]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/host/meson-gx-mmc.c
730fbe01726dfa88ca03bfac5ae91653be022723
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / host / meson-gx-mmc.c
1 /*
2 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
3 *
4 * Copyright (c) 2016 BayLibre, SAS.
5 * Author: Kevin Hilman <khilman@baylibre.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution
19 * in the file called COPYING.
20 */
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/device.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/spinlock.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/mmc/slot-gpio.h>
34 #include <linux/io.h>
35 #include <linux/clk.h>
36 #include <linux/clk-provider.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/interrupt.h>
39 #include <linux/bitfield.h>
40
41 #define DRIVER_NAME "meson-gx-mmc"
42
43 #define SD_EMMC_CLOCK 0x0
44 #define CLK_DIV_MASK GENMASK(5, 0)
45 #define CLK_SRC_MASK GENMASK(7, 6)
46 #define CLK_CORE_PHASE_MASK GENMASK(9, 8)
47 #define CLK_TX_PHASE_MASK GENMASK(11, 10)
48 #define CLK_RX_PHASE_MASK GENMASK(13, 12)
49 #define CLK_TX_DELAY_MASK GENMASK(19, 16)
50 #define CLK_RX_DELAY_MASK GENMASK(23, 20)
51 #define CLK_DELAY_STEP_PS 200
52 #define CLK_PHASE_STEP 30
53 #define CLK_PHASE_POINT_NUM (360 / CLK_PHASE_STEP)
54 #define CLK_ALWAYS_ON BIT(24)
55
56 #define SD_EMMC_DELAY 0x4
57 #define SD_EMMC_ADJUST 0x8
58 #define SD_EMMC_CALOUT 0x10
59 #define SD_EMMC_START 0x40
60 #define START_DESC_INIT BIT(0)
61 #define START_DESC_BUSY BIT(1)
62 #define START_DESC_ADDR_MASK GENMASK(31, 2)
63
64 #define SD_EMMC_CFG 0x44
65 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
66 #define CFG_BUS_WIDTH_1 0x0
67 #define CFG_BUS_WIDTH_4 0x1
68 #define CFG_BUS_WIDTH_8 0x2
69 #define CFG_DDR BIT(2)
70 #define CFG_BLK_LEN_MASK GENMASK(7, 4)
71 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
72 #define CFG_RC_CC_MASK GENMASK(15, 12)
73 #define CFG_STOP_CLOCK BIT(22)
74 #define CFG_CLK_ALWAYS_ON BIT(18)
75 #define CFG_CHK_DS BIT(20)
76 #define CFG_AUTO_CLK BIT(23)
77
78 #define SD_EMMC_STATUS 0x48
79 #define STATUS_BUSY BIT(31)
80 #define STATUS_DATI GENMASK(23, 16)
81
82 #define SD_EMMC_IRQ_EN 0x4c
83 #define IRQ_RXD_ERR_MASK GENMASK(7, 0)
84 #define IRQ_TXD_ERR BIT(8)
85 #define IRQ_DESC_ERR BIT(9)
86 #define IRQ_RESP_ERR BIT(10)
87 #define IRQ_CRC_ERR \
88 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
89 #define IRQ_RESP_TIMEOUT BIT(11)
90 #define IRQ_DESC_TIMEOUT BIT(12)
91 #define IRQ_TIMEOUTS \
92 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
93 #define IRQ_END_OF_CHAIN BIT(13)
94 #define IRQ_RESP_STATUS BIT(14)
95 #define IRQ_SDIO BIT(15)
96 #define IRQ_EN_MASK \
97 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
98 IRQ_SDIO)
99
100 #define SD_EMMC_CMD_CFG 0x50
101 #define SD_EMMC_CMD_ARG 0x54
102 #define SD_EMMC_CMD_DAT 0x58
103 #define SD_EMMC_CMD_RSP 0x5c
104 #define SD_EMMC_CMD_RSP1 0x60
105 #define SD_EMMC_CMD_RSP2 0x64
106 #define SD_EMMC_CMD_RSP3 0x68
107
108 #define SD_EMMC_RXD 0x94
109 #define SD_EMMC_TXD 0x94
110 #define SD_EMMC_LAST_REG SD_EMMC_TXD
111
112 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
113 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
114 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
115 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
116 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
117 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
118
119 #define SD_EMMC_PRE_REQ_DONE BIT(0)
120 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
121
122 #define MUX_CLK_NUM_PARENTS 2
123
124 struct sd_emmc_desc {
125 u32 cmd_cfg;
126 u32 cmd_arg;
127 u32 cmd_data;
128 u32 cmd_resp;
129 };
130
131 struct meson_host {
132 struct device *dev;
133 struct mmc_host *mmc;
134 struct mmc_command *cmd;
135
136 spinlock_t lock;
137 void __iomem *regs;
138 struct clk *core_clk;
139 struct clk *mmc_clk;
140 struct clk *rx_clk;
141 struct clk *tx_clk;
142 unsigned long req_rate;
143
144 struct pinctrl *pinctrl;
145 struct pinctrl_state *pins_default;
146 struct pinctrl_state *pins_clk_gate;
147
148 unsigned int bounce_buf_size;
149 void *bounce_buf;
150 dma_addr_t bounce_dma_addr;
151 struct sd_emmc_desc *descs;
152 dma_addr_t descs_dma_addr;
153
154 bool vqmmc_enabled;
155 };
156
157 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
158 #define CMD_CFG_BLOCK_MODE BIT(9)
159 #define CMD_CFG_R1B BIT(10)
160 #define CMD_CFG_END_OF_CHAIN BIT(11)
161 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
162 #define CMD_CFG_NO_RESP BIT(16)
163 #define CMD_CFG_NO_CMD BIT(17)
164 #define CMD_CFG_DATA_IO BIT(18)
165 #define CMD_CFG_DATA_WR BIT(19)
166 #define CMD_CFG_RESP_NOCRC BIT(20)
167 #define CMD_CFG_RESP_128 BIT(21)
168 #define CMD_CFG_RESP_NUM BIT(22)
169 #define CMD_CFG_DATA_NUM BIT(23)
170 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
171 #define CMD_CFG_ERROR BIT(30)
172 #define CMD_CFG_OWNER BIT(31)
173
174 #define CMD_DATA_MASK GENMASK(31, 2)
175 #define CMD_DATA_BIG_ENDIAN BIT(1)
176 #define CMD_DATA_SRAM BIT(0)
177 #define CMD_RESP_MASK GENMASK(31, 1)
178 #define CMD_RESP_SRAM BIT(0)
179
180 struct meson_mmc_phase {
181 struct clk_hw hw;
182 void __iomem *reg;
183 unsigned long phase_mask;
184 unsigned long delay_mask;
185 unsigned int delay_step_ps;
186 };
187
188 #define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)
189
190 static int meson_mmc_clk_get_phase(struct clk_hw *hw)
191 {
192 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
193 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
194 unsigned long period_ps, p, d;
195 int degrees;
196 u32 val;
197
198 val = readl(mmc->reg);
199 p = (val & mmc->phase_mask) >> __ffs(mmc->phase_mask);
200 degrees = p * 360 / phase_num;
201
202 if (mmc->delay_mask) {
203 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
204 clk_get_rate(hw->clk));
205 d = (val & mmc->delay_mask) >> __ffs(mmc->delay_mask);
206 degrees += d * mmc->delay_step_ps * 360 / period_ps;
207 degrees %= 360;
208 }
209
210 return degrees;
211 }
212
213 static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
214 unsigned int phase,
215 unsigned int delay)
216 {
217 u32 val;
218
219 val = readl(mmc->reg);
220 val &= ~mmc->phase_mask;
221 val |= phase << __ffs(mmc->phase_mask);
222
223 if (mmc->delay_mask) {
224 val &= ~mmc->delay_mask;
225 val |= delay << __ffs(mmc->delay_mask);
226 }
227
228 writel(val, mmc->reg);
229 }
230
231 static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
232 {
233 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
234 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
235 unsigned long period_ps, d = 0, r;
236 uint64_t p;
237
238 p = degrees % 360;
239
240 if (!mmc->delay_mask) {
241 p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
242 } else {
243 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
244 clk_get_rate(hw->clk));
245
246 /* First compute the phase index (p), the remainder (r) is the
247 * part we'll try to acheive using the delays (d).
248 */
249 r = do_div(p, 360 / phase_num);
250 d = DIV_ROUND_CLOSEST(r * period_ps,
251 360 * mmc->delay_step_ps);
252 d = min(d, mmc->delay_mask >> __ffs(mmc->delay_mask));
253 }
254
255 meson_mmc_apply_phase_delay(mmc, p, d);
256 return 0;
257 }
258
259 static const struct clk_ops meson_mmc_clk_phase_ops = {
260 .get_phase = meson_mmc_clk_get_phase,
261 .set_phase = meson_mmc_clk_set_phase,
262 };
263
264 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
265 {
266 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
267
268 if (!timeout)
269 return SD_EMMC_CMD_TIMEOUT_DATA;
270
271 timeout = roundup_pow_of_two(timeout);
272
273 return min(timeout, 32768U); /* max. 2^15 ms */
274 }
275
276 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
277 {
278 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
279 return cmd->mrq->cmd;
280 else if (mmc_op_multi(cmd->opcode) &&
281 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
282 return cmd->mrq->stop;
283 else
284 return NULL;
285 }
286
287 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
288 struct mmc_request *mrq)
289 {
290 struct mmc_data *data = mrq->data;
291 struct scatterlist *sg;
292 int i;
293 bool use_desc_chain_mode = true;
294
295 /*
296 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
297 * reported. For some strange reason this occurs in descriptor
298 * chain mode only. So let's fall back to bounce buffer mode
299 * for command SD_IO_RW_EXTENDED.
300 */
301 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
302 return;
303
304 for_each_sg(data->sg, sg, data->sg_len, i)
305 /* check for 8 byte alignment */
306 if (sg->offset & 7) {
307 WARN_ONCE(1, "unaligned scatterlist buffer\n");
308 use_desc_chain_mode = false;
309 break;
310 }
311
312 if (use_desc_chain_mode)
313 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
314 }
315
316 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
317 {
318 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
319 }
320
321 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
322 {
323 return data && data->flags & MMC_DATA_READ &&
324 !meson_mmc_desc_chain_mode(data);
325 }
326
327 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
328 {
329 struct mmc_data *data = mrq->data;
330
331 if (!data)
332 return;
333
334 meson_mmc_get_transfer_mode(mmc, mrq);
335 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
336
337 if (!meson_mmc_desc_chain_mode(data))
338 return;
339
340 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
341 mmc_get_dma_dir(data));
342 if (!data->sg_count)
343 dev_err(mmc_dev(mmc), "dma_map_sg failed");
344 }
345
346 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
347 int err)
348 {
349 struct mmc_data *data = mrq->data;
350
351 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
352 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
353 mmc_get_dma_dir(data));
354 }
355
356 static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
357 {
358 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
359 ios->timing == MMC_TIMING_UHS_DDR50 ||
360 ios->timing == MMC_TIMING_MMC_HS400)
361 return true;
362
363 return false;
364 }
365
366 /*
367 * Gating the clock on this controller is tricky. It seems the mmc clock
368 * is also used by the controller. It may crash during some operation if the
369 * clock is stopped. The safest thing to do, whenever possible, is to keep
370 * clock running at stop it at the pad using the pinmux.
371 */
372 static void meson_mmc_clk_gate(struct meson_host *host)
373 {
374 u32 cfg;
375
376 if (host->pins_clk_gate) {
377 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
378 } else {
379 /*
380 * If the pinmux is not provided - default to the classic and
381 * unsafe method
382 */
383 cfg = readl(host->regs + SD_EMMC_CFG);
384 cfg |= CFG_STOP_CLOCK;
385 writel(cfg, host->regs + SD_EMMC_CFG);
386 }
387 }
388
389 static void meson_mmc_clk_ungate(struct meson_host *host)
390 {
391 u32 cfg;
392
393 if (host->pins_clk_gate)
394 pinctrl_select_state(host->pinctrl, host->pins_default);
395
396 /* Make sure the clock is not stopped in the controller */
397 cfg = readl(host->regs + SD_EMMC_CFG);
398 cfg &= ~CFG_STOP_CLOCK;
399 writel(cfg, host->regs + SD_EMMC_CFG);
400 }
401
402 static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
403 {
404 struct mmc_host *mmc = host->mmc;
405 unsigned long rate = ios->clock;
406 int ret;
407 u32 cfg;
408
409 /* DDR modes require higher module clock */
410 if (meson_mmc_timing_is_ddr(ios))
411 rate <<= 1;
412
413 /* Same request - bail-out */
414 if (host->req_rate == rate)
415 return 0;
416
417 /* stop clock */
418 meson_mmc_clk_gate(host);
419 host->req_rate = 0;
420
421 if (!rate) {
422 mmc->actual_clock = 0;
423 /* return with clock being stopped */
424 return 0;
425 }
426
427 /* Stop the clock during rate change to avoid glitches */
428 cfg = readl(host->regs + SD_EMMC_CFG);
429 cfg |= CFG_STOP_CLOCK;
430 writel(cfg, host->regs + SD_EMMC_CFG);
431
432 ret = clk_set_rate(host->mmc_clk, rate);
433 if (ret) {
434 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
435 rate, ret);
436 return ret;
437 }
438
439 host->req_rate = rate;
440 mmc->actual_clock = clk_get_rate(host->mmc_clk);
441
442 /* We should report the real output frequency of the controller */
443 if (meson_mmc_timing_is_ddr(ios))
444 mmc->actual_clock >>= 1;
445
446 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
447 if (ios->clock != mmc->actual_clock)
448 dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
449
450 /* (re)start clock */
451 meson_mmc_clk_ungate(host);
452
453 return 0;
454 }
455
456 /*
457 * The SD/eMMC IP block has an internal mux and divider used for
458 * generating the MMC clock. Use the clock framework to create and
459 * manage these clocks.
460 */
461 static int meson_mmc_clk_init(struct meson_host *host)
462 {
463 struct clk_init_data init;
464 struct clk_mux *mux;
465 struct clk_divider *div;
466 struct meson_mmc_phase *core, *tx, *rx;
467 struct clk *clk;
468 char clk_name[32];
469 int i, ret = 0;
470 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
471 const char *clk_parent[1];
472 u32 clk_reg;
473
474 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
475 clk_reg = 0;
476 clk_reg |= CLK_ALWAYS_ON;
477 clk_reg |= CLK_DIV_MASK;
478 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
479
480 /* get the mux parents */
481 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
482 struct clk *clk;
483 char name[16];
484
485 snprintf(name, sizeof(name), "clkin%d", i);
486 clk = devm_clk_get(host->dev, name);
487 if (IS_ERR(clk)) {
488 if (clk != ERR_PTR(-EPROBE_DEFER))
489 dev_err(host->dev, "Missing clock %s\n", name);
490 return PTR_ERR(clk);
491 }
492
493 mux_parent_names[i] = __clk_get_name(clk);
494 }
495
496 /* create the mux */
497 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
498 if (!mux)
499 return -ENOMEM;
500
501 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
502 init.name = clk_name;
503 init.ops = &clk_mux_ops;
504 init.flags = 0;
505 init.parent_names = mux_parent_names;
506 init.num_parents = MUX_CLK_NUM_PARENTS;
507
508 mux->reg = host->regs + SD_EMMC_CLOCK;
509 mux->shift = __ffs(CLK_SRC_MASK);
510 mux->mask = CLK_SRC_MASK >> mux->shift;
511 mux->hw.init = &init;
512
513 clk = devm_clk_register(host->dev, &mux->hw);
514 if (WARN_ON(IS_ERR(clk)))
515 return PTR_ERR(clk);
516
517 /* create the divider */
518 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
519 if (!div)
520 return -ENOMEM;
521
522 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
523 init.name = clk_name;
524 init.ops = &clk_divider_ops;
525 init.flags = CLK_SET_RATE_PARENT;
526 clk_parent[0] = __clk_get_name(clk);
527 init.parent_names = clk_parent;
528 init.num_parents = 1;
529
530 div->reg = host->regs + SD_EMMC_CLOCK;
531 div->shift = __ffs(CLK_DIV_MASK);
532 div->width = __builtin_popcountl(CLK_DIV_MASK);
533 div->hw.init = &init;
534 div->flags = CLK_DIVIDER_ONE_BASED;
535
536 clk = devm_clk_register(host->dev, &div->hw);
537 if (WARN_ON(IS_ERR(clk)))
538 return PTR_ERR(clk);
539
540 /* create the mmc core clock */
541 core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
542 if (!core)
543 return -ENOMEM;
544
545 snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
546 init.name = clk_name;
547 init.ops = &meson_mmc_clk_phase_ops;
548 init.flags = CLK_SET_RATE_PARENT;
549 clk_parent[0] = __clk_get_name(clk);
550 init.parent_names = clk_parent;
551 init.num_parents = 1;
552
553 core->reg = host->regs + SD_EMMC_CLOCK;
554 core->phase_mask = CLK_CORE_PHASE_MASK;
555 core->hw.init = &init;
556
557 host->mmc_clk = devm_clk_register(host->dev, &core->hw);
558 if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
559 return PTR_ERR(host->mmc_clk);
560
561 /* create the mmc tx clock */
562 tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
563 if (!tx)
564 return -ENOMEM;
565
566 snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
567 init.name = clk_name;
568 init.ops = &meson_mmc_clk_phase_ops;
569 init.flags = 0;
570 clk_parent[0] = __clk_get_name(host->mmc_clk);
571 init.parent_names = clk_parent;
572 init.num_parents = 1;
573
574 tx->reg = host->regs + SD_EMMC_CLOCK;
575 tx->phase_mask = CLK_TX_PHASE_MASK;
576 tx->delay_mask = CLK_TX_DELAY_MASK;
577 tx->delay_step_ps = CLK_DELAY_STEP_PS;
578 tx->hw.init = &init;
579
580 host->tx_clk = devm_clk_register(host->dev, &tx->hw);
581 if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
582 return PTR_ERR(host->tx_clk);
583
584 /* create the mmc rx clock */
585 rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
586 if (!rx)
587 return -ENOMEM;
588
589 snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
590 init.name = clk_name;
591 init.ops = &meson_mmc_clk_phase_ops;
592 init.flags = 0;
593 clk_parent[0] = __clk_get_name(host->mmc_clk);
594 init.parent_names = clk_parent;
595 init.num_parents = 1;
596
597 rx->reg = host->regs + SD_EMMC_CLOCK;
598 rx->phase_mask = CLK_RX_PHASE_MASK;
599 rx->delay_mask = CLK_RX_DELAY_MASK;
600 rx->delay_step_ps = CLK_DELAY_STEP_PS;
601 rx->hw.init = &init;
602
603 host->rx_clk = devm_clk_register(host->dev, &rx->hw);
604 if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
605 return PTR_ERR(host->rx_clk);
606
607 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
608 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
609 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
610 if (ret)
611 return ret;
612
613 /*
614 * Set phases : These values are mostly the datasheet recommended ones
615 * except for the Tx phase. Datasheet recommends 180 but some cards
616 * fail at initialisation with it. 270 works just fine, it fixes these
617 * initialisation issues and enable eMMC DDR52 mode.
618 */
619 clk_set_phase(host->mmc_clk, 180);
620 clk_set_phase(host->tx_clk, 270);
621 clk_set_phase(host->rx_clk, 0);
622
623 return clk_prepare_enable(host->mmc_clk);
624 }
625
626 static void meson_mmc_shift_map(unsigned long *map, unsigned long shift)
627 {
628 DECLARE_BITMAP(left, CLK_PHASE_POINT_NUM);
629 DECLARE_BITMAP(right, CLK_PHASE_POINT_NUM);
630
631 /*
632 * shift the bitmap right and reintroduce the dropped bits on the left
633 * of the bitmap
634 */
635 bitmap_shift_right(right, map, shift, CLK_PHASE_POINT_NUM);
636 bitmap_shift_left(left, map, CLK_PHASE_POINT_NUM - shift,
637 CLK_PHASE_POINT_NUM);
638 bitmap_or(map, left, right, CLK_PHASE_POINT_NUM);
639 }
640
641 static void meson_mmc_find_next_region(unsigned long *map,
642 unsigned long *start,
643 unsigned long *stop)
644 {
645 *start = find_next_bit(map, CLK_PHASE_POINT_NUM, *start);
646 *stop = find_next_zero_bit(map, CLK_PHASE_POINT_NUM, *start);
647 }
648
649 static int meson_mmc_find_tuning_point(unsigned long *test)
650 {
651 unsigned long shift, stop, offset = 0, start = 0, size = 0;
652
653 /* Get the all good/all bad situation out the way */
654 if (bitmap_full(test, CLK_PHASE_POINT_NUM))
655 return 0; /* All points are good so point 0 will do */
656 else if (bitmap_empty(test, CLK_PHASE_POINT_NUM))
657 return -EIO; /* No successful tuning point */
658
659 /*
660 * Now we know there is a least one region find. Make sure it does
661 * not wrap by the shifting the bitmap if necessary
662 */
663 shift = find_first_zero_bit(test, CLK_PHASE_POINT_NUM);
664 if (shift != 0)
665 meson_mmc_shift_map(test, shift);
666
667 while (start < CLK_PHASE_POINT_NUM) {
668 meson_mmc_find_next_region(test, &start, &stop);
669
670 if ((stop - start) > size) {
671 offset = start;
672 size = stop - start;
673 }
674
675 start = stop;
676 }
677
678 /* Get the center point of the region */
679 offset += (size / 2);
680
681 /* Shift the result back */
682 offset = (offset + shift) % CLK_PHASE_POINT_NUM;
683
684 return offset;
685 }
686
687 static int meson_mmc_clk_phase_tuning(struct mmc_host *mmc, u32 opcode,
688 struct clk *clk)
689 {
690 int point, ret;
691 DECLARE_BITMAP(test, CLK_PHASE_POINT_NUM);
692
693 dev_dbg(mmc_dev(mmc), "%s phase/delay tunning...\n",
694 __clk_get_name(clk));
695 bitmap_zero(test, CLK_PHASE_POINT_NUM);
696
697 /* Explore tuning points */
698 for (point = 0; point < CLK_PHASE_POINT_NUM; point++) {
699 clk_set_phase(clk, point * CLK_PHASE_STEP);
700 ret = mmc_send_tuning(mmc, opcode, NULL);
701 if (!ret)
702 set_bit(point, test);
703 }
704
705 /* Find the optimal tuning point and apply it */
706 point = meson_mmc_find_tuning_point(test);
707 if (point < 0)
708 return point; /* tuning failed */
709
710 clk_set_phase(clk, point * CLK_PHASE_STEP);
711 dev_dbg(mmc_dev(mmc), "success with phase: %d\n",
712 clk_get_phase(clk));
713 return 0;
714 }
715
716 static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
717 {
718 struct meson_host *host = mmc_priv(mmc);
719
720 return meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);
721 }
722
723 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
724 {
725 struct meson_host *host = mmc_priv(mmc);
726 u32 bus_width, val;
727 int err;
728
729 /*
730 * GPIO regulator, only controls switching between 1v8 and
731 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
732 */
733 switch (ios->power_mode) {
734 case MMC_POWER_OFF:
735 if (!IS_ERR(mmc->supply.vmmc))
736 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
737
738 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
739 regulator_disable(mmc->supply.vqmmc);
740 host->vqmmc_enabled = false;
741 }
742
743 break;
744
745 case MMC_POWER_UP:
746 if (!IS_ERR(mmc->supply.vmmc))
747 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
748
749 /* Reset rx phase */
750 clk_set_phase(host->rx_clk, 0);
751
752 break;
753
754 case MMC_POWER_ON:
755 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
756 int ret = regulator_enable(mmc->supply.vqmmc);
757
758 if (ret < 0)
759 dev_err(host->dev,
760 "failed to enable vqmmc regulator\n");
761 else
762 host->vqmmc_enabled = true;
763 }
764
765 break;
766 }
767
768 /* Bus width */
769 switch (ios->bus_width) {
770 case MMC_BUS_WIDTH_1:
771 bus_width = CFG_BUS_WIDTH_1;
772 break;
773 case MMC_BUS_WIDTH_4:
774 bus_width = CFG_BUS_WIDTH_4;
775 break;
776 case MMC_BUS_WIDTH_8:
777 bus_width = CFG_BUS_WIDTH_8;
778 break;
779 default:
780 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
781 ios->bus_width);
782 bus_width = CFG_BUS_WIDTH_4;
783 }
784
785 val = readl(host->regs + SD_EMMC_CFG);
786 val &= ~CFG_BUS_WIDTH_MASK;
787 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
788
789 val &= ~CFG_DDR;
790 if (meson_mmc_timing_is_ddr(ios))
791 val |= CFG_DDR;
792
793 val &= ~CFG_CHK_DS;
794 if (ios->timing == MMC_TIMING_MMC_HS400)
795 val |= CFG_CHK_DS;
796
797 err = meson_mmc_clk_set(host, ios);
798 if (err)
799 dev_err(host->dev, "Failed to set clock: %d\n,", err);
800
801 writel(val, host->regs + SD_EMMC_CFG);
802 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
803 }
804
805 static void meson_mmc_request_done(struct mmc_host *mmc,
806 struct mmc_request *mrq)
807 {
808 struct meson_host *host = mmc_priv(mmc);
809
810 host->cmd = NULL;
811 mmc_request_done(host->mmc, mrq);
812 }
813
814 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
815 {
816 struct meson_host *host = mmc_priv(mmc);
817 u32 cfg, blksz_old;
818
819 cfg = readl(host->regs + SD_EMMC_CFG);
820 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
821
822 if (!is_power_of_2(blksz))
823 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
824
825 blksz = ilog2(blksz);
826
827 /* check if block-size matches, if not update */
828 if (blksz == blksz_old)
829 return;
830
831 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
832 blksz_old, blksz);
833
834 cfg &= ~CFG_BLK_LEN_MASK;
835 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
836 writel(cfg, host->regs + SD_EMMC_CFG);
837 }
838
839 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
840 {
841 if (cmd->flags & MMC_RSP_PRESENT) {
842 if (cmd->flags & MMC_RSP_136)
843 *cmd_cfg |= CMD_CFG_RESP_128;
844 *cmd_cfg |= CMD_CFG_RESP_NUM;
845
846 if (!(cmd->flags & MMC_RSP_CRC))
847 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
848
849 if (cmd->flags & MMC_RSP_BUSY)
850 *cmd_cfg |= CMD_CFG_R1B;
851 } else {
852 *cmd_cfg |= CMD_CFG_NO_RESP;
853 }
854 }
855
856 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
857 {
858 struct meson_host *host = mmc_priv(mmc);
859 struct sd_emmc_desc *desc = host->descs;
860 struct mmc_data *data = host->cmd->data;
861 struct scatterlist *sg;
862 u32 start;
863 int i;
864
865 if (data->flags & MMC_DATA_WRITE)
866 cmd_cfg |= CMD_CFG_DATA_WR;
867
868 if (data->blocks > 1) {
869 cmd_cfg |= CMD_CFG_BLOCK_MODE;
870 meson_mmc_set_blksz(mmc, data->blksz);
871 }
872
873 for_each_sg(data->sg, sg, data->sg_count, i) {
874 unsigned int len = sg_dma_len(sg);
875
876 if (data->blocks > 1)
877 len /= data->blksz;
878
879 desc[i].cmd_cfg = cmd_cfg;
880 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
881 if (i > 0)
882 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
883 desc[i].cmd_arg = host->cmd->arg;
884 desc[i].cmd_resp = 0;
885 desc[i].cmd_data = sg_dma_address(sg);
886 }
887 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
888
889 dma_wmb(); /* ensure descriptor is written before kicked */
890 start = host->descs_dma_addr | START_DESC_BUSY;
891 writel(start, host->regs + SD_EMMC_START);
892 }
893
894 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
895 {
896 struct meson_host *host = mmc_priv(mmc);
897 struct mmc_data *data = cmd->data;
898 u32 cmd_cfg = 0, cmd_data = 0;
899 unsigned int xfer_bytes = 0;
900
901 /* Setup descriptors */
902 dma_rmb();
903
904 host->cmd = cmd;
905
906 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
907 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
908
909 meson_mmc_set_response_bits(cmd, &cmd_cfg);
910
911 /* data? */
912 if (data) {
913 data->bytes_xfered = 0;
914 cmd_cfg |= CMD_CFG_DATA_IO;
915 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
916 ilog2(meson_mmc_get_timeout_msecs(data)));
917
918 if (meson_mmc_desc_chain_mode(data)) {
919 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
920 return;
921 }
922
923 if (data->blocks > 1) {
924 cmd_cfg |= CMD_CFG_BLOCK_MODE;
925 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
926 data->blocks);
927 meson_mmc_set_blksz(mmc, data->blksz);
928 } else {
929 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
930 }
931
932 xfer_bytes = data->blksz * data->blocks;
933 if (data->flags & MMC_DATA_WRITE) {
934 cmd_cfg |= CMD_CFG_DATA_WR;
935 WARN_ON(xfer_bytes > host->bounce_buf_size);
936 sg_copy_to_buffer(data->sg, data->sg_len,
937 host->bounce_buf, xfer_bytes);
938 dma_wmb();
939 }
940
941 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
942 } else {
943 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
944 ilog2(SD_EMMC_CMD_TIMEOUT));
945 }
946
947 /* Last descriptor */
948 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
949 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
950 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
951 writel(0, host->regs + SD_EMMC_CMD_RSP);
952 wmb(); /* ensure descriptor is written before kicked */
953 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
954 }
955
956 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
957 {
958 struct meson_host *host = mmc_priv(mmc);
959 bool needs_pre_post_req = mrq->data &&
960 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
961
962 if (needs_pre_post_req) {
963 meson_mmc_get_transfer_mode(mmc, mrq);
964 if (!meson_mmc_desc_chain_mode(mrq->data))
965 needs_pre_post_req = false;
966 }
967
968 if (needs_pre_post_req)
969 meson_mmc_pre_req(mmc, mrq);
970
971 /* Stop execution */
972 writel(0, host->regs + SD_EMMC_START);
973
974 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
975
976 if (needs_pre_post_req)
977 meson_mmc_post_req(mmc, mrq, 0);
978 }
979
980 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
981 {
982 struct meson_host *host = mmc_priv(mmc);
983
984 if (cmd->flags & MMC_RSP_136) {
985 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
986 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
987 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
988 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
989 } else if (cmd->flags & MMC_RSP_PRESENT) {
990 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
991 }
992 }
993
994 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
995 {
996 struct meson_host *host = dev_id;
997 struct mmc_command *cmd;
998 struct mmc_data *data;
999 u32 irq_en, status, raw_status;
1000 irqreturn_t ret = IRQ_NONE;
1001
1002 if (WARN_ON(!host) || WARN_ON(!host->cmd))
1003 return IRQ_NONE;
1004
1005 spin_lock(&host->lock);
1006
1007 cmd = host->cmd;
1008 data = cmd->data;
1009 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
1010 raw_status = readl(host->regs + SD_EMMC_STATUS);
1011 status = raw_status & irq_en;
1012
1013 cmd->error = 0;
1014 if (status & IRQ_CRC_ERR) {
1015 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
1016 cmd->error = -EILSEQ;
1017 ret = IRQ_HANDLED;
1018 goto out;
1019 }
1020
1021 if (status & IRQ_TIMEOUTS) {
1022 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
1023 cmd->error = -ETIMEDOUT;
1024 ret = IRQ_HANDLED;
1025 goto out;
1026 }
1027
1028 meson_mmc_read_resp(host->mmc, cmd);
1029
1030 if (status & IRQ_SDIO) {
1031 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
1032 ret = IRQ_HANDLED;
1033 }
1034
1035 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
1036 if (data && !cmd->error)
1037 data->bytes_xfered = data->blksz * data->blocks;
1038 if (meson_mmc_bounce_buf_read(data) ||
1039 meson_mmc_get_next_command(cmd))
1040 ret = IRQ_WAKE_THREAD;
1041 else
1042 ret = IRQ_HANDLED;
1043 }
1044
1045 out:
1046 /* ack all enabled interrupts */
1047 writel(irq_en, host->regs + SD_EMMC_STATUS);
1048
1049 if (ret == IRQ_HANDLED)
1050 meson_mmc_request_done(host->mmc, cmd->mrq);
1051 else if (ret == IRQ_NONE)
1052 dev_warn(host->dev,
1053 "Unexpected IRQ! status=0x%08x, irq_en=0x%08x\n",
1054 raw_status, irq_en);
1055
1056 spin_unlock(&host->lock);
1057 return ret;
1058 }
1059
1060 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1061 {
1062 struct meson_host *host = dev_id;
1063 struct mmc_command *next_cmd, *cmd = host->cmd;
1064 struct mmc_data *data;
1065 unsigned int xfer_bytes;
1066
1067 if (WARN_ON(!cmd))
1068 return IRQ_NONE;
1069
1070 data = cmd->data;
1071 if (meson_mmc_bounce_buf_read(data)) {
1072 xfer_bytes = data->blksz * data->blocks;
1073 WARN_ON(xfer_bytes > host->bounce_buf_size);
1074 sg_copy_from_buffer(data->sg, data->sg_len,
1075 host->bounce_buf, xfer_bytes);
1076 }
1077
1078 next_cmd = meson_mmc_get_next_command(cmd);
1079 if (next_cmd)
1080 meson_mmc_start_cmd(host->mmc, next_cmd);
1081 else
1082 meson_mmc_request_done(host->mmc, cmd->mrq);
1083
1084 return IRQ_HANDLED;
1085 }
1086
1087 /*
1088 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1089 * interrupts. For now, the MMC core will use this for polling.
1090 */
1091 static int meson_mmc_get_cd(struct mmc_host *mmc)
1092 {
1093 int status = mmc_gpio_get_cd(mmc);
1094
1095 if (status == -ENOSYS)
1096 return 1; /* assume present */
1097
1098 return status;
1099 }
1100
1101 static void meson_mmc_cfg_init(struct meson_host *host)
1102 {
1103 u32 cfg = 0;
1104
1105 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1106 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1107 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1108 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1109
1110 writel(cfg, host->regs + SD_EMMC_CFG);
1111 }
1112
1113 static int meson_mmc_card_busy(struct mmc_host *mmc)
1114 {
1115 struct meson_host *host = mmc_priv(mmc);
1116 u32 regval;
1117
1118 regval = readl(host->regs + SD_EMMC_STATUS);
1119
1120 /* We are only interrested in lines 0 to 3, so mask the other ones */
1121 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1122 }
1123
1124 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1125 {
1126 /* vqmmc regulator is available */
1127 if (!IS_ERR(mmc->supply.vqmmc)) {
1128 /*
1129 * The usual amlogic setup uses a GPIO to switch from one
1130 * regulator to the other. While the voltage ramp up is
1131 * pretty fast, care must be taken when switching from 3.3v
1132 * to 1.8v. Please make sure the regulator framework is aware
1133 * of your own regulator constraints
1134 */
1135 return mmc_regulator_set_vqmmc(mmc, ios);
1136 }
1137
1138 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1139 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1140 return 0;
1141
1142 return -EINVAL;
1143 }
1144
1145 static const struct mmc_host_ops meson_mmc_ops = {
1146 .request = meson_mmc_request,
1147 .set_ios = meson_mmc_set_ios,
1148 .get_cd = meson_mmc_get_cd,
1149 .pre_req = meson_mmc_pre_req,
1150 .post_req = meson_mmc_post_req,
1151 .execute_tuning = meson_mmc_execute_tuning,
1152 .card_busy = meson_mmc_card_busy,
1153 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1154 };
1155
1156 static int meson_mmc_probe(struct platform_device *pdev)
1157 {
1158 struct resource *res;
1159 struct meson_host *host;
1160 struct mmc_host *mmc;
1161 int ret, irq;
1162
1163 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1164 if (!mmc)
1165 return -ENOMEM;
1166 host = mmc_priv(mmc);
1167 host->mmc = mmc;
1168 host->dev = &pdev->dev;
1169 dev_set_drvdata(&pdev->dev, host);
1170
1171 spin_lock_init(&host->lock);
1172
1173 /* Get regulators and the supported OCR mask */
1174 host->vqmmc_enabled = false;
1175 ret = mmc_regulator_get_supply(mmc);
1176 if (ret)
1177 goto free_host;
1178
1179 ret = mmc_of_parse(mmc);
1180 if (ret) {
1181 if (ret != -EPROBE_DEFER)
1182 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1183 goto free_host;
1184 }
1185
1186 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1187 host->regs = devm_ioremap_resource(&pdev->dev, res);
1188 if (IS_ERR(host->regs)) {
1189 ret = PTR_ERR(host->regs);
1190 goto free_host;
1191 }
1192
1193 irq = platform_get_irq(pdev, 0);
1194 if (!irq) {
1195 dev_err(&pdev->dev, "failed to get interrupt resource.\n");
1196 ret = -EINVAL;
1197 goto free_host;
1198 }
1199
1200 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1201 if (IS_ERR(host->pinctrl)) {
1202 ret = PTR_ERR(host->pinctrl);
1203 goto free_host;
1204 }
1205
1206 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1207 PINCTRL_STATE_DEFAULT);
1208 if (IS_ERR(host->pins_default)) {
1209 ret = PTR_ERR(host->pins_default);
1210 goto free_host;
1211 }
1212
1213 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1214 "clk-gate");
1215 if (IS_ERR(host->pins_clk_gate)) {
1216 dev_warn(&pdev->dev,
1217 "can't get clk-gate pinctrl, using clk_stop bit\n");
1218 host->pins_clk_gate = NULL;
1219 }
1220
1221 host->core_clk = devm_clk_get(&pdev->dev, "core");
1222 if (IS_ERR(host->core_clk)) {
1223 ret = PTR_ERR(host->core_clk);
1224 goto free_host;
1225 }
1226
1227 ret = clk_prepare_enable(host->core_clk);
1228 if (ret)
1229 goto free_host;
1230
1231 ret = meson_mmc_clk_init(host);
1232 if (ret)
1233 goto err_core_clk;
1234
1235 /* set config to sane default */
1236 meson_mmc_cfg_init(host);
1237
1238 /* Stop execution */
1239 writel(0, host->regs + SD_EMMC_START);
1240
1241 /* clear, ack and enable interrupts */
1242 writel(0, host->regs + SD_EMMC_IRQ_EN);
1243 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1244 host->regs + SD_EMMC_STATUS);
1245 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1246 host->regs + SD_EMMC_IRQ_EN);
1247
1248 ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
1249 meson_mmc_irq_thread, IRQF_SHARED,
1250 NULL, host);
1251 if (ret)
1252 goto err_init_clk;
1253
1254 mmc->caps |= MMC_CAP_CMD23;
1255 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1256 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1257 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
1258 mmc->max_seg_size = mmc->max_req_size;
1259
1260 /* data bounce buffer */
1261 host->bounce_buf_size = mmc->max_req_size;
1262 host->bounce_buf =
1263 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1264 &host->bounce_dma_addr, GFP_KERNEL);
1265 if (host->bounce_buf == NULL) {
1266 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1267 ret = -ENOMEM;
1268 goto err_init_clk;
1269 }
1270
1271 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1272 &host->descs_dma_addr, GFP_KERNEL);
1273 if (!host->descs) {
1274 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1275 ret = -ENOMEM;
1276 goto err_bounce_buf;
1277 }
1278
1279 mmc->ops = &meson_mmc_ops;
1280 mmc_add_host(mmc);
1281
1282 return 0;
1283
1284 err_bounce_buf:
1285 dma_free_coherent(host->dev, host->bounce_buf_size,
1286 host->bounce_buf, host->bounce_dma_addr);
1287 err_init_clk:
1288 clk_disable_unprepare(host->mmc_clk);
1289 err_core_clk:
1290 clk_disable_unprepare(host->core_clk);
1291 free_host:
1292 mmc_free_host(mmc);
1293 return ret;
1294 }
1295
1296 static int meson_mmc_remove(struct platform_device *pdev)
1297 {
1298 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1299
1300 mmc_remove_host(host->mmc);
1301
1302 /* disable interrupts */
1303 writel(0, host->regs + SD_EMMC_IRQ_EN);
1304
1305 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1306 host->descs, host->descs_dma_addr);
1307 dma_free_coherent(host->dev, host->bounce_buf_size,
1308 host->bounce_buf, host->bounce_dma_addr);
1309
1310 clk_disable_unprepare(host->mmc_clk);
1311 clk_disable_unprepare(host->core_clk);
1312
1313 mmc_free_host(host->mmc);
1314 return 0;
1315 }
1316
1317 static const struct of_device_id meson_mmc_of_match[] = {
1318 { .compatible = "amlogic,meson-gx-mmc", },
1319 { .compatible = "amlogic,meson-gxbb-mmc", },
1320 { .compatible = "amlogic,meson-gxl-mmc", },
1321 { .compatible = "amlogic,meson-gxm-mmc", },
1322 {}
1323 };
1324 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1325
1326 static struct platform_driver meson_mmc_driver = {
1327 .probe = meson_mmc_probe,
1328 .remove = meson_mmc_remove,
1329 .driver = {
1330 .name = DRIVER_NAME,
1331 .of_match_table = of_match_ptr(meson_mmc_of_match),
1332 },
1333 };
1334
1335 module_platform_driver(meson_mmc_driver);
1336
1337 MODULE_DESCRIPTION("Amlogic S905*/GX* SD/eMMC driver");
1338 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1339 MODULE_LICENSE("GPL v2");