]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/host/meson-gx-mmc.c
UBUNTU: Ubuntu-5.3.0-29.31
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / host / meson-gx-mmc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
4 *
5 * Copyright (c) 2016 BayLibre, SAS.
6 * Author: Kevin Hilman <khilman@baylibre.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/iopoll.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/ioport.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/sdio.h>
21 #include <linux/mmc/slot-gpio.h>
22 #include <linux/io.h>
23 #include <linux/clk.h>
24 #include <linux/clk-provider.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/interrupt.h>
28 #include <linux/bitfield.h>
29 #include <linux/pinctrl/consumer.h>
30
31 #define DRIVER_NAME "meson-gx-mmc"
32
33 #define SD_EMMC_CLOCK 0x0
34 #define CLK_DIV_MASK GENMASK(5, 0)
35 #define CLK_SRC_MASK GENMASK(7, 6)
36 #define CLK_CORE_PHASE_MASK GENMASK(9, 8)
37 #define CLK_TX_PHASE_MASK GENMASK(11, 10)
38 #define CLK_RX_PHASE_MASK GENMASK(13, 12)
39 #define CLK_PHASE_0 0
40 #define CLK_PHASE_180 2
41 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
42 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
43 #define CLK_V2_ALWAYS_ON BIT(24)
44
45 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
46 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
47 #define CLK_V3_ALWAYS_ON BIT(28)
48
49 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
50 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
51 #define CLK_ALWAYS_ON(h) (h->data->always_on)
52
53 #define SD_EMMC_DELAY 0x4
54 #define SD_EMMC_ADJUST 0x8
55 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
56 #define ADJUST_DS_EN BIT(15)
57 #define ADJUST_ADJ_EN BIT(13)
58
59 #define SD_EMMC_DELAY1 0x4
60 #define SD_EMMC_DELAY2 0x8
61 #define SD_EMMC_V3_ADJUST 0xc
62
63 #define SD_EMMC_CALOUT 0x10
64 #define SD_EMMC_START 0x40
65 #define START_DESC_INIT BIT(0)
66 #define START_DESC_BUSY BIT(1)
67 #define START_DESC_ADDR_MASK GENMASK(31, 2)
68
69 #define SD_EMMC_CFG 0x44
70 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
71 #define CFG_BUS_WIDTH_1 0x0
72 #define CFG_BUS_WIDTH_4 0x1
73 #define CFG_BUS_WIDTH_8 0x2
74 #define CFG_DDR BIT(2)
75 #define CFG_BLK_LEN_MASK GENMASK(7, 4)
76 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
77 #define CFG_RC_CC_MASK GENMASK(15, 12)
78 #define CFG_STOP_CLOCK BIT(22)
79 #define CFG_CLK_ALWAYS_ON BIT(18)
80 #define CFG_CHK_DS BIT(20)
81 #define CFG_AUTO_CLK BIT(23)
82 #define CFG_ERR_ABORT BIT(27)
83
84 #define SD_EMMC_STATUS 0x48
85 #define STATUS_BUSY BIT(31)
86 #define STATUS_DESC_BUSY BIT(30)
87 #define STATUS_DATI GENMASK(23, 16)
88
89 #define SD_EMMC_IRQ_EN 0x4c
90 #define IRQ_RXD_ERR_MASK GENMASK(7, 0)
91 #define IRQ_TXD_ERR BIT(8)
92 #define IRQ_DESC_ERR BIT(9)
93 #define IRQ_RESP_ERR BIT(10)
94 #define IRQ_CRC_ERR \
95 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
96 #define IRQ_RESP_TIMEOUT BIT(11)
97 #define IRQ_DESC_TIMEOUT BIT(12)
98 #define IRQ_TIMEOUTS \
99 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
100 #define IRQ_END_OF_CHAIN BIT(13)
101 #define IRQ_RESP_STATUS BIT(14)
102 #define IRQ_SDIO BIT(15)
103 #define IRQ_EN_MASK \
104 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
105 IRQ_SDIO)
106
107 #define SD_EMMC_CMD_CFG 0x50
108 #define SD_EMMC_CMD_ARG 0x54
109 #define SD_EMMC_CMD_DAT 0x58
110 #define SD_EMMC_CMD_RSP 0x5c
111 #define SD_EMMC_CMD_RSP1 0x60
112 #define SD_EMMC_CMD_RSP2 0x64
113 #define SD_EMMC_CMD_RSP3 0x68
114
115 #define SD_EMMC_RXD 0x94
116 #define SD_EMMC_TXD 0x94
117 #define SD_EMMC_LAST_REG SD_EMMC_TXD
118
119 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536
120 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
121
122 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
123 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
124 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
125 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
126 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
127 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
128
129 #define SD_EMMC_PRE_REQ_DONE BIT(0)
130 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
131
132 #define MUX_CLK_NUM_PARENTS 2
133
134 struct meson_mmc_data {
135 unsigned int tx_delay_mask;
136 unsigned int rx_delay_mask;
137 unsigned int always_on;
138 unsigned int adjust;
139 };
140
141 struct sd_emmc_desc {
142 u32 cmd_cfg;
143 u32 cmd_arg;
144 u32 cmd_data;
145 u32 cmd_resp;
146 };
147
148 struct meson_host {
149 struct device *dev;
150 struct meson_mmc_data *data;
151 struct mmc_host *mmc;
152 struct mmc_command *cmd;
153
154 void __iomem *regs;
155 struct clk *core_clk;
156 struct clk *mux_clk;
157 struct clk *mmc_clk;
158 unsigned long req_rate;
159 bool ddr;
160
161 bool dram_access_quirk;
162
163 struct pinctrl *pinctrl;
164 struct pinctrl_state *pins_default;
165 struct pinctrl_state *pins_clk_gate;
166
167 unsigned int bounce_buf_size;
168 void *bounce_buf;
169 dma_addr_t bounce_dma_addr;
170 struct sd_emmc_desc *descs;
171 dma_addr_t descs_dma_addr;
172
173 int irq;
174
175 bool vqmmc_enabled;
176 };
177
178 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
179 #define CMD_CFG_BLOCK_MODE BIT(9)
180 #define CMD_CFG_R1B BIT(10)
181 #define CMD_CFG_END_OF_CHAIN BIT(11)
182 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
183 #define CMD_CFG_NO_RESP BIT(16)
184 #define CMD_CFG_NO_CMD BIT(17)
185 #define CMD_CFG_DATA_IO BIT(18)
186 #define CMD_CFG_DATA_WR BIT(19)
187 #define CMD_CFG_RESP_NOCRC BIT(20)
188 #define CMD_CFG_RESP_128 BIT(21)
189 #define CMD_CFG_RESP_NUM BIT(22)
190 #define CMD_CFG_DATA_NUM BIT(23)
191 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
192 #define CMD_CFG_ERROR BIT(30)
193 #define CMD_CFG_OWNER BIT(31)
194
195 #define CMD_DATA_MASK GENMASK(31, 2)
196 #define CMD_DATA_BIG_ENDIAN BIT(1)
197 #define CMD_DATA_SRAM BIT(0)
198 #define CMD_RESP_MASK GENMASK(31, 1)
199 #define CMD_RESP_SRAM BIT(0)
200
201 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
202 {
203 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
204
205 if (!timeout)
206 return SD_EMMC_CMD_TIMEOUT_DATA;
207
208 timeout = roundup_pow_of_two(timeout);
209
210 return min(timeout, 32768U); /* max. 2^15 ms */
211 }
212
213 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
214 {
215 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
216 return cmd->mrq->cmd;
217 else if (mmc_op_multi(cmd->opcode) &&
218 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
219 return cmd->mrq->stop;
220 else
221 return NULL;
222 }
223
224 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
225 struct mmc_request *mrq)
226 {
227 struct meson_host *host = mmc_priv(mmc);
228 struct mmc_data *data = mrq->data;
229 struct scatterlist *sg;
230 int i;
231 bool use_desc_chain_mode = true;
232
233 /*
234 * When Controller DMA cannot directly access DDR memory, disable
235 * support for Chain Mode to directly use the internal SRAM using
236 * the bounce buffer mode.
237 */
238 if (host->dram_access_quirk)
239 return;
240
241 /*
242 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
243 * reported. For some strange reason this occurs in descriptor
244 * chain mode only. So let's fall back to bounce buffer mode
245 * for command SD_IO_RW_EXTENDED.
246 */
247 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
248 return;
249
250 for_each_sg(data->sg, sg, data->sg_len, i)
251 /* check for 8 byte alignment */
252 if (sg->offset & 7) {
253 WARN_ONCE(1, "unaligned scatterlist buffer\n");
254 use_desc_chain_mode = false;
255 break;
256 }
257
258 if (use_desc_chain_mode)
259 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
260 }
261
262 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
263 {
264 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
265 }
266
267 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
268 {
269 return data && data->flags & MMC_DATA_READ &&
270 !meson_mmc_desc_chain_mode(data);
271 }
272
273 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
274 {
275 struct mmc_data *data = mrq->data;
276
277 if (!data)
278 return;
279
280 meson_mmc_get_transfer_mode(mmc, mrq);
281 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
282
283 if (!meson_mmc_desc_chain_mode(data))
284 return;
285
286 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
287 mmc_get_dma_dir(data));
288 if (!data->sg_count)
289 dev_err(mmc_dev(mmc), "dma_map_sg failed");
290 }
291
292 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
293 int err)
294 {
295 struct mmc_data *data = mrq->data;
296
297 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
298 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
299 mmc_get_dma_dir(data));
300 }
301
302 /*
303 * Gating the clock on this controller is tricky. It seems the mmc clock
304 * is also used by the controller. It may crash during some operation if the
305 * clock is stopped. The safest thing to do, whenever possible, is to keep
306 * clock running at stop it at the pad using the pinmux.
307 */
308 static void meson_mmc_clk_gate(struct meson_host *host)
309 {
310 u32 cfg;
311
312 if (host->pins_clk_gate) {
313 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
314 } else {
315 /*
316 * If the pinmux is not provided - default to the classic and
317 * unsafe method
318 */
319 cfg = readl(host->regs + SD_EMMC_CFG);
320 cfg |= CFG_STOP_CLOCK;
321 writel(cfg, host->regs + SD_EMMC_CFG);
322 }
323 }
324
325 static void meson_mmc_clk_ungate(struct meson_host *host)
326 {
327 u32 cfg;
328
329 if (host->pins_clk_gate)
330 pinctrl_select_state(host->pinctrl, host->pins_default);
331
332 /* Make sure the clock is not stopped in the controller */
333 cfg = readl(host->regs + SD_EMMC_CFG);
334 cfg &= ~CFG_STOP_CLOCK;
335 writel(cfg, host->regs + SD_EMMC_CFG);
336 }
337
338 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
339 bool ddr)
340 {
341 struct mmc_host *mmc = host->mmc;
342 int ret;
343 u32 cfg;
344
345 /* Same request - bail-out */
346 if (host->ddr == ddr && host->req_rate == rate)
347 return 0;
348
349 /* stop clock */
350 meson_mmc_clk_gate(host);
351 host->req_rate = 0;
352 mmc->actual_clock = 0;
353
354 /* return with clock being stopped */
355 if (!rate)
356 return 0;
357
358 /* Stop the clock during rate change to avoid glitches */
359 cfg = readl(host->regs + SD_EMMC_CFG);
360 cfg |= CFG_STOP_CLOCK;
361 writel(cfg, host->regs + SD_EMMC_CFG);
362
363 if (ddr) {
364 /* DDR modes require higher module clock */
365 rate <<= 1;
366 cfg |= CFG_DDR;
367 } else {
368 cfg &= ~CFG_DDR;
369 }
370 writel(cfg, host->regs + SD_EMMC_CFG);
371 host->ddr = ddr;
372
373 ret = clk_set_rate(host->mmc_clk, rate);
374 if (ret) {
375 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
376 rate, ret);
377 return ret;
378 }
379
380 host->req_rate = rate;
381 mmc->actual_clock = clk_get_rate(host->mmc_clk);
382
383 /* We should report the real output frequency of the controller */
384 if (ddr) {
385 host->req_rate >>= 1;
386 mmc->actual_clock >>= 1;
387 }
388
389 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
390 if (rate != mmc->actual_clock)
391 dev_dbg(host->dev, "requested rate was %lu\n", rate);
392
393 /* (re)start clock */
394 meson_mmc_clk_ungate(host);
395
396 return 0;
397 }
398
399 /*
400 * The SD/eMMC IP block has an internal mux and divider used for
401 * generating the MMC clock. Use the clock framework to create and
402 * manage these clocks.
403 */
404 static int meson_mmc_clk_init(struct meson_host *host)
405 {
406 struct clk_init_data init;
407 struct clk_mux *mux;
408 struct clk_divider *div;
409 char clk_name[32];
410 int i, ret = 0;
411 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
412 const char *clk_parent[1];
413 u32 clk_reg;
414
415 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
416 clk_reg = CLK_ALWAYS_ON(host);
417 clk_reg |= CLK_DIV_MASK;
418 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
419 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
420 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
421 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
422
423 /* get the mux parents */
424 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
425 struct clk *clk;
426 char name[16];
427
428 snprintf(name, sizeof(name), "clkin%d", i);
429 clk = devm_clk_get(host->dev, name);
430 if (IS_ERR(clk)) {
431 if (clk != ERR_PTR(-EPROBE_DEFER))
432 dev_err(host->dev, "Missing clock %s\n", name);
433 return PTR_ERR(clk);
434 }
435
436 mux_parent_names[i] = __clk_get_name(clk);
437 }
438
439 /* create the mux */
440 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
441 if (!mux)
442 return -ENOMEM;
443
444 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
445 init.name = clk_name;
446 init.ops = &clk_mux_ops;
447 init.flags = 0;
448 init.parent_names = mux_parent_names;
449 init.num_parents = MUX_CLK_NUM_PARENTS;
450
451 mux->reg = host->regs + SD_EMMC_CLOCK;
452 mux->shift = __ffs(CLK_SRC_MASK);
453 mux->mask = CLK_SRC_MASK >> mux->shift;
454 mux->hw.init = &init;
455
456 host->mux_clk = devm_clk_register(host->dev, &mux->hw);
457 if (WARN_ON(IS_ERR(host->mux_clk)))
458 return PTR_ERR(host->mux_clk);
459
460 /* create the divider */
461 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
462 if (!div)
463 return -ENOMEM;
464
465 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
466 init.name = clk_name;
467 init.ops = &clk_divider_ops;
468 init.flags = CLK_SET_RATE_PARENT;
469 clk_parent[0] = __clk_get_name(host->mux_clk);
470 init.parent_names = clk_parent;
471 init.num_parents = 1;
472
473 div->reg = host->regs + SD_EMMC_CLOCK;
474 div->shift = __ffs(CLK_DIV_MASK);
475 div->width = __builtin_popcountl(CLK_DIV_MASK);
476 div->hw.init = &init;
477 div->flags = CLK_DIVIDER_ONE_BASED;
478
479 host->mmc_clk = devm_clk_register(host->dev, &div->hw);
480 if (WARN_ON(IS_ERR(host->mmc_clk)))
481 return PTR_ERR(host->mmc_clk);
482
483 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
484 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
485 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
486 if (ret)
487 return ret;
488
489 return clk_prepare_enable(host->mmc_clk);
490 }
491
492 static void meson_mmc_disable_resampling(struct meson_host *host)
493 {
494 unsigned int val = readl(host->regs + host->data->adjust);
495
496 val &= ~ADJUST_ADJ_EN;
497 writel(val, host->regs + host->data->adjust);
498 }
499
500 static void meson_mmc_reset_resampling(struct meson_host *host)
501 {
502 unsigned int val;
503
504 meson_mmc_disable_resampling(host);
505
506 val = readl(host->regs + host->data->adjust);
507 val &= ~ADJUST_ADJ_DELAY_MASK;
508 writel(val, host->regs + host->data->adjust);
509 }
510
511 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
512 {
513 struct meson_host *host = mmc_priv(mmc);
514 unsigned int val, dly, max_dly, i;
515 int ret;
516
517 /* Resampling is done using the source clock */
518 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
519 clk_get_rate(host->mmc_clk));
520
521 val = readl(host->regs + host->data->adjust);
522 val |= ADJUST_ADJ_EN;
523 writel(val, host->regs + host->data->adjust);
524
525 if (mmc->doing_retune)
526 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
527 else
528 dly = 0;
529
530 for (i = 0; i < max_dly; i++) {
531 val &= ~ADJUST_ADJ_DELAY_MASK;
532 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
533 writel(val, host->regs + host->data->adjust);
534
535 ret = mmc_send_tuning(mmc, opcode, NULL);
536 if (!ret) {
537 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
538 (dly + i) % max_dly);
539 return 0;
540 }
541 }
542
543 meson_mmc_reset_resampling(host);
544 return -EIO;
545 }
546
547 static int meson_mmc_prepare_ios_clock(struct meson_host *host,
548 struct mmc_ios *ios)
549 {
550 bool ddr;
551
552 switch (ios->timing) {
553 case MMC_TIMING_MMC_DDR52:
554 case MMC_TIMING_UHS_DDR50:
555 ddr = true;
556 break;
557
558 default:
559 ddr = false;
560 break;
561 }
562
563 return meson_mmc_clk_set(host, ios->clock, ddr);
564 }
565
566 static void meson_mmc_check_resampling(struct meson_host *host,
567 struct mmc_ios *ios)
568 {
569 switch (ios->timing) {
570 case MMC_TIMING_LEGACY:
571 case MMC_TIMING_MMC_HS:
572 case MMC_TIMING_SD_HS:
573 case MMC_TIMING_MMC_DDR52:
574 meson_mmc_disable_resampling(host);
575 break;
576 }
577 }
578
579 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
580 {
581 struct meson_host *host = mmc_priv(mmc);
582 u32 bus_width, val;
583 int err;
584
585 /*
586 * GPIO regulator, only controls switching between 1v8 and
587 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
588 */
589 switch (ios->power_mode) {
590 case MMC_POWER_OFF:
591 if (!IS_ERR(mmc->supply.vmmc))
592 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
593
594 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
595 regulator_disable(mmc->supply.vqmmc);
596 host->vqmmc_enabled = false;
597 }
598
599 break;
600
601 case MMC_POWER_UP:
602 if (!IS_ERR(mmc->supply.vmmc))
603 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
604
605 break;
606
607 case MMC_POWER_ON:
608 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
609 int ret = regulator_enable(mmc->supply.vqmmc);
610
611 if (ret < 0)
612 dev_err(host->dev,
613 "failed to enable vqmmc regulator\n");
614 else
615 host->vqmmc_enabled = true;
616 }
617
618 break;
619 }
620
621 /* Bus width */
622 switch (ios->bus_width) {
623 case MMC_BUS_WIDTH_1:
624 bus_width = CFG_BUS_WIDTH_1;
625 break;
626 case MMC_BUS_WIDTH_4:
627 bus_width = CFG_BUS_WIDTH_4;
628 break;
629 case MMC_BUS_WIDTH_8:
630 bus_width = CFG_BUS_WIDTH_8;
631 break;
632 default:
633 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
634 ios->bus_width);
635 bus_width = CFG_BUS_WIDTH_4;
636 }
637
638 val = readl(host->regs + SD_EMMC_CFG);
639 val &= ~CFG_BUS_WIDTH_MASK;
640 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
641 writel(val, host->regs + SD_EMMC_CFG);
642
643 meson_mmc_check_resampling(host, ios);
644 err = meson_mmc_prepare_ios_clock(host, ios);
645 if (err)
646 dev_err(host->dev, "Failed to set clock: %d\n,", err);
647
648 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
649 }
650
651 static void meson_mmc_request_done(struct mmc_host *mmc,
652 struct mmc_request *mrq)
653 {
654 struct meson_host *host = mmc_priv(mmc);
655
656 host->cmd = NULL;
657 mmc_request_done(host->mmc, mrq);
658 }
659
660 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
661 {
662 struct meson_host *host = mmc_priv(mmc);
663 u32 cfg, blksz_old;
664
665 cfg = readl(host->regs + SD_EMMC_CFG);
666 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
667
668 if (!is_power_of_2(blksz))
669 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
670
671 blksz = ilog2(blksz);
672
673 /* check if block-size matches, if not update */
674 if (blksz == blksz_old)
675 return;
676
677 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
678 blksz_old, blksz);
679
680 cfg &= ~CFG_BLK_LEN_MASK;
681 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
682 writel(cfg, host->regs + SD_EMMC_CFG);
683 }
684
685 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
686 {
687 if (cmd->flags & MMC_RSP_PRESENT) {
688 if (cmd->flags & MMC_RSP_136)
689 *cmd_cfg |= CMD_CFG_RESP_128;
690 *cmd_cfg |= CMD_CFG_RESP_NUM;
691
692 if (!(cmd->flags & MMC_RSP_CRC))
693 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
694
695 if (cmd->flags & MMC_RSP_BUSY)
696 *cmd_cfg |= CMD_CFG_R1B;
697 } else {
698 *cmd_cfg |= CMD_CFG_NO_RESP;
699 }
700 }
701
702 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
703 {
704 struct meson_host *host = mmc_priv(mmc);
705 struct sd_emmc_desc *desc = host->descs;
706 struct mmc_data *data = host->cmd->data;
707 struct scatterlist *sg;
708 u32 start;
709 int i;
710
711 if (data->flags & MMC_DATA_WRITE)
712 cmd_cfg |= CMD_CFG_DATA_WR;
713
714 if (data->blocks > 1) {
715 cmd_cfg |= CMD_CFG_BLOCK_MODE;
716 meson_mmc_set_blksz(mmc, data->blksz);
717 }
718
719 for_each_sg(data->sg, sg, data->sg_count, i) {
720 unsigned int len = sg_dma_len(sg);
721
722 if (data->blocks > 1)
723 len /= data->blksz;
724
725 desc[i].cmd_cfg = cmd_cfg;
726 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
727 if (i > 0)
728 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
729 desc[i].cmd_arg = host->cmd->arg;
730 desc[i].cmd_resp = 0;
731 desc[i].cmd_data = sg_dma_address(sg);
732 }
733 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
734
735 dma_wmb(); /* ensure descriptor is written before kicked */
736 start = host->descs_dma_addr | START_DESC_BUSY;
737 writel(start, host->regs + SD_EMMC_START);
738 }
739
740 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
741 {
742 struct meson_host *host = mmc_priv(mmc);
743 struct mmc_data *data = cmd->data;
744 u32 cmd_cfg = 0, cmd_data = 0;
745 unsigned int xfer_bytes = 0;
746
747 /* Setup descriptors */
748 dma_rmb();
749
750 host->cmd = cmd;
751
752 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
753 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
754 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
755
756 meson_mmc_set_response_bits(cmd, &cmd_cfg);
757
758 /* data? */
759 if (data) {
760 data->bytes_xfered = 0;
761 cmd_cfg |= CMD_CFG_DATA_IO;
762 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
763 ilog2(meson_mmc_get_timeout_msecs(data)));
764
765 if (meson_mmc_desc_chain_mode(data)) {
766 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
767 return;
768 }
769
770 if (data->blocks > 1) {
771 cmd_cfg |= CMD_CFG_BLOCK_MODE;
772 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
773 data->blocks);
774 meson_mmc_set_blksz(mmc, data->blksz);
775 } else {
776 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
777 }
778
779 xfer_bytes = data->blksz * data->blocks;
780 if (data->flags & MMC_DATA_WRITE) {
781 cmd_cfg |= CMD_CFG_DATA_WR;
782 WARN_ON(xfer_bytes > host->bounce_buf_size);
783 sg_copy_to_buffer(data->sg, data->sg_len,
784 host->bounce_buf, xfer_bytes);
785 dma_wmb();
786 }
787
788 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
789 } else {
790 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
791 ilog2(SD_EMMC_CMD_TIMEOUT));
792 }
793
794 /* Last descriptor */
795 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
796 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
797 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
798 writel(0, host->regs + SD_EMMC_CMD_RSP);
799 wmb(); /* ensure descriptor is written before kicked */
800 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
801 }
802
803 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
804 {
805 struct meson_host *host = mmc_priv(mmc);
806 bool needs_pre_post_req = mrq->data &&
807 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
808
809 if (needs_pre_post_req) {
810 meson_mmc_get_transfer_mode(mmc, mrq);
811 if (!meson_mmc_desc_chain_mode(mrq->data))
812 needs_pre_post_req = false;
813 }
814
815 if (needs_pre_post_req)
816 meson_mmc_pre_req(mmc, mrq);
817
818 /* Stop execution */
819 writel(0, host->regs + SD_EMMC_START);
820
821 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
822
823 if (needs_pre_post_req)
824 meson_mmc_post_req(mmc, mrq, 0);
825 }
826
827 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
828 {
829 struct meson_host *host = mmc_priv(mmc);
830
831 if (cmd->flags & MMC_RSP_136) {
832 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
833 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
834 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
835 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
836 } else if (cmd->flags & MMC_RSP_PRESENT) {
837 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
838 }
839 }
840
841 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
842 {
843 struct meson_host *host = dev_id;
844 struct mmc_command *cmd;
845 struct mmc_data *data;
846 u32 irq_en, status, raw_status;
847 irqreturn_t ret = IRQ_NONE;
848
849 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
850 raw_status = readl(host->regs + SD_EMMC_STATUS);
851 status = raw_status & irq_en;
852
853 if (!status) {
854 dev_dbg(host->dev,
855 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
856 irq_en, raw_status);
857 return IRQ_NONE;
858 }
859
860 if (WARN_ON(!host) || WARN_ON(!host->cmd))
861 return IRQ_NONE;
862
863 /* ack all raised interrupts */
864 writel(status, host->regs + SD_EMMC_STATUS);
865
866 cmd = host->cmd;
867 data = cmd->data;
868 cmd->error = 0;
869 if (status & IRQ_CRC_ERR) {
870 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
871 cmd->error = -EILSEQ;
872 ret = IRQ_WAKE_THREAD;
873 goto out;
874 }
875
876 if (status & IRQ_TIMEOUTS) {
877 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
878 cmd->error = -ETIMEDOUT;
879 ret = IRQ_WAKE_THREAD;
880 goto out;
881 }
882
883 meson_mmc_read_resp(host->mmc, cmd);
884
885 if (status & IRQ_SDIO) {
886 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
887 ret = IRQ_HANDLED;
888 }
889
890 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
891 if (data && !cmd->error)
892 data->bytes_xfered = data->blksz * data->blocks;
893 if (meson_mmc_bounce_buf_read(data) ||
894 meson_mmc_get_next_command(cmd))
895 ret = IRQ_WAKE_THREAD;
896 else
897 ret = IRQ_HANDLED;
898 }
899
900 out:
901 if (cmd->error) {
902 /* Stop desc in case of errors */
903 u32 start = readl(host->regs + SD_EMMC_START);
904
905 start &= ~START_DESC_BUSY;
906 writel(start, host->regs + SD_EMMC_START);
907 }
908
909 if (ret == IRQ_HANDLED)
910 meson_mmc_request_done(host->mmc, cmd->mrq);
911
912 return ret;
913 }
914
915 static int meson_mmc_wait_desc_stop(struct meson_host *host)
916 {
917 u32 status;
918
919 /*
920 * It may sometimes take a while for it to actually halt. Here, we
921 * are giving it 5ms to comply
922 *
923 * If we don't confirm the descriptor is stopped, it might raise new
924 * IRQs after we have called mmc_request_done() which is bad.
925 */
926
927 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
928 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
929 100, 5000);
930 }
931
932 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
933 {
934 struct meson_host *host = dev_id;
935 struct mmc_command *next_cmd, *cmd = host->cmd;
936 struct mmc_data *data;
937 unsigned int xfer_bytes;
938
939 if (WARN_ON(!cmd))
940 return IRQ_NONE;
941
942 if (cmd->error) {
943 meson_mmc_wait_desc_stop(host);
944 meson_mmc_request_done(host->mmc, cmd->mrq);
945
946 return IRQ_HANDLED;
947 }
948
949 data = cmd->data;
950 if (meson_mmc_bounce_buf_read(data)) {
951 xfer_bytes = data->blksz * data->blocks;
952 WARN_ON(xfer_bytes > host->bounce_buf_size);
953 sg_copy_from_buffer(data->sg, data->sg_len,
954 host->bounce_buf, xfer_bytes);
955 }
956
957 next_cmd = meson_mmc_get_next_command(cmd);
958 if (next_cmd)
959 meson_mmc_start_cmd(host->mmc, next_cmd);
960 else
961 meson_mmc_request_done(host->mmc, cmd->mrq);
962
963 return IRQ_HANDLED;
964 }
965
966 /*
967 * NOTE: we only need this until the GPIO/pinctrl driver can handle
968 * interrupts. For now, the MMC core will use this for polling.
969 */
970 static int meson_mmc_get_cd(struct mmc_host *mmc)
971 {
972 int status = mmc_gpio_get_cd(mmc);
973
974 if (status == -ENOSYS)
975 return 1; /* assume present */
976
977 return status;
978 }
979
980 static void meson_mmc_cfg_init(struct meson_host *host)
981 {
982 u32 cfg = 0;
983
984 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
985 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
986 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
987 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
988
989 /* abort chain on R/W errors */
990 cfg |= CFG_ERR_ABORT;
991
992 writel(cfg, host->regs + SD_EMMC_CFG);
993 }
994
995 static int meson_mmc_card_busy(struct mmc_host *mmc)
996 {
997 struct meson_host *host = mmc_priv(mmc);
998 u32 regval;
999
1000 regval = readl(host->regs + SD_EMMC_STATUS);
1001
1002 /* We are only interrested in lines 0 to 3, so mask the other ones */
1003 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1004 }
1005
1006 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1007 {
1008 /* vqmmc regulator is available */
1009 if (!IS_ERR(mmc->supply.vqmmc)) {
1010 /*
1011 * The usual amlogic setup uses a GPIO to switch from one
1012 * regulator to the other. While the voltage ramp up is
1013 * pretty fast, care must be taken when switching from 3.3v
1014 * to 1.8v. Please make sure the regulator framework is aware
1015 * of your own regulator constraints
1016 */
1017 return mmc_regulator_set_vqmmc(mmc, ios);
1018 }
1019
1020 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1021 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1022 return 0;
1023
1024 return -EINVAL;
1025 }
1026
1027 static const struct mmc_host_ops meson_mmc_ops = {
1028 .request = meson_mmc_request,
1029 .set_ios = meson_mmc_set_ios,
1030 .get_cd = meson_mmc_get_cd,
1031 .pre_req = meson_mmc_pre_req,
1032 .post_req = meson_mmc_post_req,
1033 .execute_tuning = meson_mmc_resampling_tuning,
1034 .card_busy = meson_mmc_card_busy,
1035 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1036 };
1037
1038 static int meson_mmc_probe(struct platform_device *pdev)
1039 {
1040 struct resource *res;
1041 struct meson_host *host;
1042 struct mmc_host *mmc;
1043 int ret;
1044
1045 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1046 if (!mmc)
1047 return -ENOMEM;
1048 host = mmc_priv(mmc);
1049 host->mmc = mmc;
1050 host->dev = &pdev->dev;
1051 dev_set_drvdata(&pdev->dev, host);
1052
1053 /* The G12A SDIO Controller needs an SRAM bounce buffer */
1054 host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1055 "amlogic,dram-access-quirk");
1056
1057 /* Get regulators and the supported OCR mask */
1058 host->vqmmc_enabled = false;
1059 ret = mmc_regulator_get_supply(mmc);
1060 if (ret)
1061 goto free_host;
1062
1063 ret = mmc_of_parse(mmc);
1064 if (ret) {
1065 if (ret != -EPROBE_DEFER)
1066 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1067 goto free_host;
1068 }
1069
1070 host->data = (struct meson_mmc_data *)
1071 of_device_get_match_data(&pdev->dev);
1072 if (!host->data) {
1073 ret = -EINVAL;
1074 goto free_host;
1075 }
1076
1077 ret = device_reset_optional(&pdev->dev);
1078 if (ret) {
1079 if (ret != -EPROBE_DEFER)
1080 dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1081
1082 return ret;
1083 }
1084
1085 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1086 host->regs = devm_ioremap_resource(&pdev->dev, res);
1087 if (IS_ERR(host->regs)) {
1088 ret = PTR_ERR(host->regs);
1089 goto free_host;
1090 }
1091
1092 host->irq = platform_get_irq(pdev, 0);
1093 if (host->irq <= 0) {
1094 dev_err(&pdev->dev, "failed to get interrupt resource.\n");
1095 ret = -EINVAL;
1096 goto free_host;
1097 }
1098
1099 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1100 if (IS_ERR(host->pinctrl)) {
1101 ret = PTR_ERR(host->pinctrl);
1102 goto free_host;
1103 }
1104
1105 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1106 PINCTRL_STATE_DEFAULT);
1107 if (IS_ERR(host->pins_default)) {
1108 ret = PTR_ERR(host->pins_default);
1109 goto free_host;
1110 }
1111
1112 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1113 "clk-gate");
1114 if (IS_ERR(host->pins_clk_gate)) {
1115 dev_warn(&pdev->dev,
1116 "can't get clk-gate pinctrl, using clk_stop bit\n");
1117 host->pins_clk_gate = NULL;
1118 }
1119
1120 host->core_clk = devm_clk_get(&pdev->dev, "core");
1121 if (IS_ERR(host->core_clk)) {
1122 ret = PTR_ERR(host->core_clk);
1123 goto free_host;
1124 }
1125
1126 ret = clk_prepare_enable(host->core_clk);
1127 if (ret)
1128 goto free_host;
1129
1130 ret = meson_mmc_clk_init(host);
1131 if (ret)
1132 goto err_core_clk;
1133
1134 /* set config to sane default */
1135 meson_mmc_cfg_init(host);
1136
1137 /* Stop execution */
1138 writel(0, host->regs + SD_EMMC_START);
1139
1140 /* clear, ack and enable interrupts */
1141 writel(0, host->regs + SD_EMMC_IRQ_EN);
1142 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1143 host->regs + SD_EMMC_STATUS);
1144 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1145 host->regs + SD_EMMC_IRQ_EN);
1146
1147 ret = request_threaded_irq(host->irq, meson_mmc_irq,
1148 meson_mmc_irq_thread, IRQF_ONESHOT,
1149 dev_name(&pdev->dev), host);
1150 if (ret)
1151 goto err_init_clk;
1152
1153 mmc->caps |= MMC_CAP_CMD23;
1154 if (host->dram_access_quirk) {
1155 /* Limit to the available sram memory */
1156 mmc->max_segs = SD_EMMC_SRAM_DATA_BUF_LEN / mmc->max_blk_size;
1157 mmc->max_blk_count = mmc->max_segs;
1158 } else {
1159 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1160 mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1161 sizeof(struct sd_emmc_desc);
1162 }
1163 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1164 mmc->max_seg_size = mmc->max_req_size;
1165
1166 /*
1167 * At the moment, we don't know how to reliably enable HS400.
1168 * From the different datasheets, it is not even clear if this mode
1169 * is officially supported by any of the SoCs
1170 */
1171 mmc->caps2 &= ~MMC_CAP2_HS400;
1172
1173 if (host->dram_access_quirk) {
1174 /*
1175 * The MMC Controller embeds 1,5KiB of internal SRAM
1176 * that can be used to be used as bounce buffer.
1177 * In the case of the G12A SDIO controller, use these
1178 * instead of the DDR memory
1179 */
1180 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1181 host->bounce_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1182 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1183 } else {
1184 /* data bounce buffer */
1185 host->bounce_buf_size = mmc->max_req_size;
1186 host->bounce_buf =
1187 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1188 &host->bounce_dma_addr, GFP_KERNEL);
1189 if (host->bounce_buf == NULL) {
1190 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1191 ret = -ENOMEM;
1192 goto err_free_irq;
1193 }
1194 }
1195
1196 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1197 &host->descs_dma_addr, GFP_KERNEL);
1198 if (!host->descs) {
1199 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1200 ret = -ENOMEM;
1201 goto err_bounce_buf;
1202 }
1203
1204 mmc->ops = &meson_mmc_ops;
1205 mmc_add_host(mmc);
1206
1207 return 0;
1208
1209 err_bounce_buf:
1210 if (!host->dram_access_quirk)
1211 dma_free_coherent(host->dev, host->bounce_buf_size,
1212 host->bounce_buf, host->bounce_dma_addr);
1213 err_free_irq:
1214 free_irq(host->irq, host);
1215 err_init_clk:
1216 clk_disable_unprepare(host->mmc_clk);
1217 err_core_clk:
1218 clk_disable_unprepare(host->core_clk);
1219 free_host:
1220 mmc_free_host(mmc);
1221 return ret;
1222 }
1223
1224 static int meson_mmc_remove(struct platform_device *pdev)
1225 {
1226 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1227
1228 mmc_remove_host(host->mmc);
1229
1230 /* disable interrupts */
1231 writel(0, host->regs + SD_EMMC_IRQ_EN);
1232 free_irq(host->irq, host);
1233
1234 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1235 host->descs, host->descs_dma_addr);
1236
1237 if (!host->dram_access_quirk)
1238 dma_free_coherent(host->dev, host->bounce_buf_size,
1239 host->bounce_buf, host->bounce_dma_addr);
1240
1241 clk_disable_unprepare(host->mmc_clk);
1242 clk_disable_unprepare(host->core_clk);
1243
1244 mmc_free_host(host->mmc);
1245 return 0;
1246 }
1247
1248 static const struct meson_mmc_data meson_gx_data = {
1249 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1250 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1251 .always_on = CLK_V2_ALWAYS_ON,
1252 .adjust = SD_EMMC_ADJUST,
1253 };
1254
1255 static const struct meson_mmc_data meson_axg_data = {
1256 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1257 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1258 .always_on = CLK_V3_ALWAYS_ON,
1259 .adjust = SD_EMMC_V3_ADJUST,
1260 };
1261
1262 static const struct of_device_id meson_mmc_of_match[] = {
1263 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1264 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1265 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1266 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1267 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1268 {}
1269 };
1270 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1271
1272 static struct platform_driver meson_mmc_driver = {
1273 .probe = meson_mmc_probe,
1274 .remove = meson_mmc_remove,
1275 .driver = {
1276 .name = DRIVER_NAME,
1277 .of_match_table = of_match_ptr(meson_mmc_of_match),
1278 },
1279 };
1280
1281 module_platform_driver(meson_mmc_driver);
1282
1283 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1284 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1285 MODULE_LICENSE("GPL v2");