]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/host/meson-gx-mmc.c
Merge tag 'dmaengine-4.21-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / host / meson-gx-mmc.c
1 /*
2 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
3 *
4 * Copyright (c) 2016 BayLibre, SAS.
5 * Author: Kevin Hilman <khilman@baylibre.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution
19 * in the file called COPYING.
20 */
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/ioport.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/mmc/slot-gpio.h>
34 #include <linux/io.h>
35 #include <linux/clk.h>
36 #include <linux/clk-provider.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitfield.h>
41 #include <linux/pinctrl/consumer.h>
42
43 #define DRIVER_NAME "meson-gx-mmc"
44
45 #define SD_EMMC_CLOCK 0x0
46 #define CLK_DIV_MASK GENMASK(5, 0)
47 #define CLK_SRC_MASK GENMASK(7, 6)
48 #define CLK_CORE_PHASE_MASK GENMASK(9, 8)
49 #define CLK_TX_PHASE_MASK GENMASK(11, 10)
50 #define CLK_RX_PHASE_MASK GENMASK(13, 12)
51 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
52 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
53 #define CLK_V2_ALWAYS_ON BIT(24)
54
55 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
56 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
57 #define CLK_V3_ALWAYS_ON BIT(28)
58
59 #define CLK_DELAY_STEP_PS 200
60 #define CLK_PHASE_STEP 30
61 #define CLK_PHASE_POINT_NUM (360 / CLK_PHASE_STEP)
62
63 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
64 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
65 #define CLK_ALWAYS_ON(h) (h->data->always_on)
66
67 #define SD_EMMC_DELAY 0x4
68 #define SD_EMMC_ADJUST 0x8
69 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
70 #define ADJUST_DS_EN BIT(15)
71 #define ADJUST_ADJ_EN BIT(13)
72
73 #define SD_EMMC_DELAY1 0x4
74 #define SD_EMMC_DELAY2 0x8
75 #define SD_EMMC_V3_ADJUST 0xc
76
77 #define SD_EMMC_CALOUT 0x10
78 #define SD_EMMC_START 0x40
79 #define START_DESC_INIT BIT(0)
80 #define START_DESC_BUSY BIT(1)
81 #define START_DESC_ADDR_MASK GENMASK(31, 2)
82
83 #define SD_EMMC_CFG 0x44
84 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
85 #define CFG_BUS_WIDTH_1 0x0
86 #define CFG_BUS_WIDTH_4 0x1
87 #define CFG_BUS_WIDTH_8 0x2
88 #define CFG_DDR BIT(2)
89 #define CFG_BLK_LEN_MASK GENMASK(7, 4)
90 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
91 #define CFG_RC_CC_MASK GENMASK(15, 12)
92 #define CFG_STOP_CLOCK BIT(22)
93 #define CFG_CLK_ALWAYS_ON BIT(18)
94 #define CFG_CHK_DS BIT(20)
95 #define CFG_AUTO_CLK BIT(23)
96 #define CFG_ERR_ABORT BIT(27)
97
98 #define SD_EMMC_STATUS 0x48
99 #define STATUS_BUSY BIT(31)
100 #define STATUS_DESC_BUSY BIT(30)
101 #define STATUS_DATI GENMASK(23, 16)
102
103 #define SD_EMMC_IRQ_EN 0x4c
104 #define IRQ_RXD_ERR_MASK GENMASK(7, 0)
105 #define IRQ_TXD_ERR BIT(8)
106 #define IRQ_DESC_ERR BIT(9)
107 #define IRQ_RESP_ERR BIT(10)
108 #define IRQ_CRC_ERR \
109 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
110 #define IRQ_RESP_TIMEOUT BIT(11)
111 #define IRQ_DESC_TIMEOUT BIT(12)
112 #define IRQ_TIMEOUTS \
113 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
114 #define IRQ_END_OF_CHAIN BIT(13)
115 #define IRQ_RESP_STATUS BIT(14)
116 #define IRQ_SDIO BIT(15)
117 #define IRQ_EN_MASK \
118 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
119 IRQ_SDIO)
120
121 #define SD_EMMC_CMD_CFG 0x50
122 #define SD_EMMC_CMD_ARG 0x54
123 #define SD_EMMC_CMD_DAT 0x58
124 #define SD_EMMC_CMD_RSP 0x5c
125 #define SD_EMMC_CMD_RSP1 0x60
126 #define SD_EMMC_CMD_RSP2 0x64
127 #define SD_EMMC_CMD_RSP3 0x68
128
129 #define SD_EMMC_RXD 0x94
130 #define SD_EMMC_TXD 0x94
131 #define SD_EMMC_LAST_REG SD_EMMC_TXD
132
133 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
134 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
135 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
136 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
137 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
138 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
139
140 #define SD_EMMC_PRE_REQ_DONE BIT(0)
141 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
142
143 #define MUX_CLK_NUM_PARENTS 2
144
145 struct meson_mmc_data {
146 unsigned int tx_delay_mask;
147 unsigned int rx_delay_mask;
148 unsigned int always_on;
149 unsigned int adjust;
150 };
151
152 struct sd_emmc_desc {
153 u32 cmd_cfg;
154 u32 cmd_arg;
155 u32 cmd_data;
156 u32 cmd_resp;
157 };
158
159 struct meson_host {
160 struct device *dev;
161 struct meson_mmc_data *data;
162 struct mmc_host *mmc;
163 struct mmc_command *cmd;
164
165 void __iomem *regs;
166 struct clk *core_clk;
167 struct clk *mmc_clk;
168 struct clk *rx_clk;
169 struct clk *tx_clk;
170 unsigned long req_rate;
171
172 struct pinctrl *pinctrl;
173 struct pinctrl_state *pins_default;
174 struct pinctrl_state *pins_clk_gate;
175
176 unsigned int bounce_buf_size;
177 void *bounce_buf;
178 dma_addr_t bounce_dma_addr;
179 struct sd_emmc_desc *descs;
180 dma_addr_t descs_dma_addr;
181
182 bool vqmmc_enabled;
183 };
184
185 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
186 #define CMD_CFG_BLOCK_MODE BIT(9)
187 #define CMD_CFG_R1B BIT(10)
188 #define CMD_CFG_END_OF_CHAIN BIT(11)
189 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
190 #define CMD_CFG_NO_RESP BIT(16)
191 #define CMD_CFG_NO_CMD BIT(17)
192 #define CMD_CFG_DATA_IO BIT(18)
193 #define CMD_CFG_DATA_WR BIT(19)
194 #define CMD_CFG_RESP_NOCRC BIT(20)
195 #define CMD_CFG_RESP_128 BIT(21)
196 #define CMD_CFG_RESP_NUM BIT(22)
197 #define CMD_CFG_DATA_NUM BIT(23)
198 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
199 #define CMD_CFG_ERROR BIT(30)
200 #define CMD_CFG_OWNER BIT(31)
201
202 #define CMD_DATA_MASK GENMASK(31, 2)
203 #define CMD_DATA_BIG_ENDIAN BIT(1)
204 #define CMD_DATA_SRAM BIT(0)
205 #define CMD_RESP_MASK GENMASK(31, 1)
206 #define CMD_RESP_SRAM BIT(0)
207
208 struct meson_mmc_phase {
209 struct clk_hw hw;
210 void __iomem *reg;
211 unsigned long phase_mask;
212 unsigned long delay_mask;
213 unsigned int delay_step_ps;
214 };
215
216 #define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)
217
218 static int meson_mmc_clk_get_phase(struct clk_hw *hw)
219 {
220 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
221 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
222 unsigned long period_ps, p, d;
223 int degrees;
224 u32 val;
225
226 val = readl(mmc->reg);
227 p = (val & mmc->phase_mask) >> __ffs(mmc->phase_mask);
228 degrees = p * 360 / phase_num;
229
230 if (mmc->delay_mask) {
231 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
232 clk_get_rate(hw->clk));
233 d = (val & mmc->delay_mask) >> __ffs(mmc->delay_mask);
234 degrees += d * mmc->delay_step_ps * 360 / period_ps;
235 degrees %= 360;
236 }
237
238 return degrees;
239 }
240
241 static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
242 unsigned int phase,
243 unsigned int delay)
244 {
245 u32 val;
246
247 val = readl(mmc->reg);
248 val &= ~mmc->phase_mask;
249 val |= phase << __ffs(mmc->phase_mask);
250
251 if (mmc->delay_mask) {
252 val &= ~mmc->delay_mask;
253 val |= delay << __ffs(mmc->delay_mask);
254 }
255
256 writel(val, mmc->reg);
257 }
258
259 static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
260 {
261 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
262 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
263 unsigned long period_ps, d = 0, r;
264 uint64_t p;
265
266 p = degrees % 360;
267
268 if (!mmc->delay_mask) {
269 p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
270 } else {
271 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
272 clk_get_rate(hw->clk));
273
274 /* First compute the phase index (p), the remainder (r) is the
275 * part we'll try to acheive using the delays (d).
276 */
277 r = do_div(p, 360 / phase_num);
278 d = DIV_ROUND_CLOSEST(r * period_ps,
279 360 * mmc->delay_step_ps);
280 d = min(d, mmc->delay_mask >> __ffs(mmc->delay_mask));
281 }
282
283 meson_mmc_apply_phase_delay(mmc, p, d);
284 return 0;
285 }
286
287 static const struct clk_ops meson_mmc_clk_phase_ops = {
288 .get_phase = meson_mmc_clk_get_phase,
289 .set_phase = meson_mmc_clk_set_phase,
290 };
291
292 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
293 {
294 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
295
296 if (!timeout)
297 return SD_EMMC_CMD_TIMEOUT_DATA;
298
299 timeout = roundup_pow_of_two(timeout);
300
301 return min(timeout, 32768U); /* max. 2^15 ms */
302 }
303
304 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
305 {
306 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
307 return cmd->mrq->cmd;
308 else if (mmc_op_multi(cmd->opcode) &&
309 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
310 return cmd->mrq->stop;
311 else
312 return NULL;
313 }
314
315 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
316 struct mmc_request *mrq)
317 {
318 struct mmc_data *data = mrq->data;
319 struct scatterlist *sg;
320 int i;
321 bool use_desc_chain_mode = true;
322
323 /*
324 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
325 * reported. For some strange reason this occurs in descriptor
326 * chain mode only. So let's fall back to bounce buffer mode
327 * for command SD_IO_RW_EXTENDED.
328 */
329 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
330 return;
331
332 for_each_sg(data->sg, sg, data->sg_len, i)
333 /* check for 8 byte alignment */
334 if (sg->offset & 7) {
335 WARN_ONCE(1, "unaligned scatterlist buffer\n");
336 use_desc_chain_mode = false;
337 break;
338 }
339
340 if (use_desc_chain_mode)
341 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
342 }
343
344 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
345 {
346 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
347 }
348
349 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
350 {
351 return data && data->flags & MMC_DATA_READ &&
352 !meson_mmc_desc_chain_mode(data);
353 }
354
355 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
356 {
357 struct mmc_data *data = mrq->data;
358
359 if (!data)
360 return;
361
362 meson_mmc_get_transfer_mode(mmc, mrq);
363 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
364
365 if (!meson_mmc_desc_chain_mode(data))
366 return;
367
368 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
369 mmc_get_dma_dir(data));
370 if (!data->sg_count)
371 dev_err(mmc_dev(mmc), "dma_map_sg failed");
372 }
373
374 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
375 int err)
376 {
377 struct mmc_data *data = mrq->data;
378
379 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
380 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
381 mmc_get_dma_dir(data));
382 }
383
384 static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
385 {
386 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
387 ios->timing == MMC_TIMING_UHS_DDR50 ||
388 ios->timing == MMC_TIMING_MMC_HS400)
389 return true;
390
391 return false;
392 }
393
394 /*
395 * Gating the clock on this controller is tricky. It seems the mmc clock
396 * is also used by the controller. It may crash during some operation if the
397 * clock is stopped. The safest thing to do, whenever possible, is to keep
398 * clock running at stop it at the pad using the pinmux.
399 */
400 static void meson_mmc_clk_gate(struct meson_host *host)
401 {
402 u32 cfg;
403
404 if (host->pins_clk_gate) {
405 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
406 } else {
407 /*
408 * If the pinmux is not provided - default to the classic and
409 * unsafe method
410 */
411 cfg = readl(host->regs + SD_EMMC_CFG);
412 cfg |= CFG_STOP_CLOCK;
413 writel(cfg, host->regs + SD_EMMC_CFG);
414 }
415 }
416
417 static void meson_mmc_clk_ungate(struct meson_host *host)
418 {
419 u32 cfg;
420
421 if (host->pins_clk_gate)
422 pinctrl_select_state(host->pinctrl, host->pins_default);
423
424 /* Make sure the clock is not stopped in the controller */
425 cfg = readl(host->regs + SD_EMMC_CFG);
426 cfg &= ~CFG_STOP_CLOCK;
427 writel(cfg, host->regs + SD_EMMC_CFG);
428 }
429
430 static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
431 {
432 struct mmc_host *mmc = host->mmc;
433 unsigned long rate = ios->clock;
434 int ret;
435 u32 cfg;
436
437 /* DDR modes require higher module clock */
438 if (meson_mmc_timing_is_ddr(ios))
439 rate <<= 1;
440
441 /* Same request - bail-out */
442 if (host->req_rate == rate)
443 return 0;
444
445 /* stop clock */
446 meson_mmc_clk_gate(host);
447 host->req_rate = 0;
448
449 if (!rate) {
450 mmc->actual_clock = 0;
451 /* return with clock being stopped */
452 return 0;
453 }
454
455 /* Stop the clock during rate change to avoid glitches */
456 cfg = readl(host->regs + SD_EMMC_CFG);
457 cfg |= CFG_STOP_CLOCK;
458 writel(cfg, host->regs + SD_EMMC_CFG);
459
460 ret = clk_set_rate(host->mmc_clk, rate);
461 if (ret) {
462 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
463 rate, ret);
464 return ret;
465 }
466
467 host->req_rate = rate;
468 mmc->actual_clock = clk_get_rate(host->mmc_clk);
469
470 /* We should report the real output frequency of the controller */
471 if (meson_mmc_timing_is_ddr(ios))
472 mmc->actual_clock >>= 1;
473
474 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
475 if (ios->clock != mmc->actual_clock)
476 dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
477
478 /* (re)start clock */
479 meson_mmc_clk_ungate(host);
480
481 return 0;
482 }
483
484 /*
485 * The SD/eMMC IP block has an internal mux and divider used for
486 * generating the MMC clock. Use the clock framework to create and
487 * manage these clocks.
488 */
489 static int meson_mmc_clk_init(struct meson_host *host)
490 {
491 struct clk_init_data init;
492 struct clk_mux *mux;
493 struct clk_divider *div;
494 struct meson_mmc_phase *core, *tx, *rx;
495 struct clk *clk;
496 char clk_name[32];
497 int i, ret = 0;
498 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
499 const char *clk_parent[1];
500 u32 clk_reg;
501
502 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
503 clk_reg = 0;
504 clk_reg |= CLK_ALWAYS_ON(host);
505 clk_reg |= CLK_DIV_MASK;
506 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
507
508 /* get the mux parents */
509 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
510 struct clk *clk;
511 char name[16];
512
513 snprintf(name, sizeof(name), "clkin%d", i);
514 clk = devm_clk_get(host->dev, name);
515 if (IS_ERR(clk)) {
516 if (clk != ERR_PTR(-EPROBE_DEFER))
517 dev_err(host->dev, "Missing clock %s\n", name);
518 return PTR_ERR(clk);
519 }
520
521 mux_parent_names[i] = __clk_get_name(clk);
522 }
523
524 /* create the mux */
525 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
526 if (!mux)
527 return -ENOMEM;
528
529 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
530 init.name = clk_name;
531 init.ops = &clk_mux_ops;
532 init.flags = 0;
533 init.parent_names = mux_parent_names;
534 init.num_parents = MUX_CLK_NUM_PARENTS;
535
536 mux->reg = host->regs + SD_EMMC_CLOCK;
537 mux->shift = __ffs(CLK_SRC_MASK);
538 mux->mask = CLK_SRC_MASK >> mux->shift;
539 mux->hw.init = &init;
540
541 clk = devm_clk_register(host->dev, &mux->hw);
542 if (WARN_ON(IS_ERR(clk)))
543 return PTR_ERR(clk);
544
545 /* create the divider */
546 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
547 if (!div)
548 return -ENOMEM;
549
550 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
551 init.name = clk_name;
552 init.ops = &clk_divider_ops;
553 init.flags = CLK_SET_RATE_PARENT;
554 clk_parent[0] = __clk_get_name(clk);
555 init.parent_names = clk_parent;
556 init.num_parents = 1;
557
558 div->reg = host->regs + SD_EMMC_CLOCK;
559 div->shift = __ffs(CLK_DIV_MASK);
560 div->width = __builtin_popcountl(CLK_DIV_MASK);
561 div->hw.init = &init;
562 div->flags = CLK_DIVIDER_ONE_BASED;
563
564 clk = devm_clk_register(host->dev, &div->hw);
565 if (WARN_ON(IS_ERR(clk)))
566 return PTR_ERR(clk);
567
568 /* create the mmc core clock */
569 core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
570 if (!core)
571 return -ENOMEM;
572
573 snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
574 init.name = clk_name;
575 init.ops = &meson_mmc_clk_phase_ops;
576 init.flags = CLK_SET_RATE_PARENT;
577 clk_parent[0] = __clk_get_name(clk);
578 init.parent_names = clk_parent;
579 init.num_parents = 1;
580
581 core->reg = host->regs + SD_EMMC_CLOCK;
582 core->phase_mask = CLK_CORE_PHASE_MASK;
583 core->hw.init = &init;
584
585 host->mmc_clk = devm_clk_register(host->dev, &core->hw);
586 if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
587 return PTR_ERR(host->mmc_clk);
588
589 /* create the mmc tx clock */
590 tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
591 if (!tx)
592 return -ENOMEM;
593
594 snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
595 init.name = clk_name;
596 init.ops = &meson_mmc_clk_phase_ops;
597 init.flags = 0;
598 clk_parent[0] = __clk_get_name(host->mmc_clk);
599 init.parent_names = clk_parent;
600 init.num_parents = 1;
601
602 tx->reg = host->regs + SD_EMMC_CLOCK;
603 tx->phase_mask = CLK_TX_PHASE_MASK;
604 tx->delay_mask = CLK_TX_DELAY_MASK(host);
605 tx->delay_step_ps = CLK_DELAY_STEP_PS;
606 tx->hw.init = &init;
607
608 host->tx_clk = devm_clk_register(host->dev, &tx->hw);
609 if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
610 return PTR_ERR(host->tx_clk);
611
612 /* create the mmc rx clock */
613 rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
614 if (!rx)
615 return -ENOMEM;
616
617 snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
618 init.name = clk_name;
619 init.ops = &meson_mmc_clk_phase_ops;
620 init.flags = 0;
621 clk_parent[0] = __clk_get_name(host->mmc_clk);
622 init.parent_names = clk_parent;
623 init.num_parents = 1;
624
625 rx->reg = host->regs + SD_EMMC_CLOCK;
626 rx->phase_mask = CLK_RX_PHASE_MASK;
627 rx->delay_mask = CLK_RX_DELAY_MASK(host);
628 rx->delay_step_ps = CLK_DELAY_STEP_PS;
629 rx->hw.init = &init;
630
631 host->rx_clk = devm_clk_register(host->dev, &rx->hw);
632 if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
633 return PTR_ERR(host->rx_clk);
634
635 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
636 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
637 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
638 if (ret)
639 return ret;
640
641 clk_set_phase(host->mmc_clk, 180);
642 clk_set_phase(host->tx_clk, 0);
643 clk_set_phase(host->rx_clk, 0);
644
645 return clk_prepare_enable(host->mmc_clk);
646 }
647
648 static void meson_mmc_shift_map(unsigned long *map, unsigned long shift)
649 {
650 DECLARE_BITMAP(left, CLK_PHASE_POINT_NUM);
651 DECLARE_BITMAP(right, CLK_PHASE_POINT_NUM);
652
653 /*
654 * shift the bitmap right and reintroduce the dropped bits on the left
655 * of the bitmap
656 */
657 bitmap_shift_right(right, map, shift, CLK_PHASE_POINT_NUM);
658 bitmap_shift_left(left, map, CLK_PHASE_POINT_NUM - shift,
659 CLK_PHASE_POINT_NUM);
660 bitmap_or(map, left, right, CLK_PHASE_POINT_NUM);
661 }
662
663 static void meson_mmc_find_next_region(unsigned long *map,
664 unsigned long *start,
665 unsigned long *stop)
666 {
667 *start = find_next_bit(map, CLK_PHASE_POINT_NUM, *start);
668 *stop = find_next_zero_bit(map, CLK_PHASE_POINT_NUM, *start);
669 }
670
671 static int meson_mmc_find_tuning_point(unsigned long *test)
672 {
673 unsigned long shift, stop, offset = 0, start = 0, size = 0;
674
675 /* Get the all good/all bad situation out the way */
676 if (bitmap_full(test, CLK_PHASE_POINT_NUM))
677 return 0; /* All points are good so point 0 will do */
678 else if (bitmap_empty(test, CLK_PHASE_POINT_NUM))
679 return -EIO; /* No successful tuning point */
680
681 /*
682 * Now we know there is a least one region find. Make sure it does
683 * not wrap by the shifting the bitmap if necessary
684 */
685 shift = find_first_zero_bit(test, CLK_PHASE_POINT_NUM);
686 if (shift != 0)
687 meson_mmc_shift_map(test, shift);
688
689 while (start < CLK_PHASE_POINT_NUM) {
690 meson_mmc_find_next_region(test, &start, &stop);
691
692 if ((stop - start) > size) {
693 offset = start;
694 size = stop - start;
695 }
696
697 start = stop;
698 }
699
700 /* Get the center point of the region */
701 offset += (size / 2);
702
703 /* Shift the result back */
704 offset = (offset + shift) % CLK_PHASE_POINT_NUM;
705
706 return offset;
707 }
708
709 static int meson_mmc_clk_phase_tuning(struct mmc_host *mmc, u32 opcode,
710 struct clk *clk)
711 {
712 int point, ret;
713 DECLARE_BITMAP(test, CLK_PHASE_POINT_NUM);
714
715 dev_dbg(mmc_dev(mmc), "%s phase/delay tunning...\n",
716 __clk_get_name(clk));
717 bitmap_zero(test, CLK_PHASE_POINT_NUM);
718
719 /* Explore tuning points */
720 for (point = 0; point < CLK_PHASE_POINT_NUM; point++) {
721 clk_set_phase(clk, point * CLK_PHASE_STEP);
722 ret = mmc_send_tuning(mmc, opcode, NULL);
723 if (!ret)
724 set_bit(point, test);
725 }
726
727 /* Find the optimal tuning point and apply it */
728 point = meson_mmc_find_tuning_point(test);
729 if (point < 0)
730 return point; /* tuning failed */
731
732 clk_set_phase(clk, point * CLK_PHASE_STEP);
733 dev_dbg(mmc_dev(mmc), "success with phase: %d\n",
734 clk_get_phase(clk));
735 return 0;
736 }
737
738 static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
739 {
740 struct meson_host *host = mmc_priv(mmc);
741
742 return meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);
743 }
744
745 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
746 {
747 struct meson_host *host = mmc_priv(mmc);
748 u32 bus_width, val;
749 int err;
750
751 /*
752 * GPIO regulator, only controls switching between 1v8 and
753 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
754 */
755 switch (ios->power_mode) {
756 case MMC_POWER_OFF:
757 if (!IS_ERR(mmc->supply.vmmc))
758 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
759
760 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
761 regulator_disable(mmc->supply.vqmmc);
762 host->vqmmc_enabled = false;
763 }
764
765 break;
766
767 case MMC_POWER_UP:
768 if (!IS_ERR(mmc->supply.vmmc))
769 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
770
771 /* Reset rx phase */
772 clk_set_phase(host->rx_clk, 0);
773
774 break;
775
776 case MMC_POWER_ON:
777 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
778 int ret = regulator_enable(mmc->supply.vqmmc);
779
780 if (ret < 0)
781 dev_err(host->dev,
782 "failed to enable vqmmc regulator\n");
783 else
784 host->vqmmc_enabled = true;
785 }
786
787 break;
788 }
789
790 /* Bus width */
791 switch (ios->bus_width) {
792 case MMC_BUS_WIDTH_1:
793 bus_width = CFG_BUS_WIDTH_1;
794 break;
795 case MMC_BUS_WIDTH_4:
796 bus_width = CFG_BUS_WIDTH_4;
797 break;
798 case MMC_BUS_WIDTH_8:
799 bus_width = CFG_BUS_WIDTH_8;
800 break;
801 default:
802 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
803 ios->bus_width);
804 bus_width = CFG_BUS_WIDTH_4;
805 }
806
807 val = readl(host->regs + SD_EMMC_CFG);
808 val &= ~CFG_BUS_WIDTH_MASK;
809 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
810
811 val &= ~CFG_DDR;
812 if (meson_mmc_timing_is_ddr(ios))
813 val |= CFG_DDR;
814
815 val &= ~CFG_CHK_DS;
816 if (ios->timing == MMC_TIMING_MMC_HS400)
817 val |= CFG_CHK_DS;
818
819 err = meson_mmc_clk_set(host, ios);
820 if (err)
821 dev_err(host->dev, "Failed to set clock: %d\n,", err);
822
823 writel(val, host->regs + SD_EMMC_CFG);
824 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
825 }
826
827 static void meson_mmc_request_done(struct mmc_host *mmc,
828 struct mmc_request *mrq)
829 {
830 struct meson_host *host = mmc_priv(mmc);
831
832 host->cmd = NULL;
833 mmc_request_done(host->mmc, mrq);
834 }
835
836 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
837 {
838 struct meson_host *host = mmc_priv(mmc);
839 u32 cfg, blksz_old;
840
841 cfg = readl(host->regs + SD_EMMC_CFG);
842 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
843
844 if (!is_power_of_2(blksz))
845 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
846
847 blksz = ilog2(blksz);
848
849 /* check if block-size matches, if not update */
850 if (blksz == blksz_old)
851 return;
852
853 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
854 blksz_old, blksz);
855
856 cfg &= ~CFG_BLK_LEN_MASK;
857 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
858 writel(cfg, host->regs + SD_EMMC_CFG);
859 }
860
861 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
862 {
863 if (cmd->flags & MMC_RSP_PRESENT) {
864 if (cmd->flags & MMC_RSP_136)
865 *cmd_cfg |= CMD_CFG_RESP_128;
866 *cmd_cfg |= CMD_CFG_RESP_NUM;
867
868 if (!(cmd->flags & MMC_RSP_CRC))
869 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
870
871 if (cmd->flags & MMC_RSP_BUSY)
872 *cmd_cfg |= CMD_CFG_R1B;
873 } else {
874 *cmd_cfg |= CMD_CFG_NO_RESP;
875 }
876 }
877
878 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
879 {
880 struct meson_host *host = mmc_priv(mmc);
881 struct sd_emmc_desc *desc = host->descs;
882 struct mmc_data *data = host->cmd->data;
883 struct scatterlist *sg;
884 u32 start;
885 int i;
886
887 if (data->flags & MMC_DATA_WRITE)
888 cmd_cfg |= CMD_CFG_DATA_WR;
889
890 if (data->blocks > 1) {
891 cmd_cfg |= CMD_CFG_BLOCK_MODE;
892 meson_mmc_set_blksz(mmc, data->blksz);
893 }
894
895 for_each_sg(data->sg, sg, data->sg_count, i) {
896 unsigned int len = sg_dma_len(sg);
897
898 if (data->blocks > 1)
899 len /= data->blksz;
900
901 desc[i].cmd_cfg = cmd_cfg;
902 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
903 if (i > 0)
904 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
905 desc[i].cmd_arg = host->cmd->arg;
906 desc[i].cmd_resp = 0;
907 desc[i].cmd_data = sg_dma_address(sg);
908 }
909 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
910
911 dma_wmb(); /* ensure descriptor is written before kicked */
912 start = host->descs_dma_addr | START_DESC_BUSY;
913 writel(start, host->regs + SD_EMMC_START);
914 }
915
916 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
917 {
918 struct meson_host *host = mmc_priv(mmc);
919 struct mmc_data *data = cmd->data;
920 u32 cmd_cfg = 0, cmd_data = 0;
921 unsigned int xfer_bytes = 0;
922
923 /* Setup descriptors */
924 dma_rmb();
925
926 host->cmd = cmd;
927
928 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
929 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
930 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
931
932 meson_mmc_set_response_bits(cmd, &cmd_cfg);
933
934 /* data? */
935 if (data) {
936 data->bytes_xfered = 0;
937 cmd_cfg |= CMD_CFG_DATA_IO;
938 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
939 ilog2(meson_mmc_get_timeout_msecs(data)));
940
941 if (meson_mmc_desc_chain_mode(data)) {
942 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
943 return;
944 }
945
946 if (data->blocks > 1) {
947 cmd_cfg |= CMD_CFG_BLOCK_MODE;
948 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
949 data->blocks);
950 meson_mmc_set_blksz(mmc, data->blksz);
951 } else {
952 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
953 }
954
955 xfer_bytes = data->blksz * data->blocks;
956 if (data->flags & MMC_DATA_WRITE) {
957 cmd_cfg |= CMD_CFG_DATA_WR;
958 WARN_ON(xfer_bytes > host->bounce_buf_size);
959 sg_copy_to_buffer(data->sg, data->sg_len,
960 host->bounce_buf, xfer_bytes);
961 dma_wmb();
962 }
963
964 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
965 } else {
966 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
967 ilog2(SD_EMMC_CMD_TIMEOUT));
968 }
969
970 /* Last descriptor */
971 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
972 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
973 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
974 writel(0, host->regs + SD_EMMC_CMD_RSP);
975 wmb(); /* ensure descriptor is written before kicked */
976 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
977 }
978
979 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
980 {
981 struct meson_host *host = mmc_priv(mmc);
982 bool needs_pre_post_req = mrq->data &&
983 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
984
985 if (needs_pre_post_req) {
986 meson_mmc_get_transfer_mode(mmc, mrq);
987 if (!meson_mmc_desc_chain_mode(mrq->data))
988 needs_pre_post_req = false;
989 }
990
991 if (needs_pre_post_req)
992 meson_mmc_pre_req(mmc, mrq);
993
994 /* Stop execution */
995 writel(0, host->regs + SD_EMMC_START);
996
997 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
998
999 if (needs_pre_post_req)
1000 meson_mmc_post_req(mmc, mrq, 0);
1001 }
1002
1003 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
1004 {
1005 struct meson_host *host = mmc_priv(mmc);
1006
1007 if (cmd->flags & MMC_RSP_136) {
1008 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
1009 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
1010 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
1011 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
1012 } else if (cmd->flags & MMC_RSP_PRESENT) {
1013 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
1014 }
1015 }
1016
1017 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
1018 {
1019 struct meson_host *host = dev_id;
1020 struct mmc_command *cmd;
1021 struct mmc_data *data;
1022 u32 irq_en, status, raw_status;
1023 irqreturn_t ret = IRQ_NONE;
1024
1025 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
1026 raw_status = readl(host->regs + SD_EMMC_STATUS);
1027 status = raw_status & irq_en;
1028
1029 if (!status) {
1030 dev_dbg(host->dev,
1031 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
1032 irq_en, raw_status);
1033 return IRQ_NONE;
1034 }
1035
1036 if (WARN_ON(!host) || WARN_ON(!host->cmd))
1037 return IRQ_NONE;
1038
1039 cmd = host->cmd;
1040 data = cmd->data;
1041 cmd->error = 0;
1042 if (status & IRQ_CRC_ERR) {
1043 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
1044 cmd->error = -EILSEQ;
1045 ret = IRQ_WAKE_THREAD;
1046 goto out;
1047 }
1048
1049 if (status & IRQ_TIMEOUTS) {
1050 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
1051 cmd->error = -ETIMEDOUT;
1052 ret = IRQ_WAKE_THREAD;
1053 goto out;
1054 }
1055
1056 meson_mmc_read_resp(host->mmc, cmd);
1057
1058 if (status & IRQ_SDIO) {
1059 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
1060 ret = IRQ_HANDLED;
1061 }
1062
1063 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
1064 if (data && !cmd->error)
1065 data->bytes_xfered = data->blksz * data->blocks;
1066 if (meson_mmc_bounce_buf_read(data) ||
1067 meson_mmc_get_next_command(cmd))
1068 ret = IRQ_WAKE_THREAD;
1069 else
1070 ret = IRQ_HANDLED;
1071 }
1072
1073 out:
1074 /* ack all enabled interrupts */
1075 writel(irq_en, host->regs + SD_EMMC_STATUS);
1076
1077 if (cmd->error) {
1078 /* Stop desc in case of errors */
1079 u32 start = readl(host->regs + SD_EMMC_START);
1080
1081 start &= ~START_DESC_BUSY;
1082 writel(start, host->regs + SD_EMMC_START);
1083 }
1084
1085 if (ret == IRQ_HANDLED)
1086 meson_mmc_request_done(host->mmc, cmd->mrq);
1087
1088 return ret;
1089 }
1090
1091 static int meson_mmc_wait_desc_stop(struct meson_host *host)
1092 {
1093 int loop;
1094 u32 status;
1095
1096 /*
1097 * It may sometimes take a while for it to actually halt. Here, we
1098 * are giving it 5ms to comply
1099 *
1100 * If we don't confirm the descriptor is stopped, it might raise new
1101 * IRQs after we have called mmc_request_done() which is bad.
1102 */
1103 for (loop = 50; loop; loop--) {
1104 status = readl(host->regs + SD_EMMC_STATUS);
1105 if (status & (STATUS_BUSY | STATUS_DESC_BUSY))
1106 udelay(100);
1107 else
1108 break;
1109 }
1110
1111 if (status & (STATUS_BUSY | STATUS_DESC_BUSY)) {
1112 dev_err(host->dev, "Timed out waiting for host to stop\n");
1113 return -ETIMEDOUT;
1114 }
1115
1116 return 0;
1117 }
1118
1119 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1120 {
1121 struct meson_host *host = dev_id;
1122 struct mmc_command *next_cmd, *cmd = host->cmd;
1123 struct mmc_data *data;
1124 unsigned int xfer_bytes;
1125
1126 if (WARN_ON(!cmd))
1127 return IRQ_NONE;
1128
1129 if (cmd->error) {
1130 meson_mmc_wait_desc_stop(host);
1131 meson_mmc_request_done(host->mmc, cmd->mrq);
1132
1133 return IRQ_HANDLED;
1134 }
1135
1136 data = cmd->data;
1137 if (meson_mmc_bounce_buf_read(data)) {
1138 xfer_bytes = data->blksz * data->blocks;
1139 WARN_ON(xfer_bytes > host->bounce_buf_size);
1140 sg_copy_from_buffer(data->sg, data->sg_len,
1141 host->bounce_buf, xfer_bytes);
1142 }
1143
1144 next_cmd = meson_mmc_get_next_command(cmd);
1145 if (next_cmd)
1146 meson_mmc_start_cmd(host->mmc, next_cmd);
1147 else
1148 meson_mmc_request_done(host->mmc, cmd->mrq);
1149
1150 return IRQ_HANDLED;
1151 }
1152
1153 /*
1154 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1155 * interrupts. For now, the MMC core will use this for polling.
1156 */
1157 static int meson_mmc_get_cd(struct mmc_host *mmc)
1158 {
1159 int status = mmc_gpio_get_cd(mmc);
1160
1161 if (status == -ENOSYS)
1162 return 1; /* assume present */
1163
1164 return status;
1165 }
1166
1167 static void meson_mmc_cfg_init(struct meson_host *host)
1168 {
1169 u32 cfg = 0, adj = 0;
1170
1171 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1172 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1173 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1174 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1175
1176 /* abort chain on R/W errors */
1177 cfg |= CFG_ERR_ABORT;
1178
1179 writel(cfg, host->regs + SD_EMMC_CFG);
1180
1181 /* enable signal resampling w/o delay */
1182 adj = ADJUST_ADJ_EN;
1183 writel(adj, host->regs + host->data->adjust);
1184 }
1185
1186 static int meson_mmc_card_busy(struct mmc_host *mmc)
1187 {
1188 struct meson_host *host = mmc_priv(mmc);
1189 u32 regval;
1190
1191 regval = readl(host->regs + SD_EMMC_STATUS);
1192
1193 /* We are only interrested in lines 0 to 3, so mask the other ones */
1194 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1195 }
1196
1197 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1198 {
1199 /* vqmmc regulator is available */
1200 if (!IS_ERR(mmc->supply.vqmmc)) {
1201 /*
1202 * The usual amlogic setup uses a GPIO to switch from one
1203 * regulator to the other. While the voltage ramp up is
1204 * pretty fast, care must be taken when switching from 3.3v
1205 * to 1.8v. Please make sure the regulator framework is aware
1206 * of your own regulator constraints
1207 */
1208 return mmc_regulator_set_vqmmc(mmc, ios);
1209 }
1210
1211 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1212 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1213 return 0;
1214
1215 return -EINVAL;
1216 }
1217
1218 static const struct mmc_host_ops meson_mmc_ops = {
1219 .request = meson_mmc_request,
1220 .set_ios = meson_mmc_set_ios,
1221 .get_cd = meson_mmc_get_cd,
1222 .pre_req = meson_mmc_pre_req,
1223 .post_req = meson_mmc_post_req,
1224 .execute_tuning = meson_mmc_execute_tuning,
1225 .card_busy = meson_mmc_card_busy,
1226 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1227 };
1228
1229 static int meson_mmc_probe(struct platform_device *pdev)
1230 {
1231 struct resource *res;
1232 struct meson_host *host;
1233 struct mmc_host *mmc;
1234 int ret, irq;
1235
1236 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1237 if (!mmc)
1238 return -ENOMEM;
1239 host = mmc_priv(mmc);
1240 host->mmc = mmc;
1241 host->dev = &pdev->dev;
1242 dev_set_drvdata(&pdev->dev, host);
1243
1244 /* Get regulators and the supported OCR mask */
1245 host->vqmmc_enabled = false;
1246 ret = mmc_regulator_get_supply(mmc);
1247 if (ret)
1248 goto free_host;
1249
1250 ret = mmc_of_parse(mmc);
1251 if (ret) {
1252 if (ret != -EPROBE_DEFER)
1253 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1254 goto free_host;
1255 }
1256
1257 host->data = (struct meson_mmc_data *)
1258 of_device_get_match_data(&pdev->dev);
1259 if (!host->data) {
1260 ret = -EINVAL;
1261 goto free_host;
1262 }
1263
1264 ret = device_reset_optional(&pdev->dev);
1265 if (ret) {
1266 if (ret != -EPROBE_DEFER)
1267 dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1268
1269 return ret;
1270 }
1271
1272 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1273 host->regs = devm_ioremap_resource(&pdev->dev, res);
1274 if (IS_ERR(host->regs)) {
1275 ret = PTR_ERR(host->regs);
1276 goto free_host;
1277 }
1278
1279 irq = platform_get_irq(pdev, 0);
1280 if (irq <= 0) {
1281 dev_err(&pdev->dev, "failed to get interrupt resource.\n");
1282 ret = -EINVAL;
1283 goto free_host;
1284 }
1285
1286 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1287 if (IS_ERR(host->pinctrl)) {
1288 ret = PTR_ERR(host->pinctrl);
1289 goto free_host;
1290 }
1291
1292 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1293 PINCTRL_STATE_DEFAULT);
1294 if (IS_ERR(host->pins_default)) {
1295 ret = PTR_ERR(host->pins_default);
1296 goto free_host;
1297 }
1298
1299 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1300 "clk-gate");
1301 if (IS_ERR(host->pins_clk_gate)) {
1302 dev_warn(&pdev->dev,
1303 "can't get clk-gate pinctrl, using clk_stop bit\n");
1304 host->pins_clk_gate = NULL;
1305 }
1306
1307 host->core_clk = devm_clk_get(&pdev->dev, "core");
1308 if (IS_ERR(host->core_clk)) {
1309 ret = PTR_ERR(host->core_clk);
1310 goto free_host;
1311 }
1312
1313 ret = clk_prepare_enable(host->core_clk);
1314 if (ret)
1315 goto free_host;
1316
1317 ret = meson_mmc_clk_init(host);
1318 if (ret)
1319 goto err_core_clk;
1320
1321 /* set config to sane default */
1322 meson_mmc_cfg_init(host);
1323
1324 /* Stop execution */
1325 writel(0, host->regs + SD_EMMC_START);
1326
1327 /* clear, ack and enable interrupts */
1328 writel(0, host->regs + SD_EMMC_IRQ_EN);
1329 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1330 host->regs + SD_EMMC_STATUS);
1331 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1332 host->regs + SD_EMMC_IRQ_EN);
1333
1334 ret = devm_request_threaded_irq(&pdev->dev, irq, meson_mmc_irq,
1335 meson_mmc_irq_thread, IRQF_SHARED,
1336 NULL, host);
1337 if (ret)
1338 goto err_init_clk;
1339
1340 mmc->caps |= MMC_CAP_CMD23;
1341 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1342 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1343 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
1344 mmc->max_seg_size = mmc->max_req_size;
1345
1346 /* data bounce buffer */
1347 host->bounce_buf_size = mmc->max_req_size;
1348 host->bounce_buf =
1349 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1350 &host->bounce_dma_addr, GFP_KERNEL);
1351 if (host->bounce_buf == NULL) {
1352 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1353 ret = -ENOMEM;
1354 goto err_init_clk;
1355 }
1356
1357 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1358 &host->descs_dma_addr, GFP_KERNEL);
1359 if (!host->descs) {
1360 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1361 ret = -ENOMEM;
1362 goto err_bounce_buf;
1363 }
1364
1365 mmc->ops = &meson_mmc_ops;
1366 mmc_add_host(mmc);
1367
1368 return 0;
1369
1370 err_bounce_buf:
1371 dma_free_coherent(host->dev, host->bounce_buf_size,
1372 host->bounce_buf, host->bounce_dma_addr);
1373 err_init_clk:
1374 clk_disable_unprepare(host->mmc_clk);
1375 err_core_clk:
1376 clk_disable_unprepare(host->core_clk);
1377 free_host:
1378 mmc_free_host(mmc);
1379 return ret;
1380 }
1381
1382 static int meson_mmc_remove(struct platform_device *pdev)
1383 {
1384 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1385
1386 mmc_remove_host(host->mmc);
1387
1388 /* disable interrupts */
1389 writel(0, host->regs + SD_EMMC_IRQ_EN);
1390
1391 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1392 host->descs, host->descs_dma_addr);
1393 dma_free_coherent(host->dev, host->bounce_buf_size,
1394 host->bounce_buf, host->bounce_dma_addr);
1395
1396 clk_disable_unprepare(host->mmc_clk);
1397 clk_disable_unprepare(host->core_clk);
1398
1399 mmc_free_host(host->mmc);
1400 return 0;
1401 }
1402
1403 static const struct meson_mmc_data meson_gx_data = {
1404 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1405 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1406 .always_on = CLK_V2_ALWAYS_ON,
1407 .adjust = SD_EMMC_ADJUST,
1408 };
1409
1410 static const struct meson_mmc_data meson_axg_data = {
1411 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1412 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1413 .always_on = CLK_V3_ALWAYS_ON,
1414 .adjust = SD_EMMC_V3_ADJUST,
1415 };
1416
1417 static const struct of_device_id meson_mmc_of_match[] = {
1418 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1419 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1420 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1421 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1422 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1423 {}
1424 };
1425 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1426
1427 static struct platform_driver meson_mmc_driver = {
1428 .probe = meson_mmc_probe,
1429 .remove = meson_mmc_remove,
1430 .driver = {
1431 .name = DRIVER_NAME,
1432 .of_match_table = of_match_ptr(meson_mmc_of_match),
1433 },
1434 };
1435
1436 module_platform_driver(meson_mmc_driver);
1437
1438 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1439 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1440 MODULE_LICENSE("GPL v2");