]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/host/dw_mmc.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <linux/stat.h>
29 #include <linux/delay.h>
30 #include <linux/irq.h>
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
35 #include <linux/mmc/sdio.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "dw_mmc.h"
43
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
55
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
58
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
63
64 #define DESC_RING_BUF_SZ PAGE_SIZE
65
66 struct idmac_desc_64addr {
67 u32 des0; /* Control Descriptor */
68
69 u32 des1; /* Reserved */
70
71 u32 des2; /*Buffer sizes */
72 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
73 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
74 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75
76 u32 des3; /* Reserved */
77
78 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
79 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
80
81 u32 des6; /* Lower 32-bits of Next Descriptor Address */
82 u32 des7; /* Upper 32-bits of Next Descriptor Address */
83 };
84
85 struct idmac_desc {
86 __le32 des0; /* Control Descriptor */
87 #define IDMAC_DES0_DIC BIT(1)
88 #define IDMAC_DES0_LD BIT(2)
89 #define IDMAC_DES0_FD BIT(3)
90 #define IDMAC_DES0_CH BIT(4)
91 #define IDMAC_DES0_ER BIT(5)
92 #define IDMAC_DES0_CES BIT(30)
93 #define IDMAC_DES0_OWN BIT(31)
94
95 __le32 des1; /* Buffer sizes */
96 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
97 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98
99 __le32 des2; /* buffer 1 physical address */
100
101 __le32 des3; /* buffer 2 physical address */
102 };
103
104 /* Each descriptor can transfer up to 4KB of data in chained mode */
105 #define DW_MCI_DESC_DATA_LENGTH 0x1000
106
107 static bool dw_mci_reset(struct dw_mci *host);
108 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
109 static int dw_mci_card_busy(struct mmc_host *mmc);
110 static int dw_mci_get_cd(struct mmc_host *mmc);
111
112 #if defined(CONFIG_DEBUG_FS)
113 static int dw_mci_req_show(struct seq_file *s, void *v)
114 {
115 struct dw_mci_slot *slot = s->private;
116 struct mmc_request *mrq;
117 struct mmc_command *cmd;
118 struct mmc_command *stop;
119 struct mmc_data *data;
120
121 /* Make sure we get a consistent snapshot */
122 spin_lock_bh(&slot->host->lock);
123 mrq = slot->mrq;
124
125 if (mrq) {
126 cmd = mrq->cmd;
127 data = mrq->data;
128 stop = mrq->stop;
129
130 if (cmd)
131 seq_printf(s,
132 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
133 cmd->opcode, cmd->arg, cmd->flags,
134 cmd->resp[0], cmd->resp[1], cmd->resp[2],
135 cmd->resp[2], cmd->error);
136 if (data)
137 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
138 data->bytes_xfered, data->blocks,
139 data->blksz, data->flags, data->error);
140 if (stop)
141 seq_printf(s,
142 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
143 stop->opcode, stop->arg, stop->flags,
144 stop->resp[0], stop->resp[1], stop->resp[2],
145 stop->resp[2], stop->error);
146 }
147
148 spin_unlock_bh(&slot->host->lock);
149
150 return 0;
151 }
152
153 static int dw_mci_req_open(struct inode *inode, struct file *file)
154 {
155 return single_open(file, dw_mci_req_show, inode->i_private);
156 }
157
158 static const struct file_operations dw_mci_req_fops = {
159 .owner = THIS_MODULE,
160 .open = dw_mci_req_open,
161 .read = seq_read,
162 .llseek = seq_lseek,
163 .release = single_release,
164 };
165
166 static int dw_mci_regs_show(struct seq_file *s, void *v)
167 {
168 struct dw_mci *host = s->private;
169
170 seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS));
171 seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS));
172 seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD));
173 seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL));
174 seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK));
175 seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA));
176
177 return 0;
178 }
179
180 static int dw_mci_regs_open(struct inode *inode, struct file *file)
181 {
182 return single_open(file, dw_mci_regs_show, inode->i_private);
183 }
184
185 static const struct file_operations dw_mci_regs_fops = {
186 .owner = THIS_MODULE,
187 .open = dw_mci_regs_open,
188 .read = seq_read,
189 .llseek = seq_lseek,
190 .release = single_release,
191 };
192
193 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
194 {
195 struct mmc_host *mmc = slot->mmc;
196 struct dw_mci *host = slot->host;
197 struct dentry *root;
198 struct dentry *node;
199
200 root = mmc->debugfs_root;
201 if (!root)
202 return;
203
204 node = debugfs_create_file("regs", S_IRUSR, root, host,
205 &dw_mci_regs_fops);
206 if (!node)
207 goto err;
208
209 node = debugfs_create_file("req", S_IRUSR, root, slot,
210 &dw_mci_req_fops);
211 if (!node)
212 goto err;
213
214 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
215 if (!node)
216 goto err;
217
218 node = debugfs_create_x32("pending_events", S_IRUSR, root,
219 (u32 *)&host->pending_events);
220 if (!node)
221 goto err;
222
223 node = debugfs_create_x32("completed_events", S_IRUSR, root,
224 (u32 *)&host->completed_events);
225 if (!node)
226 goto err;
227
228 return;
229
230 err:
231 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
232 }
233 #endif /* defined(CONFIG_DEBUG_FS) */
234
235 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
236
237 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
238 {
239 struct dw_mci_slot *slot = mmc_priv(mmc);
240 struct dw_mci *host = slot->host;
241 u32 cmdr;
242
243 cmd->error = -EINPROGRESS;
244 cmdr = cmd->opcode;
245
246 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
247 cmd->opcode == MMC_GO_IDLE_STATE ||
248 cmd->opcode == MMC_GO_INACTIVE_STATE ||
249 (cmd->opcode == SD_IO_RW_DIRECT &&
250 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
251 cmdr |= SDMMC_CMD_STOP;
252 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
253 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
254
255 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
256 u32 clk_en_a;
257
258 /* Special bit makes CMD11 not die */
259 cmdr |= SDMMC_CMD_VOLT_SWITCH;
260
261 /* Change state to continue to handle CMD11 weirdness */
262 WARN_ON(slot->host->state != STATE_SENDING_CMD);
263 slot->host->state = STATE_SENDING_CMD11;
264
265 /*
266 * We need to disable low power mode (automatic clock stop)
267 * while doing voltage switch so we don't confuse the card,
268 * since stopping the clock is a specific part of the UHS
269 * voltage change dance.
270 *
271 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
272 * unconditionally turned back on in dw_mci_setup_bus() if it's
273 * ever called with a non-zero clock. That shouldn't happen
274 * until the voltage change is all done.
275 */
276 clk_en_a = mci_readl(host, CLKENA);
277 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
278 mci_writel(host, CLKENA, clk_en_a);
279 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
280 SDMMC_CMD_PRV_DAT_WAIT, 0);
281 }
282
283 if (cmd->flags & MMC_RSP_PRESENT) {
284 /* We expect a response, so set this bit */
285 cmdr |= SDMMC_CMD_RESP_EXP;
286 if (cmd->flags & MMC_RSP_136)
287 cmdr |= SDMMC_CMD_RESP_LONG;
288 }
289
290 if (cmd->flags & MMC_RSP_CRC)
291 cmdr |= SDMMC_CMD_RESP_CRC;
292
293 if (cmd->data) {
294 cmdr |= SDMMC_CMD_DAT_EXP;
295 if (cmd->data->flags & MMC_DATA_WRITE)
296 cmdr |= SDMMC_CMD_DAT_WR;
297 }
298
299 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
300 cmdr |= SDMMC_CMD_USE_HOLD_REG;
301
302 return cmdr;
303 }
304
305 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
306 {
307 struct mmc_command *stop;
308 u32 cmdr;
309
310 if (!cmd->data)
311 return 0;
312
313 stop = &host->stop_abort;
314 cmdr = cmd->opcode;
315 memset(stop, 0, sizeof(struct mmc_command));
316
317 if (cmdr == MMC_READ_SINGLE_BLOCK ||
318 cmdr == MMC_READ_MULTIPLE_BLOCK ||
319 cmdr == MMC_WRITE_BLOCK ||
320 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
321 cmdr == MMC_SEND_TUNING_BLOCK ||
322 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
323 stop->opcode = MMC_STOP_TRANSMISSION;
324 stop->arg = 0;
325 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
326 } else if (cmdr == SD_IO_RW_EXTENDED) {
327 stop->opcode = SD_IO_RW_DIRECT;
328 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
329 ((cmd->arg >> 28) & 0x7);
330 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
331 } else {
332 return 0;
333 }
334
335 cmdr = stop->opcode | SDMMC_CMD_STOP |
336 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
337
338 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->cur_slot->flags))
339 cmdr |= SDMMC_CMD_USE_HOLD_REG;
340
341 return cmdr;
342 }
343
344 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
345 {
346 unsigned long timeout = jiffies + msecs_to_jiffies(500);
347
348 /*
349 * Databook says that before issuing a new data transfer command
350 * we need to check to see if the card is busy. Data transfer commands
351 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
352 *
353 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
354 * expected.
355 */
356 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
357 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
358 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
359 if (time_after(jiffies, timeout)) {
360 /* Command will fail; we'll pass error then */
361 dev_err(host->dev, "Busy; trying anyway\n");
362 break;
363 }
364 udelay(10);
365 }
366 }
367 }
368
369 static void dw_mci_start_command(struct dw_mci *host,
370 struct mmc_command *cmd, u32 cmd_flags)
371 {
372 host->cmd = cmd;
373 dev_vdbg(host->dev,
374 "start command: ARGR=0x%08x CMDR=0x%08x\n",
375 cmd->arg, cmd_flags);
376
377 mci_writel(host, CMDARG, cmd->arg);
378 wmb(); /* drain writebuffer */
379 dw_mci_wait_while_busy(host, cmd_flags);
380
381 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
382 }
383
384 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
385 {
386 struct mmc_command *stop = &host->stop_abort;
387
388 dw_mci_start_command(host, stop, host->stop_cmdr);
389 }
390
391 /* DMA interface functions */
392 static void dw_mci_stop_dma(struct dw_mci *host)
393 {
394 if (host->using_dma) {
395 host->dma_ops->stop(host);
396 host->dma_ops->cleanup(host);
397 }
398
399 /* Data transfer was stopped by the interrupt handler */
400 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
401 }
402
403 static int dw_mci_get_dma_dir(struct mmc_data *data)
404 {
405 if (data->flags & MMC_DATA_WRITE)
406 return DMA_TO_DEVICE;
407 else
408 return DMA_FROM_DEVICE;
409 }
410
411 static void dw_mci_dma_cleanup(struct dw_mci *host)
412 {
413 struct mmc_data *data = host->data;
414
415 if (data && data->host_cookie == COOKIE_MAPPED) {
416 dma_unmap_sg(host->dev,
417 data->sg,
418 data->sg_len,
419 dw_mci_get_dma_dir(data));
420 data->host_cookie = COOKIE_UNMAPPED;
421 }
422 }
423
424 static void dw_mci_idmac_reset(struct dw_mci *host)
425 {
426 u32 bmod = mci_readl(host, BMOD);
427 /* Software reset of DMA */
428 bmod |= SDMMC_IDMAC_SWRESET;
429 mci_writel(host, BMOD, bmod);
430 }
431
432 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
433 {
434 u32 temp;
435
436 /* Disable and reset the IDMAC interface */
437 temp = mci_readl(host, CTRL);
438 temp &= ~SDMMC_CTRL_USE_IDMAC;
439 temp |= SDMMC_CTRL_DMA_RESET;
440 mci_writel(host, CTRL, temp);
441
442 /* Stop the IDMAC running */
443 temp = mci_readl(host, BMOD);
444 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
445 temp |= SDMMC_IDMAC_SWRESET;
446 mci_writel(host, BMOD, temp);
447 }
448
449 static void dw_mci_dmac_complete_dma(void *arg)
450 {
451 struct dw_mci *host = arg;
452 struct mmc_data *data = host->data;
453
454 dev_vdbg(host->dev, "DMA complete\n");
455
456 if ((host->use_dma == TRANS_MODE_EDMAC) &&
457 data && (data->flags & MMC_DATA_READ))
458 /* Invalidate cache after read */
459 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
460 data->sg,
461 data->sg_len,
462 DMA_FROM_DEVICE);
463
464 host->dma_ops->cleanup(host);
465
466 /*
467 * If the card was removed, data will be NULL. No point in trying to
468 * send the stop command or waiting for NBUSY in this case.
469 */
470 if (data) {
471 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
472 tasklet_schedule(&host->tasklet);
473 }
474 }
475
476 static int dw_mci_idmac_init(struct dw_mci *host)
477 {
478 int i;
479
480 if (host->dma_64bit_address == 1) {
481 struct idmac_desc_64addr *p;
482 /* Number of descriptors in the ring buffer */
483 host->ring_size =
484 DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr);
485
486 /* Forward link the descriptor list */
487 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
488 i++, p++) {
489 p->des6 = (host->sg_dma +
490 (sizeof(struct idmac_desc_64addr) *
491 (i + 1))) & 0xffffffff;
492
493 p->des7 = (u64)(host->sg_dma +
494 (sizeof(struct idmac_desc_64addr) *
495 (i + 1))) >> 32;
496 /* Initialize reserved and buffer size fields to "0" */
497 p->des1 = 0;
498 p->des2 = 0;
499 p->des3 = 0;
500 }
501
502 /* Set the last descriptor as the end-of-ring descriptor */
503 p->des6 = host->sg_dma & 0xffffffff;
504 p->des7 = (u64)host->sg_dma >> 32;
505 p->des0 = IDMAC_DES0_ER;
506
507 } else {
508 struct idmac_desc *p;
509 /* Number of descriptors in the ring buffer */
510 host->ring_size =
511 DESC_RING_BUF_SZ / sizeof(struct idmac_desc);
512
513 /* Forward link the descriptor list */
514 for (i = 0, p = host->sg_cpu;
515 i < host->ring_size - 1;
516 i++, p++) {
517 p->des3 = cpu_to_le32(host->sg_dma +
518 (sizeof(struct idmac_desc) * (i + 1)));
519 p->des1 = 0;
520 }
521
522 /* Set the last descriptor as the end-of-ring descriptor */
523 p->des3 = cpu_to_le32(host->sg_dma);
524 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
525 }
526
527 dw_mci_idmac_reset(host);
528
529 if (host->dma_64bit_address == 1) {
530 /* Mask out interrupts - get Tx & Rx complete only */
531 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
532 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
533 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
534
535 /* Set the descriptor base address */
536 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
537 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
538
539 } else {
540 /* Mask out interrupts - get Tx & Rx complete only */
541 mci_writel(host, IDSTS, IDMAC_INT_CLR);
542 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
543 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
544
545 /* Set the descriptor base address */
546 mci_writel(host, DBADDR, host->sg_dma);
547 }
548
549 return 0;
550 }
551
552 static inline int dw_mci_prepare_desc64(struct dw_mci *host,
553 struct mmc_data *data,
554 unsigned int sg_len)
555 {
556 unsigned int desc_len;
557 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
558 unsigned long timeout;
559 int i;
560
561 desc_first = desc_last = desc = host->sg_cpu;
562
563 for (i = 0; i < sg_len; i++) {
564 unsigned int length = sg_dma_len(&data->sg[i]);
565
566 u64 mem_addr = sg_dma_address(&data->sg[i]);
567
568 for ( ; length ; desc++) {
569 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
570 length : DW_MCI_DESC_DATA_LENGTH;
571
572 length -= desc_len;
573
574 /*
575 * Wait for the former clear OWN bit operation
576 * of IDMAC to make sure that this descriptor
577 * isn't still owned by IDMAC as IDMAC's write
578 * ops and CPU's read ops are asynchronous.
579 */
580 timeout = jiffies + msecs_to_jiffies(100);
581 while (readl(&desc->des0) & IDMAC_DES0_OWN) {
582 if (time_after(jiffies, timeout))
583 goto err_own_bit;
584 udelay(10);
585 }
586
587 /*
588 * Set the OWN bit and disable interrupts
589 * for this descriptor
590 */
591 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
592 IDMAC_DES0_CH;
593
594 /* Buffer length */
595 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
596
597 /* Physical address to DMA to/from */
598 desc->des4 = mem_addr & 0xffffffff;
599 desc->des5 = mem_addr >> 32;
600
601 /* Update physical address for the next desc */
602 mem_addr += desc_len;
603
604 /* Save pointer to the last descriptor */
605 desc_last = desc;
606 }
607 }
608
609 /* Set first descriptor */
610 desc_first->des0 |= IDMAC_DES0_FD;
611
612 /* Set last descriptor */
613 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
614 desc_last->des0 |= IDMAC_DES0_LD;
615
616 return 0;
617 err_own_bit:
618 /* restore the descriptor chain as it's polluted */
619 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
620 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
621 dw_mci_idmac_init(host);
622 return -EINVAL;
623 }
624
625
626 static inline int dw_mci_prepare_desc32(struct dw_mci *host,
627 struct mmc_data *data,
628 unsigned int sg_len)
629 {
630 unsigned int desc_len;
631 struct idmac_desc *desc_first, *desc_last, *desc;
632 unsigned long timeout;
633 int i;
634
635 desc_first = desc_last = desc = host->sg_cpu;
636
637 for (i = 0; i < sg_len; i++) {
638 unsigned int length = sg_dma_len(&data->sg[i]);
639
640 u32 mem_addr = sg_dma_address(&data->sg[i]);
641
642 for ( ; length ; desc++) {
643 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
644 length : DW_MCI_DESC_DATA_LENGTH;
645
646 length -= desc_len;
647
648 /*
649 * Wait for the former clear OWN bit operation
650 * of IDMAC to make sure that this descriptor
651 * isn't still owned by IDMAC as IDMAC's write
652 * ops and CPU's read ops are asynchronous.
653 */
654 timeout = jiffies + msecs_to_jiffies(100);
655 while (readl(&desc->des0) &
656 cpu_to_le32(IDMAC_DES0_OWN)) {
657 if (time_after(jiffies, timeout))
658 goto err_own_bit;
659 udelay(10);
660 }
661
662 /*
663 * Set the OWN bit and disable interrupts
664 * for this descriptor
665 */
666 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
667 IDMAC_DES0_DIC |
668 IDMAC_DES0_CH);
669
670 /* Buffer length */
671 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
672
673 /* Physical address to DMA to/from */
674 desc->des2 = cpu_to_le32(mem_addr);
675
676 /* Update physical address for the next desc */
677 mem_addr += desc_len;
678
679 /* Save pointer to the last descriptor */
680 desc_last = desc;
681 }
682 }
683
684 /* Set first descriptor */
685 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
686
687 /* Set last descriptor */
688 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
689 IDMAC_DES0_DIC));
690 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
691
692 return 0;
693 err_own_bit:
694 /* restore the descriptor chain as it's polluted */
695 dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n");
696 memset(host->sg_cpu, 0, DESC_RING_BUF_SZ);
697 dw_mci_idmac_init(host);
698 return -EINVAL;
699 }
700
701 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
702 {
703 u32 temp;
704 int ret;
705
706 if (host->dma_64bit_address == 1)
707 ret = dw_mci_prepare_desc64(host, host->data, sg_len);
708 else
709 ret = dw_mci_prepare_desc32(host, host->data, sg_len);
710
711 if (ret)
712 goto out;
713
714 /* drain writebuffer */
715 wmb();
716
717 /* Make sure to reset DMA in case we did PIO before this */
718 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
719 dw_mci_idmac_reset(host);
720
721 /* Select IDMAC interface */
722 temp = mci_readl(host, CTRL);
723 temp |= SDMMC_CTRL_USE_IDMAC;
724 mci_writel(host, CTRL, temp);
725
726 /* drain writebuffer */
727 wmb();
728
729 /* Enable the IDMAC */
730 temp = mci_readl(host, BMOD);
731 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
732 mci_writel(host, BMOD, temp);
733
734 /* Start it running */
735 mci_writel(host, PLDMND, 1);
736
737 out:
738 return ret;
739 }
740
741 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
742 .init = dw_mci_idmac_init,
743 .start = dw_mci_idmac_start_dma,
744 .stop = dw_mci_idmac_stop_dma,
745 .complete = dw_mci_dmac_complete_dma,
746 .cleanup = dw_mci_dma_cleanup,
747 };
748
749 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
750 {
751 dmaengine_terminate_async(host->dms->ch);
752 }
753
754 static int dw_mci_edmac_start_dma(struct dw_mci *host,
755 unsigned int sg_len)
756 {
757 struct dma_slave_config cfg;
758 struct dma_async_tx_descriptor *desc = NULL;
759 struct scatterlist *sgl = host->data->sg;
760 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
761 u32 sg_elems = host->data->sg_len;
762 u32 fifoth_val;
763 u32 fifo_offset = host->fifo_reg - host->regs;
764 int ret = 0;
765
766 /* Set external dma config: burst size, burst width */
767 cfg.dst_addr = host->phy_regs + fifo_offset;
768 cfg.src_addr = cfg.dst_addr;
769 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
770 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
771
772 /* Match burst msize with external dma config */
773 fifoth_val = mci_readl(host, FIFOTH);
774 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
775 cfg.src_maxburst = cfg.dst_maxburst;
776
777 if (host->data->flags & MMC_DATA_WRITE)
778 cfg.direction = DMA_MEM_TO_DEV;
779 else
780 cfg.direction = DMA_DEV_TO_MEM;
781
782 ret = dmaengine_slave_config(host->dms->ch, &cfg);
783 if (ret) {
784 dev_err(host->dev, "Failed to config edmac.\n");
785 return -EBUSY;
786 }
787
788 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
789 sg_len, cfg.direction,
790 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
791 if (!desc) {
792 dev_err(host->dev, "Can't prepare slave sg.\n");
793 return -EBUSY;
794 }
795
796 /* Set dw_mci_dmac_complete_dma as callback */
797 desc->callback = dw_mci_dmac_complete_dma;
798 desc->callback_param = (void *)host;
799 dmaengine_submit(desc);
800
801 /* Flush cache before write */
802 if (host->data->flags & MMC_DATA_WRITE)
803 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
804 sg_elems, DMA_TO_DEVICE);
805
806 dma_async_issue_pending(host->dms->ch);
807
808 return 0;
809 }
810
811 static int dw_mci_edmac_init(struct dw_mci *host)
812 {
813 /* Request external dma channel */
814 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
815 if (!host->dms)
816 return -ENOMEM;
817
818 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
819 if (!host->dms->ch) {
820 dev_err(host->dev, "Failed to get external DMA channel.\n");
821 kfree(host->dms);
822 host->dms = NULL;
823 return -ENXIO;
824 }
825
826 return 0;
827 }
828
829 static void dw_mci_edmac_exit(struct dw_mci *host)
830 {
831 if (host->dms) {
832 if (host->dms->ch) {
833 dma_release_channel(host->dms->ch);
834 host->dms->ch = NULL;
835 }
836 kfree(host->dms);
837 host->dms = NULL;
838 }
839 }
840
841 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
842 .init = dw_mci_edmac_init,
843 .exit = dw_mci_edmac_exit,
844 .start = dw_mci_edmac_start_dma,
845 .stop = dw_mci_edmac_stop_dma,
846 .complete = dw_mci_dmac_complete_dma,
847 .cleanup = dw_mci_dma_cleanup,
848 };
849
850 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
851 struct mmc_data *data,
852 int cookie)
853 {
854 struct scatterlist *sg;
855 unsigned int i, sg_len;
856
857 if (data->host_cookie == COOKIE_PRE_MAPPED)
858 return data->sg_len;
859
860 /*
861 * We don't do DMA on "complex" transfers, i.e. with
862 * non-word-aligned buffers or lengths. Also, we don't bother
863 * with all the DMA setup overhead for short transfers.
864 */
865 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
866 return -EINVAL;
867
868 if (data->blksz & 3)
869 return -EINVAL;
870
871 for_each_sg(data->sg, sg, data->sg_len, i) {
872 if (sg->offset & 3 || sg->length & 3)
873 return -EINVAL;
874 }
875
876 sg_len = dma_map_sg(host->dev,
877 data->sg,
878 data->sg_len,
879 dw_mci_get_dma_dir(data));
880 if (sg_len == 0)
881 return -EINVAL;
882
883 data->host_cookie = cookie;
884
885 return sg_len;
886 }
887
888 static void dw_mci_pre_req(struct mmc_host *mmc,
889 struct mmc_request *mrq)
890 {
891 struct dw_mci_slot *slot = mmc_priv(mmc);
892 struct mmc_data *data = mrq->data;
893
894 if (!slot->host->use_dma || !data)
895 return;
896
897 /* This data might be unmapped at this time */
898 data->host_cookie = COOKIE_UNMAPPED;
899
900 if (dw_mci_pre_dma_transfer(slot->host, mrq->data,
901 COOKIE_PRE_MAPPED) < 0)
902 data->host_cookie = COOKIE_UNMAPPED;
903 }
904
905 static void dw_mci_post_req(struct mmc_host *mmc,
906 struct mmc_request *mrq,
907 int err)
908 {
909 struct dw_mci_slot *slot = mmc_priv(mmc);
910 struct mmc_data *data = mrq->data;
911
912 if (!slot->host->use_dma || !data)
913 return;
914
915 if (data->host_cookie != COOKIE_UNMAPPED)
916 dma_unmap_sg(slot->host->dev,
917 data->sg,
918 data->sg_len,
919 dw_mci_get_dma_dir(data));
920 data->host_cookie = COOKIE_UNMAPPED;
921 }
922
923 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
924 {
925 unsigned int blksz = data->blksz;
926 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
927 u32 fifo_width = 1 << host->data_shift;
928 u32 blksz_depth = blksz / fifo_width, fifoth_val;
929 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
930 int idx = ARRAY_SIZE(mszs) - 1;
931
932 /* pio should ship this scenario */
933 if (!host->use_dma)
934 return;
935
936 tx_wmark = (host->fifo_depth) / 2;
937 tx_wmark_invers = host->fifo_depth - tx_wmark;
938
939 /*
940 * MSIZE is '1',
941 * if blksz is not a multiple of the FIFO width
942 */
943 if (blksz % fifo_width)
944 goto done;
945
946 do {
947 if (!((blksz_depth % mszs[idx]) ||
948 (tx_wmark_invers % mszs[idx]))) {
949 msize = idx;
950 rx_wmark = mszs[idx] - 1;
951 break;
952 }
953 } while (--idx > 0);
954 /*
955 * If idx is '0', it won't be tried
956 * Thus, initial values are uesed
957 */
958 done:
959 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
960 mci_writel(host, FIFOTH, fifoth_val);
961 }
962
963 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
964 {
965 unsigned int blksz = data->blksz;
966 u32 blksz_depth, fifo_depth;
967 u16 thld_size;
968 u8 enable;
969
970 /*
971 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
972 * in the FIFO region, so we really shouldn't access it).
973 */
974 if (host->verid < DW_MMC_240A ||
975 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
976 return;
977
978 /*
979 * Card write Threshold is introduced since 2.80a
980 * It's used when HS400 mode is enabled.
981 */
982 if (data->flags & MMC_DATA_WRITE &&
983 !(host->timing != MMC_TIMING_MMC_HS400))
984 return;
985
986 if (data->flags & MMC_DATA_WRITE)
987 enable = SDMMC_CARD_WR_THR_EN;
988 else
989 enable = SDMMC_CARD_RD_THR_EN;
990
991 if (host->timing != MMC_TIMING_MMC_HS200 &&
992 host->timing != MMC_TIMING_UHS_SDR104)
993 goto disable;
994
995 blksz_depth = blksz / (1 << host->data_shift);
996 fifo_depth = host->fifo_depth;
997
998 if (blksz_depth > fifo_depth)
999 goto disable;
1000
1001 /*
1002 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1003 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1004 * Currently just choose blksz.
1005 */
1006 thld_size = blksz;
1007 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
1008 return;
1009
1010 disable:
1011 mci_writel(host, CDTHRCTL, 0);
1012 }
1013
1014 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
1015 {
1016 unsigned long irqflags;
1017 int sg_len;
1018 u32 temp;
1019
1020 host->using_dma = 0;
1021
1022 /* If we don't have a channel, we can't do DMA */
1023 if (!host->use_dma)
1024 return -ENODEV;
1025
1026 sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED);
1027 if (sg_len < 0) {
1028 host->dma_ops->stop(host);
1029 return sg_len;
1030 }
1031
1032 host->using_dma = 1;
1033
1034 if (host->use_dma == TRANS_MODE_IDMAC)
1035 dev_vdbg(host->dev,
1036 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1037 (unsigned long)host->sg_cpu,
1038 (unsigned long)host->sg_dma,
1039 sg_len);
1040
1041 /*
1042 * Decide the MSIZE and RX/TX Watermark.
1043 * If current block size is same with previous size,
1044 * no need to update fifoth.
1045 */
1046 if (host->prev_blksz != data->blksz)
1047 dw_mci_adjust_fifoth(host, data);
1048
1049 /* Enable the DMA interface */
1050 temp = mci_readl(host, CTRL);
1051 temp |= SDMMC_CTRL_DMA_ENABLE;
1052 mci_writel(host, CTRL, temp);
1053
1054 /* Disable RX/TX IRQs, let DMA handle it */
1055 spin_lock_irqsave(&host->irq_lock, irqflags);
1056 temp = mci_readl(host, INTMASK);
1057 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
1058 mci_writel(host, INTMASK, temp);
1059 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1060
1061 if (host->dma_ops->start(host, sg_len)) {
1062 host->dma_ops->stop(host);
1063 /* We can't do DMA, try PIO for this one */
1064 dev_dbg(host->dev,
1065 "%s: fall back to PIO mode for current transfer\n",
1066 __func__);
1067 return -ENODEV;
1068 }
1069
1070 return 0;
1071 }
1072
1073 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1074 {
1075 unsigned long irqflags;
1076 int flags = SG_MITER_ATOMIC;
1077 u32 temp;
1078
1079 data->error = -EINPROGRESS;
1080
1081 WARN_ON(host->data);
1082 host->sg = NULL;
1083 host->data = data;
1084
1085 if (data->flags & MMC_DATA_READ)
1086 host->dir_status = DW_MCI_RECV_STATUS;
1087 else
1088 host->dir_status = DW_MCI_SEND_STATUS;
1089
1090 dw_mci_ctrl_thld(host, data);
1091
1092 if (dw_mci_submit_data_dma(host, data)) {
1093 if (host->data->flags & MMC_DATA_READ)
1094 flags |= SG_MITER_TO_SG;
1095 else
1096 flags |= SG_MITER_FROM_SG;
1097
1098 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1099 host->sg = data->sg;
1100 host->part_buf_start = 0;
1101 host->part_buf_count = 0;
1102
1103 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1104
1105 spin_lock_irqsave(&host->irq_lock, irqflags);
1106 temp = mci_readl(host, INTMASK);
1107 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1108 mci_writel(host, INTMASK, temp);
1109 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1110
1111 temp = mci_readl(host, CTRL);
1112 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1113 mci_writel(host, CTRL, temp);
1114
1115 /*
1116 * Use the initial fifoth_val for PIO mode. If wm_algined
1117 * is set, we set watermark same as data size.
1118 * If next issued data may be transfered by DMA mode,
1119 * prev_blksz should be invalidated.
1120 */
1121 if (host->wm_aligned)
1122 dw_mci_adjust_fifoth(host, data);
1123 else
1124 mci_writel(host, FIFOTH, host->fifoth_val);
1125 host->prev_blksz = 0;
1126 } else {
1127 /*
1128 * Keep the current block size.
1129 * It will be used to decide whether to update
1130 * fifoth register next time.
1131 */
1132 host->prev_blksz = data->blksz;
1133 }
1134 }
1135
1136 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1137 {
1138 struct dw_mci *host = slot->host;
1139 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1140 unsigned int cmd_status = 0;
1141
1142 mci_writel(host, CMDARG, arg);
1143 wmb(); /* drain writebuffer */
1144 dw_mci_wait_while_busy(host, cmd);
1145 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1146
1147 while (time_before(jiffies, timeout)) {
1148 cmd_status = mci_readl(host, CMD);
1149 if (!(cmd_status & SDMMC_CMD_START))
1150 return;
1151 }
1152 dev_err(&slot->mmc->class_dev,
1153 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1154 cmd, arg, cmd_status);
1155 }
1156
1157 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1158 {
1159 struct dw_mci *host = slot->host;
1160 unsigned int clock = slot->clock;
1161 u32 div;
1162 u32 clk_en_a;
1163 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1164
1165 /* We must continue to set bit 28 in CMD until the change is complete */
1166 if (host->state == STATE_WAITING_CMD11_DONE)
1167 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1168
1169 if (!clock) {
1170 mci_writel(host, CLKENA, 0);
1171 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1172 } else if (clock != host->current_speed || force_clkinit) {
1173 div = host->bus_hz / clock;
1174 if (host->bus_hz % clock && host->bus_hz > clock)
1175 /*
1176 * move the + 1 after the divide to prevent
1177 * over-clocking the card.
1178 */
1179 div += 1;
1180
1181 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1182
1183 if ((clock != slot->__clk_old &&
1184 !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) ||
1185 force_clkinit) {
1186 /* Silent the verbose log if calling from PM context */
1187 if (!force_clkinit)
1188 dev_info(&slot->mmc->class_dev,
1189 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1190 slot->id, host->bus_hz, clock,
1191 div ? ((host->bus_hz / div) >> 1) :
1192 host->bus_hz, div);
1193
1194 /*
1195 * If card is polling, display the message only
1196 * one time at boot time.
1197 */
1198 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL &&
1199 slot->mmc->f_min == clock)
1200 set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags);
1201 }
1202
1203 /* disable clock */
1204 mci_writel(host, CLKENA, 0);
1205 mci_writel(host, CLKSRC, 0);
1206
1207 /* inform CIU */
1208 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1209
1210 /* set clock to desired speed */
1211 mci_writel(host, CLKDIV, div);
1212
1213 /* inform CIU */
1214 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1215
1216 /* enable clock; only low power if no SDIO */
1217 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1218 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1219 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1220 mci_writel(host, CLKENA, clk_en_a);
1221
1222 /* inform CIU */
1223 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1224
1225 /* keep the last clock value that was requested from core */
1226 slot->__clk_old = clock;
1227 }
1228
1229 host->current_speed = clock;
1230
1231 /* Set the current slot bus width */
1232 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1233 }
1234
1235 static void __dw_mci_start_request(struct dw_mci *host,
1236 struct dw_mci_slot *slot,
1237 struct mmc_command *cmd)
1238 {
1239 struct mmc_request *mrq;
1240 struct mmc_data *data;
1241 u32 cmdflags;
1242
1243 mrq = slot->mrq;
1244
1245 host->cur_slot = slot;
1246 host->mrq = mrq;
1247
1248 host->pending_events = 0;
1249 host->completed_events = 0;
1250 host->cmd_status = 0;
1251 host->data_status = 0;
1252 host->dir_status = 0;
1253
1254 data = cmd->data;
1255 if (data) {
1256 mci_writel(host, TMOUT, 0xFFFFFFFF);
1257 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1258 mci_writel(host, BLKSIZ, data->blksz);
1259 }
1260
1261 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1262
1263 /* this is the first command, send the initialization clock */
1264 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1265 cmdflags |= SDMMC_CMD_INIT;
1266
1267 if (data) {
1268 dw_mci_submit_data(host, data);
1269 wmb(); /* drain writebuffer */
1270 }
1271
1272 dw_mci_start_command(host, cmd, cmdflags);
1273
1274 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1275 unsigned long irqflags;
1276
1277 /*
1278 * Databook says to fail after 2ms w/ no response, but evidence
1279 * shows that sometimes the cmd11 interrupt takes over 130ms.
1280 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1281 * is just about to roll over.
1282 *
1283 * We do this whole thing under spinlock and only if the
1284 * command hasn't already completed (indicating the the irq
1285 * already ran so we don't want the timeout).
1286 */
1287 spin_lock_irqsave(&host->irq_lock, irqflags);
1288 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1289 mod_timer(&host->cmd11_timer,
1290 jiffies + msecs_to_jiffies(500) + 1);
1291 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1292 }
1293
1294 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1295 }
1296
1297 static void dw_mci_start_request(struct dw_mci *host,
1298 struct dw_mci_slot *slot)
1299 {
1300 struct mmc_request *mrq = slot->mrq;
1301 struct mmc_command *cmd;
1302
1303 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1304 __dw_mci_start_request(host, slot, cmd);
1305 }
1306
1307 /* must be called with host->lock held */
1308 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1309 struct mmc_request *mrq)
1310 {
1311 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1312 host->state);
1313
1314 slot->mrq = mrq;
1315
1316 if (host->state == STATE_WAITING_CMD11_DONE) {
1317 dev_warn(&slot->mmc->class_dev,
1318 "Voltage change didn't complete\n");
1319 /*
1320 * this case isn't expected to happen, so we can
1321 * either crash here or just try to continue on
1322 * in the closest possible state
1323 */
1324 host->state = STATE_IDLE;
1325 }
1326
1327 if (host->state == STATE_IDLE) {
1328 host->state = STATE_SENDING_CMD;
1329 dw_mci_start_request(host, slot);
1330 } else {
1331 list_add_tail(&slot->queue_node, &host->queue);
1332 }
1333 }
1334
1335 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1336 {
1337 struct dw_mci_slot *slot = mmc_priv(mmc);
1338 struct dw_mci *host = slot->host;
1339
1340 WARN_ON(slot->mrq);
1341
1342 /*
1343 * The check for card presence and queueing of the request must be
1344 * atomic, otherwise the card could be removed in between and the
1345 * request wouldn't fail until another card was inserted.
1346 */
1347
1348 if (!dw_mci_get_cd(mmc)) {
1349 mrq->cmd->error = -ENOMEDIUM;
1350 mmc_request_done(mmc, mrq);
1351 return;
1352 }
1353
1354 spin_lock_bh(&host->lock);
1355
1356 dw_mci_queue_request(host, slot, mrq);
1357
1358 spin_unlock_bh(&host->lock);
1359 }
1360
1361 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1362 {
1363 struct dw_mci_slot *slot = mmc_priv(mmc);
1364 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1365 u32 regs;
1366 int ret;
1367
1368 switch (ios->bus_width) {
1369 case MMC_BUS_WIDTH_4:
1370 slot->ctype = SDMMC_CTYPE_4BIT;
1371 break;
1372 case MMC_BUS_WIDTH_8:
1373 slot->ctype = SDMMC_CTYPE_8BIT;
1374 break;
1375 default:
1376 /* set default 1 bit mode */
1377 slot->ctype = SDMMC_CTYPE_1BIT;
1378 }
1379
1380 regs = mci_readl(slot->host, UHS_REG);
1381
1382 /* DDR mode set */
1383 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1384 ios->timing == MMC_TIMING_UHS_DDR50 ||
1385 ios->timing == MMC_TIMING_MMC_HS400)
1386 regs |= ((0x1 << slot->id) << 16);
1387 else
1388 regs &= ~((0x1 << slot->id) << 16);
1389
1390 mci_writel(slot->host, UHS_REG, regs);
1391 slot->host->timing = ios->timing;
1392
1393 /*
1394 * Use mirror of ios->clock to prevent race with mmc
1395 * core ios update when finding the minimum.
1396 */
1397 slot->clock = ios->clock;
1398
1399 if (drv_data && drv_data->set_ios)
1400 drv_data->set_ios(slot->host, ios);
1401
1402 switch (ios->power_mode) {
1403 case MMC_POWER_UP:
1404 if (!IS_ERR(mmc->supply.vmmc)) {
1405 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1406 ios->vdd);
1407 if (ret) {
1408 dev_err(slot->host->dev,
1409 "failed to enable vmmc regulator\n");
1410 /*return, if failed turn on vmmc*/
1411 return;
1412 }
1413 }
1414 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1415 regs = mci_readl(slot->host, PWREN);
1416 regs |= (1 << slot->id);
1417 mci_writel(slot->host, PWREN, regs);
1418 break;
1419 case MMC_POWER_ON:
1420 if (!slot->host->vqmmc_enabled) {
1421 if (!IS_ERR(mmc->supply.vqmmc)) {
1422 ret = regulator_enable(mmc->supply.vqmmc);
1423 if (ret < 0)
1424 dev_err(slot->host->dev,
1425 "failed to enable vqmmc\n");
1426 else
1427 slot->host->vqmmc_enabled = true;
1428
1429 } else {
1430 /* Keep track so we don't reset again */
1431 slot->host->vqmmc_enabled = true;
1432 }
1433
1434 /* Reset our state machine after powering on */
1435 dw_mci_ctrl_reset(slot->host,
1436 SDMMC_CTRL_ALL_RESET_FLAGS);
1437 }
1438
1439 /* Adjust clock / bus width after power is up */
1440 dw_mci_setup_bus(slot, false);
1441
1442 break;
1443 case MMC_POWER_OFF:
1444 /* Turn clock off before power goes down */
1445 dw_mci_setup_bus(slot, false);
1446
1447 if (!IS_ERR(mmc->supply.vmmc))
1448 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1449
1450 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1451 regulator_disable(mmc->supply.vqmmc);
1452 slot->host->vqmmc_enabled = false;
1453
1454 regs = mci_readl(slot->host, PWREN);
1455 regs &= ~(1 << slot->id);
1456 mci_writel(slot->host, PWREN, regs);
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1463 slot->host->state = STATE_IDLE;
1464 }
1465
1466 static int dw_mci_card_busy(struct mmc_host *mmc)
1467 {
1468 struct dw_mci_slot *slot = mmc_priv(mmc);
1469 u32 status;
1470
1471 /*
1472 * Check the busy bit which is low when DAT[3:0]
1473 * (the data lines) are 0000
1474 */
1475 status = mci_readl(slot->host, STATUS);
1476
1477 return !!(status & SDMMC_STATUS_BUSY);
1478 }
1479
1480 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1481 {
1482 struct dw_mci_slot *slot = mmc_priv(mmc);
1483 struct dw_mci *host = slot->host;
1484 const struct dw_mci_drv_data *drv_data = host->drv_data;
1485 u32 uhs;
1486 u32 v18 = SDMMC_UHS_18V << slot->id;
1487 int ret;
1488
1489 if (drv_data && drv_data->switch_voltage)
1490 return drv_data->switch_voltage(mmc, ios);
1491
1492 /*
1493 * Program the voltage. Note that some instances of dw_mmc may use
1494 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1495 * does no harm but you need to set the regulator directly. Try both.
1496 */
1497 uhs = mci_readl(host, UHS_REG);
1498 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1499 uhs &= ~v18;
1500 else
1501 uhs |= v18;
1502
1503 if (!IS_ERR(mmc->supply.vqmmc)) {
1504 ret = mmc_regulator_set_vqmmc(mmc, ios);
1505
1506 if (ret) {
1507 dev_dbg(&mmc->class_dev,
1508 "Regulator set error %d - %s V\n",
1509 ret, uhs & v18 ? "1.8" : "3.3");
1510 return ret;
1511 }
1512 }
1513 mci_writel(host, UHS_REG, uhs);
1514
1515 return 0;
1516 }
1517
1518 static int dw_mci_get_ro(struct mmc_host *mmc)
1519 {
1520 int read_only;
1521 struct dw_mci_slot *slot = mmc_priv(mmc);
1522 int gpio_ro = mmc_gpio_get_ro(mmc);
1523
1524 /* Use platform get_ro function, else try on board write protect */
1525 if (gpio_ro >= 0)
1526 read_only = gpio_ro;
1527 else
1528 read_only =
1529 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1530
1531 dev_dbg(&mmc->class_dev, "card is %s\n",
1532 read_only ? "read-only" : "read-write");
1533
1534 return read_only;
1535 }
1536
1537 static int dw_mci_get_cd(struct mmc_host *mmc)
1538 {
1539 int present;
1540 struct dw_mci_slot *slot = mmc_priv(mmc);
1541 struct dw_mci *host = slot->host;
1542 int gpio_cd = mmc_gpio_get_cd(mmc);
1543
1544 /* Use platform get_cd function, else try onboard card detect */
1545 if (((mmc->caps & MMC_CAP_NEEDS_POLL)
1546 || !mmc_card_is_removable(mmc))) {
1547 present = 1;
1548
1549 if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) {
1550 if (mmc->caps & MMC_CAP_NEEDS_POLL) {
1551 dev_info(&mmc->class_dev,
1552 "card is polling.\n");
1553 } else {
1554 dev_info(&mmc->class_dev,
1555 "card is non-removable.\n");
1556 }
1557 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1558 }
1559
1560 return present;
1561 } else if (gpio_cd >= 0)
1562 present = gpio_cd;
1563 else
1564 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1565 == 0 ? 1 : 0;
1566
1567 spin_lock_bh(&host->lock);
1568 if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1569 dev_dbg(&mmc->class_dev, "card is present\n");
1570 else if (!present &&
1571 !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags))
1572 dev_dbg(&mmc->class_dev, "card is not present\n");
1573 spin_unlock_bh(&host->lock);
1574
1575 return present;
1576 }
1577
1578 static void dw_mci_hw_reset(struct mmc_host *mmc)
1579 {
1580 struct dw_mci_slot *slot = mmc_priv(mmc);
1581 struct dw_mci *host = slot->host;
1582 int reset;
1583
1584 if (host->use_dma == TRANS_MODE_IDMAC)
1585 dw_mci_idmac_reset(host);
1586
1587 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1588 SDMMC_CTRL_FIFO_RESET))
1589 return;
1590
1591 /*
1592 * According to eMMC spec, card reset procedure:
1593 * tRstW >= 1us: RST_n pulse width
1594 * tRSCA >= 200us: RST_n to Command time
1595 * tRSTH >= 1us: RST_n high period
1596 */
1597 reset = mci_readl(host, RST_N);
1598 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1599 mci_writel(host, RST_N, reset);
1600 usleep_range(1, 2);
1601 reset |= SDMMC_RST_HWACTIVE << slot->id;
1602 mci_writel(host, RST_N, reset);
1603 usleep_range(200, 300);
1604 }
1605
1606 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1607 {
1608 struct dw_mci_slot *slot = mmc_priv(mmc);
1609 struct dw_mci *host = slot->host;
1610
1611 /*
1612 * Low power mode will stop the card clock when idle. According to the
1613 * description of the CLKENA register we should disable low power mode
1614 * for SDIO cards if we need SDIO interrupts to work.
1615 */
1616 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1617 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1618 u32 clk_en_a_old;
1619 u32 clk_en_a;
1620
1621 clk_en_a_old = mci_readl(host, CLKENA);
1622
1623 if (card->type == MMC_TYPE_SDIO ||
1624 card->type == MMC_TYPE_SD_COMBO) {
1625 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) {
1626 pm_runtime_get_noresume(mmc->parent);
1627 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1628 }
1629 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1630 } else {
1631 if (test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) {
1632 pm_runtime_put_noidle(mmc->parent);
1633 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1634 }
1635 clk_en_a = clk_en_a_old | clken_low_pwr;
1636 }
1637
1638 if (clk_en_a != clk_en_a_old) {
1639 mci_writel(host, CLKENA, clk_en_a);
1640 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1641 SDMMC_CMD_PRV_DAT_WAIT, 0);
1642 }
1643 }
1644 }
1645
1646 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1647 {
1648 struct dw_mci_slot *slot = mmc_priv(mmc);
1649 struct dw_mci *host = slot->host;
1650 unsigned long irqflags;
1651 u32 int_mask;
1652
1653 spin_lock_irqsave(&host->irq_lock, irqflags);
1654
1655 /* Enable/disable Slot Specific SDIO interrupt */
1656 int_mask = mci_readl(host, INTMASK);
1657 if (enb)
1658 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1659 else
1660 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1661 mci_writel(host, INTMASK, int_mask);
1662
1663 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1664 }
1665
1666 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1667 {
1668 struct dw_mci_slot *slot = mmc_priv(mmc);
1669 struct dw_mci *host = slot->host;
1670 const struct dw_mci_drv_data *drv_data = host->drv_data;
1671 int err = -EINVAL;
1672
1673 if (drv_data && drv_data->execute_tuning)
1674 err = drv_data->execute_tuning(slot, opcode);
1675 return err;
1676 }
1677
1678 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1679 struct mmc_ios *ios)
1680 {
1681 struct dw_mci_slot *slot = mmc_priv(mmc);
1682 struct dw_mci *host = slot->host;
1683 const struct dw_mci_drv_data *drv_data = host->drv_data;
1684
1685 if (drv_data && drv_data->prepare_hs400_tuning)
1686 return drv_data->prepare_hs400_tuning(host, ios);
1687
1688 return 0;
1689 }
1690
1691 static const struct mmc_host_ops dw_mci_ops = {
1692 .request = dw_mci_request,
1693 .pre_req = dw_mci_pre_req,
1694 .post_req = dw_mci_post_req,
1695 .set_ios = dw_mci_set_ios,
1696 .get_ro = dw_mci_get_ro,
1697 .get_cd = dw_mci_get_cd,
1698 .hw_reset = dw_mci_hw_reset,
1699 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1700 .execute_tuning = dw_mci_execute_tuning,
1701 .card_busy = dw_mci_card_busy,
1702 .start_signal_voltage_switch = dw_mci_switch_voltage,
1703 .init_card = dw_mci_init_card,
1704 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1705 };
1706
1707 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1708 __releases(&host->lock)
1709 __acquires(&host->lock)
1710 {
1711 struct dw_mci_slot *slot;
1712 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1713
1714 WARN_ON(host->cmd || host->data);
1715
1716 host->cur_slot->mrq = NULL;
1717 host->mrq = NULL;
1718 if (!list_empty(&host->queue)) {
1719 slot = list_entry(host->queue.next,
1720 struct dw_mci_slot, queue_node);
1721 list_del(&slot->queue_node);
1722 dev_vdbg(host->dev, "list not empty: %s is next\n",
1723 mmc_hostname(slot->mmc));
1724 host->state = STATE_SENDING_CMD;
1725 dw_mci_start_request(host, slot);
1726 } else {
1727 dev_vdbg(host->dev, "list empty\n");
1728
1729 if (host->state == STATE_SENDING_CMD11)
1730 host->state = STATE_WAITING_CMD11_DONE;
1731 else
1732 host->state = STATE_IDLE;
1733 }
1734
1735 spin_unlock(&host->lock);
1736 mmc_request_done(prev_mmc, mrq);
1737 spin_lock(&host->lock);
1738 }
1739
1740 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1741 {
1742 u32 status = host->cmd_status;
1743
1744 host->cmd_status = 0;
1745
1746 /* Read the response from the card (up to 16 bytes) */
1747 if (cmd->flags & MMC_RSP_PRESENT) {
1748 if (cmd->flags & MMC_RSP_136) {
1749 cmd->resp[3] = mci_readl(host, RESP0);
1750 cmd->resp[2] = mci_readl(host, RESP1);
1751 cmd->resp[1] = mci_readl(host, RESP2);
1752 cmd->resp[0] = mci_readl(host, RESP3);
1753 } else {
1754 cmd->resp[0] = mci_readl(host, RESP0);
1755 cmd->resp[1] = 0;
1756 cmd->resp[2] = 0;
1757 cmd->resp[3] = 0;
1758 }
1759 }
1760
1761 if (status & SDMMC_INT_RTO)
1762 cmd->error = -ETIMEDOUT;
1763 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1764 cmd->error = -EILSEQ;
1765 else if (status & SDMMC_INT_RESP_ERR)
1766 cmd->error = -EIO;
1767 else
1768 cmd->error = 0;
1769
1770 return cmd->error;
1771 }
1772
1773 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1774 {
1775 u32 status = host->data_status;
1776
1777 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1778 if (status & SDMMC_INT_DRTO) {
1779 data->error = -ETIMEDOUT;
1780 } else if (status & SDMMC_INT_DCRC) {
1781 data->error = -EILSEQ;
1782 } else if (status & SDMMC_INT_EBE) {
1783 if (host->dir_status ==
1784 DW_MCI_SEND_STATUS) {
1785 /*
1786 * No data CRC status was returned.
1787 * The number of bytes transferred
1788 * will be exaggerated in PIO mode.
1789 */
1790 data->bytes_xfered = 0;
1791 data->error = -ETIMEDOUT;
1792 } else if (host->dir_status ==
1793 DW_MCI_RECV_STATUS) {
1794 data->error = -EILSEQ;
1795 }
1796 } else {
1797 /* SDMMC_INT_SBE is included */
1798 data->error = -EILSEQ;
1799 }
1800
1801 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1802
1803 /*
1804 * After an error, there may be data lingering
1805 * in the FIFO
1806 */
1807 dw_mci_reset(host);
1808 } else {
1809 data->bytes_xfered = data->blocks * data->blksz;
1810 data->error = 0;
1811 }
1812
1813 return data->error;
1814 }
1815
1816 static void dw_mci_set_drto(struct dw_mci *host)
1817 {
1818 unsigned int drto_clks;
1819 unsigned int drto_ms;
1820
1821 drto_clks = mci_readl(host, TMOUT) >> 8;
1822 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1823
1824 /* add a bit spare time */
1825 drto_ms += 10;
1826
1827 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1828 }
1829
1830 static void dw_mci_tasklet_func(unsigned long priv)
1831 {
1832 struct dw_mci *host = (struct dw_mci *)priv;
1833 struct mmc_data *data;
1834 struct mmc_command *cmd;
1835 struct mmc_request *mrq;
1836 enum dw_mci_state state;
1837 enum dw_mci_state prev_state;
1838 unsigned int err;
1839
1840 spin_lock(&host->lock);
1841
1842 state = host->state;
1843 data = host->data;
1844 mrq = host->mrq;
1845
1846 do {
1847 prev_state = state;
1848
1849 switch (state) {
1850 case STATE_IDLE:
1851 case STATE_WAITING_CMD11_DONE:
1852 break;
1853
1854 case STATE_SENDING_CMD11:
1855 case STATE_SENDING_CMD:
1856 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1857 &host->pending_events))
1858 break;
1859
1860 cmd = host->cmd;
1861 host->cmd = NULL;
1862 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1863 err = dw_mci_command_complete(host, cmd);
1864 if (cmd == mrq->sbc && !err) {
1865 prev_state = state = STATE_SENDING_CMD;
1866 __dw_mci_start_request(host, host->cur_slot,
1867 mrq->cmd);
1868 goto unlock;
1869 }
1870
1871 if (cmd->data && err) {
1872 /*
1873 * During UHS tuning sequence, sending the stop
1874 * command after the response CRC error would
1875 * throw the system into a confused state
1876 * causing all future tuning phases to report
1877 * failure.
1878 *
1879 * In such case controller will move into a data
1880 * transfer state after a response error or
1881 * response CRC error. Let's let that finish
1882 * before trying to send a stop, so we'll go to
1883 * STATE_SENDING_DATA.
1884 *
1885 * Although letting the data transfer take place
1886 * will waste a bit of time (we already know
1887 * the command was bad), it can't cause any
1888 * errors since it's possible it would have
1889 * taken place anyway if this tasklet got
1890 * delayed. Allowing the transfer to take place
1891 * avoids races and keeps things simple.
1892 */
1893 if ((err != -ETIMEDOUT) &&
1894 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1895 state = STATE_SENDING_DATA;
1896 continue;
1897 }
1898
1899 dw_mci_stop_dma(host);
1900 send_stop_abort(host, data);
1901 state = STATE_SENDING_STOP;
1902 break;
1903 }
1904
1905 if (!cmd->data || err) {
1906 dw_mci_request_end(host, mrq);
1907 goto unlock;
1908 }
1909
1910 prev_state = state = STATE_SENDING_DATA;
1911 /* fall through */
1912
1913 case STATE_SENDING_DATA:
1914 /*
1915 * We could get a data error and never a transfer
1916 * complete so we'd better check for it here.
1917 *
1918 * Note that we don't really care if we also got a
1919 * transfer complete; stopping the DMA and sending an
1920 * abort won't hurt.
1921 */
1922 if (test_and_clear_bit(EVENT_DATA_ERROR,
1923 &host->pending_events)) {
1924 dw_mci_stop_dma(host);
1925 if (!(host->data_status & (SDMMC_INT_DRTO |
1926 SDMMC_INT_EBE)))
1927 send_stop_abort(host, data);
1928 state = STATE_DATA_ERROR;
1929 break;
1930 }
1931
1932 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1933 &host->pending_events)) {
1934 /*
1935 * If all data-related interrupts don't come
1936 * within the given time in reading data state.
1937 */
1938 if (host->dir_status == DW_MCI_RECV_STATUS)
1939 dw_mci_set_drto(host);
1940 break;
1941 }
1942
1943 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1944
1945 /*
1946 * Handle an EVENT_DATA_ERROR that might have shown up
1947 * before the transfer completed. This might not have
1948 * been caught by the check above because the interrupt
1949 * could have gone off between the previous check and
1950 * the check for transfer complete.
1951 *
1952 * Technically this ought not be needed assuming we
1953 * get a DATA_COMPLETE eventually (we'll notice the
1954 * error and end the request), but it shouldn't hurt.
1955 *
1956 * This has the advantage of sending the stop command.
1957 */
1958 if (test_and_clear_bit(EVENT_DATA_ERROR,
1959 &host->pending_events)) {
1960 dw_mci_stop_dma(host);
1961 if (!(host->data_status & (SDMMC_INT_DRTO |
1962 SDMMC_INT_EBE)))
1963 send_stop_abort(host, data);
1964 state = STATE_DATA_ERROR;
1965 break;
1966 }
1967 prev_state = state = STATE_DATA_BUSY;
1968
1969 /* fall through */
1970
1971 case STATE_DATA_BUSY:
1972 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1973 &host->pending_events)) {
1974 /*
1975 * If data error interrupt comes but data over
1976 * interrupt doesn't come within the given time.
1977 * in reading data state.
1978 */
1979 if (host->dir_status == DW_MCI_RECV_STATUS)
1980 dw_mci_set_drto(host);
1981 break;
1982 }
1983
1984 host->data = NULL;
1985 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1986 err = dw_mci_data_complete(host, data);
1987
1988 if (!err) {
1989 if (!data->stop || mrq->sbc) {
1990 if (mrq->sbc && data->stop)
1991 data->stop->error = 0;
1992 dw_mci_request_end(host, mrq);
1993 goto unlock;
1994 }
1995
1996 /* stop command for open-ended transfer*/
1997 if (data->stop)
1998 send_stop_abort(host, data);
1999 } else {
2000 /*
2001 * If we don't have a command complete now we'll
2002 * never get one since we just reset everything;
2003 * better end the request.
2004 *
2005 * If we do have a command complete we'll fall
2006 * through to the SENDING_STOP command and
2007 * everything will be peachy keen.
2008 */
2009 if (!test_bit(EVENT_CMD_COMPLETE,
2010 &host->pending_events)) {
2011 host->cmd = NULL;
2012 dw_mci_request_end(host, mrq);
2013 goto unlock;
2014 }
2015 }
2016
2017 /*
2018 * If err has non-zero,
2019 * stop-abort command has been already issued.
2020 */
2021 prev_state = state = STATE_SENDING_STOP;
2022
2023 /* fall through */
2024
2025 case STATE_SENDING_STOP:
2026 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
2027 &host->pending_events))
2028 break;
2029
2030 /* CMD error in data command */
2031 if (mrq->cmd->error && mrq->data)
2032 dw_mci_reset(host);
2033
2034 host->cmd = NULL;
2035 host->data = NULL;
2036
2037 if (!mrq->sbc && mrq->stop)
2038 dw_mci_command_complete(host, mrq->stop);
2039 else
2040 host->cmd_status = 0;
2041
2042 dw_mci_request_end(host, mrq);
2043 goto unlock;
2044
2045 case STATE_DATA_ERROR:
2046 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
2047 &host->pending_events))
2048 break;
2049
2050 state = STATE_DATA_BUSY;
2051 break;
2052 }
2053 } while (state != prev_state);
2054
2055 host->state = state;
2056 unlock:
2057 spin_unlock(&host->lock);
2058
2059 }
2060
2061 /* push final bytes to part_buf, only use during push */
2062 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
2063 {
2064 memcpy((void *)&host->part_buf, buf, cnt);
2065 host->part_buf_count = cnt;
2066 }
2067
2068 /* append bytes to part_buf, only use during push */
2069 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
2070 {
2071 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
2072 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
2073 host->part_buf_count += cnt;
2074 return cnt;
2075 }
2076
2077 /* pull first bytes from part_buf, only use during pull */
2078 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
2079 {
2080 cnt = min_t(int, cnt, host->part_buf_count);
2081 if (cnt) {
2082 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
2083 cnt);
2084 host->part_buf_count -= cnt;
2085 host->part_buf_start += cnt;
2086 }
2087 return cnt;
2088 }
2089
2090 /* pull final bytes from the part_buf, assuming it's just been filled */
2091 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
2092 {
2093 memcpy(buf, &host->part_buf, cnt);
2094 host->part_buf_start = cnt;
2095 host->part_buf_count = (1 << host->data_shift) - cnt;
2096 }
2097
2098 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2099 {
2100 struct mmc_data *data = host->data;
2101 int init_cnt = cnt;
2102
2103 /* try and push anything in the part_buf */
2104 if (unlikely(host->part_buf_count)) {
2105 int len = dw_mci_push_part_bytes(host, buf, cnt);
2106
2107 buf += len;
2108 cnt -= len;
2109 if (host->part_buf_count == 2) {
2110 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2111 host->part_buf_count = 0;
2112 }
2113 }
2114 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2115 if (unlikely((unsigned long)buf & 0x1)) {
2116 while (cnt >= 2) {
2117 u16 aligned_buf[64];
2118 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2119 int items = len >> 1;
2120 int i;
2121 /* memcpy from input buffer into aligned buffer */
2122 memcpy(aligned_buf, buf, len);
2123 buf += len;
2124 cnt -= len;
2125 /* push data from aligned buffer into fifo */
2126 for (i = 0; i < items; ++i)
2127 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2128 }
2129 } else
2130 #endif
2131 {
2132 u16 *pdata = buf;
2133
2134 for (; cnt >= 2; cnt -= 2)
2135 mci_fifo_writew(host->fifo_reg, *pdata++);
2136 buf = pdata;
2137 }
2138 /* put anything remaining in the part_buf */
2139 if (cnt) {
2140 dw_mci_set_part_bytes(host, buf, cnt);
2141 /* Push data if we have reached the expected data length */
2142 if ((data->bytes_xfered + init_cnt) ==
2143 (data->blksz * data->blocks))
2144 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2145 }
2146 }
2147
2148 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2149 {
2150 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2151 if (unlikely((unsigned long)buf & 0x1)) {
2152 while (cnt >= 2) {
2153 /* pull data from fifo into aligned buffer */
2154 u16 aligned_buf[64];
2155 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2156 int items = len >> 1;
2157 int i;
2158
2159 for (i = 0; i < items; ++i)
2160 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2161 /* memcpy from aligned buffer into output buffer */
2162 memcpy(buf, aligned_buf, len);
2163 buf += len;
2164 cnt -= len;
2165 }
2166 } else
2167 #endif
2168 {
2169 u16 *pdata = buf;
2170
2171 for (; cnt >= 2; cnt -= 2)
2172 *pdata++ = mci_fifo_readw(host->fifo_reg);
2173 buf = pdata;
2174 }
2175 if (cnt) {
2176 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2177 dw_mci_pull_final_bytes(host, buf, cnt);
2178 }
2179 }
2180
2181 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2182 {
2183 struct mmc_data *data = host->data;
2184 int init_cnt = cnt;
2185
2186 /* try and push anything in the part_buf */
2187 if (unlikely(host->part_buf_count)) {
2188 int len = dw_mci_push_part_bytes(host, buf, cnt);
2189
2190 buf += len;
2191 cnt -= len;
2192 if (host->part_buf_count == 4) {
2193 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2194 host->part_buf_count = 0;
2195 }
2196 }
2197 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2198 if (unlikely((unsigned long)buf & 0x3)) {
2199 while (cnt >= 4) {
2200 u32 aligned_buf[32];
2201 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2202 int items = len >> 2;
2203 int i;
2204 /* memcpy from input buffer into aligned buffer */
2205 memcpy(aligned_buf, buf, len);
2206 buf += len;
2207 cnt -= len;
2208 /* push data from aligned buffer into fifo */
2209 for (i = 0; i < items; ++i)
2210 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2211 }
2212 } else
2213 #endif
2214 {
2215 u32 *pdata = buf;
2216
2217 for (; cnt >= 4; cnt -= 4)
2218 mci_fifo_writel(host->fifo_reg, *pdata++);
2219 buf = pdata;
2220 }
2221 /* put anything remaining in the part_buf */
2222 if (cnt) {
2223 dw_mci_set_part_bytes(host, buf, cnt);
2224 /* Push data if we have reached the expected data length */
2225 if ((data->bytes_xfered + init_cnt) ==
2226 (data->blksz * data->blocks))
2227 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2228 }
2229 }
2230
2231 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2232 {
2233 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2234 if (unlikely((unsigned long)buf & 0x3)) {
2235 while (cnt >= 4) {
2236 /* pull data from fifo into aligned buffer */
2237 u32 aligned_buf[32];
2238 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2239 int items = len >> 2;
2240 int i;
2241
2242 for (i = 0; i < items; ++i)
2243 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2244 /* memcpy from aligned buffer into output buffer */
2245 memcpy(buf, aligned_buf, len);
2246 buf += len;
2247 cnt -= len;
2248 }
2249 } else
2250 #endif
2251 {
2252 u32 *pdata = buf;
2253
2254 for (; cnt >= 4; cnt -= 4)
2255 *pdata++ = mci_fifo_readl(host->fifo_reg);
2256 buf = pdata;
2257 }
2258 if (cnt) {
2259 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2260 dw_mci_pull_final_bytes(host, buf, cnt);
2261 }
2262 }
2263
2264 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2265 {
2266 struct mmc_data *data = host->data;
2267 int init_cnt = cnt;
2268
2269 /* try and push anything in the part_buf */
2270 if (unlikely(host->part_buf_count)) {
2271 int len = dw_mci_push_part_bytes(host, buf, cnt);
2272
2273 buf += len;
2274 cnt -= len;
2275
2276 if (host->part_buf_count == 8) {
2277 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2278 host->part_buf_count = 0;
2279 }
2280 }
2281 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2282 if (unlikely((unsigned long)buf & 0x7)) {
2283 while (cnt >= 8) {
2284 u64 aligned_buf[16];
2285 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2286 int items = len >> 3;
2287 int i;
2288 /* memcpy from input buffer into aligned buffer */
2289 memcpy(aligned_buf, buf, len);
2290 buf += len;
2291 cnt -= len;
2292 /* push data from aligned buffer into fifo */
2293 for (i = 0; i < items; ++i)
2294 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2295 }
2296 } else
2297 #endif
2298 {
2299 u64 *pdata = buf;
2300
2301 for (; cnt >= 8; cnt -= 8)
2302 mci_fifo_writeq(host->fifo_reg, *pdata++);
2303 buf = pdata;
2304 }
2305 /* put anything remaining in the part_buf */
2306 if (cnt) {
2307 dw_mci_set_part_bytes(host, buf, cnt);
2308 /* Push data if we have reached the expected data length */
2309 if ((data->bytes_xfered + init_cnt) ==
2310 (data->blksz * data->blocks))
2311 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2312 }
2313 }
2314
2315 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2316 {
2317 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2318 if (unlikely((unsigned long)buf & 0x7)) {
2319 while (cnt >= 8) {
2320 /* pull data from fifo into aligned buffer */
2321 u64 aligned_buf[16];
2322 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2323 int items = len >> 3;
2324 int i;
2325
2326 for (i = 0; i < items; ++i)
2327 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2328
2329 /* memcpy from aligned buffer into output buffer */
2330 memcpy(buf, aligned_buf, len);
2331 buf += len;
2332 cnt -= len;
2333 }
2334 } else
2335 #endif
2336 {
2337 u64 *pdata = buf;
2338
2339 for (; cnt >= 8; cnt -= 8)
2340 *pdata++ = mci_fifo_readq(host->fifo_reg);
2341 buf = pdata;
2342 }
2343 if (cnt) {
2344 host->part_buf = mci_fifo_readq(host->fifo_reg);
2345 dw_mci_pull_final_bytes(host, buf, cnt);
2346 }
2347 }
2348
2349 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2350 {
2351 int len;
2352
2353 /* get remaining partial bytes */
2354 len = dw_mci_pull_part_bytes(host, buf, cnt);
2355 if (unlikely(len == cnt))
2356 return;
2357 buf += len;
2358 cnt -= len;
2359
2360 /* get the rest of the data */
2361 host->pull_data(host, buf, cnt);
2362 }
2363
2364 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2365 {
2366 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2367 void *buf;
2368 unsigned int offset;
2369 struct mmc_data *data = host->data;
2370 int shift = host->data_shift;
2371 u32 status;
2372 unsigned int len;
2373 unsigned int remain, fcnt;
2374
2375 do {
2376 if (!sg_miter_next(sg_miter))
2377 goto done;
2378
2379 host->sg = sg_miter->piter.sg;
2380 buf = sg_miter->addr;
2381 remain = sg_miter->length;
2382 offset = 0;
2383
2384 do {
2385 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2386 << shift) + host->part_buf_count;
2387 len = min(remain, fcnt);
2388 if (!len)
2389 break;
2390 dw_mci_pull_data(host, (void *)(buf + offset), len);
2391 data->bytes_xfered += len;
2392 offset += len;
2393 remain -= len;
2394 } while (remain);
2395
2396 sg_miter->consumed = offset;
2397 status = mci_readl(host, MINTSTS);
2398 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2399 /* if the RXDR is ready read again */
2400 } while ((status & SDMMC_INT_RXDR) ||
2401 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2402
2403 if (!remain) {
2404 if (!sg_miter_next(sg_miter))
2405 goto done;
2406 sg_miter->consumed = 0;
2407 }
2408 sg_miter_stop(sg_miter);
2409 return;
2410
2411 done:
2412 sg_miter_stop(sg_miter);
2413 host->sg = NULL;
2414 smp_wmb(); /* drain writebuffer */
2415 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2416 }
2417
2418 static void dw_mci_write_data_pio(struct dw_mci *host)
2419 {
2420 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2421 void *buf;
2422 unsigned int offset;
2423 struct mmc_data *data = host->data;
2424 int shift = host->data_shift;
2425 u32 status;
2426 unsigned int len;
2427 unsigned int fifo_depth = host->fifo_depth;
2428 unsigned int remain, fcnt;
2429
2430 do {
2431 if (!sg_miter_next(sg_miter))
2432 goto done;
2433
2434 host->sg = sg_miter->piter.sg;
2435 buf = sg_miter->addr;
2436 remain = sg_miter->length;
2437 offset = 0;
2438
2439 do {
2440 fcnt = ((fifo_depth -
2441 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2442 << shift) - host->part_buf_count;
2443 len = min(remain, fcnt);
2444 if (!len)
2445 break;
2446 host->push_data(host, (void *)(buf + offset), len);
2447 data->bytes_xfered += len;
2448 offset += len;
2449 remain -= len;
2450 } while (remain);
2451
2452 sg_miter->consumed = offset;
2453 status = mci_readl(host, MINTSTS);
2454 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2455 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2456
2457 if (!remain) {
2458 if (!sg_miter_next(sg_miter))
2459 goto done;
2460 sg_miter->consumed = 0;
2461 }
2462 sg_miter_stop(sg_miter);
2463 return;
2464
2465 done:
2466 sg_miter_stop(sg_miter);
2467 host->sg = NULL;
2468 smp_wmb(); /* drain writebuffer */
2469 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2470 }
2471
2472 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2473 {
2474 if (!host->cmd_status)
2475 host->cmd_status = status;
2476
2477 smp_wmb(); /* drain writebuffer */
2478
2479 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2480 tasklet_schedule(&host->tasklet);
2481 }
2482
2483 static void dw_mci_handle_cd(struct dw_mci *host)
2484 {
2485 int i;
2486
2487 for (i = 0; i < host->num_slots; i++) {
2488 struct dw_mci_slot *slot = host->slot[i];
2489
2490 if (!slot)
2491 continue;
2492
2493 if (slot->mmc->ops->card_event)
2494 slot->mmc->ops->card_event(slot->mmc);
2495 mmc_detect_change(slot->mmc,
2496 msecs_to_jiffies(host->pdata->detect_delay_ms));
2497 }
2498 }
2499
2500 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2501 {
2502 struct dw_mci *host = dev_id;
2503 u32 pending;
2504 int i;
2505
2506 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2507
2508 if (pending) {
2509 /* Check volt switch first, since it can look like an error */
2510 if ((host->state == STATE_SENDING_CMD11) &&
2511 (pending & SDMMC_INT_VOLT_SWITCH)) {
2512 unsigned long irqflags;
2513
2514 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2515 pending &= ~SDMMC_INT_VOLT_SWITCH;
2516
2517 /*
2518 * Hold the lock; we know cmd11_timer can't be kicked
2519 * off after the lock is released, so safe to delete.
2520 */
2521 spin_lock_irqsave(&host->irq_lock, irqflags);
2522 dw_mci_cmd_interrupt(host, pending);
2523 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2524
2525 del_timer(&host->cmd11_timer);
2526 }
2527
2528 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2529 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2530 host->cmd_status = pending;
2531 smp_wmb(); /* drain writebuffer */
2532 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2533 }
2534
2535 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2536 /* if there is an error report DATA_ERROR */
2537 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2538 host->data_status = pending;
2539 smp_wmb(); /* drain writebuffer */
2540 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2541 tasklet_schedule(&host->tasklet);
2542 }
2543
2544 if (pending & SDMMC_INT_DATA_OVER) {
2545 del_timer(&host->dto_timer);
2546
2547 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2548 if (!host->data_status)
2549 host->data_status = pending;
2550 smp_wmb(); /* drain writebuffer */
2551 if (host->dir_status == DW_MCI_RECV_STATUS) {
2552 if (host->sg != NULL)
2553 dw_mci_read_data_pio(host, true);
2554 }
2555 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2556 tasklet_schedule(&host->tasklet);
2557 }
2558
2559 if (pending & SDMMC_INT_RXDR) {
2560 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2561 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2562 dw_mci_read_data_pio(host, false);
2563 }
2564
2565 if (pending & SDMMC_INT_TXDR) {
2566 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2567 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2568 dw_mci_write_data_pio(host);
2569 }
2570
2571 if (pending & SDMMC_INT_CMD_DONE) {
2572 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2573 dw_mci_cmd_interrupt(host, pending);
2574 }
2575
2576 if (pending & SDMMC_INT_CD) {
2577 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2578 dw_mci_handle_cd(host);
2579 }
2580
2581 /* Handle SDIO Interrupts */
2582 for (i = 0; i < host->num_slots; i++) {
2583 struct dw_mci_slot *slot = host->slot[i];
2584
2585 if (!slot)
2586 continue;
2587
2588 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2589 mci_writel(host, RINTSTS,
2590 SDMMC_INT_SDIO(slot->sdio_id));
2591 mmc_signal_sdio_irq(slot->mmc);
2592 }
2593 }
2594
2595 }
2596
2597 if (host->use_dma != TRANS_MODE_IDMAC)
2598 return IRQ_HANDLED;
2599
2600 /* Handle IDMA interrupts */
2601 if (host->dma_64bit_address == 1) {
2602 pending = mci_readl(host, IDSTS64);
2603 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2604 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2605 SDMMC_IDMAC_INT_RI);
2606 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2607 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2608 host->dma_ops->complete((void *)host);
2609 }
2610 } else {
2611 pending = mci_readl(host, IDSTS);
2612 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2613 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2614 SDMMC_IDMAC_INT_RI);
2615 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2616 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2617 host->dma_ops->complete((void *)host);
2618 }
2619 }
2620
2621 return IRQ_HANDLED;
2622 }
2623
2624 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2625 {
2626 struct mmc_host *mmc;
2627 struct dw_mci_slot *slot;
2628 const struct dw_mci_drv_data *drv_data = host->drv_data;
2629 int ctrl_id, ret;
2630 u32 freq[2];
2631
2632 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2633 if (!mmc)
2634 return -ENOMEM;
2635
2636 slot = mmc_priv(mmc);
2637 slot->id = id;
2638 slot->sdio_id = host->sdio_id0 + id;
2639 slot->mmc = mmc;
2640 slot->host = host;
2641 host->slot[id] = slot;
2642
2643 mmc->ops = &dw_mci_ops;
2644 if (of_property_read_u32_array(host->dev->of_node,
2645 "clock-freq-min-max", freq, 2)) {
2646 mmc->f_min = DW_MCI_FREQ_MIN;
2647 mmc->f_max = DW_MCI_FREQ_MAX;
2648 } else {
2649 dev_info(host->dev,
2650 "'clock-freq-min-max' property was deprecated.\n");
2651 mmc->f_min = freq[0];
2652 mmc->f_max = freq[1];
2653 }
2654
2655 /*if there are external regulators, get them*/
2656 ret = mmc_regulator_get_supply(mmc);
2657 if (ret == -EPROBE_DEFER)
2658 goto err_host_allocated;
2659
2660 if (!mmc->ocr_avail)
2661 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2662
2663 if (host->pdata->caps)
2664 mmc->caps = host->pdata->caps;
2665
2666 /*
2667 * Support MMC_CAP_ERASE by default.
2668 * It needs to use trim/discard/erase commands.
2669 */
2670 mmc->caps |= MMC_CAP_ERASE;
2671
2672 if (host->pdata->pm_caps)
2673 mmc->pm_caps = host->pdata->pm_caps;
2674
2675 if (host->dev->of_node) {
2676 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2677 if (ctrl_id < 0)
2678 ctrl_id = 0;
2679 } else {
2680 ctrl_id = to_platform_device(host->dev)->id;
2681 }
2682 if (drv_data && drv_data->caps)
2683 mmc->caps |= drv_data->caps[ctrl_id];
2684
2685 if (host->pdata->caps2)
2686 mmc->caps2 = host->pdata->caps2;
2687
2688 ret = mmc_of_parse(mmc);
2689 if (ret)
2690 goto err_host_allocated;
2691
2692 /* Useful defaults if platform data is unset. */
2693 if (host->use_dma == TRANS_MODE_IDMAC) {
2694 mmc->max_segs = host->ring_size;
2695 mmc->max_blk_size = 65535;
2696 mmc->max_seg_size = 0x1000;
2697 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2698 mmc->max_blk_count = mmc->max_req_size / 512;
2699 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2700 mmc->max_segs = 64;
2701 mmc->max_blk_size = 65535;
2702 mmc->max_blk_count = 65535;
2703 mmc->max_req_size =
2704 mmc->max_blk_size * mmc->max_blk_count;
2705 mmc->max_seg_size = mmc->max_req_size;
2706 } else {
2707 /* TRANS_MODE_PIO */
2708 mmc->max_segs = 64;
2709 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2710 mmc->max_blk_count = 512;
2711 mmc->max_req_size = mmc->max_blk_size *
2712 mmc->max_blk_count;
2713 mmc->max_seg_size = mmc->max_req_size;
2714 }
2715
2716 dw_mci_get_cd(mmc);
2717
2718 ret = mmc_add_host(mmc);
2719 if (ret)
2720 goto err_host_allocated;
2721
2722 #if defined(CONFIG_DEBUG_FS)
2723 dw_mci_init_debugfs(slot);
2724 #endif
2725
2726 return 0;
2727
2728 err_host_allocated:
2729 mmc_free_host(mmc);
2730 return ret;
2731 }
2732
2733 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2734 {
2735 /* Debugfs stuff is cleaned up by mmc core */
2736 mmc_remove_host(slot->mmc);
2737 slot->host->slot[id] = NULL;
2738 mmc_free_host(slot->mmc);
2739 }
2740
2741 static void dw_mci_init_dma(struct dw_mci *host)
2742 {
2743 int addr_config;
2744 struct device *dev = host->dev;
2745 struct device_node *np = dev->of_node;
2746
2747 /*
2748 * Check tansfer mode from HCON[17:16]
2749 * Clear the ambiguous description of dw_mmc databook:
2750 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2751 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2752 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2753 * 2b'11: Non DW DMA Interface -> pio only
2754 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2755 * simpler request/acknowledge handshake mechanism and both of them
2756 * are regarded as external dma master for dw_mmc.
2757 */
2758 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2759 if (host->use_dma == DMA_INTERFACE_IDMA) {
2760 host->use_dma = TRANS_MODE_IDMAC;
2761 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2762 host->use_dma == DMA_INTERFACE_GDMA) {
2763 host->use_dma = TRANS_MODE_EDMAC;
2764 } else {
2765 goto no_dma;
2766 }
2767
2768 /* Determine which DMA interface to use */
2769 if (host->use_dma == TRANS_MODE_IDMAC) {
2770 /*
2771 * Check ADDR_CONFIG bit in HCON to find
2772 * IDMAC address bus width
2773 */
2774 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2775
2776 if (addr_config == 1) {
2777 /* host supports IDMAC in 64-bit address mode */
2778 host->dma_64bit_address = 1;
2779 dev_info(host->dev,
2780 "IDMAC supports 64-bit address mode.\n");
2781 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2782 dma_set_coherent_mask(host->dev,
2783 DMA_BIT_MASK(64));
2784 } else {
2785 /* host supports IDMAC in 32-bit address mode */
2786 host->dma_64bit_address = 0;
2787 dev_info(host->dev,
2788 "IDMAC supports 32-bit address mode.\n");
2789 }
2790
2791 /* Alloc memory for sg translation */
2792 host->sg_cpu = dmam_alloc_coherent(host->dev,
2793 DESC_RING_BUF_SZ,
2794 &host->sg_dma, GFP_KERNEL);
2795 if (!host->sg_cpu) {
2796 dev_err(host->dev,
2797 "%s: could not alloc DMA memory\n",
2798 __func__);
2799 goto no_dma;
2800 }
2801
2802 host->dma_ops = &dw_mci_idmac_ops;
2803 dev_info(host->dev, "Using internal DMA controller.\n");
2804 } else {
2805 /* TRANS_MODE_EDMAC: check dma bindings again */
2806 if ((of_property_count_strings(np, "dma-names") < 0) ||
2807 (!of_find_property(np, "dmas", NULL))) {
2808 goto no_dma;
2809 }
2810 host->dma_ops = &dw_mci_edmac_ops;
2811 dev_info(host->dev, "Using external DMA controller.\n");
2812 }
2813
2814 if (host->dma_ops->init && host->dma_ops->start &&
2815 host->dma_ops->stop && host->dma_ops->cleanup) {
2816 if (host->dma_ops->init(host)) {
2817 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2818 __func__);
2819 goto no_dma;
2820 }
2821 } else {
2822 dev_err(host->dev, "DMA initialization not found.\n");
2823 goto no_dma;
2824 }
2825
2826 return;
2827
2828 no_dma:
2829 dev_info(host->dev, "Using PIO mode.\n");
2830 host->use_dma = TRANS_MODE_PIO;
2831 }
2832
2833 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2834 {
2835 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2836 u32 ctrl;
2837
2838 ctrl = mci_readl(host, CTRL);
2839 ctrl |= reset;
2840 mci_writel(host, CTRL, ctrl);
2841
2842 /* wait till resets clear */
2843 do {
2844 ctrl = mci_readl(host, CTRL);
2845 if (!(ctrl & reset))
2846 return true;
2847 } while (time_before(jiffies, timeout));
2848
2849 dev_err(host->dev,
2850 "Timeout resetting block (ctrl reset %#x)\n",
2851 ctrl & reset);
2852
2853 return false;
2854 }
2855
2856 static bool dw_mci_reset(struct dw_mci *host)
2857 {
2858 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2859 bool ret = false;
2860
2861 /*
2862 * Reseting generates a block interrupt, hence setting
2863 * the scatter-gather pointer to NULL.
2864 */
2865 if (host->sg) {
2866 sg_miter_stop(&host->sg_miter);
2867 host->sg = NULL;
2868 }
2869
2870 if (host->use_dma)
2871 flags |= SDMMC_CTRL_DMA_RESET;
2872
2873 if (dw_mci_ctrl_reset(host, flags)) {
2874 /*
2875 * In all cases we clear the RAWINTS register to clear any
2876 * interrupts.
2877 */
2878 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2879
2880 /* if using dma we wait for dma_req to clear */
2881 if (host->use_dma) {
2882 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2883 u32 status;
2884
2885 do {
2886 status = mci_readl(host, STATUS);
2887 if (!(status & SDMMC_STATUS_DMA_REQ))
2888 break;
2889 cpu_relax();
2890 } while (time_before(jiffies, timeout));
2891
2892 if (status & SDMMC_STATUS_DMA_REQ) {
2893 dev_err(host->dev,
2894 "%s: Timeout waiting for dma_req to clear during reset\n",
2895 __func__);
2896 goto ciu_out;
2897 }
2898
2899 /* when using DMA next we reset the fifo again */
2900 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2901 goto ciu_out;
2902 }
2903 } else {
2904 /* if the controller reset bit did clear, then set clock regs */
2905 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2906 dev_err(host->dev,
2907 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2908 __func__);
2909 goto ciu_out;
2910 }
2911 }
2912
2913 if (host->use_dma == TRANS_MODE_IDMAC)
2914 /* It is also recommended that we reset and reprogram idmac */
2915 dw_mci_idmac_reset(host);
2916
2917 ret = true;
2918
2919 ciu_out:
2920 /* After a CTRL reset we need to have CIU set clock registers */
2921 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2922
2923 return ret;
2924 }
2925
2926 static void dw_mci_cmd11_timer(unsigned long arg)
2927 {
2928 struct dw_mci *host = (struct dw_mci *)arg;
2929
2930 if (host->state != STATE_SENDING_CMD11) {
2931 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2932 return;
2933 }
2934
2935 host->cmd_status = SDMMC_INT_RTO;
2936 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2937 tasklet_schedule(&host->tasklet);
2938 }
2939
2940 static void dw_mci_dto_timer(unsigned long arg)
2941 {
2942 struct dw_mci *host = (struct dw_mci *)arg;
2943
2944 switch (host->state) {
2945 case STATE_SENDING_DATA:
2946 case STATE_DATA_BUSY:
2947 /*
2948 * If DTO interrupt does NOT come in sending data state,
2949 * we should notify the driver to terminate current transfer
2950 * and report a data timeout to the core.
2951 */
2952 host->data_status = SDMMC_INT_DRTO;
2953 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2954 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2955 tasklet_schedule(&host->tasklet);
2956 break;
2957 default:
2958 break;
2959 }
2960 }
2961
2962 #ifdef CONFIG_OF
2963 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2964 {
2965 struct dw_mci_board *pdata;
2966 struct device *dev = host->dev;
2967 struct device_node *np = dev->of_node;
2968 const struct dw_mci_drv_data *drv_data = host->drv_data;
2969 int ret;
2970 u32 clock_frequency;
2971
2972 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2973 if (!pdata)
2974 return ERR_PTR(-ENOMEM);
2975
2976 /* find reset controller when exist */
2977 pdata->rstc = devm_reset_control_get_optional(dev, "reset");
2978 if (IS_ERR(pdata->rstc)) {
2979 if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER)
2980 return ERR_PTR(-EPROBE_DEFER);
2981 }
2982
2983 /* find out number of slots supported */
2984 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2985
2986 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2987 dev_info(dev,
2988 "fifo-depth property not found, using value of FIFOTH register as default\n");
2989
2990 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2991
2992 of_property_read_u32(np, "data-addr", &host->data_addr_override);
2993
2994 if (of_get_property(np, "fifo-watermark-aligned", NULL))
2995 host->wm_aligned = true;
2996
2997 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2998 pdata->bus_hz = clock_frequency;
2999
3000 if (drv_data && drv_data->parse_dt) {
3001 ret = drv_data->parse_dt(host);
3002 if (ret)
3003 return ERR_PTR(ret);
3004 }
3005
3006 return pdata;
3007 }
3008
3009 #else /* CONFIG_OF */
3010 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
3011 {
3012 return ERR_PTR(-EINVAL);
3013 }
3014 #endif /* CONFIG_OF */
3015
3016 static void dw_mci_enable_cd(struct dw_mci *host)
3017 {
3018 unsigned long irqflags;
3019 u32 temp;
3020 int i;
3021 struct dw_mci_slot *slot;
3022
3023 /*
3024 * No need for CD if all slots have a non-error GPIO
3025 * as well as broken card detection is found.
3026 */
3027 for (i = 0; i < host->num_slots; i++) {
3028 slot = host->slot[i];
3029 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
3030 return;
3031
3032 if (mmc_gpio_get_cd(slot->mmc) < 0)
3033 break;
3034 }
3035 if (i == host->num_slots)
3036 return;
3037
3038 spin_lock_irqsave(&host->irq_lock, irqflags);
3039 temp = mci_readl(host, INTMASK);
3040 temp |= SDMMC_INT_CD;
3041 mci_writel(host, INTMASK, temp);
3042 spin_unlock_irqrestore(&host->irq_lock, irqflags);
3043 }
3044
3045 int dw_mci_probe(struct dw_mci *host)
3046 {
3047 const struct dw_mci_drv_data *drv_data = host->drv_data;
3048 int width, i, ret = 0;
3049 u32 fifo_size;
3050 int init_slots = 0;
3051
3052 if (!host->pdata) {
3053 host->pdata = dw_mci_parse_dt(host);
3054 if (PTR_ERR(host->pdata) == -EPROBE_DEFER) {
3055 return -EPROBE_DEFER;
3056 } else if (IS_ERR(host->pdata)) {
3057 dev_err(host->dev, "platform data not available\n");
3058 return -EINVAL;
3059 }
3060 }
3061
3062 host->biu_clk = devm_clk_get(host->dev, "biu");
3063 if (IS_ERR(host->biu_clk)) {
3064 dev_dbg(host->dev, "biu clock not available\n");
3065 } else {
3066 ret = clk_prepare_enable(host->biu_clk);
3067 if (ret) {
3068 dev_err(host->dev, "failed to enable biu clock\n");
3069 return ret;
3070 }
3071 }
3072
3073 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3074 if (IS_ERR(host->ciu_clk)) {
3075 dev_dbg(host->dev, "ciu clock not available\n");
3076 host->bus_hz = host->pdata->bus_hz;
3077 } else {
3078 ret = clk_prepare_enable(host->ciu_clk);
3079 if (ret) {
3080 dev_err(host->dev, "failed to enable ciu clock\n");
3081 goto err_clk_biu;
3082 }
3083
3084 if (host->pdata->bus_hz) {
3085 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3086 if (ret)
3087 dev_warn(host->dev,
3088 "Unable to set bus rate to %uHz\n",
3089 host->pdata->bus_hz);
3090 }
3091 host->bus_hz = clk_get_rate(host->ciu_clk);
3092 }
3093
3094 if (!host->bus_hz) {
3095 dev_err(host->dev,
3096 "Platform data must supply bus speed\n");
3097 ret = -ENODEV;
3098 goto err_clk_ciu;
3099 }
3100
3101 if (drv_data && drv_data->init) {
3102 ret = drv_data->init(host);
3103 if (ret) {
3104 dev_err(host->dev,
3105 "implementation specific init failed\n");
3106 goto err_clk_ciu;
3107 }
3108 }
3109
3110 if (!IS_ERR(host->pdata->rstc)) {
3111 reset_control_assert(host->pdata->rstc);
3112 usleep_range(10, 50);
3113 reset_control_deassert(host->pdata->rstc);
3114 }
3115
3116 setup_timer(&host->cmd11_timer,
3117 dw_mci_cmd11_timer, (unsigned long)host);
3118
3119 setup_timer(&host->dto_timer,
3120 dw_mci_dto_timer, (unsigned long)host);
3121
3122 spin_lock_init(&host->lock);
3123 spin_lock_init(&host->irq_lock);
3124 INIT_LIST_HEAD(&host->queue);
3125
3126 /*
3127 * Get the host data width - this assumes that HCON has been set with
3128 * the correct values.
3129 */
3130 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3131 if (!i) {
3132 host->push_data = dw_mci_push_data16;
3133 host->pull_data = dw_mci_pull_data16;
3134 width = 16;
3135 host->data_shift = 1;
3136 } else if (i == 2) {
3137 host->push_data = dw_mci_push_data64;
3138 host->pull_data = dw_mci_pull_data64;
3139 width = 64;
3140 host->data_shift = 3;
3141 } else {
3142 /* Check for a reserved value, and warn if it is */
3143 WARN((i != 1),
3144 "HCON reports a reserved host data width!\n"
3145 "Defaulting to 32-bit access.\n");
3146 host->push_data = dw_mci_push_data32;
3147 host->pull_data = dw_mci_pull_data32;
3148 width = 32;
3149 host->data_shift = 2;
3150 }
3151
3152 /* Reset all blocks */
3153 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3154 ret = -ENODEV;
3155 goto err_clk_ciu;
3156 }
3157
3158 host->dma_ops = host->pdata->dma_ops;
3159 dw_mci_init_dma(host);
3160
3161 /* Clear the interrupts for the host controller */
3162 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3163 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3164
3165 /* Put in max timeout */
3166 mci_writel(host, TMOUT, 0xFFFFFFFF);
3167
3168 /*
3169 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3170 * Tx Mark = fifo_size / 2 DMA Size = 8
3171 */
3172 if (!host->pdata->fifo_depth) {
3173 /*
3174 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3175 * have been overwritten by the bootloader, just like we're
3176 * about to do, so if you know the value for your hardware, you
3177 * should put it in the platform data.
3178 */
3179 fifo_size = mci_readl(host, FIFOTH);
3180 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3181 } else {
3182 fifo_size = host->pdata->fifo_depth;
3183 }
3184 host->fifo_depth = fifo_size;
3185 host->fifoth_val =
3186 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3187 mci_writel(host, FIFOTH, host->fifoth_val);
3188
3189 /* disable clock to CIU */
3190 mci_writel(host, CLKENA, 0);
3191 mci_writel(host, CLKSRC, 0);
3192
3193 /*
3194 * In 2.40a spec, Data offset is changed.
3195 * Need to check the version-id and set data-offset for DATA register.
3196 */
3197 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3198 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3199
3200 if (host->data_addr_override)
3201 host->fifo_reg = host->regs + host->data_addr_override;
3202 else if (host->verid < DW_MMC_240A)
3203 host->fifo_reg = host->regs + DATA_OFFSET;
3204 else
3205 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3206
3207 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3208 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3209 host->irq_flags, "dw-mci", host);
3210 if (ret)
3211 goto err_dmaunmap;
3212
3213 if (host->pdata->num_slots)
3214 host->num_slots = host->pdata->num_slots;
3215 else
3216 host->num_slots = 1;
3217
3218 if (host->num_slots < 1 ||
3219 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3220 dev_err(host->dev,
3221 "Platform data must supply correct num_slots.\n");
3222 ret = -ENODEV;
3223 goto err_clk_ciu;
3224 }
3225
3226 /*
3227 * Enable interrupts for command done, data over, data empty,
3228 * receive ready and error such as transmit, receive timeout, crc error
3229 */
3230 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3231 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3232 DW_MCI_ERROR_FLAGS);
3233 /* Enable mci interrupt */
3234 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3235
3236 dev_info(host->dev,
3237 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3238 host->irq, width, fifo_size);
3239
3240 /* We need at least one slot to succeed */
3241 for (i = 0; i < host->num_slots; i++) {
3242 ret = dw_mci_init_slot(host, i);
3243 if (ret)
3244 dev_dbg(host->dev, "slot %d init failed\n", i);
3245 else
3246 init_slots++;
3247 }
3248
3249 if (init_slots) {
3250 dev_info(host->dev, "%d slots initialized\n", init_slots);
3251 } else {
3252 dev_dbg(host->dev,
3253 "attempted to initialize %d slots, but failed on all\n",
3254 host->num_slots);
3255 goto err_dmaunmap;
3256 }
3257
3258 /* Now that slots are all setup, we can enable card detect */
3259 dw_mci_enable_cd(host);
3260
3261 return 0;
3262
3263 err_dmaunmap:
3264 if (host->use_dma && host->dma_ops->exit)
3265 host->dma_ops->exit(host);
3266
3267 if (!IS_ERR(host->pdata->rstc))
3268 reset_control_assert(host->pdata->rstc);
3269
3270 err_clk_ciu:
3271 clk_disable_unprepare(host->ciu_clk);
3272
3273 err_clk_biu:
3274 clk_disable_unprepare(host->biu_clk);
3275
3276 return ret;
3277 }
3278 EXPORT_SYMBOL(dw_mci_probe);
3279
3280 void dw_mci_remove(struct dw_mci *host)
3281 {
3282 int i;
3283
3284 for (i = 0; i < host->num_slots; i++) {
3285 dev_dbg(host->dev, "remove slot %d\n", i);
3286 if (host->slot[i])
3287 dw_mci_cleanup_slot(host->slot[i], i);
3288 }
3289
3290 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3291 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3292
3293 /* disable clock to CIU */
3294 mci_writel(host, CLKENA, 0);
3295 mci_writel(host, CLKSRC, 0);
3296
3297 if (host->use_dma && host->dma_ops->exit)
3298 host->dma_ops->exit(host);
3299
3300 if (!IS_ERR(host->pdata->rstc))
3301 reset_control_assert(host->pdata->rstc);
3302
3303 clk_disable_unprepare(host->ciu_clk);
3304 clk_disable_unprepare(host->biu_clk);
3305 }
3306 EXPORT_SYMBOL(dw_mci_remove);
3307
3308
3309
3310 #ifdef CONFIG_PM
3311 int dw_mci_runtime_suspend(struct device *dev)
3312 {
3313 struct dw_mci *host = dev_get_drvdata(dev);
3314
3315 if (host->use_dma && host->dma_ops->exit)
3316 host->dma_ops->exit(host);
3317
3318 clk_disable_unprepare(host->ciu_clk);
3319
3320 if (host->cur_slot &&
3321 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3322 !mmc_card_is_removable(host->cur_slot->mmc)))
3323 clk_disable_unprepare(host->biu_clk);
3324
3325 return 0;
3326 }
3327 EXPORT_SYMBOL(dw_mci_runtime_suspend);
3328
3329 int dw_mci_runtime_resume(struct device *dev)
3330 {
3331 int i, ret = 0;
3332 struct dw_mci *host = dev_get_drvdata(dev);
3333
3334 if (host->cur_slot &&
3335 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3336 !mmc_card_is_removable(host->cur_slot->mmc))) {
3337 ret = clk_prepare_enable(host->biu_clk);
3338 if (ret)
3339 return ret;
3340 }
3341
3342 ret = clk_prepare_enable(host->ciu_clk);
3343 if (ret)
3344 goto err;
3345
3346 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3347 clk_disable_unprepare(host->ciu_clk);
3348 ret = -ENODEV;
3349 goto err;
3350 }
3351
3352 if (host->use_dma && host->dma_ops->init)
3353 host->dma_ops->init(host);
3354
3355 /*
3356 * Restore the initial value at FIFOTH register
3357 * And Invalidate the prev_blksz with zero
3358 */
3359 mci_writel(host, FIFOTH, host->fifoth_val);
3360 host->prev_blksz = 0;
3361
3362 /* Put in max timeout */
3363 mci_writel(host, TMOUT, 0xFFFFFFFF);
3364
3365 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3366 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3367 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3368 DW_MCI_ERROR_FLAGS);
3369 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3370
3371 for (i = 0; i < host->num_slots; i++) {
3372 struct dw_mci_slot *slot = host->slot[i];
3373
3374 if (!slot)
3375 continue;
3376 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER)
3377 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3378
3379 /* Force setup bus to guarantee available clock output */
3380 dw_mci_setup_bus(slot, true);
3381 }
3382
3383 /* Now that slots are all setup, we can enable card detect */
3384 dw_mci_enable_cd(host);
3385
3386 return 0;
3387
3388 err:
3389 if (host->cur_slot &&
3390 (mmc_can_gpio_cd(host->cur_slot->mmc) ||
3391 !mmc_card_is_removable(host->cur_slot->mmc)))
3392 clk_disable_unprepare(host->biu_clk);
3393
3394 return ret;
3395 }
3396 EXPORT_SYMBOL(dw_mci_runtime_resume);
3397 #endif /* CONFIG_PM */
3398
3399 static int __init dw_mci_init(void)
3400 {
3401 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3402 return 0;
3403 }
3404
3405 static void __exit dw_mci_exit(void)
3406 {
3407 }
3408
3409 module_init(dw_mci_init);
3410 module_exit(dw_mci_exit);
3411
3412 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3413 MODULE_AUTHOR("NXP Semiconductor VietNam");
3414 MODULE_AUTHOR("Imagination Technologies Ltd");
3415 MODULE_LICENSE("GPL v2");