1709 * in the FIFO
1710 */
1711 dw_mci_reset(host);
1712 } else {
1713 data->bytes_xfered = data->blocks * data->blksz;
1714 data->error = 0;
1715 }
1716
1717 return data->error;
1718 }
1719
1720 static void dw_mci_set_drto(struct dw_mci *host)
1721 {
1722 unsigned int drto_clks;
1723 unsigned int drto_ms;
1724
1725 drto_clks = mci_readl(host, TMOUT) >> 8;
1726 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1727
1728 /* add a bit spare time */
1729 drto_ms += 10;
1730
1731 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1732 }
1733
1734 static void dw_mci_tasklet_func(unsigned long priv)
1735 {
1736 struct dw_mci *host = (struct dw_mci *)priv;
1737 struct mmc_data *data;
1738 struct mmc_command *cmd;
1739 struct mmc_request *mrq;
1740 enum dw_mci_state state;
1741 enum dw_mci_state prev_state;
1742 unsigned int err;
1743
1744 spin_lock(&host->lock);
1745
1746 state = host->state;
1747 data = host->data;
1748 mrq = host->mrq;
1749
1750 do {
1751 prev_state = state;
1752
1753 switch (state) {
1754 case STATE_IDLE:
1755 case STATE_WAITING_CMD11_DONE:
1756 break;
1757
1758 case STATE_SENDING_CMD11:
1759 case STATE_SENDING_CMD:
1760 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1761 &host->pending_events))
1762 break;
1763
1764 cmd = host->cmd;
1765 host->cmd = NULL;
1766 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1767 err = dw_mci_command_complete(host, cmd);
1768 if (cmd == mrq->sbc && !err) {
1769 prev_state = state = STATE_SENDING_CMD;
1770 __dw_mci_start_request(host, host->cur_slot,
1771 mrq->cmd);
1772 goto unlock;
1773 }
1774
1775 if (cmd->data && err) {
1776 /*
1777 * During UHS tuning sequence, sending the stop
1778 * command after the response CRC error would
1779 * throw the system into a confused state
1780 * causing all future tuning phases to report
1781 * failure.
1782 *
1783 * In such case controller will move into a data
1784 * transfer state after a response error or
1785 * response CRC error. Let's let that finish
1786 * before trying to send a stop, so we'll go to
1787 * STATE_SENDING_DATA.
1788 *
1789 * Although letting the data transfer take place
1790 * will waste a bit of time (we already know
1791 * the command was bad), it can't cause any
1792 * errors since it's possible it would have
1793 * taken place anyway if this tasklet got
1794 * delayed. Allowing the transfer to take place
1795 * avoids races and keeps things simple.
1796 */
1797 if ((err != -ETIMEDOUT) &&
1798 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1799 state = STATE_SENDING_DATA;
1800 continue;
1801 }
1802
1803 dw_mci_stop_dma(host);
1804 send_stop_abort(host, data);
1805 state = STATE_SENDING_STOP;
1806 break;
1807 }
1808
1809 if (!cmd->data || err) {
1810 dw_mci_request_end(host, mrq);
1811 goto unlock;
1812 }
1813
1814 prev_state = state = STATE_SENDING_DATA;
1815 /* fall through */
1816
1817 case STATE_SENDING_DATA:
1818 /*
1819 * We could get a data error and never a transfer
1820 * complete so we'd better check for it here.
1821 *
1822 * Note that we don't really care if we also got a
1823 * transfer complete; stopping the DMA and sending an
1824 * abort won't hurt.
1825 */
1826 if (test_and_clear_bit(EVENT_DATA_ERROR,
1827 &host->pending_events)) {
1828 dw_mci_stop_dma(host);
1829 if (data->stop ||
1830 !(host->data_status & (SDMMC_INT_DRTO |
1831 SDMMC_INT_EBE)))
1832 send_stop_abort(host, data);
1833 state = STATE_DATA_ERROR;
1834 break;
1835 }
1836
1837 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1838 &host->pending_events)) {
1839 /*
1840 * If all data-related interrupts don't come
1841 * within the given time in reading data state.
1842 */
1843 if (host->dir_status == DW_MCI_RECV_STATUS)
1844 dw_mci_set_drto(host);
1845 break;
1846 }
1847
1848 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1849
1850 /*
1851 * Handle an EVENT_DATA_ERROR that might have shown up
1852 * before the transfer completed. This might not have
1853 * been caught by the check above because the interrupt
1854 * could have gone off between the previous check and
1855 * the check for transfer complete.
1856 *
1857 * Technically this ought not be needed assuming we
1858 * get a DATA_COMPLETE eventually (we'll notice the
1859 * error and end the request), but it shouldn't hurt.
1860 *
1861 * This has the advantage of sending the stop command.
1862 */
1863 if (test_and_clear_bit(EVENT_DATA_ERROR,
1864 &host->pending_events)) {
1865 dw_mci_stop_dma(host);
1866 if (data->stop ||
1867 !(host->data_status & (SDMMC_INT_DRTO |
1868 SDMMC_INT_EBE)))
1869 send_stop_abort(host, data);
1870 state = STATE_DATA_ERROR;
1871 break;
1872 }
1873 prev_state = state = STATE_DATA_BUSY;
1874
1875 /* fall through */
1876
1877 case STATE_DATA_BUSY:
1878 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1879 &host->pending_events)) {
1880 /*
1881 * If data error interrupt comes but data over
1882 * interrupt doesn't come within the given time.
1883 * in reading data state.
1884 */
1885 if (host->dir_status == DW_MCI_RECV_STATUS)
1886 dw_mci_set_drto(host);
1887 break;
1888 }
1889
1890 host->data = NULL;
1891 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1892 err = dw_mci_data_complete(host, data);
1893
1894 if (!err) {
1895 if (!data->stop || mrq->sbc) {
1896 if (mrq->sbc && data->stop)
1897 data->stop->error = 0;
1898 dw_mci_request_end(host, mrq);
1899 goto unlock;
1900 }
1901
1902 /* stop command for open-ended transfer*/
1903 if (data->stop)
1904 send_stop_abort(host, data);
1905 } else {
1906 /*
1907 * If we don't have a command complete now we'll
1908 * never get one since we just reset everything;
1909 * better end the request.
1910 *
1911 * If we do have a command complete we'll fall
1912 * through to the SENDING_STOP command and
1913 * everything will be peachy keen.
1914 */
1915 if (!test_bit(EVENT_CMD_COMPLETE,
1916 &host->pending_events)) {
1917 host->cmd = NULL;
1918 dw_mci_request_end(host, mrq);
1919 goto unlock;
1920 }
1921 }
1922
1923 /*
1924 * If err has non-zero,
1925 * stop-abort command has been already issued.
1926 */
1927 prev_state = state = STATE_SENDING_STOP;
1928
1929 /* fall through */
1930
1931 case STATE_SENDING_STOP:
1932 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1933 &host->pending_events))
1934 break;
1935
1936 /* CMD error in data command */
1937 if (mrq->cmd->error && mrq->data)
1938 dw_mci_reset(host);
1939
1940 host->cmd = NULL;
1941 host->data = NULL;
1942
1943 if (mrq->stop)
1944 dw_mci_command_complete(host, mrq->stop);
1945 else
1946 host->cmd_status = 0;
1947
1948 dw_mci_request_end(host, mrq);
1949 goto unlock;
1950
1951 case STATE_DATA_ERROR:
1952 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1953 &host->pending_events))
1954 break;
1955
1956 state = STATE_DATA_BUSY;
1957 break;
1958 }
1959 } while (state != prev_state);
1960
1961 host->state = state;
1962 unlock:
1963 spin_unlock(&host->lock);
1964
1965 }
1966
1967 /* push final bytes to part_buf, only use during push */
1968 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1969 {
1970 memcpy((void *)&host->part_buf, buf, cnt);
1971 host->part_buf_count = cnt;
1972 }
1973
1974 /* append bytes to part_buf, only use during push */
1975 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1976 {
1977 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1978 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1979 host->part_buf_count += cnt;
1980 return cnt;
1981 }
1982
1983 /* pull first bytes from part_buf, only use during pull */
1984 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1985 {
1986 cnt = min_t(int, cnt, host->part_buf_count);
1987 if (cnt) {
1988 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1989 cnt);
1990 host->part_buf_count -= cnt;
1991 host->part_buf_start += cnt;
1992 }
1993 return cnt;
1994 }
1995
1996 /* pull final bytes from the part_buf, assuming it's just been filled */
1997 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1998 {
1999 memcpy(buf, &host->part_buf, cnt);
2000 host->part_buf_start = cnt;
2001 host->part_buf_count = (1 << host->data_shift) - cnt;
2002 }
2003
2004 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2005 {
2006 struct mmc_data *data = host->data;
2007 int init_cnt = cnt;
2008
2009 /* try and push anything in the part_buf */
2010 if (unlikely(host->part_buf_count)) {
2011 int len = dw_mci_push_part_bytes(host, buf, cnt);
2012
2013 buf += len;
2014 cnt -= len;
2015 if (host->part_buf_count == 2) {
2016 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2017 host->part_buf_count = 0;
2018 }
2019 }
2020 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2021 if (unlikely((unsigned long)buf & 0x1)) {
2022 while (cnt >= 2) {
2023 u16 aligned_buf[64];
2024 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2025 int items = len >> 1;
2026 int i;
2027 /* memcpy from input buffer into aligned buffer */
2028 memcpy(aligned_buf, buf, len);
2029 buf += len;
2030 cnt -= len;
2031 /* push data from aligned buffer into fifo */
2032 for (i = 0; i < items; ++i)
2033 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2034 }
2035 } else
2036 #endif
2037 {
2038 u16 *pdata = buf;
2039
2040 for (; cnt >= 2; cnt -= 2)
2041 mci_fifo_writew(host->fifo_reg, *pdata++);
2042 buf = pdata;
2043 }
2044 /* put anything remaining in the part_buf */
2045 if (cnt) {
2046 dw_mci_set_part_bytes(host, buf, cnt);
2047 /* Push data if we have reached the expected data length */
2048 if ((data->bytes_xfered + init_cnt) ==
2049 (data->blksz * data->blocks))
2050 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2051 }
2052 }
2053
2054 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2055 {
2056 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2057 if (unlikely((unsigned long)buf & 0x1)) {
2058 while (cnt >= 2) {
2059 /* pull data from fifo into aligned buffer */
2060 u16 aligned_buf[64];
2061 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2062 int items = len >> 1;
2063 int i;
2064
2065 for (i = 0; i < items; ++i)
2066 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2067 /* memcpy from aligned buffer into output buffer */
2068 memcpy(buf, aligned_buf, len);
2069 buf += len;
2070 cnt -= len;
2071 }
2072 } else
2073 #endif
2074 {
2075 u16 *pdata = buf;
2076
2077 for (; cnt >= 2; cnt -= 2)
2078 *pdata++ = mci_fifo_readw(host->fifo_reg);
2079 buf = pdata;
2080 }
2081 if (cnt) {
2082 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2083 dw_mci_pull_final_bytes(host, buf, cnt);
2084 }
2085 }
2086
2087 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2088 {
2089 struct mmc_data *data = host->data;
2090 int init_cnt = cnt;
2091
2092 /* try and push anything in the part_buf */
2093 if (unlikely(host->part_buf_count)) {
2094 int len = dw_mci_push_part_bytes(host, buf, cnt);
2095
2096 buf += len;
2097 cnt -= len;
2098 if (host->part_buf_count == 4) {
2099 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2100 host->part_buf_count = 0;
2101 }
2102 }
2103 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2104 if (unlikely((unsigned long)buf & 0x3)) {
2105 while (cnt >= 4) {
2106 u32 aligned_buf[32];
2107 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2108 int items = len >> 2;
2109 int i;
2110 /* memcpy from input buffer into aligned buffer */
2111 memcpy(aligned_buf, buf, len);
2112 buf += len;
2113 cnt -= len;
2114 /* push data from aligned buffer into fifo */
2115 for (i = 0; i < items; ++i)
2116 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2117 }
2118 } else
2119 #endif
2120 {
2121 u32 *pdata = buf;
2122
2123 for (; cnt >= 4; cnt -= 4)
2124 mci_fifo_writel(host->fifo_reg, *pdata++);
2125 buf = pdata;
2126 }
2127 /* put anything remaining in the part_buf */
2128 if (cnt) {
2129 dw_mci_set_part_bytes(host, buf, cnt);
2130 /* Push data if we have reached the expected data length */
2131 if ((data->bytes_xfered + init_cnt) ==
2132 (data->blksz * data->blocks))
2133 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2134 }
2135 }
2136
2137 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2138 {
2139 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2140 if (unlikely((unsigned long)buf & 0x3)) {
2141 while (cnt >= 4) {
2142 /* pull data from fifo into aligned buffer */
2143 u32 aligned_buf[32];
2144 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2145 int items = len >> 2;
2146 int i;
2147
2148 for (i = 0; i < items; ++i)
2149 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2150 /* memcpy from aligned buffer into output buffer */
2151 memcpy(buf, aligned_buf, len);
2152 buf += len;
2153 cnt -= len;
2154 }
2155 } else
2156 #endif
2157 {
2158 u32 *pdata = buf;
2159
2160 for (; cnt >= 4; cnt -= 4)
2161 *pdata++ = mci_fifo_readl(host->fifo_reg);
2162 buf = pdata;
2163 }
2164 if (cnt) {
2165 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2166 dw_mci_pull_final_bytes(host, buf, cnt);
2167 }
2168 }
2169
2170 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2171 {
2172 struct mmc_data *data = host->data;
2173 int init_cnt = cnt;
2174
2175 /* try and push anything in the part_buf */
2176 if (unlikely(host->part_buf_count)) {
2177 int len = dw_mci_push_part_bytes(host, buf, cnt);
2178
2179 buf += len;
2180 cnt -= len;
2181
2182 if (host->part_buf_count == 8) {
2183 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2184 host->part_buf_count = 0;
2185 }
2186 }
2187 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2188 if (unlikely((unsigned long)buf & 0x7)) {
2189 while (cnt >= 8) {
2190 u64 aligned_buf[16];
2191 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2192 int items = len >> 3;
2193 int i;
2194 /* memcpy from input buffer into aligned buffer */
2195 memcpy(aligned_buf, buf, len);
2196 buf += len;
2197 cnt -= len;
2198 /* push data from aligned buffer into fifo */
2199 for (i = 0; i < items; ++i)
2200 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2201 }
2202 } else
2203 #endif
2204 {
2205 u64 *pdata = buf;
2206
2207 for (; cnt >= 8; cnt -= 8)
2208 mci_fifo_writeq(host->fifo_reg, *pdata++);
2209 buf = pdata;
2210 }
2211 /* put anything remaining in the part_buf */
2212 if (cnt) {
2213 dw_mci_set_part_bytes(host, buf, cnt);
2214 /* Push data if we have reached the expected data length */
2215 if ((data->bytes_xfered + init_cnt) ==
2216 (data->blksz * data->blocks))
2217 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2218 }
2219 }
2220
2221 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2222 {
2223 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2224 if (unlikely((unsigned long)buf & 0x7)) {
2225 while (cnt >= 8) {
2226 /* pull data from fifo into aligned buffer */
2227 u64 aligned_buf[16];
2228 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2229 int items = len >> 3;
2230 int i;
2231
2232 for (i = 0; i < items; ++i)
2233 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2234
2235 /* memcpy from aligned buffer into output buffer */
2236 memcpy(buf, aligned_buf, len);
2237 buf += len;
2238 cnt -= len;
2239 }
2240 } else
2241 #endif
2242 {
2243 u64 *pdata = buf;
2244
2245 for (; cnt >= 8; cnt -= 8)
2246 *pdata++ = mci_fifo_readq(host->fifo_reg);
2247 buf = pdata;
2248 }
2249 if (cnt) {
2250 host->part_buf = mci_fifo_readq(host->fifo_reg);
2251 dw_mci_pull_final_bytes(host, buf, cnt);
2252 }
2253 }
2254
2255 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2256 {
2257 int len;
2258
2259 /* get remaining partial bytes */
2260 len = dw_mci_pull_part_bytes(host, buf, cnt);
2261 if (unlikely(len == cnt))
2262 return;
2263 buf += len;
2264 cnt -= len;
2265
2266 /* get the rest of the data */
2267 host->pull_data(host, buf, cnt);
2268 }
2269
2270 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2271 {
2272 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2273 void *buf;
2274 unsigned int offset;
2275 struct mmc_data *data = host->data;
2276 int shift = host->data_shift;
2277 u32 status;
2278 unsigned int len;
2279 unsigned int remain, fcnt;
2280
2281 do {
2282 if (!sg_miter_next(sg_miter))
2283 goto done;
2284
2285 host->sg = sg_miter->piter.sg;
2286 buf = sg_miter->addr;
2287 remain = sg_miter->length;
2288 offset = 0;
2289
2290 do {
2291 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2292 << shift) + host->part_buf_count;
2293 len = min(remain, fcnt);
2294 if (!len)
2295 break;
2296 dw_mci_pull_data(host, (void *)(buf + offset), len);
2297 data->bytes_xfered += len;
2298 offset += len;
2299 remain -= len;
2300 } while (remain);
2301
2302 sg_miter->consumed = offset;
2303 status = mci_readl(host, MINTSTS);
2304 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2305 /* if the RXDR is ready read again */
2306 } while ((status & SDMMC_INT_RXDR) ||
2307 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2308
2309 if (!remain) {
2310 if (!sg_miter_next(sg_miter))
2311 goto done;
2312 sg_miter->consumed = 0;
2313 }
2314 sg_miter_stop(sg_miter);
2315 return;
2316
2317 done:
2318 sg_miter_stop(sg_miter);
2319 host->sg = NULL;
2320 smp_wmb(); /* drain writebuffer */
2321 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2322 }
2323
2324 static void dw_mci_write_data_pio(struct dw_mci *host)
2325 {
2326 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2327 void *buf;
2328 unsigned int offset;
2329 struct mmc_data *data = host->data;
2330 int shift = host->data_shift;
2331 u32 status;
2332 unsigned int len;
2333 unsigned int fifo_depth = host->fifo_depth;
2334 unsigned int remain, fcnt;
2335
2336 do {
2337 if (!sg_miter_next(sg_miter))
2338 goto done;
2339
2340 host->sg = sg_miter->piter.sg;
2341 buf = sg_miter->addr;
2342 remain = sg_miter->length;
2343 offset = 0;
2344
2345 do {
2346 fcnt = ((fifo_depth -
2347 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2348 << shift) - host->part_buf_count;
2349 len = min(remain, fcnt);
2350 if (!len)
2351 break;
2352 host->push_data(host, (void *)(buf + offset), len);
2353 data->bytes_xfered += len;
2354 offset += len;
2355 remain -= len;
2356 } while (remain);
2357
2358 sg_miter->consumed = offset;
2359 status = mci_readl(host, MINTSTS);
2360 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2361 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2362
2363 if (!remain) {
2364 if (!sg_miter_next(sg_miter))
2365 goto done;
2366 sg_miter->consumed = 0;
2367 }
2368 sg_miter_stop(sg_miter);
2369 return;
2370
2371 done:
2372 sg_miter_stop(sg_miter);
2373 host->sg = NULL;
2374 smp_wmb(); /* drain writebuffer */
2375 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2376 }
2377
2378 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2379 {
2380 if (!host->cmd_status)
2381 host->cmd_status = status;
2382
2383 smp_wmb(); /* drain writebuffer */
2384
2385 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2386 tasklet_schedule(&host->tasklet);
2387 }
2388
2389 static void dw_mci_handle_cd(struct dw_mci *host)
2390 {
2391 int i;
2392
2393 for (i = 0; i < host->num_slots; i++) {
2394 struct dw_mci_slot *slot = host->slot[i];
2395
2396 if (!slot)
2397 continue;
2398
2399 if (slot->mmc->ops->card_event)
2400 slot->mmc->ops->card_event(slot->mmc);
2401 mmc_detect_change(slot->mmc,
2402 msecs_to_jiffies(host->pdata->detect_delay_ms));
2403 }
2404 }
2405
2406 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2407 {
2408 struct dw_mci *host = dev_id;
2409 u32 pending;
2410 int i;
2411
2412 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2413
2414 if (pending) {
2415 /* Check volt switch first, since it can look like an error */
2416 if ((host->state == STATE_SENDING_CMD11) &&
2417 (pending & SDMMC_INT_VOLT_SWITCH)) {
2418 unsigned long irqflags;
2419
2420 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2421 pending &= ~SDMMC_INT_VOLT_SWITCH;
2422
2423 /*
2424 * Hold the lock; we know cmd11_timer can't be kicked
2425 * off after the lock is released, so safe to delete.
2426 */
2427 spin_lock_irqsave(&host->irq_lock, irqflags);
2428 dw_mci_cmd_interrupt(host, pending);
2429 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2430
2431 del_timer(&host->cmd11_timer);
2432 }
2433
2434 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2435 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2436 host->cmd_status = pending;
2437 smp_wmb(); /* drain writebuffer */
2438 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2439 }
2440
2441 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2442 /* if there is an error report DATA_ERROR */
2443 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2444 host->data_status = pending;
2445 smp_wmb(); /* drain writebuffer */
2446 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2447 tasklet_schedule(&host->tasklet);
2448 }
2449
2450 if (pending & SDMMC_INT_DATA_OVER) {
2451 del_timer(&host->dto_timer);
2452
2453 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2454 if (!host->data_status)
2455 host->data_status = pending;
2456 smp_wmb(); /* drain writebuffer */
2457 if (host->dir_status == DW_MCI_RECV_STATUS) {
2458 if (host->sg != NULL)
2459 dw_mci_read_data_pio(host, true);
2460 }
2461 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2462 tasklet_schedule(&host->tasklet);
2463 }
2464
2465 if (pending & SDMMC_INT_RXDR) {
2466 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2467 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2468 dw_mci_read_data_pio(host, false);
2469 }
2470
2471 if (pending & SDMMC_INT_TXDR) {
2472 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2473 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2474 dw_mci_write_data_pio(host);
2475 }
2476
2477 if (pending & SDMMC_INT_CMD_DONE) {
2478 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2479 dw_mci_cmd_interrupt(host, pending);
2480 }
2481
2482 if (pending & SDMMC_INT_CD) {
2483 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2484 dw_mci_handle_cd(host);
2485 }
2486
2487 /* Handle SDIO Interrupts */
2488 for (i = 0; i < host->num_slots; i++) {
2489 struct dw_mci_slot *slot = host->slot[i];
2490
2491 if (!slot)
2492 continue;
2493
2494 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2495 mci_writel(host, RINTSTS,
2496 SDMMC_INT_SDIO(slot->sdio_id));
2497 mmc_signal_sdio_irq(slot->mmc);
2498 }
2499 }
2500
2501 }
2502
2503 if (host->use_dma != TRANS_MODE_IDMAC)
2504 return IRQ_HANDLED;
2505
2506 /* Handle IDMA interrupts */
2507 if (host->dma_64bit_address == 1) {
2508 pending = mci_readl(host, IDSTS64);
2509 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2510 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2511 SDMMC_IDMAC_INT_RI);
2512 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2513 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2514 host->dma_ops->complete((void *)host);
2515 }
2516 } else {
2517 pending = mci_readl(host, IDSTS);
2518 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2519 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2520 SDMMC_IDMAC_INT_RI);
2521 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2522 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2523 host->dma_ops->complete((void *)host);
2524 }
2525 }
2526
2527 return IRQ_HANDLED;
2528 }
2529
2530 #ifdef CONFIG_OF
2531 /* given a slot, find out the device node representing that slot */
2532 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2533 {
2534 struct device *dev = slot->mmc->parent;
2535 struct device_node *np;
2536 const __be32 *addr;
2537 int len;
2538
2539 if (!dev || !dev->of_node)
2540 return NULL;
2541
2542 for_each_child_of_node(dev->of_node, np) {
2543 addr = of_get_property(np, "reg", &len);
2544 if (!addr || (len < sizeof(int)))
2545 continue;
2546 if (be32_to_cpup(addr) == slot->id)
2547 return np;
2548 }
2549 return NULL;
2550 }
2551
2552 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2553 {
2554 struct device_node *np = dw_mci_of_find_slot_node(slot);
2555
2556 if (!np)
2557 return;
2558
2559 if (of_property_read_bool(np, "disable-wp")) {
2560 slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2561 dev_warn(slot->mmc->parent,
2562 "Slot quirk 'disable-wp' is deprecated\n");
2563 }
2564 }
2565 #else /* CONFIG_OF */
2566 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2567 {
2568 }
2569 #endif /* CONFIG_OF */
2570
2571 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2572 {
2573 struct mmc_host *mmc;
2574 struct dw_mci_slot *slot;
2575 const struct dw_mci_drv_data *drv_data = host->drv_data;
2576 int ctrl_id, ret;
2577 u32 freq[2];
2578
2579 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2580 if (!mmc)
2581 return -ENOMEM;
2582
2583 slot = mmc_priv(mmc);
2584 slot->id = id;
2585 slot->sdio_id = host->sdio_id0 + id;
2586 slot->mmc = mmc;
2587 slot->host = host;
2588 host->slot[id] = slot;
2589
2590 mmc->ops = &dw_mci_ops;
2591 if (of_property_read_u32_array(host->dev->of_node,
2592 "clock-freq-min-max", freq, 2)) {
2593 mmc->f_min = DW_MCI_FREQ_MIN;
2594 mmc->f_max = DW_MCI_FREQ_MAX;
2595 } else {
2596 mmc->f_min = freq[0];
2597 mmc->f_max = freq[1];
2598 }
2599
2600 /*if there are external regulators, get them*/
2601 ret = mmc_regulator_get_supply(mmc);
2602 if (ret == -EPROBE_DEFER)
2603 goto err_host_allocated;
2604
2605 if (!mmc->ocr_avail)
2606 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2607
2608 if (host->pdata->caps)
2609 mmc->caps = host->pdata->caps;
2610
2611 /*
2612 * Support MMC_CAP_ERASE by default.
2613 * It needs to use trim/discard/erase commands.
2614 */
2615 mmc->caps |= MMC_CAP_ERASE;
2616
2617 if (host->pdata->pm_caps)
2618 mmc->pm_caps = host->pdata->pm_caps;
2619
2620 if (host->dev->of_node) {
2621 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2622 if (ctrl_id < 0)
2623 ctrl_id = 0;
2624 } else {
2625 ctrl_id = to_platform_device(host->dev)->id;
2626 }
2627 if (drv_data && drv_data->caps)
2628 mmc->caps |= drv_data->caps[ctrl_id];
2629
2630 if (host->pdata->caps2)
2631 mmc->caps2 = host->pdata->caps2;
2632
2633 dw_mci_slot_of_parse(slot);
2634
2635 ret = mmc_of_parse(mmc);
2636 if (ret)
2637 goto err_host_allocated;
2638
2639 /* Useful defaults if platform data is unset. */
2640 if (host->use_dma == TRANS_MODE_IDMAC) {
2641 mmc->max_segs = host->ring_size;
2642 mmc->max_blk_size = 65535;
2643 mmc->max_seg_size = 0x1000;
2644 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2645 mmc->max_blk_count = mmc->max_req_size / 512;
2646 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2647 mmc->max_segs = 64;
2648 mmc->max_blk_size = 65535;
2649 mmc->max_blk_count = 65535;
2650 mmc->max_req_size =
2651 mmc->max_blk_size * mmc->max_blk_count;
2652 mmc->max_seg_size = mmc->max_req_size;
2653 } else {
2654 /* TRANS_MODE_PIO */
2655 mmc->max_segs = 64;
2656 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2657 mmc->max_blk_count = 512;
2658 mmc->max_req_size = mmc->max_blk_size *
2659 mmc->max_blk_count;
2660 mmc->max_seg_size = mmc->max_req_size;
2661 }
2662
2663 dw_mci_get_cd(mmc);
2664
2665 ret = mmc_add_host(mmc);
2666 if (ret)
2667 goto err_host_allocated;
2668
2669 #if defined(CONFIG_DEBUG_FS)
2670 dw_mci_init_debugfs(slot);
2671 #endif
2672
2673 return 0;
2674
2675 err_host_allocated:
2676 mmc_free_host(mmc);
2677 return ret;
2678 }
2679
2680 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2681 {
2682 /* Debugfs stuff is cleaned up by mmc core */
2683 mmc_remove_host(slot->mmc);
2684 slot->host->slot[id] = NULL;
2685 mmc_free_host(slot->mmc);
2686 }
2687
2688 static void dw_mci_init_dma(struct dw_mci *host)
2689 {
2690 int addr_config;
2691 struct device *dev = host->dev;
2692 struct device_node *np = dev->of_node;
2693
2694 /*
2695 * Check tansfer mode from HCON[17:16]
2696 * Clear the ambiguous description of dw_mmc databook:
2697 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2698 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2699 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2700 * 2b'11: Non DW DMA Interface -> pio only
2701 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2702 * simpler request/acknowledge handshake mechanism and both of them
2703 * are regarded as external dma master for dw_mmc.
2704 */
2705 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2706 if (host->use_dma == DMA_INTERFACE_IDMA) {
2707 host->use_dma = TRANS_MODE_IDMAC;
2708 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2709 host->use_dma == DMA_INTERFACE_GDMA) {
2710 host->use_dma = TRANS_MODE_EDMAC;
2711 } else {
2712 goto no_dma;
2713 }
2714
2715 /* Determine which DMA interface to use */
2716 if (host->use_dma == TRANS_MODE_IDMAC) {
2717 /*
2718 * Check ADDR_CONFIG bit in HCON to find
2719 * IDMAC address bus width
2720 */
2721 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2722
2723 if (addr_config == 1) {
2724 /* host supports IDMAC in 64-bit address mode */
2725 host->dma_64bit_address = 1;
2726 dev_info(host->dev,
2727 "IDMAC supports 64-bit address mode.\n");
2728 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2729 dma_set_coherent_mask(host->dev,
2730 DMA_BIT_MASK(64));
2731 } else {
2732 /* host supports IDMAC in 32-bit address mode */
2733 host->dma_64bit_address = 0;
2734 dev_info(host->dev,
2735 "IDMAC supports 32-bit address mode.\n");
2736 }
2737
2738 /* Alloc memory for sg translation */
2739 host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2740 &host->sg_dma, GFP_KERNEL);
2741 if (!host->sg_cpu) {
2742 dev_err(host->dev,
2743 "%s: could not alloc DMA memory\n",
2744 __func__);
2745 goto no_dma;
2746 }
2747
2748 host->dma_ops = &dw_mci_idmac_ops;
2749 dev_info(host->dev, "Using internal DMA controller.\n");
2750 } else {
2751 /* TRANS_MODE_EDMAC: check dma bindings again */
2752 if ((of_property_count_strings(np, "dma-names") < 0) ||
2753 (!of_find_property(np, "dmas", NULL))) {
2754 goto no_dma;
2755 }
2756 host->dma_ops = &dw_mci_edmac_ops;
2757 dev_info(host->dev, "Using external DMA controller.\n");
2758 }
2759
2760 if (host->dma_ops->init && host->dma_ops->start &&
2761 host->dma_ops->stop && host->dma_ops->cleanup) {
2762 if (host->dma_ops->init(host)) {
2763 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2764 __func__);
2765 goto no_dma;
2766 }
2767 } else {
2768 dev_err(host->dev, "DMA initialization not found.\n");
2769 goto no_dma;
2770 }
2771
2772 return;
2773
2774 no_dma:
2775 dev_info(host->dev, "Using PIO mode.\n");
2776 host->use_dma = TRANS_MODE_PIO;
2777 }
2778
2779 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2780 {
2781 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2782 u32 ctrl;
2783
2784 ctrl = mci_readl(host, CTRL);
2785 ctrl |= reset;
2786 mci_writel(host, CTRL, ctrl);
2787
2788 /* wait till resets clear */
2789 do {
2790 ctrl = mci_readl(host, CTRL);
2791 if (!(ctrl & reset))
2792 return true;
2793 } while (time_before(jiffies, timeout));
2794
2795 dev_err(host->dev,
2796 "Timeout resetting block (ctrl reset %#x)\n",
2797 ctrl & reset);
2798
2799 return false;
2800 }
2801
2802 static bool dw_mci_reset(struct dw_mci *host)
2803 {
2804 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2805 bool ret = false;
2806
2807 /*
2808 * Reseting generates a block interrupt, hence setting
2809 * the scatter-gather pointer to NULL.
2810 */
2811 if (host->sg) {
2812 sg_miter_stop(&host->sg_miter);
2813 host->sg = NULL;
2814 }
2815
2816 if (host->use_dma)
2817 flags |= SDMMC_CTRL_DMA_RESET;
2818
2819 if (dw_mci_ctrl_reset(host, flags)) {
2820 /*
2821 * In all cases we clear the RAWINTS register to clear any
2822 * interrupts.
2823 */
2824 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2825
2826 /* if using dma we wait for dma_req to clear */
2827 if (host->use_dma) {
2828 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2829 u32 status;
2830
2831 do {
2832 status = mci_readl(host, STATUS);
2833 if (!(status & SDMMC_STATUS_DMA_REQ))
2834 break;
2835 cpu_relax();
2836 } while (time_before(jiffies, timeout));
2837
2838 if (status & SDMMC_STATUS_DMA_REQ) {
2839 dev_err(host->dev,
2840 "%s: Timeout waiting for dma_req to clear during reset\n",
2841 __func__);
2842 goto ciu_out;
2843 }
2844
2845 /* when using DMA next we reset the fifo again */
2846 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2847 goto ciu_out;
2848 }
2849 } else {
2850 /* if the controller reset bit did clear, then set clock regs */
2851 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2852 dev_err(host->dev,
2853 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2854 __func__);
2855 goto ciu_out;
2856 }
2857 }
2858
2859 if (host->use_dma == TRANS_MODE_IDMAC)
2860 /* It is also recommended that we reset and reprogram idmac */
2861 dw_mci_idmac_reset(host);
2862
2863 ret = true;
2864
2865 ciu_out:
2866 /* After a CTRL reset we need to have CIU set clock registers */
2867 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2868
2869 return ret;
2870 }
2871
2872 static void dw_mci_cmd11_timer(unsigned long arg)
2873 {
2874 struct dw_mci *host = (struct dw_mci *)arg;
2875
2876 if (host->state != STATE_SENDING_CMD11) {
2877 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2878 return;
2879 }
2880
2881 host->cmd_status = SDMMC_INT_RTO;
2882 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2883 tasklet_schedule(&host->tasklet);
2884 }
2885
2886 static void dw_mci_dto_timer(unsigned long arg)
2887 {
2888 struct dw_mci *host = (struct dw_mci *)arg;
2889
2890 switch (host->state) {
2891 case STATE_SENDING_DATA:
2892 case STATE_DATA_BUSY:
2893 /*
2894 * If DTO interrupt does NOT come in sending data state,
2895 * we should notify the driver to terminate current transfer
2896 * and report a data timeout to the core.
2897 */
2898 host->data_status = SDMMC_INT_DRTO;
2899 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2900 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2901 tasklet_schedule(&host->tasklet);
2902 break;
2903 default:
2904 break;
2905 }
2906 }
2907
2908 #ifdef CONFIG_OF
2909 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2910 {
2911 struct dw_mci_board *pdata;
2912 struct device *dev = host->dev;
2913 struct device_node *np = dev->of_node;
2914 const struct dw_mci_drv_data *drv_data = host->drv_data;
2915 int ret;
2916 u32 clock_frequency;
2917
2918 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2919 if (!pdata)
2920 return ERR_PTR(-ENOMEM);
2921
2922 /* find out number of slots supported */
2923 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2924
2925 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2926 dev_info(dev,
2927 "fifo-depth property not found, using value of FIFOTH register as default\n");
2928
2929 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2930
2931 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2932 pdata->bus_hz = clock_frequency;
2933
2934 if (drv_data && drv_data->parse_dt) {
2935 ret = drv_data->parse_dt(host);
2936 if (ret)
2937 return ERR_PTR(ret);
2938 }
2939
2940 if (of_find_property(np, "supports-highspeed", NULL)) {
2941 dev_info(dev, "supports-highspeed property is deprecated.\n");
2942 pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2943 }
2944
2945 return pdata;
2946 }
2947
2948 #else /* CONFIG_OF */
2949 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2950 {
2951 return ERR_PTR(-EINVAL);
2952 }
2953 #endif /* CONFIG_OF */
2954
2955 static void dw_mci_enable_cd(struct dw_mci *host)
2956 {
2957 unsigned long irqflags;
2958 u32 temp;
2959 int i;
2960 struct dw_mci_slot *slot;
2961
2962 /*
2963 * No need for CD if all slots have a non-error GPIO
2964 * as well as broken card detection is found.
2965 */
2966 for (i = 0; i < host->num_slots; i++) {
2967 slot = host->slot[i];
2968 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2969 return;
2970
2971 if (mmc_gpio_get_cd(slot->mmc) < 0)
2972 break;
2973 }
2974 if (i == host->num_slots)
2975 return;
2976
2977 spin_lock_irqsave(&host->irq_lock, irqflags);
2978 temp = mci_readl(host, INTMASK);
2979 temp |= SDMMC_INT_CD;
2980 mci_writel(host, INTMASK, temp);
2981 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2982 }
2983
2984 int dw_mci_probe(struct dw_mci *host)
2985 {
2986 const struct dw_mci_drv_data *drv_data = host->drv_data;
2987 int width, i, ret = 0;
2988 u32 fifo_size;
2989 int init_slots = 0;
2990
2991 if (!host->pdata) {
2992 host->pdata = dw_mci_parse_dt(host);
2993 if (IS_ERR(host->pdata)) {
2994 dev_err(host->dev, "platform data not available\n");
2995 return -EINVAL;
2996 }
2997 }
2998
2999 host->biu_clk = devm_clk_get(host->dev, "biu");
3000 if (IS_ERR(host->biu_clk)) {
3001 dev_dbg(host->dev, "biu clock not available\n");
3002 } else {
3003 ret = clk_prepare_enable(host->biu_clk);
3004 if (ret) {
3005 dev_err(host->dev, "failed to enable biu clock\n");
3006 return ret;
3007 }
3008 }
3009
3010 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3011 if (IS_ERR(host->ciu_clk)) {
3012 dev_dbg(host->dev, "ciu clock not available\n");
3013 host->bus_hz = host->pdata->bus_hz;
3014 } else {
3015 ret = clk_prepare_enable(host->ciu_clk);
3016 if (ret) {
3017 dev_err(host->dev, "failed to enable ciu clock\n");
3018 goto err_clk_biu;
3019 }
3020
3021 if (host->pdata->bus_hz) {
3022 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3023 if (ret)
3024 dev_warn(host->dev,
3025 "Unable to set bus rate to %uHz\n",
3026 host->pdata->bus_hz);
3027 }
3028 host->bus_hz = clk_get_rate(host->ciu_clk);
3029 }
3030
3031 if (!host->bus_hz) {
3032 dev_err(host->dev,
3033 "Platform data must supply bus speed\n");
3034 ret = -ENODEV;
3035 goto err_clk_ciu;
3036 }
3037
3038 if (drv_data && drv_data->init) {
3039 ret = drv_data->init(host);
3040 if (ret) {
3041 dev_err(host->dev,
3042 "implementation specific init failed\n");
3043 goto err_clk_ciu;
3044 }
3045 }
3046
3047 setup_timer(&host->cmd11_timer,
3048 dw_mci_cmd11_timer, (unsigned long)host);
3049
3050 setup_timer(&host->dto_timer,
3051 dw_mci_dto_timer, (unsigned long)host);
3052
3053 spin_lock_init(&host->lock);
3054 spin_lock_init(&host->irq_lock);
3055 INIT_LIST_HEAD(&host->queue);
3056
3057 /*
3058 * Get the host data width - this assumes that HCON has been set with
3059 * the correct values.
3060 */
3061 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3062 if (!i) {
3063 host->push_data = dw_mci_push_data16;
3064 host->pull_data = dw_mci_pull_data16;
3065 width = 16;
3066 host->data_shift = 1;
3067 } else if (i == 2) {
3068 host->push_data = dw_mci_push_data64;
3069 host->pull_data = dw_mci_pull_data64;
3070 width = 64;
3071 host->data_shift = 3;
3072 } else {
3073 /* Check for a reserved value, and warn if it is */
3074 WARN((i != 1),
3075 "HCON reports a reserved host data width!\n"
3076 "Defaulting to 32-bit access.\n");
3077 host->push_data = dw_mci_push_data32;
3078 host->pull_data = dw_mci_pull_data32;
3079 width = 32;
3080 host->data_shift = 2;
3081 }
3082
3083 /* Reset all blocks */
3084 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3085 ret = -ENODEV;
3086 goto err_clk_ciu;
3087 }
3088
3089 host->dma_ops = host->pdata->dma_ops;
3090 dw_mci_init_dma(host);
3091
3092 /* Clear the interrupts for the host controller */
3093 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3094 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3095
3096 /* Put in max timeout */
3097 mci_writel(host, TMOUT, 0xFFFFFFFF);
3098
3099 /*
3100 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3101 * Tx Mark = fifo_size / 2 DMA Size = 8
3102 */
3103 if (!host->pdata->fifo_depth) {
3104 /*
3105 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3106 * have been overwritten by the bootloader, just like we're
3107 * about to do, so if you know the value for your hardware, you
3108 * should put it in the platform data.
3109 */
3110 fifo_size = mci_readl(host, FIFOTH);
3111 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3112 } else {
3113 fifo_size = host->pdata->fifo_depth;
3114 }
3115 host->fifo_depth = fifo_size;
3116 host->fifoth_val =
3117 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3118 mci_writel(host, FIFOTH, host->fifoth_val);
3119
3120 /* disable clock to CIU */
3121 mci_writel(host, CLKENA, 0);
3122 mci_writel(host, CLKSRC, 0);
3123
3124 /*
3125 * In 2.40a spec, Data offset is changed.
3126 * Need to check the version-id and set data-offset for DATA register.
3127 */
3128 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3129 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3130
3131 if (host->verid < DW_MMC_240A)
3132 host->fifo_reg = host->regs + DATA_OFFSET;
3133 else
3134 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3135
3136 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3137 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3138 host->irq_flags, "dw-mci", host);
3139 if (ret)
3140 goto err_dmaunmap;
3141
3142 if (host->pdata->num_slots)
3143 host->num_slots = host->pdata->num_slots;
3144 else
3145 host->num_slots = 1;
3146
3147 if (host->num_slots < 1 ||
3148 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3149 dev_err(host->dev,
3150 "Platform data must supply correct num_slots.\n");
3151 ret = -ENODEV;
3152 goto err_clk_ciu;
3153 }
3154
3155 /*
3156 * Enable interrupts for command done, data over, data empty,
3157 * receive ready and error such as transmit, receive timeout, crc error
3158 */
3159 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3160 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3161 DW_MCI_ERROR_FLAGS);
3162 /* Enable mci interrupt */
3163 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3164
3165 dev_info(host->dev,
3166 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3167 host->irq, width, fifo_size);
3168
3169 /* We need at least one slot to succeed */
3170 for (i = 0; i < host->num_slots; i++) {
3171 ret = dw_mci_init_slot(host, i);
3172 if (ret)
3173 dev_dbg(host->dev, "slot %d init failed\n", i);
3174 else
3175 init_slots++;
3176 }
3177
3178 if (init_slots) {
3179 dev_info(host->dev, "%d slots initialized\n", init_slots);
3180 } else {
3181 dev_dbg(host->dev,
3182 "attempted to initialize %d slots, but failed on all\n",
3183 host->num_slots);
3184 goto err_dmaunmap;
3185 }
3186
3187 /* Now that slots are all setup, we can enable card detect */
3188 dw_mci_enable_cd(host);
3189
3190 return 0;
3191
3192 err_dmaunmap:
3193 if (host->use_dma && host->dma_ops->exit)
3194 host->dma_ops->exit(host);
3195
3196 err_clk_ciu:
3197 if (!IS_ERR(host->ciu_clk))
3198 clk_disable_unprepare(host->ciu_clk);
3199
3200 err_clk_biu:
3201 if (!IS_ERR(host->biu_clk))
3202 clk_disable_unprepare(host->biu_clk);
3203
3204 return ret;
3205 }
3206 EXPORT_SYMBOL(dw_mci_probe);
3207
3208 void dw_mci_remove(struct dw_mci *host)
3209 {
3210 int i;
3211
3212 for (i = 0; i < host->num_slots; i++) {
3213 dev_dbg(host->dev, "remove slot %d\n", i);
3214 if (host->slot[i])
3215 dw_mci_cleanup_slot(host->slot[i], i);
3216 }
3217
3218 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3219 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3220
3221 /* disable clock to CIU */
3222 mci_writel(host, CLKENA, 0);
3223 mci_writel(host, CLKSRC, 0);
3224
3225 if (host->use_dma && host->dma_ops->exit)
3226 host->dma_ops->exit(host);
3227
3228 if (!IS_ERR(host->ciu_clk))
3229 clk_disable_unprepare(host->ciu_clk);
3230
3231 if (!IS_ERR(host->biu_clk))
3232 clk_disable_unprepare(host->biu_clk);
3233 }
3234 EXPORT_SYMBOL(dw_mci_remove);
3235
3236
3237
3238 #ifdef CONFIG_PM_SLEEP
3239 /*
3240 * TODO: we should probably disable the clock to the card in the suspend path.
3241 */
3242 int dw_mci_suspend(struct dw_mci *host)
3243 {
3244 if (host->use_dma && host->dma_ops->exit)
3245 host->dma_ops->exit(host);
3246
3247 return 0;
3248 }
3249 EXPORT_SYMBOL(dw_mci_suspend);
3250
3251 int dw_mci_resume(struct dw_mci *host)
3252 {
3253 int i, ret;
3254
3255 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3256 ret = -ENODEV;
3257 return ret;
3258 }
3259
3260 if (host->use_dma && host->dma_ops->init)
3261 host->dma_ops->init(host);
3262
3263 /*
3264 * Restore the initial value at FIFOTH register
3265 * And Invalidate the prev_blksz with zero
3266 */
3267 mci_writel(host, FIFOTH, host->fifoth_val);
3268 host->prev_blksz = 0;
3269
3270 /* Put in max timeout */
3271 mci_writel(host, TMOUT, 0xFFFFFFFF);
3272
3273 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3274 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3275 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3276 DW_MCI_ERROR_FLAGS);
3277 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3278
3279 for (i = 0; i < host->num_slots; i++) {
3280 struct dw_mci_slot *slot = host->slot[i];
3281
3282 if (!slot)
3283 continue;
3284 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3285 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3286 dw_mci_setup_bus(slot, true);
3287 }
3288 }
3289
3290 /* Now that slots are all setup, we can enable card detect */
3291 dw_mci_enable_cd(host);
3292
3293 return 0;
3294 }
3295 EXPORT_SYMBOL(dw_mci_resume);
3296 #endif /* CONFIG_PM_SLEEP */
3297
3298 static int __init dw_mci_init(void)
3299 {
3300 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3301 return 0;
3302 }
3303
3304 static void __exit dw_mci_exit(void)
3305 {
3306 }
3307
3308 module_init(dw_mci_init);
3309 module_exit(dw_mci_exit);
3310
3311 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3312 MODULE_AUTHOR("NXP Semiconductor VietNam");
3313 MODULE_AUTHOR("Imagination Technologies Ltd");
3314 MODULE_LICENSE("GPL v2");