]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/host/meson-gx-mmc.c
Merge tag 'v5.0-rockchip-dts64fixes-1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / host / meson-gx-mmc.c
1 /*
2 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
3 *
4 * Copyright (c) 2016 BayLibre, SAS.
5 * Author: Kevin Hilman <khilman@baylibre.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution
19 * in the file called COPYING.
20 */
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/ioport.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/mmc/slot-gpio.h>
34 #include <linux/io.h>
35 #include <linux/clk.h>
36 #include <linux/clk-provider.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/interrupt.h>
40 #include <linux/bitfield.h>
41 #include <linux/pinctrl/consumer.h>
42
43 #define DRIVER_NAME "meson-gx-mmc"
44
45 #define SD_EMMC_CLOCK 0x0
46 #define CLK_DIV_MASK GENMASK(5, 0)
47 #define CLK_SRC_MASK GENMASK(7, 6)
48 #define CLK_CORE_PHASE_MASK GENMASK(9, 8)
49 #define CLK_TX_PHASE_MASK GENMASK(11, 10)
50 #define CLK_RX_PHASE_MASK GENMASK(13, 12)
51 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
52 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
53 #define CLK_V2_ALWAYS_ON BIT(24)
54
55 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
56 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
57 #define CLK_V3_ALWAYS_ON BIT(28)
58
59 #define CLK_DELAY_STEP_PS 200
60 #define CLK_PHASE_STEP 30
61 #define CLK_PHASE_POINT_NUM (360 / CLK_PHASE_STEP)
62
63 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask)
64 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask)
65 #define CLK_ALWAYS_ON(h) (h->data->always_on)
66
67 #define SD_EMMC_DELAY 0x4
68 #define SD_EMMC_ADJUST 0x8
69 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
70 #define ADJUST_DS_EN BIT(15)
71 #define ADJUST_ADJ_EN BIT(13)
72
73 #define SD_EMMC_DELAY1 0x4
74 #define SD_EMMC_DELAY2 0x8
75 #define SD_EMMC_V3_ADJUST 0xc
76
77 #define SD_EMMC_CALOUT 0x10
78 #define SD_EMMC_START 0x40
79 #define START_DESC_INIT BIT(0)
80 #define START_DESC_BUSY BIT(1)
81 #define START_DESC_ADDR_MASK GENMASK(31, 2)
82
83 #define SD_EMMC_CFG 0x44
84 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0)
85 #define CFG_BUS_WIDTH_1 0x0
86 #define CFG_BUS_WIDTH_4 0x1
87 #define CFG_BUS_WIDTH_8 0x2
88 #define CFG_DDR BIT(2)
89 #define CFG_BLK_LEN_MASK GENMASK(7, 4)
90 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
91 #define CFG_RC_CC_MASK GENMASK(15, 12)
92 #define CFG_STOP_CLOCK BIT(22)
93 #define CFG_CLK_ALWAYS_ON BIT(18)
94 #define CFG_CHK_DS BIT(20)
95 #define CFG_AUTO_CLK BIT(23)
96 #define CFG_ERR_ABORT BIT(27)
97
98 #define SD_EMMC_STATUS 0x48
99 #define STATUS_BUSY BIT(31)
100 #define STATUS_DESC_BUSY BIT(30)
101 #define STATUS_DATI GENMASK(23, 16)
102
103 #define SD_EMMC_IRQ_EN 0x4c
104 #define IRQ_RXD_ERR_MASK GENMASK(7, 0)
105 #define IRQ_TXD_ERR BIT(8)
106 #define IRQ_DESC_ERR BIT(9)
107 #define IRQ_RESP_ERR BIT(10)
108 #define IRQ_CRC_ERR \
109 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
110 #define IRQ_RESP_TIMEOUT BIT(11)
111 #define IRQ_DESC_TIMEOUT BIT(12)
112 #define IRQ_TIMEOUTS \
113 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
114 #define IRQ_END_OF_CHAIN BIT(13)
115 #define IRQ_RESP_STATUS BIT(14)
116 #define IRQ_SDIO BIT(15)
117 #define IRQ_EN_MASK \
118 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
119 IRQ_SDIO)
120
121 #define SD_EMMC_CMD_CFG 0x50
122 #define SD_EMMC_CMD_ARG 0x54
123 #define SD_EMMC_CMD_DAT 0x58
124 #define SD_EMMC_CMD_RSP 0x5c
125 #define SD_EMMC_CMD_RSP1 0x60
126 #define SD_EMMC_CMD_RSP2 0x64
127 #define SD_EMMC_CMD_RSP3 0x68
128
129 #define SD_EMMC_RXD 0x94
130 #define SD_EMMC_TXD 0x94
131 #define SD_EMMC_LAST_REG SD_EMMC_TXD
132
133 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
134 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
135 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
136 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
137 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
138 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
139
140 #define SD_EMMC_PRE_REQ_DONE BIT(0)
141 #define SD_EMMC_DESC_CHAIN_MODE BIT(1)
142
143 #define MUX_CLK_NUM_PARENTS 2
144
145 struct meson_mmc_data {
146 unsigned int tx_delay_mask;
147 unsigned int rx_delay_mask;
148 unsigned int always_on;
149 unsigned int adjust;
150 };
151
152 struct sd_emmc_desc {
153 u32 cmd_cfg;
154 u32 cmd_arg;
155 u32 cmd_data;
156 u32 cmd_resp;
157 };
158
159 struct meson_host {
160 struct device *dev;
161 struct meson_mmc_data *data;
162 struct mmc_host *mmc;
163 struct mmc_command *cmd;
164
165 void __iomem *regs;
166 struct clk *core_clk;
167 struct clk *mmc_clk;
168 struct clk *rx_clk;
169 struct clk *tx_clk;
170 unsigned long req_rate;
171
172 struct pinctrl *pinctrl;
173 struct pinctrl_state *pins_default;
174 struct pinctrl_state *pins_clk_gate;
175
176 unsigned int bounce_buf_size;
177 void *bounce_buf;
178 dma_addr_t bounce_dma_addr;
179 struct sd_emmc_desc *descs;
180 dma_addr_t descs_dma_addr;
181
182 int irq;
183
184 bool vqmmc_enabled;
185 };
186
187 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
188 #define CMD_CFG_BLOCK_MODE BIT(9)
189 #define CMD_CFG_R1B BIT(10)
190 #define CMD_CFG_END_OF_CHAIN BIT(11)
191 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
192 #define CMD_CFG_NO_RESP BIT(16)
193 #define CMD_CFG_NO_CMD BIT(17)
194 #define CMD_CFG_DATA_IO BIT(18)
195 #define CMD_CFG_DATA_WR BIT(19)
196 #define CMD_CFG_RESP_NOCRC BIT(20)
197 #define CMD_CFG_RESP_128 BIT(21)
198 #define CMD_CFG_RESP_NUM BIT(22)
199 #define CMD_CFG_DATA_NUM BIT(23)
200 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
201 #define CMD_CFG_ERROR BIT(30)
202 #define CMD_CFG_OWNER BIT(31)
203
204 #define CMD_DATA_MASK GENMASK(31, 2)
205 #define CMD_DATA_BIG_ENDIAN BIT(1)
206 #define CMD_DATA_SRAM BIT(0)
207 #define CMD_RESP_MASK GENMASK(31, 1)
208 #define CMD_RESP_SRAM BIT(0)
209
210 struct meson_mmc_phase {
211 struct clk_hw hw;
212 void __iomem *reg;
213 unsigned long phase_mask;
214 unsigned long delay_mask;
215 unsigned int delay_step_ps;
216 };
217
218 #define to_meson_mmc_phase(_hw) container_of(_hw, struct meson_mmc_phase, hw)
219
220 static int meson_mmc_clk_get_phase(struct clk_hw *hw)
221 {
222 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
223 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
224 unsigned long period_ps, p, d;
225 int degrees;
226 u32 val;
227
228 val = readl(mmc->reg);
229 p = (val & mmc->phase_mask) >> __ffs(mmc->phase_mask);
230 degrees = p * 360 / phase_num;
231
232 if (mmc->delay_mask) {
233 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
234 clk_get_rate(hw->clk));
235 d = (val & mmc->delay_mask) >> __ffs(mmc->delay_mask);
236 degrees += d * mmc->delay_step_ps * 360 / period_ps;
237 degrees %= 360;
238 }
239
240 return degrees;
241 }
242
243 static void meson_mmc_apply_phase_delay(struct meson_mmc_phase *mmc,
244 unsigned int phase,
245 unsigned int delay)
246 {
247 u32 val;
248
249 val = readl(mmc->reg);
250 val &= ~mmc->phase_mask;
251 val |= phase << __ffs(mmc->phase_mask);
252
253 if (mmc->delay_mask) {
254 val &= ~mmc->delay_mask;
255 val |= delay << __ffs(mmc->delay_mask);
256 }
257
258 writel(val, mmc->reg);
259 }
260
261 static int meson_mmc_clk_set_phase(struct clk_hw *hw, int degrees)
262 {
263 struct meson_mmc_phase *mmc = to_meson_mmc_phase(hw);
264 unsigned int phase_num = 1 << hweight_long(mmc->phase_mask);
265 unsigned long period_ps, d = 0, r;
266 uint64_t p;
267
268 p = degrees % 360;
269
270 if (!mmc->delay_mask) {
271 p = DIV_ROUND_CLOSEST_ULL(p, 360 / phase_num);
272 } else {
273 period_ps = DIV_ROUND_UP((unsigned long)NSEC_PER_SEC * 1000,
274 clk_get_rate(hw->clk));
275
276 /* First compute the phase index (p), the remainder (r) is the
277 * part we'll try to acheive using the delays (d).
278 */
279 r = do_div(p, 360 / phase_num);
280 d = DIV_ROUND_CLOSEST(r * period_ps,
281 360 * mmc->delay_step_ps);
282 d = min(d, mmc->delay_mask >> __ffs(mmc->delay_mask));
283 }
284
285 meson_mmc_apply_phase_delay(mmc, p, d);
286 return 0;
287 }
288
289 static const struct clk_ops meson_mmc_clk_phase_ops = {
290 .get_phase = meson_mmc_clk_get_phase,
291 .set_phase = meson_mmc_clk_set_phase,
292 };
293
294 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
295 {
296 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
297
298 if (!timeout)
299 return SD_EMMC_CMD_TIMEOUT_DATA;
300
301 timeout = roundup_pow_of_two(timeout);
302
303 return min(timeout, 32768U); /* max. 2^15 ms */
304 }
305
306 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
307 {
308 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
309 return cmd->mrq->cmd;
310 else if (mmc_op_multi(cmd->opcode) &&
311 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
312 return cmd->mrq->stop;
313 else
314 return NULL;
315 }
316
317 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
318 struct mmc_request *mrq)
319 {
320 struct mmc_data *data = mrq->data;
321 struct scatterlist *sg;
322 int i;
323 bool use_desc_chain_mode = true;
324
325 /*
326 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
327 * reported. For some strange reason this occurs in descriptor
328 * chain mode only. So let's fall back to bounce buffer mode
329 * for command SD_IO_RW_EXTENDED.
330 */
331 if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
332 return;
333
334 for_each_sg(data->sg, sg, data->sg_len, i)
335 /* check for 8 byte alignment */
336 if (sg->offset & 7) {
337 WARN_ONCE(1, "unaligned scatterlist buffer\n");
338 use_desc_chain_mode = false;
339 break;
340 }
341
342 if (use_desc_chain_mode)
343 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
344 }
345
346 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
347 {
348 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
349 }
350
351 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
352 {
353 return data && data->flags & MMC_DATA_READ &&
354 !meson_mmc_desc_chain_mode(data);
355 }
356
357 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
358 {
359 struct mmc_data *data = mrq->data;
360
361 if (!data)
362 return;
363
364 meson_mmc_get_transfer_mode(mmc, mrq);
365 data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
366
367 if (!meson_mmc_desc_chain_mode(data))
368 return;
369
370 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
371 mmc_get_dma_dir(data));
372 if (!data->sg_count)
373 dev_err(mmc_dev(mmc), "dma_map_sg failed");
374 }
375
376 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
377 int err)
378 {
379 struct mmc_data *data = mrq->data;
380
381 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
382 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
383 mmc_get_dma_dir(data));
384 }
385
386 static bool meson_mmc_timing_is_ddr(struct mmc_ios *ios)
387 {
388 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
389 ios->timing == MMC_TIMING_UHS_DDR50 ||
390 ios->timing == MMC_TIMING_MMC_HS400)
391 return true;
392
393 return false;
394 }
395
396 /*
397 * Gating the clock on this controller is tricky. It seems the mmc clock
398 * is also used by the controller. It may crash during some operation if the
399 * clock is stopped. The safest thing to do, whenever possible, is to keep
400 * clock running at stop it at the pad using the pinmux.
401 */
402 static void meson_mmc_clk_gate(struct meson_host *host)
403 {
404 u32 cfg;
405
406 if (host->pins_clk_gate) {
407 pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
408 } else {
409 /*
410 * If the pinmux is not provided - default to the classic and
411 * unsafe method
412 */
413 cfg = readl(host->regs + SD_EMMC_CFG);
414 cfg |= CFG_STOP_CLOCK;
415 writel(cfg, host->regs + SD_EMMC_CFG);
416 }
417 }
418
419 static void meson_mmc_clk_ungate(struct meson_host *host)
420 {
421 u32 cfg;
422
423 if (host->pins_clk_gate)
424 pinctrl_select_state(host->pinctrl, host->pins_default);
425
426 /* Make sure the clock is not stopped in the controller */
427 cfg = readl(host->regs + SD_EMMC_CFG);
428 cfg &= ~CFG_STOP_CLOCK;
429 writel(cfg, host->regs + SD_EMMC_CFG);
430 }
431
432 static int meson_mmc_clk_set(struct meson_host *host, struct mmc_ios *ios)
433 {
434 struct mmc_host *mmc = host->mmc;
435 unsigned long rate = ios->clock;
436 int ret;
437 u32 cfg;
438
439 /* DDR modes require higher module clock */
440 if (meson_mmc_timing_is_ddr(ios))
441 rate <<= 1;
442
443 /* Same request - bail-out */
444 if (host->req_rate == rate)
445 return 0;
446
447 /* stop clock */
448 meson_mmc_clk_gate(host);
449 host->req_rate = 0;
450
451 if (!rate) {
452 mmc->actual_clock = 0;
453 /* return with clock being stopped */
454 return 0;
455 }
456
457 /* Stop the clock during rate change to avoid glitches */
458 cfg = readl(host->regs + SD_EMMC_CFG);
459 cfg |= CFG_STOP_CLOCK;
460 writel(cfg, host->regs + SD_EMMC_CFG);
461
462 ret = clk_set_rate(host->mmc_clk, rate);
463 if (ret) {
464 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
465 rate, ret);
466 return ret;
467 }
468
469 host->req_rate = rate;
470 mmc->actual_clock = clk_get_rate(host->mmc_clk);
471
472 /* We should report the real output frequency of the controller */
473 if (meson_mmc_timing_is_ddr(ios))
474 mmc->actual_clock >>= 1;
475
476 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
477 if (ios->clock != mmc->actual_clock)
478 dev_dbg(host->dev, "requested rate was %u\n", ios->clock);
479
480 /* (re)start clock */
481 meson_mmc_clk_ungate(host);
482
483 return 0;
484 }
485
486 /*
487 * The SD/eMMC IP block has an internal mux and divider used for
488 * generating the MMC clock. Use the clock framework to create and
489 * manage these clocks.
490 */
491 static int meson_mmc_clk_init(struct meson_host *host)
492 {
493 struct clk_init_data init;
494 struct clk_mux *mux;
495 struct clk_divider *div;
496 struct meson_mmc_phase *core, *tx, *rx;
497 struct clk *clk;
498 char clk_name[32];
499 int i, ret = 0;
500 const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
501 const char *clk_parent[1];
502 u32 clk_reg;
503
504 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
505 clk_reg = 0;
506 clk_reg |= CLK_ALWAYS_ON(host);
507 clk_reg |= CLK_DIV_MASK;
508 writel(clk_reg, host->regs + SD_EMMC_CLOCK);
509
510 /* get the mux parents */
511 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
512 struct clk *clk;
513 char name[16];
514
515 snprintf(name, sizeof(name), "clkin%d", i);
516 clk = devm_clk_get(host->dev, name);
517 if (IS_ERR(clk)) {
518 if (clk != ERR_PTR(-EPROBE_DEFER))
519 dev_err(host->dev, "Missing clock %s\n", name);
520 return PTR_ERR(clk);
521 }
522
523 mux_parent_names[i] = __clk_get_name(clk);
524 }
525
526 /* create the mux */
527 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
528 if (!mux)
529 return -ENOMEM;
530
531 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
532 init.name = clk_name;
533 init.ops = &clk_mux_ops;
534 init.flags = 0;
535 init.parent_names = mux_parent_names;
536 init.num_parents = MUX_CLK_NUM_PARENTS;
537
538 mux->reg = host->regs + SD_EMMC_CLOCK;
539 mux->shift = __ffs(CLK_SRC_MASK);
540 mux->mask = CLK_SRC_MASK >> mux->shift;
541 mux->hw.init = &init;
542
543 clk = devm_clk_register(host->dev, &mux->hw);
544 if (WARN_ON(IS_ERR(clk)))
545 return PTR_ERR(clk);
546
547 /* create the divider */
548 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
549 if (!div)
550 return -ENOMEM;
551
552 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
553 init.name = clk_name;
554 init.ops = &clk_divider_ops;
555 init.flags = CLK_SET_RATE_PARENT;
556 clk_parent[0] = __clk_get_name(clk);
557 init.parent_names = clk_parent;
558 init.num_parents = 1;
559
560 div->reg = host->regs + SD_EMMC_CLOCK;
561 div->shift = __ffs(CLK_DIV_MASK);
562 div->width = __builtin_popcountl(CLK_DIV_MASK);
563 div->hw.init = &init;
564 div->flags = CLK_DIVIDER_ONE_BASED;
565
566 clk = devm_clk_register(host->dev, &div->hw);
567 if (WARN_ON(IS_ERR(clk)))
568 return PTR_ERR(clk);
569
570 /* create the mmc core clock */
571 core = devm_kzalloc(host->dev, sizeof(*core), GFP_KERNEL);
572 if (!core)
573 return -ENOMEM;
574
575 snprintf(clk_name, sizeof(clk_name), "%s#core", dev_name(host->dev));
576 init.name = clk_name;
577 init.ops = &meson_mmc_clk_phase_ops;
578 init.flags = CLK_SET_RATE_PARENT;
579 clk_parent[0] = __clk_get_name(clk);
580 init.parent_names = clk_parent;
581 init.num_parents = 1;
582
583 core->reg = host->regs + SD_EMMC_CLOCK;
584 core->phase_mask = CLK_CORE_PHASE_MASK;
585 core->hw.init = &init;
586
587 host->mmc_clk = devm_clk_register(host->dev, &core->hw);
588 if (WARN_ON(PTR_ERR_OR_ZERO(host->mmc_clk)))
589 return PTR_ERR(host->mmc_clk);
590
591 /* create the mmc tx clock */
592 tx = devm_kzalloc(host->dev, sizeof(*tx), GFP_KERNEL);
593 if (!tx)
594 return -ENOMEM;
595
596 snprintf(clk_name, sizeof(clk_name), "%s#tx", dev_name(host->dev));
597 init.name = clk_name;
598 init.ops = &meson_mmc_clk_phase_ops;
599 init.flags = 0;
600 clk_parent[0] = __clk_get_name(host->mmc_clk);
601 init.parent_names = clk_parent;
602 init.num_parents = 1;
603
604 tx->reg = host->regs + SD_EMMC_CLOCK;
605 tx->phase_mask = CLK_TX_PHASE_MASK;
606 tx->delay_mask = CLK_TX_DELAY_MASK(host);
607 tx->delay_step_ps = CLK_DELAY_STEP_PS;
608 tx->hw.init = &init;
609
610 host->tx_clk = devm_clk_register(host->dev, &tx->hw);
611 if (WARN_ON(PTR_ERR_OR_ZERO(host->tx_clk)))
612 return PTR_ERR(host->tx_clk);
613
614 /* create the mmc rx clock */
615 rx = devm_kzalloc(host->dev, sizeof(*rx), GFP_KERNEL);
616 if (!rx)
617 return -ENOMEM;
618
619 snprintf(clk_name, sizeof(clk_name), "%s#rx", dev_name(host->dev));
620 init.name = clk_name;
621 init.ops = &meson_mmc_clk_phase_ops;
622 init.flags = 0;
623 clk_parent[0] = __clk_get_name(host->mmc_clk);
624 init.parent_names = clk_parent;
625 init.num_parents = 1;
626
627 rx->reg = host->regs + SD_EMMC_CLOCK;
628 rx->phase_mask = CLK_RX_PHASE_MASK;
629 rx->delay_mask = CLK_RX_DELAY_MASK(host);
630 rx->delay_step_ps = CLK_DELAY_STEP_PS;
631 rx->hw.init = &init;
632
633 host->rx_clk = devm_clk_register(host->dev, &rx->hw);
634 if (WARN_ON(PTR_ERR_OR_ZERO(host->rx_clk)))
635 return PTR_ERR(host->rx_clk);
636
637 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
638 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
639 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
640 if (ret)
641 return ret;
642
643 clk_set_phase(host->mmc_clk, 180);
644 clk_set_phase(host->tx_clk, 0);
645 clk_set_phase(host->rx_clk, 0);
646
647 return clk_prepare_enable(host->mmc_clk);
648 }
649
650 static void meson_mmc_shift_map(unsigned long *map, unsigned long shift)
651 {
652 DECLARE_BITMAP(left, CLK_PHASE_POINT_NUM);
653 DECLARE_BITMAP(right, CLK_PHASE_POINT_NUM);
654
655 /*
656 * shift the bitmap right and reintroduce the dropped bits on the left
657 * of the bitmap
658 */
659 bitmap_shift_right(right, map, shift, CLK_PHASE_POINT_NUM);
660 bitmap_shift_left(left, map, CLK_PHASE_POINT_NUM - shift,
661 CLK_PHASE_POINT_NUM);
662 bitmap_or(map, left, right, CLK_PHASE_POINT_NUM);
663 }
664
665 static void meson_mmc_find_next_region(unsigned long *map,
666 unsigned long *start,
667 unsigned long *stop)
668 {
669 *start = find_next_bit(map, CLK_PHASE_POINT_NUM, *start);
670 *stop = find_next_zero_bit(map, CLK_PHASE_POINT_NUM, *start);
671 }
672
673 static int meson_mmc_find_tuning_point(unsigned long *test)
674 {
675 unsigned long shift, stop, offset = 0, start = 0, size = 0;
676
677 /* Get the all good/all bad situation out the way */
678 if (bitmap_full(test, CLK_PHASE_POINT_NUM))
679 return 0; /* All points are good so point 0 will do */
680 else if (bitmap_empty(test, CLK_PHASE_POINT_NUM))
681 return -EIO; /* No successful tuning point */
682
683 /*
684 * Now we know there is a least one region find. Make sure it does
685 * not wrap by the shifting the bitmap if necessary
686 */
687 shift = find_first_zero_bit(test, CLK_PHASE_POINT_NUM);
688 if (shift != 0)
689 meson_mmc_shift_map(test, shift);
690
691 while (start < CLK_PHASE_POINT_NUM) {
692 meson_mmc_find_next_region(test, &start, &stop);
693
694 if ((stop - start) > size) {
695 offset = start;
696 size = stop - start;
697 }
698
699 start = stop;
700 }
701
702 /* Get the center point of the region */
703 offset += (size / 2);
704
705 /* Shift the result back */
706 offset = (offset + shift) % CLK_PHASE_POINT_NUM;
707
708 return offset;
709 }
710
711 static int meson_mmc_clk_phase_tuning(struct mmc_host *mmc, u32 opcode,
712 struct clk *clk)
713 {
714 int point, ret;
715 DECLARE_BITMAP(test, CLK_PHASE_POINT_NUM);
716
717 dev_dbg(mmc_dev(mmc), "%s phase/delay tunning...\n",
718 __clk_get_name(clk));
719 bitmap_zero(test, CLK_PHASE_POINT_NUM);
720
721 /* Explore tuning points */
722 for (point = 0; point < CLK_PHASE_POINT_NUM; point++) {
723 clk_set_phase(clk, point * CLK_PHASE_STEP);
724 ret = mmc_send_tuning(mmc, opcode, NULL);
725 if (!ret)
726 set_bit(point, test);
727 }
728
729 /* Find the optimal tuning point and apply it */
730 point = meson_mmc_find_tuning_point(test);
731 if (point < 0)
732 return point; /* tuning failed */
733
734 clk_set_phase(clk, point * CLK_PHASE_STEP);
735 dev_dbg(mmc_dev(mmc), "success with phase: %d\n",
736 clk_get_phase(clk));
737 return 0;
738 }
739
740 static int meson_mmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
741 {
742 struct meson_host *host = mmc_priv(mmc);
743 int adj = 0;
744
745 /* enable signal resampling w/o delay */
746 adj = ADJUST_ADJ_EN;
747 writel(adj, host->regs + host->data->adjust);
748
749 return meson_mmc_clk_phase_tuning(mmc, opcode, host->rx_clk);
750 }
751
752 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
753 {
754 struct meson_host *host = mmc_priv(mmc);
755 u32 bus_width, val;
756 int err;
757
758 /*
759 * GPIO regulator, only controls switching between 1v8 and
760 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
761 */
762 switch (ios->power_mode) {
763 case MMC_POWER_OFF:
764 if (!IS_ERR(mmc->supply.vmmc))
765 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
766
767 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
768 regulator_disable(mmc->supply.vqmmc);
769 host->vqmmc_enabled = false;
770 }
771
772 break;
773
774 case MMC_POWER_UP:
775 if (!IS_ERR(mmc->supply.vmmc))
776 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
777
778 /* disable signal resampling */
779 writel(0, host->regs + host->data->adjust);
780
781 /* Reset rx phase */
782 clk_set_phase(host->rx_clk, 0);
783
784 break;
785
786 case MMC_POWER_ON:
787 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
788 int ret = regulator_enable(mmc->supply.vqmmc);
789
790 if (ret < 0)
791 dev_err(host->dev,
792 "failed to enable vqmmc regulator\n");
793 else
794 host->vqmmc_enabled = true;
795 }
796
797 break;
798 }
799
800 /* Bus width */
801 switch (ios->bus_width) {
802 case MMC_BUS_WIDTH_1:
803 bus_width = CFG_BUS_WIDTH_1;
804 break;
805 case MMC_BUS_WIDTH_4:
806 bus_width = CFG_BUS_WIDTH_4;
807 break;
808 case MMC_BUS_WIDTH_8:
809 bus_width = CFG_BUS_WIDTH_8;
810 break;
811 default:
812 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n",
813 ios->bus_width);
814 bus_width = CFG_BUS_WIDTH_4;
815 }
816
817 val = readl(host->regs + SD_EMMC_CFG);
818 val &= ~CFG_BUS_WIDTH_MASK;
819 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
820
821 val &= ~CFG_DDR;
822 if (meson_mmc_timing_is_ddr(ios))
823 val |= CFG_DDR;
824
825 val &= ~CFG_CHK_DS;
826 if (ios->timing == MMC_TIMING_MMC_HS400)
827 val |= CFG_CHK_DS;
828
829 err = meson_mmc_clk_set(host, ios);
830 if (err)
831 dev_err(host->dev, "Failed to set clock: %d\n,", err);
832
833 writel(val, host->regs + SD_EMMC_CFG);
834 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val);
835 }
836
837 static void meson_mmc_request_done(struct mmc_host *mmc,
838 struct mmc_request *mrq)
839 {
840 struct meson_host *host = mmc_priv(mmc);
841
842 host->cmd = NULL;
843 mmc_request_done(host->mmc, mrq);
844 }
845
846 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
847 {
848 struct meson_host *host = mmc_priv(mmc);
849 u32 cfg, blksz_old;
850
851 cfg = readl(host->regs + SD_EMMC_CFG);
852 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
853
854 if (!is_power_of_2(blksz))
855 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
856
857 blksz = ilog2(blksz);
858
859 /* check if block-size matches, if not update */
860 if (blksz == blksz_old)
861 return;
862
863 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
864 blksz_old, blksz);
865
866 cfg &= ~CFG_BLK_LEN_MASK;
867 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
868 writel(cfg, host->regs + SD_EMMC_CFG);
869 }
870
871 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
872 {
873 if (cmd->flags & MMC_RSP_PRESENT) {
874 if (cmd->flags & MMC_RSP_136)
875 *cmd_cfg |= CMD_CFG_RESP_128;
876 *cmd_cfg |= CMD_CFG_RESP_NUM;
877
878 if (!(cmd->flags & MMC_RSP_CRC))
879 *cmd_cfg |= CMD_CFG_RESP_NOCRC;
880
881 if (cmd->flags & MMC_RSP_BUSY)
882 *cmd_cfg |= CMD_CFG_R1B;
883 } else {
884 *cmd_cfg |= CMD_CFG_NO_RESP;
885 }
886 }
887
888 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
889 {
890 struct meson_host *host = mmc_priv(mmc);
891 struct sd_emmc_desc *desc = host->descs;
892 struct mmc_data *data = host->cmd->data;
893 struct scatterlist *sg;
894 u32 start;
895 int i;
896
897 if (data->flags & MMC_DATA_WRITE)
898 cmd_cfg |= CMD_CFG_DATA_WR;
899
900 if (data->blocks > 1) {
901 cmd_cfg |= CMD_CFG_BLOCK_MODE;
902 meson_mmc_set_blksz(mmc, data->blksz);
903 }
904
905 for_each_sg(data->sg, sg, data->sg_count, i) {
906 unsigned int len = sg_dma_len(sg);
907
908 if (data->blocks > 1)
909 len /= data->blksz;
910
911 desc[i].cmd_cfg = cmd_cfg;
912 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
913 if (i > 0)
914 desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
915 desc[i].cmd_arg = host->cmd->arg;
916 desc[i].cmd_resp = 0;
917 desc[i].cmd_data = sg_dma_address(sg);
918 }
919 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
920
921 dma_wmb(); /* ensure descriptor is written before kicked */
922 start = host->descs_dma_addr | START_DESC_BUSY;
923 writel(start, host->regs + SD_EMMC_START);
924 }
925
926 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
927 {
928 struct meson_host *host = mmc_priv(mmc);
929 struct mmc_data *data = cmd->data;
930 u32 cmd_cfg = 0, cmd_data = 0;
931 unsigned int xfer_bytes = 0;
932
933 /* Setup descriptors */
934 dma_rmb();
935
936 host->cmd = cmd;
937
938 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
939 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */
940 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
941
942 meson_mmc_set_response_bits(cmd, &cmd_cfg);
943
944 /* data? */
945 if (data) {
946 data->bytes_xfered = 0;
947 cmd_cfg |= CMD_CFG_DATA_IO;
948 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
949 ilog2(meson_mmc_get_timeout_msecs(data)));
950
951 if (meson_mmc_desc_chain_mode(data)) {
952 meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
953 return;
954 }
955
956 if (data->blocks > 1) {
957 cmd_cfg |= CMD_CFG_BLOCK_MODE;
958 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
959 data->blocks);
960 meson_mmc_set_blksz(mmc, data->blksz);
961 } else {
962 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
963 }
964
965 xfer_bytes = data->blksz * data->blocks;
966 if (data->flags & MMC_DATA_WRITE) {
967 cmd_cfg |= CMD_CFG_DATA_WR;
968 WARN_ON(xfer_bytes > host->bounce_buf_size);
969 sg_copy_to_buffer(data->sg, data->sg_len,
970 host->bounce_buf, xfer_bytes);
971 dma_wmb();
972 }
973
974 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
975 } else {
976 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
977 ilog2(SD_EMMC_CMD_TIMEOUT));
978 }
979
980 /* Last descriptor */
981 cmd_cfg |= CMD_CFG_END_OF_CHAIN;
982 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
983 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
984 writel(0, host->regs + SD_EMMC_CMD_RSP);
985 wmb(); /* ensure descriptor is written before kicked */
986 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
987 }
988
989 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
990 {
991 struct meson_host *host = mmc_priv(mmc);
992 bool needs_pre_post_req = mrq->data &&
993 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
994
995 if (needs_pre_post_req) {
996 meson_mmc_get_transfer_mode(mmc, mrq);
997 if (!meson_mmc_desc_chain_mode(mrq->data))
998 needs_pre_post_req = false;
999 }
1000
1001 if (needs_pre_post_req)
1002 meson_mmc_pre_req(mmc, mrq);
1003
1004 /* Stop execution */
1005 writel(0, host->regs + SD_EMMC_START);
1006
1007 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
1008
1009 if (needs_pre_post_req)
1010 meson_mmc_post_req(mmc, mrq, 0);
1011 }
1012
1013 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
1014 {
1015 struct meson_host *host = mmc_priv(mmc);
1016
1017 if (cmd->flags & MMC_RSP_136) {
1018 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
1019 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
1020 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
1021 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
1022 } else if (cmd->flags & MMC_RSP_PRESENT) {
1023 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
1024 }
1025 }
1026
1027 static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
1028 {
1029 struct meson_host *host = dev_id;
1030 struct mmc_command *cmd;
1031 struct mmc_data *data;
1032 u32 irq_en, status, raw_status;
1033 irqreturn_t ret = IRQ_NONE;
1034
1035 irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
1036 raw_status = readl(host->regs + SD_EMMC_STATUS);
1037 status = raw_status & irq_en;
1038
1039 if (!status) {
1040 dev_dbg(host->dev,
1041 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
1042 irq_en, raw_status);
1043 return IRQ_NONE;
1044 }
1045
1046 if (WARN_ON(!host) || WARN_ON(!host->cmd))
1047 return IRQ_NONE;
1048
1049 cmd = host->cmd;
1050 data = cmd->data;
1051 cmd->error = 0;
1052 if (status & IRQ_CRC_ERR) {
1053 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
1054 cmd->error = -EILSEQ;
1055 ret = IRQ_WAKE_THREAD;
1056 goto out;
1057 }
1058
1059 if (status & IRQ_TIMEOUTS) {
1060 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
1061 cmd->error = -ETIMEDOUT;
1062 ret = IRQ_WAKE_THREAD;
1063 goto out;
1064 }
1065
1066 meson_mmc_read_resp(host->mmc, cmd);
1067
1068 if (status & IRQ_SDIO) {
1069 dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
1070 ret = IRQ_HANDLED;
1071 }
1072
1073 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
1074 if (data && !cmd->error)
1075 data->bytes_xfered = data->blksz * data->blocks;
1076 if (meson_mmc_bounce_buf_read(data) ||
1077 meson_mmc_get_next_command(cmd))
1078 ret = IRQ_WAKE_THREAD;
1079 else
1080 ret = IRQ_HANDLED;
1081 }
1082
1083 out:
1084 /* ack all enabled interrupts */
1085 writel(irq_en, host->regs + SD_EMMC_STATUS);
1086
1087 if (cmd->error) {
1088 /* Stop desc in case of errors */
1089 u32 start = readl(host->regs + SD_EMMC_START);
1090
1091 start &= ~START_DESC_BUSY;
1092 writel(start, host->regs + SD_EMMC_START);
1093 }
1094
1095 if (ret == IRQ_HANDLED)
1096 meson_mmc_request_done(host->mmc, cmd->mrq);
1097
1098 return ret;
1099 }
1100
1101 static int meson_mmc_wait_desc_stop(struct meson_host *host)
1102 {
1103 int loop;
1104 u32 status;
1105
1106 /*
1107 * It may sometimes take a while for it to actually halt. Here, we
1108 * are giving it 5ms to comply
1109 *
1110 * If we don't confirm the descriptor is stopped, it might raise new
1111 * IRQs after we have called mmc_request_done() which is bad.
1112 */
1113 for (loop = 50; loop; loop--) {
1114 status = readl(host->regs + SD_EMMC_STATUS);
1115 if (status & (STATUS_BUSY | STATUS_DESC_BUSY))
1116 udelay(100);
1117 else
1118 break;
1119 }
1120
1121 if (status & (STATUS_BUSY | STATUS_DESC_BUSY)) {
1122 dev_err(host->dev, "Timed out waiting for host to stop\n");
1123 return -ETIMEDOUT;
1124 }
1125
1126 return 0;
1127 }
1128
1129 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1130 {
1131 struct meson_host *host = dev_id;
1132 struct mmc_command *next_cmd, *cmd = host->cmd;
1133 struct mmc_data *data;
1134 unsigned int xfer_bytes;
1135
1136 if (WARN_ON(!cmd))
1137 return IRQ_NONE;
1138
1139 if (cmd->error) {
1140 meson_mmc_wait_desc_stop(host);
1141 meson_mmc_request_done(host->mmc, cmd->mrq);
1142
1143 return IRQ_HANDLED;
1144 }
1145
1146 data = cmd->data;
1147 if (meson_mmc_bounce_buf_read(data)) {
1148 xfer_bytes = data->blksz * data->blocks;
1149 WARN_ON(xfer_bytes > host->bounce_buf_size);
1150 sg_copy_from_buffer(data->sg, data->sg_len,
1151 host->bounce_buf, xfer_bytes);
1152 }
1153
1154 next_cmd = meson_mmc_get_next_command(cmd);
1155 if (next_cmd)
1156 meson_mmc_start_cmd(host->mmc, next_cmd);
1157 else
1158 meson_mmc_request_done(host->mmc, cmd->mrq);
1159
1160 return IRQ_HANDLED;
1161 }
1162
1163 /*
1164 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1165 * interrupts. For now, the MMC core will use this for polling.
1166 */
1167 static int meson_mmc_get_cd(struct mmc_host *mmc)
1168 {
1169 int status = mmc_gpio_get_cd(mmc);
1170
1171 if (status == -ENOSYS)
1172 return 1; /* assume present */
1173
1174 return status;
1175 }
1176
1177 static void meson_mmc_cfg_init(struct meson_host *host)
1178 {
1179 u32 cfg = 0;
1180
1181 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1182 ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1183 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1184 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1185
1186 /* abort chain on R/W errors */
1187 cfg |= CFG_ERR_ABORT;
1188
1189 writel(cfg, host->regs + SD_EMMC_CFG);
1190 }
1191
1192 static int meson_mmc_card_busy(struct mmc_host *mmc)
1193 {
1194 struct meson_host *host = mmc_priv(mmc);
1195 u32 regval;
1196
1197 regval = readl(host->regs + SD_EMMC_STATUS);
1198
1199 /* We are only interrested in lines 0 to 3, so mask the other ones */
1200 return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1201 }
1202
1203 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1204 {
1205 /* vqmmc regulator is available */
1206 if (!IS_ERR(mmc->supply.vqmmc)) {
1207 /*
1208 * The usual amlogic setup uses a GPIO to switch from one
1209 * regulator to the other. While the voltage ramp up is
1210 * pretty fast, care must be taken when switching from 3.3v
1211 * to 1.8v. Please make sure the regulator framework is aware
1212 * of your own regulator constraints
1213 */
1214 return mmc_regulator_set_vqmmc(mmc, ios);
1215 }
1216
1217 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1218 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1219 return 0;
1220
1221 return -EINVAL;
1222 }
1223
1224 static const struct mmc_host_ops meson_mmc_ops = {
1225 .request = meson_mmc_request,
1226 .set_ios = meson_mmc_set_ios,
1227 .get_cd = meson_mmc_get_cd,
1228 .pre_req = meson_mmc_pre_req,
1229 .post_req = meson_mmc_post_req,
1230 .execute_tuning = meson_mmc_execute_tuning,
1231 .card_busy = meson_mmc_card_busy,
1232 .start_signal_voltage_switch = meson_mmc_voltage_switch,
1233 };
1234
1235 static int meson_mmc_probe(struct platform_device *pdev)
1236 {
1237 struct resource *res;
1238 struct meson_host *host;
1239 struct mmc_host *mmc;
1240 int ret;
1241
1242 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1243 if (!mmc)
1244 return -ENOMEM;
1245 host = mmc_priv(mmc);
1246 host->mmc = mmc;
1247 host->dev = &pdev->dev;
1248 dev_set_drvdata(&pdev->dev, host);
1249
1250 /* Get regulators and the supported OCR mask */
1251 host->vqmmc_enabled = false;
1252 ret = mmc_regulator_get_supply(mmc);
1253 if (ret)
1254 goto free_host;
1255
1256 ret = mmc_of_parse(mmc);
1257 if (ret) {
1258 if (ret != -EPROBE_DEFER)
1259 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1260 goto free_host;
1261 }
1262
1263 host->data = (struct meson_mmc_data *)
1264 of_device_get_match_data(&pdev->dev);
1265 if (!host->data) {
1266 ret = -EINVAL;
1267 goto free_host;
1268 }
1269
1270 ret = device_reset_optional(&pdev->dev);
1271 if (ret) {
1272 if (ret != -EPROBE_DEFER)
1273 dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1274
1275 return ret;
1276 }
1277
1278 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1279 host->regs = devm_ioremap_resource(&pdev->dev, res);
1280 if (IS_ERR(host->regs)) {
1281 ret = PTR_ERR(host->regs);
1282 goto free_host;
1283 }
1284
1285 host->irq = platform_get_irq(pdev, 0);
1286 if (host->irq <= 0) {
1287 dev_err(&pdev->dev, "failed to get interrupt resource.\n");
1288 ret = -EINVAL;
1289 goto free_host;
1290 }
1291
1292 host->pinctrl = devm_pinctrl_get(&pdev->dev);
1293 if (IS_ERR(host->pinctrl)) {
1294 ret = PTR_ERR(host->pinctrl);
1295 goto free_host;
1296 }
1297
1298 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1299 PINCTRL_STATE_DEFAULT);
1300 if (IS_ERR(host->pins_default)) {
1301 ret = PTR_ERR(host->pins_default);
1302 goto free_host;
1303 }
1304
1305 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1306 "clk-gate");
1307 if (IS_ERR(host->pins_clk_gate)) {
1308 dev_warn(&pdev->dev,
1309 "can't get clk-gate pinctrl, using clk_stop bit\n");
1310 host->pins_clk_gate = NULL;
1311 }
1312
1313 host->core_clk = devm_clk_get(&pdev->dev, "core");
1314 if (IS_ERR(host->core_clk)) {
1315 ret = PTR_ERR(host->core_clk);
1316 goto free_host;
1317 }
1318
1319 ret = clk_prepare_enable(host->core_clk);
1320 if (ret)
1321 goto free_host;
1322
1323 ret = meson_mmc_clk_init(host);
1324 if (ret)
1325 goto err_core_clk;
1326
1327 /* set config to sane default */
1328 meson_mmc_cfg_init(host);
1329
1330 /* Stop execution */
1331 writel(0, host->regs + SD_EMMC_START);
1332
1333 /* clear, ack and enable interrupts */
1334 writel(0, host->regs + SD_EMMC_IRQ_EN);
1335 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1336 host->regs + SD_EMMC_STATUS);
1337 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1338 host->regs + SD_EMMC_IRQ_EN);
1339
1340 ret = request_threaded_irq(host->irq, meson_mmc_irq,
1341 meson_mmc_irq_thread, IRQF_SHARED, NULL, host);
1342 if (ret)
1343 goto err_init_clk;
1344
1345 mmc->caps |= MMC_CAP_CMD23;
1346 mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1347 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1348 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc);
1349 mmc->max_seg_size = mmc->max_req_size;
1350
1351 /* data bounce buffer */
1352 host->bounce_buf_size = mmc->max_req_size;
1353 host->bounce_buf =
1354 dma_alloc_coherent(host->dev, host->bounce_buf_size,
1355 &host->bounce_dma_addr, GFP_KERNEL);
1356 if (host->bounce_buf == NULL) {
1357 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1358 ret = -ENOMEM;
1359 goto err_free_irq;
1360 }
1361
1362 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1363 &host->descs_dma_addr, GFP_KERNEL);
1364 if (!host->descs) {
1365 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1366 ret = -ENOMEM;
1367 goto err_bounce_buf;
1368 }
1369
1370 mmc->ops = &meson_mmc_ops;
1371 mmc_add_host(mmc);
1372
1373 return 0;
1374
1375 err_bounce_buf:
1376 dma_free_coherent(host->dev, host->bounce_buf_size,
1377 host->bounce_buf, host->bounce_dma_addr);
1378 err_free_irq:
1379 free_irq(host->irq, host);
1380 err_init_clk:
1381 clk_disable_unprepare(host->mmc_clk);
1382 err_core_clk:
1383 clk_disable_unprepare(host->core_clk);
1384 free_host:
1385 mmc_free_host(mmc);
1386 return ret;
1387 }
1388
1389 static int meson_mmc_remove(struct platform_device *pdev)
1390 {
1391 struct meson_host *host = dev_get_drvdata(&pdev->dev);
1392
1393 mmc_remove_host(host->mmc);
1394
1395 /* disable interrupts */
1396 writel(0, host->regs + SD_EMMC_IRQ_EN);
1397 free_irq(host->irq, host);
1398
1399 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1400 host->descs, host->descs_dma_addr);
1401 dma_free_coherent(host->dev, host->bounce_buf_size,
1402 host->bounce_buf, host->bounce_dma_addr);
1403
1404 clk_disable_unprepare(host->mmc_clk);
1405 clk_disable_unprepare(host->core_clk);
1406
1407 mmc_free_host(host->mmc);
1408 return 0;
1409 }
1410
1411 static const struct meson_mmc_data meson_gx_data = {
1412 .tx_delay_mask = CLK_V2_TX_DELAY_MASK,
1413 .rx_delay_mask = CLK_V2_RX_DELAY_MASK,
1414 .always_on = CLK_V2_ALWAYS_ON,
1415 .adjust = SD_EMMC_ADJUST,
1416 };
1417
1418 static const struct meson_mmc_data meson_axg_data = {
1419 .tx_delay_mask = CLK_V3_TX_DELAY_MASK,
1420 .rx_delay_mask = CLK_V3_RX_DELAY_MASK,
1421 .always_on = CLK_V3_ALWAYS_ON,
1422 .adjust = SD_EMMC_V3_ADJUST,
1423 };
1424
1425 static const struct of_device_id meson_mmc_of_match[] = {
1426 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data },
1427 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data },
1428 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data },
1429 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data },
1430 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data },
1431 {}
1432 };
1433 MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1434
1435 static struct platform_driver meson_mmc_driver = {
1436 .probe = meson_mmc_probe,
1437 .remove = meson_mmc_remove,
1438 .driver = {
1439 .name = DRIVER_NAME,
1440 .of_match_table = of_match_ptr(meson_mmc_of_match),
1441 },
1442 };
1443
1444 module_platform_driver(meson_mmc_driver);
1445
1446 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1447 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1448 MODULE_LICENSE("GPL v2");