]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/mmc/host/mmc_spi.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-eoan-kernel.git] / drivers / mmc / host / mmc_spi.c
1 /*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <linux/bio.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/crc7.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/scatterlist.h>
36
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
39 #include <linux/mmc/slot-gpio.h>
40
41 #include <linux/spi/spi.h>
42 #include <linux/spi/mmc_spi.h>
43
44 #include <asm/unaligned.h>
45
46
47 /* NOTES:
48 *
49 * - For now, we won't try to interoperate with a real mmc/sd/sdio
50 * controller, although some of them do have hardware support for
51 * SPI protocol. The main reason for such configs would be mmc-ish
52 * cards like DataFlash, which don't support that "native" protocol.
53 *
54 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55 * switch between driver stacks, and in any case if "native" mode
56 * is available, it will be faster and hence preferable.
57 *
58 * - MMC depends on a different chipselect management policy than the
59 * SPI interface currently supports for shared bus segments: it needs
60 * to issue multiple spi_message requests with the chipselect active,
61 * using the results of one message to decide the next one to issue.
62 *
63 * Pending updates to the programming interface, this driver expects
64 * that it not share the bus with other drivers (precluding conflicts).
65 *
66 * - We tell the controller to keep the chipselect active from the
67 * beginning of an mmc_host_ops.request until the end. So beware
68 * of SPI controller drivers that mis-handle the cs_change flag!
69 *
70 * However, many cards seem OK with chipselect flapping up/down
71 * during that time ... at least on unshared bus segments.
72 */
73
74
75 /*
76 * Local protocol constants, internal to data block protocols.
77 */
78
79 /* Response tokens used to ack each block written: */
80 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
81 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
82 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
83 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
84
85 /* Read and write blocks start with these tokens and end with crc;
86 * on error, read tokens act like a subset of R2_SPI_* values.
87 */
88 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
89 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
90 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
91
92 #define MMC_SPI_BLOCKSIZE 512
93
94
95 /* These fixed timeouts come from the latest SD specs, which say to ignore
96 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98 * reads which takes nowhere near that long. Older cards may be able to use
99 * shorter timeouts ... but why bother?
100 */
101 #define r1b_timeout (HZ * 3)
102
103 /* One of the critical speed parameters is the amount of data which may
104 * be transferred in one command. If this value is too low, the SD card
105 * controller has to do multiple partial block writes (argggh!). With
106 * today (2008) SD cards there is little speed gain if we transfer more
107 * than 64 KBytes at a time. So use this value until there is any indication
108 * that we should do more here.
109 */
110 #define MMC_SPI_BLOCKSATONCE 128
111
112 /****************************************************************************/
113
114 /*
115 * Local Data Structures
116 */
117
118 /* "scratch" is per-{command,block} data exchanged with the card */
119 struct scratch {
120 u8 status[29];
121 u8 data_token;
122 __be16 crc_val;
123 };
124
125 struct mmc_spi_host {
126 struct mmc_host *mmc;
127 struct spi_device *spi;
128
129 unsigned char power_mode;
130 u16 powerup_msecs;
131
132 struct mmc_spi_platform_data *pdata;
133
134 /* for bulk data transfers */
135 struct spi_transfer token, t, crc, early_status;
136 struct spi_message m;
137
138 /* for status readback */
139 struct spi_transfer status;
140 struct spi_message readback;
141
142 /* underlying DMA-aware controller, or null */
143 struct device *dma_dev;
144
145 /* buffer used for commands and for message "overhead" */
146 struct scratch *data;
147 dma_addr_t data_dma;
148
149 /* Specs say to write ones most of the time, even when the card
150 * has no need to read its input data; and many cards won't care.
151 * This is our source of those ones.
152 */
153 void *ones;
154 dma_addr_t ones_dma;
155 };
156
157
158 /****************************************************************************/
159
160 /*
161 * MMC-over-SPI protocol glue, used by the MMC stack interface
162 */
163
164 static inline int mmc_cs_off(struct mmc_spi_host *host)
165 {
166 /* chipselect will always be inactive after setup() */
167 return spi_setup(host->spi);
168 }
169
170 static int
171 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172 {
173 int status;
174
175 if (len > sizeof(*host->data)) {
176 WARN_ON(1);
177 return -EIO;
178 }
179
180 host->status.len = len;
181
182 if (host->dma_dev)
183 dma_sync_single_for_device(host->dma_dev,
184 host->data_dma, sizeof(*host->data),
185 DMA_FROM_DEVICE);
186
187 status = spi_sync_locked(host->spi, &host->readback);
188
189 if (host->dma_dev)
190 dma_sync_single_for_cpu(host->dma_dev,
191 host->data_dma, sizeof(*host->data),
192 DMA_FROM_DEVICE);
193
194 return status;
195 }
196
197 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198 unsigned n, u8 byte)
199 {
200 u8 *cp = host->data->status;
201 unsigned long start = jiffies;
202
203 while (1) {
204 int status;
205 unsigned i;
206
207 status = mmc_spi_readbytes(host, n);
208 if (status < 0)
209 return status;
210
211 for (i = 0; i < n; i++) {
212 if (cp[i] != byte)
213 return cp[i];
214 }
215
216 if (time_is_before_jiffies(start + timeout))
217 break;
218
219 /* If we need long timeouts, we may release the CPU.
220 * We use jiffies here because we want to have a relation
221 * between elapsed time and the blocking of the scheduler.
222 */
223 if (time_is_before_jiffies(start+1))
224 schedule();
225 }
226 return -ETIMEDOUT;
227 }
228
229 static inline int
230 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231 {
232 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233 }
234
235 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236 {
237 return mmc_spi_skip(host, timeout, 1, 0xff);
238 }
239
240
241 /*
242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
244 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245 *
246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247 * newer cards R7 (IF_COND).
248 */
249
250 static char *maptype(struct mmc_command *cmd)
251 {
252 switch (mmc_spi_resp_type(cmd)) {
253 case MMC_RSP_SPI_R1: return "R1";
254 case MMC_RSP_SPI_R1B: return "R1B";
255 case MMC_RSP_SPI_R2: return "R2/R5";
256 case MMC_RSP_SPI_R3: return "R3/R4/R7";
257 default: return "?";
258 }
259 }
260
261 /* return zero, else negative errno after setting cmd->error */
262 static int mmc_spi_response_get(struct mmc_spi_host *host,
263 struct mmc_command *cmd, int cs_on)
264 {
265 u8 *cp = host->data->status;
266 u8 *end = cp + host->t.len;
267 int value = 0;
268 int bitshift;
269 u8 leftover = 0;
270 unsigned short rotator;
271 int i;
272 char tag[32];
273
274 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
275 cmd->opcode, maptype(cmd));
276
277 /* Except for data block reads, the whole response will already
278 * be stored in the scratch buffer. It's somewhere after the
279 * command and the first byte we read after it. We ignore that
280 * first byte. After STOP_TRANSMISSION command it may include
281 * two data bits, but otherwise it's all ones.
282 */
283 cp += 8;
284 while (cp < end && *cp == 0xff)
285 cp++;
286
287 /* Data block reads (R1 response types) may need more data... */
288 if (cp == end) {
289 cp = host->data->status;
290 end = cp+1;
291
292 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 * status byte ... and we already scanned 2 bytes.
294 *
295 * REVISIT block read paths use nasty byte-at-a-time I/O
296 * so it can always DMA directly into the target buffer.
297 * It'd probably be better to memcpy() the first chunk and
298 * avoid extra i/o calls...
299 *
300 * Note we check for more than 8 bytes, because in practice,
301 * some SD cards are slow...
302 */
303 for (i = 2; i < 16; i++) {
304 value = mmc_spi_readbytes(host, 1);
305 if (value < 0)
306 goto done;
307 if (*cp != 0xff)
308 goto checkstatus;
309 }
310 value = -ETIMEDOUT;
311 goto done;
312 }
313
314 checkstatus:
315 bitshift = 0;
316 if (*cp & 0x80) {
317 /* Houston, we have an ugly card with a bit-shifted response */
318 rotator = *cp++ << 8;
319 /* read the next byte */
320 if (cp == end) {
321 value = mmc_spi_readbytes(host, 1);
322 if (value < 0)
323 goto done;
324 cp = host->data->status;
325 end = cp+1;
326 }
327 rotator |= *cp++;
328 while (rotator & 0x8000) {
329 bitshift++;
330 rotator <<= 1;
331 }
332 cmd->resp[0] = rotator >> 8;
333 leftover = rotator;
334 } else {
335 cmd->resp[0] = *cp++;
336 }
337 cmd->error = 0;
338
339 /* Status byte: the entire seven-bit R1 response. */
340 if (cmd->resp[0] != 0) {
341 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342 & cmd->resp[0])
343 value = -EFAULT; /* Bad address */
344 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345 value = -ENOSYS; /* Function not implemented */
346 else if (R1_SPI_COM_CRC & cmd->resp[0])
347 value = -EILSEQ; /* Illegal byte sequence */
348 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349 & cmd->resp[0])
350 value = -EIO; /* I/O error */
351 /* else R1_SPI_IDLE, "it's resetting" */
352 }
353
354 switch (mmc_spi_resp_type(cmd)) {
355
356 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 * and less-common stuff like various erase operations.
358 */
359 case MMC_RSP_SPI_R1B:
360 /* maybe we read all the busy tokens already */
361 while (cp < end && *cp == 0)
362 cp++;
363 if (cp == end)
364 mmc_spi_wait_unbusy(host, r1b_timeout);
365 break;
366
367 /* SPI R2 == R1 + second status byte; SEND_STATUS
368 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369 */
370 case MMC_RSP_SPI_R2:
371 /* read the next byte */
372 if (cp == end) {
373 value = mmc_spi_readbytes(host, 1);
374 if (value < 0)
375 goto done;
376 cp = host->data->status;
377 end = cp+1;
378 }
379 if (bitshift) {
380 rotator = leftover << 8;
381 rotator |= *cp << bitshift;
382 cmd->resp[0] |= (rotator & 0xFF00);
383 } else {
384 cmd->resp[0] |= *cp << 8;
385 }
386 break;
387
388 /* SPI R3, R4, or R7 == R1 + 4 bytes */
389 case MMC_RSP_SPI_R3:
390 rotator = leftover << 8;
391 cmd->resp[1] = 0;
392 for (i = 0; i < 4; i++) {
393 cmd->resp[1] <<= 8;
394 /* read the next byte */
395 if (cp == end) {
396 value = mmc_spi_readbytes(host, 1);
397 if (value < 0)
398 goto done;
399 cp = host->data->status;
400 end = cp+1;
401 }
402 if (bitshift) {
403 rotator |= *cp++ << bitshift;
404 cmd->resp[1] |= (rotator >> 8);
405 rotator <<= 8;
406 } else {
407 cmd->resp[1] |= *cp++;
408 }
409 }
410 break;
411
412 /* SPI R1 == just one status byte */
413 case MMC_RSP_SPI_R1:
414 break;
415
416 default:
417 dev_dbg(&host->spi->dev, "bad response type %04x\n",
418 mmc_spi_resp_type(cmd));
419 if (value >= 0)
420 value = -EINVAL;
421 goto done;
422 }
423
424 if (value < 0)
425 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426 tag, cmd->resp[0], cmd->resp[1]);
427
428 /* disable chipselect on errors and some success cases */
429 if (value >= 0 && cs_on)
430 return value;
431 done:
432 if (value < 0)
433 cmd->error = value;
434 mmc_cs_off(host);
435 return value;
436 }
437
438 /* Issue command and read its response.
439 * Returns zero on success, negative for error.
440 *
441 * On error, caller must cope with mmc core retry mechanism. That
442 * means immediate low-level resubmit, which affects the bus lock...
443 */
444 static int
445 mmc_spi_command_send(struct mmc_spi_host *host,
446 struct mmc_request *mrq,
447 struct mmc_command *cmd, int cs_on)
448 {
449 struct scratch *data = host->data;
450 u8 *cp = data->status;
451 u32 arg = cmd->arg;
452 int status;
453 struct spi_transfer *t;
454
455 /* We can handle most commands (except block reads) in one full
456 * duplex I/O operation before either starting the next transfer
457 * (data block or command) or else deselecting the card.
458 *
459 * First, write 7 bytes:
460 * - an all-ones byte to ensure the card is ready
461 * - opcode byte (plus start and transmission bits)
462 * - four bytes of big-endian argument
463 * - crc7 (plus end bit) ... always computed, it's cheap
464 *
465 * We init the whole buffer to all-ones, which is what we need
466 * to write while we're reading (later) response data.
467 */
468 memset(cp++, 0xff, sizeof(data->status));
469
470 *cp++ = 0x40 | cmd->opcode;
471 *cp++ = (u8)(arg >> 24);
472 *cp++ = (u8)(arg >> 16);
473 *cp++ = (u8)(arg >> 8);
474 *cp++ = (u8)arg;
475 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
476
477 /* Then, read up to 13 bytes (while writing all-ones):
478 * - N(CR) (== 1..8) bytes of all-ones
479 * - status byte (for all response types)
480 * - the rest of the response, either:
481 * + nothing, for R1 or R1B responses
482 * + second status byte, for R2 responses
483 * + four data bytes, for R3 and R7 responses
484 *
485 * Finally, read some more bytes ... in the nice cases we know in
486 * advance how many, and reading 1 more is always OK:
487 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
488 * - N(RC) (== 1..N) bytes of all-ones, before next command
489 * - N(WR) (== 1..N) bytes of all-ones, before data write
490 *
491 * So in those cases one full duplex I/O of at most 21 bytes will
492 * handle the whole command, leaving the card ready to receive a
493 * data block or new command. We do that whenever we can, shaving
494 * CPU and IRQ costs (especially when using DMA or FIFOs).
495 *
496 * There are two other cases, where it's not generally practical
497 * to rely on a single I/O:
498 *
499 * - R1B responses need at least N(EC) bytes of all-zeroes.
500 *
501 * In this case we can *try* to fit it into one I/O, then
502 * maybe read more data later.
503 *
504 * - Data block reads are more troublesome, since a variable
505 * number of padding bytes precede the token and data.
506 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
507 * + N(AC) (== 1..many) bytes of all-ones
508 *
509 * In this case we currently only have minimal speedups here:
510 * when N(CR) == 1 we can avoid I/O in response_get().
511 */
512 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
513 cp += 2; /* min(N(CR)) + status */
514 /* R1 */
515 } else {
516 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
517 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
518 cp++;
519 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
520 cp += 4;
521 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
522 cp = data->status + sizeof(data->status);
523 /* else: R1 (most commands) */
524 }
525
526 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
527 cmd->opcode, maptype(cmd));
528
529 /* send command, leaving chipselect active */
530 spi_message_init(&host->m);
531
532 t = &host->t;
533 memset(t, 0, sizeof(*t));
534 t->tx_buf = t->rx_buf = data->status;
535 t->tx_dma = t->rx_dma = host->data_dma;
536 t->len = cp - data->status;
537 t->cs_change = 1;
538 spi_message_add_tail(t, &host->m);
539
540 if (host->dma_dev) {
541 host->m.is_dma_mapped = 1;
542 dma_sync_single_for_device(host->dma_dev,
543 host->data_dma, sizeof(*host->data),
544 DMA_BIDIRECTIONAL);
545 }
546 status = spi_sync_locked(host->spi, &host->m);
547
548 if (host->dma_dev)
549 dma_sync_single_for_cpu(host->dma_dev,
550 host->data_dma, sizeof(*host->data),
551 DMA_BIDIRECTIONAL);
552 if (status < 0) {
553 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
554 cmd->error = status;
555 return status;
556 }
557
558 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
559 return mmc_spi_response_get(host, cmd, cs_on);
560 }
561
562 /* Build data message with up to four separate transfers. For TX, we
563 * start by writing the data token. And in most cases, we finish with
564 * a status transfer.
565 *
566 * We always provide TX data for data and CRC. The MMC/SD protocol
567 * requires us to write ones; but Linux defaults to writing zeroes;
568 * so we explicitly initialize it to all ones on RX paths.
569 *
570 * We also handle DMA mapping, so the underlying SPI controller does
571 * not need to (re)do it for each message.
572 */
573 static void
574 mmc_spi_setup_data_message(
575 struct mmc_spi_host *host,
576 int multiple,
577 enum dma_data_direction direction)
578 {
579 struct spi_transfer *t;
580 struct scratch *scratch = host->data;
581 dma_addr_t dma = host->data_dma;
582
583 spi_message_init(&host->m);
584 if (dma)
585 host->m.is_dma_mapped = 1;
586
587 /* for reads, readblock() skips 0xff bytes before finding
588 * the token; for writes, this transfer issues that token.
589 */
590 if (direction == DMA_TO_DEVICE) {
591 t = &host->token;
592 memset(t, 0, sizeof(*t));
593 t->len = 1;
594 if (multiple)
595 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
596 else
597 scratch->data_token = SPI_TOKEN_SINGLE;
598 t->tx_buf = &scratch->data_token;
599 if (dma)
600 t->tx_dma = dma + offsetof(struct scratch, data_token);
601 spi_message_add_tail(t, &host->m);
602 }
603
604 /* Body of transfer is buffer, then CRC ...
605 * either TX-only, or RX with TX-ones.
606 */
607 t = &host->t;
608 memset(t, 0, sizeof(*t));
609 t->tx_buf = host->ones;
610 t->tx_dma = host->ones_dma;
611 /* length and actual buffer info are written later */
612 spi_message_add_tail(t, &host->m);
613
614 t = &host->crc;
615 memset(t, 0, sizeof(*t));
616 t->len = 2;
617 if (direction == DMA_TO_DEVICE) {
618 /* the actual CRC may get written later */
619 t->tx_buf = &scratch->crc_val;
620 if (dma)
621 t->tx_dma = dma + offsetof(struct scratch, crc_val);
622 } else {
623 t->tx_buf = host->ones;
624 t->tx_dma = host->ones_dma;
625 t->rx_buf = &scratch->crc_val;
626 if (dma)
627 t->rx_dma = dma + offsetof(struct scratch, crc_val);
628 }
629 spi_message_add_tail(t, &host->m);
630
631 /*
632 * A single block read is followed by N(EC) [0+] all-ones bytes
633 * before deselect ... don't bother.
634 *
635 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
636 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
637 * collect that single byte, so readblock() doesn't need to.
638 *
639 * For a write, the one-byte data response follows immediately, then
640 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
641 * Then single block reads may deselect, and multiblock ones issue
642 * the next token (next data block, or STOP_TRAN). We can try to
643 * minimize I/O ops by using a single read to collect end-of-busy.
644 */
645 if (multiple || direction == DMA_TO_DEVICE) {
646 t = &host->early_status;
647 memset(t, 0, sizeof(*t));
648 t->len = (direction == DMA_TO_DEVICE)
649 ? sizeof(scratch->status)
650 : 1;
651 t->tx_buf = host->ones;
652 t->tx_dma = host->ones_dma;
653 t->rx_buf = scratch->status;
654 if (dma)
655 t->rx_dma = dma + offsetof(struct scratch, status);
656 t->cs_change = 1;
657 spi_message_add_tail(t, &host->m);
658 }
659 }
660
661 /*
662 * Write one block:
663 * - caller handled preceding N(WR) [1+] all-ones bytes
664 * - data block
665 * + token
666 * + data bytes
667 * + crc16
668 * - an all-ones byte ... card writes a data-response byte
669 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
670 *
671 * Return negative errno, else success.
672 */
673 static int
674 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
675 unsigned long timeout)
676 {
677 struct spi_device *spi = host->spi;
678 int status, i;
679 struct scratch *scratch = host->data;
680 u32 pattern;
681
682 if (host->mmc->use_spi_crc)
683 scratch->crc_val = cpu_to_be16(
684 crc_itu_t(0, t->tx_buf, t->len));
685 if (host->dma_dev)
686 dma_sync_single_for_device(host->dma_dev,
687 host->data_dma, sizeof(*scratch),
688 DMA_BIDIRECTIONAL);
689
690 status = spi_sync_locked(spi, &host->m);
691
692 if (status != 0) {
693 dev_dbg(&spi->dev, "write error (%d)\n", status);
694 return status;
695 }
696
697 if (host->dma_dev)
698 dma_sync_single_for_cpu(host->dma_dev,
699 host->data_dma, sizeof(*scratch),
700 DMA_BIDIRECTIONAL);
701
702 /*
703 * Get the transmission data-response reply. It must follow
704 * immediately after the data block we transferred. This reply
705 * doesn't necessarily tell whether the write operation succeeded;
706 * it just says if the transmission was ok and whether *earlier*
707 * writes succeeded; see the standard.
708 *
709 * In practice, there are (even modern SDHC-)cards which are late
710 * in sending the response, and miss the time frame by a few bits,
711 * so we have to cope with this situation and check the response
712 * bit-by-bit. Arggh!!!
713 */
714 pattern = scratch->status[0] << 24;
715 pattern |= scratch->status[1] << 16;
716 pattern |= scratch->status[2] << 8;
717 pattern |= scratch->status[3];
718
719 /* First 3 bit of pattern are undefined */
720 pattern |= 0xE0000000;
721
722 /* left-adjust to leading 0 bit */
723 while (pattern & 0x80000000)
724 pattern <<= 1;
725 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
726 pattern >>= 27;
727
728 switch (pattern) {
729 case SPI_RESPONSE_ACCEPTED:
730 status = 0;
731 break;
732 case SPI_RESPONSE_CRC_ERR:
733 /* host shall then issue MMC_STOP_TRANSMISSION */
734 status = -EILSEQ;
735 break;
736 case SPI_RESPONSE_WRITE_ERR:
737 /* host shall then issue MMC_STOP_TRANSMISSION,
738 * and should MMC_SEND_STATUS to sort it out
739 */
740 status = -EIO;
741 break;
742 default:
743 status = -EPROTO;
744 break;
745 }
746 if (status != 0) {
747 dev_dbg(&spi->dev, "write error %02x (%d)\n",
748 scratch->status[0], status);
749 return status;
750 }
751
752 t->tx_buf += t->len;
753 if (host->dma_dev)
754 t->tx_dma += t->len;
755
756 /* Return when not busy. If we didn't collect that status yet,
757 * we'll need some more I/O.
758 */
759 for (i = 4; i < sizeof(scratch->status); i++) {
760 /* card is non-busy if the most recent bit is 1 */
761 if (scratch->status[i] & 0x01)
762 return 0;
763 }
764 return mmc_spi_wait_unbusy(host, timeout);
765 }
766
767 /*
768 * Read one block:
769 * - skip leading all-ones bytes ... either
770 * + N(AC) [1..f(clock,CSD)] usually, else
771 * + N(CX) [0..8] when reading CSD or CID
772 * - data block
773 * + token ... if error token, no data or crc
774 * + data bytes
775 * + crc16
776 *
777 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
778 * before dropping chipselect.
779 *
780 * For multiblock reads, caller either reads the next block or issues a
781 * STOP_TRANSMISSION command.
782 */
783 static int
784 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
785 unsigned long timeout)
786 {
787 struct spi_device *spi = host->spi;
788 int status;
789 struct scratch *scratch = host->data;
790 unsigned int bitshift;
791 u8 leftover;
792
793 /* At least one SD card sends an all-zeroes byte when N(CX)
794 * applies, before the all-ones bytes ... just cope with that.
795 */
796 status = mmc_spi_readbytes(host, 1);
797 if (status < 0)
798 return status;
799 status = scratch->status[0];
800 if (status == 0xff || status == 0)
801 status = mmc_spi_readtoken(host, timeout);
802
803 if (status < 0) {
804 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
805 return status;
806 }
807
808 /* The token may be bit-shifted...
809 * the first 0-bit precedes the data stream.
810 */
811 bitshift = 7;
812 while (status & 0x80) {
813 status <<= 1;
814 bitshift--;
815 }
816 leftover = status << 1;
817
818 if (host->dma_dev) {
819 dma_sync_single_for_device(host->dma_dev,
820 host->data_dma, sizeof(*scratch),
821 DMA_BIDIRECTIONAL);
822 dma_sync_single_for_device(host->dma_dev,
823 t->rx_dma, t->len,
824 DMA_FROM_DEVICE);
825 }
826
827 status = spi_sync_locked(spi, &host->m);
828
829 if (host->dma_dev) {
830 dma_sync_single_for_cpu(host->dma_dev,
831 host->data_dma, sizeof(*scratch),
832 DMA_BIDIRECTIONAL);
833 dma_sync_single_for_cpu(host->dma_dev,
834 t->rx_dma, t->len,
835 DMA_FROM_DEVICE);
836 }
837
838 if (bitshift) {
839 /* Walk through the data and the crc and do
840 * all the magic to get byte-aligned data.
841 */
842 u8 *cp = t->rx_buf;
843 unsigned int len;
844 unsigned int bitright = 8 - bitshift;
845 u8 temp;
846 for (len = t->len; len; len--) {
847 temp = *cp;
848 *cp++ = leftover | (temp >> bitshift);
849 leftover = temp << bitright;
850 }
851 cp = (u8 *) &scratch->crc_val;
852 temp = *cp;
853 *cp++ = leftover | (temp >> bitshift);
854 leftover = temp << bitright;
855 temp = *cp;
856 *cp = leftover | (temp >> bitshift);
857 }
858
859 if (host->mmc->use_spi_crc) {
860 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
861
862 be16_to_cpus(&scratch->crc_val);
863 if (scratch->crc_val != crc) {
864 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
865 "computed=0x%04x len=%d\n",
866 scratch->crc_val, crc, t->len);
867 return -EILSEQ;
868 }
869 }
870
871 t->rx_buf += t->len;
872 if (host->dma_dev)
873 t->rx_dma += t->len;
874
875 return 0;
876 }
877
878 /*
879 * An MMC/SD data stage includes one or more blocks, optional CRCs,
880 * and inline handshaking. That handhaking makes it unlike most
881 * other SPI protocol stacks.
882 */
883 static void
884 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
885 struct mmc_data *data, u32 blk_size)
886 {
887 struct spi_device *spi = host->spi;
888 struct device *dma_dev = host->dma_dev;
889 struct spi_transfer *t;
890 enum dma_data_direction direction;
891 struct scatterlist *sg;
892 unsigned n_sg;
893 int multiple = (data->blocks > 1);
894 u32 clock_rate;
895 unsigned long timeout;
896
897 if (data->flags & MMC_DATA_READ)
898 direction = DMA_FROM_DEVICE;
899 else
900 direction = DMA_TO_DEVICE;
901 mmc_spi_setup_data_message(host, multiple, direction);
902 t = &host->t;
903
904 if (t->speed_hz)
905 clock_rate = t->speed_hz;
906 else
907 clock_rate = spi->max_speed_hz;
908
909 timeout = data->timeout_ns +
910 data->timeout_clks * 1000000 / clock_rate;
911 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
912
913 /* Handle scatterlist segments one at a time, with synch for
914 * each 512-byte block
915 */
916 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
917 int status = 0;
918 dma_addr_t dma_addr = 0;
919 void *kmap_addr;
920 unsigned length = sg->length;
921 enum dma_data_direction dir = direction;
922
923 /* set up dma mapping for controller drivers that might
924 * use DMA ... though they may fall back to PIO
925 */
926 if (dma_dev) {
927 /* never invalidate whole *shared* pages ... */
928 if ((sg->offset != 0 || length != PAGE_SIZE)
929 && dir == DMA_FROM_DEVICE)
930 dir = DMA_BIDIRECTIONAL;
931
932 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
933 PAGE_SIZE, dir);
934 if (direction == DMA_TO_DEVICE)
935 t->tx_dma = dma_addr + sg->offset;
936 else
937 t->rx_dma = dma_addr + sg->offset;
938 }
939
940 /* allow pio too; we don't allow highmem */
941 kmap_addr = kmap(sg_page(sg));
942 if (direction == DMA_TO_DEVICE)
943 t->tx_buf = kmap_addr + sg->offset;
944 else
945 t->rx_buf = kmap_addr + sg->offset;
946
947 /* transfer each block, and update request status */
948 while (length) {
949 t->len = min(length, blk_size);
950
951 dev_dbg(&host->spi->dev,
952 " mmc_spi: %s block, %d bytes\n",
953 (direction == DMA_TO_DEVICE)
954 ? "write"
955 : "read",
956 t->len);
957
958 if (direction == DMA_TO_DEVICE)
959 status = mmc_spi_writeblock(host, t, timeout);
960 else
961 status = mmc_spi_readblock(host, t, timeout);
962 if (status < 0)
963 break;
964
965 data->bytes_xfered += t->len;
966 length -= t->len;
967
968 if (!multiple)
969 break;
970 }
971
972 /* discard mappings */
973 if (direction == DMA_FROM_DEVICE)
974 flush_kernel_dcache_page(sg_page(sg));
975 kunmap(sg_page(sg));
976 if (dma_dev)
977 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
978
979 if (status < 0) {
980 data->error = status;
981 dev_dbg(&spi->dev, "%s status %d\n",
982 (direction == DMA_TO_DEVICE)
983 ? "write" : "read",
984 status);
985 break;
986 }
987 }
988
989 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
990 * can be issued before multiblock writes. Unlike its more widely
991 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
992 * that can affect the STOP_TRAN logic. Complete (and current)
993 * MMC specs should sort that out before Linux starts using CMD23.
994 */
995 if (direction == DMA_TO_DEVICE && multiple) {
996 struct scratch *scratch = host->data;
997 int tmp;
998 const unsigned statlen = sizeof(scratch->status);
999
1000 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
1001
1002 /* Tweak the per-block message we set up earlier by morphing
1003 * it to hold single buffer with the token followed by some
1004 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1005 * "not busy any longer" status, and leave chip selected.
1006 */
1007 INIT_LIST_HEAD(&host->m.transfers);
1008 list_add(&host->early_status.transfer_list,
1009 &host->m.transfers);
1010
1011 memset(scratch->status, 0xff, statlen);
1012 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1013
1014 host->early_status.tx_buf = host->early_status.rx_buf;
1015 host->early_status.tx_dma = host->early_status.rx_dma;
1016 host->early_status.len = statlen;
1017
1018 if (host->dma_dev)
1019 dma_sync_single_for_device(host->dma_dev,
1020 host->data_dma, sizeof(*scratch),
1021 DMA_BIDIRECTIONAL);
1022
1023 tmp = spi_sync_locked(spi, &host->m);
1024
1025 if (host->dma_dev)
1026 dma_sync_single_for_cpu(host->dma_dev,
1027 host->data_dma, sizeof(*scratch),
1028 DMA_BIDIRECTIONAL);
1029
1030 if (tmp < 0) {
1031 if (!data->error)
1032 data->error = tmp;
1033 return;
1034 }
1035
1036 /* Ideally we collected "not busy" status with one I/O,
1037 * avoiding wasteful byte-at-a-time scanning... but more
1038 * I/O is often needed.
1039 */
1040 for (tmp = 2; tmp < statlen; tmp++) {
1041 if (scratch->status[tmp] != 0)
1042 return;
1043 }
1044 tmp = mmc_spi_wait_unbusy(host, timeout);
1045 if (tmp < 0 && !data->error)
1046 data->error = tmp;
1047 }
1048 }
1049
1050 /****************************************************************************/
1051
1052 /*
1053 * MMC driver implementation -- the interface to the MMC stack
1054 */
1055
1056 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1057 {
1058 struct mmc_spi_host *host = mmc_priv(mmc);
1059 int status = -EINVAL;
1060 int crc_retry = 5;
1061 struct mmc_command stop;
1062
1063 #ifdef DEBUG
1064 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1065 {
1066 struct mmc_command *cmd;
1067 int invalid = 0;
1068
1069 cmd = mrq->cmd;
1070 if (!mmc_spi_resp_type(cmd)) {
1071 dev_dbg(&host->spi->dev, "bogus command\n");
1072 cmd->error = -EINVAL;
1073 invalid = 1;
1074 }
1075
1076 cmd = mrq->stop;
1077 if (cmd && !mmc_spi_resp_type(cmd)) {
1078 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1079 cmd->error = -EINVAL;
1080 invalid = 1;
1081 }
1082
1083 if (invalid) {
1084 dump_stack();
1085 mmc_request_done(host->mmc, mrq);
1086 return;
1087 }
1088 }
1089 #endif
1090
1091 /* request exclusive bus access */
1092 spi_bus_lock(host->spi->master);
1093
1094 crc_recover:
1095 /* issue command; then optionally data and stop */
1096 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1097 if (status == 0 && mrq->data) {
1098 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1099
1100 /*
1101 * The SPI bus is not always reliable for large data transfers.
1102 * If an occasional crc error is reported by the SD device with
1103 * data read/write over SPI, it may be recovered by repeating
1104 * the last SD command again. The retry count is set to 5 to
1105 * ensure the driver passes stress tests.
1106 */
1107 if (mrq->data->error == -EILSEQ && crc_retry) {
1108 stop.opcode = MMC_STOP_TRANSMISSION;
1109 stop.arg = 0;
1110 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1111 status = mmc_spi_command_send(host, mrq, &stop, 0);
1112 crc_retry--;
1113 mrq->data->error = 0;
1114 goto crc_recover;
1115 }
1116
1117 if (mrq->stop)
1118 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1119 else
1120 mmc_cs_off(host);
1121 }
1122
1123 /* release the bus */
1124 spi_bus_unlock(host->spi->master);
1125
1126 mmc_request_done(host->mmc, mrq);
1127 }
1128
1129 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1130 *
1131 * NOTE that here we can't know that the card has just been powered up;
1132 * not all MMC/SD sockets support power switching.
1133 *
1134 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1135 * this doesn't seem to do the right thing at all...
1136 */
1137 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1138 {
1139 /* Try to be very sure any previous command has completed;
1140 * wait till not-busy, skip debris from any old commands.
1141 */
1142 mmc_spi_wait_unbusy(host, r1b_timeout);
1143 mmc_spi_readbytes(host, 10);
1144
1145 /*
1146 * Do a burst with chipselect active-high. We need to do this to
1147 * meet the requirement of 74 clock cycles with both chipselect
1148 * and CMD (MOSI) high before CMD0 ... after the card has been
1149 * powered up to Vdd(min), and so is ready to take commands.
1150 *
1151 * Some cards are particularly needy of this (e.g. Viking "SD256")
1152 * while most others don't seem to care.
1153 *
1154 * Note that this is one of the places MMC/SD plays games with the
1155 * SPI protocol. Another is that when chipselect is released while
1156 * the card returns BUSY status, the clock must issue several cycles
1157 * with chipselect high before the card will stop driving its output.
1158 */
1159 host->spi->mode |= SPI_CS_HIGH;
1160 if (spi_setup(host->spi) != 0) {
1161 /* Just warn; most cards work without it. */
1162 dev_warn(&host->spi->dev,
1163 "can't change chip-select polarity\n");
1164 host->spi->mode &= ~SPI_CS_HIGH;
1165 } else {
1166 mmc_spi_readbytes(host, 18);
1167
1168 host->spi->mode &= ~SPI_CS_HIGH;
1169 if (spi_setup(host->spi) != 0) {
1170 /* Wot, we can't get the same setup we had before? */
1171 dev_err(&host->spi->dev,
1172 "can't restore chip-select polarity\n");
1173 }
1174 }
1175 }
1176
1177 static char *mmc_powerstring(u8 power_mode)
1178 {
1179 switch (power_mode) {
1180 case MMC_POWER_OFF: return "off";
1181 case MMC_POWER_UP: return "up";
1182 case MMC_POWER_ON: return "on";
1183 }
1184 return "?";
1185 }
1186
1187 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1188 {
1189 struct mmc_spi_host *host = mmc_priv(mmc);
1190
1191 if (host->power_mode != ios->power_mode) {
1192 int canpower;
1193
1194 canpower = host->pdata && host->pdata->setpower;
1195
1196 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1197 mmc_powerstring(ios->power_mode),
1198 ios->vdd,
1199 canpower ? ", can switch" : "");
1200
1201 /* switch power on/off if possible, accounting for
1202 * max 250msec powerup time if needed.
1203 */
1204 if (canpower) {
1205 switch (ios->power_mode) {
1206 case MMC_POWER_OFF:
1207 case MMC_POWER_UP:
1208 host->pdata->setpower(&host->spi->dev,
1209 ios->vdd);
1210 if (ios->power_mode == MMC_POWER_UP)
1211 msleep(host->powerup_msecs);
1212 }
1213 }
1214
1215 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1216 if (ios->power_mode == MMC_POWER_ON)
1217 mmc_spi_initsequence(host);
1218
1219 /* If powering down, ground all card inputs to avoid power
1220 * delivery from data lines! On a shared SPI bus, this
1221 * will probably be temporary; 6.4.2 of the simplified SD
1222 * spec says this must last at least 1msec.
1223 *
1224 * - Clock low means CPOL 0, e.g. mode 0
1225 * - MOSI low comes from writing zero
1226 * - Chipselect is usually active low...
1227 */
1228 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1229 int mres;
1230 u8 nullbyte = 0;
1231
1232 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1233 mres = spi_setup(host->spi);
1234 if (mres < 0)
1235 dev_dbg(&host->spi->dev,
1236 "switch to SPI mode 0 failed\n");
1237
1238 if (spi_write(host->spi, &nullbyte, 1) < 0)
1239 dev_dbg(&host->spi->dev,
1240 "put spi signals to low failed\n");
1241
1242 /*
1243 * Now clock should be low due to spi mode 0;
1244 * MOSI should be low because of written 0x00;
1245 * chipselect should be low (it is active low)
1246 * power supply is off, so now MMC is off too!
1247 *
1248 * FIXME no, chipselect can be high since the
1249 * device is inactive and SPI_CS_HIGH is clear...
1250 */
1251 msleep(10);
1252 if (mres == 0) {
1253 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1254 mres = spi_setup(host->spi);
1255 if (mres < 0)
1256 dev_dbg(&host->spi->dev,
1257 "switch back to SPI mode 3"
1258 " failed\n");
1259 }
1260 }
1261
1262 host->power_mode = ios->power_mode;
1263 }
1264
1265 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1266 int status;
1267
1268 host->spi->max_speed_hz = ios->clock;
1269 status = spi_setup(host->spi);
1270 dev_dbg(&host->spi->dev,
1271 "mmc_spi: clock to %d Hz, %d\n",
1272 host->spi->max_speed_hz, status);
1273 }
1274 }
1275
1276 static const struct mmc_host_ops mmc_spi_ops = {
1277 .request = mmc_spi_request,
1278 .set_ios = mmc_spi_set_ios,
1279 .get_ro = mmc_gpio_get_ro,
1280 .get_cd = mmc_gpio_get_cd,
1281 };
1282
1283
1284 /****************************************************************************/
1285
1286 /*
1287 * SPI driver implementation
1288 */
1289
1290 static irqreturn_t
1291 mmc_spi_detect_irq(int irq, void *mmc)
1292 {
1293 struct mmc_spi_host *host = mmc_priv(mmc);
1294 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1295
1296 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1297 return IRQ_HANDLED;
1298 }
1299
1300 static int mmc_spi_probe(struct spi_device *spi)
1301 {
1302 void *ones;
1303 struct mmc_host *mmc;
1304 struct mmc_spi_host *host;
1305 int status;
1306 bool has_ro = false;
1307
1308 /* We rely on full duplex transfers, mostly to reduce
1309 * per-transfer overheads (by making fewer transfers).
1310 */
1311 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1312 return -EINVAL;
1313
1314 /* MMC and SD specs only seem to care that sampling is on the
1315 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1316 * should be legit. We'll use mode 0 since the steady state is 0,
1317 * which is appropriate for hotplugging, unless the platform data
1318 * specify mode 3 (if hardware is not compatible to mode 0).
1319 */
1320 if (spi->mode != SPI_MODE_3)
1321 spi->mode = SPI_MODE_0;
1322 spi->bits_per_word = 8;
1323
1324 status = spi_setup(spi);
1325 if (status < 0) {
1326 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1327 spi->mode, spi->max_speed_hz / 1000,
1328 status);
1329 return status;
1330 }
1331
1332 /* We need a supply of ones to transmit. This is the only time
1333 * the CPU touches these, so cache coherency isn't a concern.
1334 *
1335 * NOTE if many systems use more than one MMC-over-SPI connector
1336 * it'd save some memory to share this. That's evidently rare.
1337 */
1338 status = -ENOMEM;
1339 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1340 if (!ones)
1341 goto nomem;
1342 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1343
1344 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1345 if (!mmc)
1346 goto nomem;
1347
1348 mmc->ops = &mmc_spi_ops;
1349 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1350 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1351 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1352 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1353
1354 mmc->caps = MMC_CAP_SPI;
1355
1356 /* SPI doesn't need the lowspeed device identification thing for
1357 * MMC or SD cards, since it never comes up in open drain mode.
1358 * That's good; some SPI masters can't handle very low speeds!
1359 *
1360 * However, low speed SDIO cards need not handle over 400 KHz;
1361 * that's the only reason not to use a few MHz for f_min (until
1362 * the upper layer reads the target frequency from the CSD).
1363 */
1364 mmc->f_min = 400000;
1365 mmc->f_max = spi->max_speed_hz;
1366
1367 host = mmc_priv(mmc);
1368 host->mmc = mmc;
1369 host->spi = spi;
1370
1371 host->ones = ones;
1372
1373 /* Platform data is used to hook up things like card sensing
1374 * and power switching gpios.
1375 */
1376 host->pdata = mmc_spi_get_pdata(spi);
1377 if (host->pdata)
1378 mmc->ocr_avail = host->pdata->ocr_mask;
1379 if (!mmc->ocr_avail) {
1380 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1381 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1382 }
1383 if (host->pdata && host->pdata->setpower) {
1384 host->powerup_msecs = host->pdata->powerup_msecs;
1385 if (!host->powerup_msecs || host->powerup_msecs > 250)
1386 host->powerup_msecs = 250;
1387 }
1388
1389 dev_set_drvdata(&spi->dev, mmc);
1390
1391 /* preallocate dma buffers */
1392 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1393 if (!host->data)
1394 goto fail_nobuf1;
1395
1396 if (spi->master->dev.parent->dma_mask) {
1397 struct device *dev = spi->master->dev.parent;
1398
1399 host->dma_dev = dev;
1400 host->ones_dma = dma_map_single(dev, ones,
1401 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1402 host->data_dma = dma_map_single(dev, host->data,
1403 sizeof(*host->data), DMA_BIDIRECTIONAL);
1404
1405 /* REVISIT in theory those map operations can fail... */
1406
1407 dma_sync_single_for_cpu(host->dma_dev,
1408 host->data_dma, sizeof(*host->data),
1409 DMA_BIDIRECTIONAL);
1410 }
1411
1412 /* setup message for status/busy readback */
1413 spi_message_init(&host->readback);
1414 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1415
1416 spi_message_add_tail(&host->status, &host->readback);
1417 host->status.tx_buf = host->ones;
1418 host->status.tx_dma = host->ones_dma;
1419 host->status.rx_buf = &host->data->status;
1420 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1421 host->status.cs_change = 1;
1422
1423 /* register card detect irq */
1424 if (host->pdata && host->pdata->init) {
1425 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1426 if (status != 0)
1427 goto fail_glue_init;
1428 }
1429
1430 /* pass platform capabilities, if any */
1431 if (host->pdata) {
1432 mmc->caps |= host->pdata->caps;
1433 mmc->caps2 |= host->pdata->caps2;
1434 }
1435
1436 status = mmc_add_host(mmc);
1437 if (status != 0)
1438 goto fail_add_host;
1439
1440 if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1441 status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1442 host->pdata->cd_debounce);
1443 if (status != 0)
1444 goto fail_add_host;
1445 }
1446
1447 if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1448 has_ro = true;
1449 status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1450 if (status != 0)
1451 goto fail_add_host;
1452 }
1453
1454 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1455 dev_name(&mmc->class_dev),
1456 host->dma_dev ? "" : ", no DMA",
1457 has_ro ? "" : ", no WP",
1458 (host->pdata && host->pdata->setpower)
1459 ? "" : ", no poweroff",
1460 (mmc->caps & MMC_CAP_NEEDS_POLL)
1461 ? ", cd polling" : "");
1462 return 0;
1463
1464 fail_add_host:
1465 mmc_remove_host (mmc);
1466 fail_glue_init:
1467 if (host->dma_dev)
1468 dma_unmap_single(host->dma_dev, host->data_dma,
1469 sizeof(*host->data), DMA_BIDIRECTIONAL);
1470 kfree(host->data);
1471
1472 fail_nobuf1:
1473 mmc_free_host(mmc);
1474 mmc_spi_put_pdata(spi);
1475 dev_set_drvdata(&spi->dev, NULL);
1476
1477 nomem:
1478 kfree(ones);
1479 return status;
1480 }
1481
1482
1483 static int mmc_spi_remove(struct spi_device *spi)
1484 {
1485 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1486 struct mmc_spi_host *host;
1487
1488 if (mmc) {
1489 host = mmc_priv(mmc);
1490
1491 /* prevent new mmc_detect_change() calls */
1492 if (host->pdata && host->pdata->exit)
1493 host->pdata->exit(&spi->dev, mmc);
1494
1495 mmc_remove_host(mmc);
1496
1497 if (host->dma_dev) {
1498 dma_unmap_single(host->dma_dev, host->ones_dma,
1499 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1500 dma_unmap_single(host->dma_dev, host->data_dma,
1501 sizeof(*host->data), DMA_BIDIRECTIONAL);
1502 }
1503
1504 kfree(host->data);
1505 kfree(host->ones);
1506
1507 spi->max_speed_hz = mmc->f_max;
1508 mmc_free_host(mmc);
1509 mmc_spi_put_pdata(spi);
1510 dev_set_drvdata(&spi->dev, NULL);
1511 }
1512 return 0;
1513 }
1514
1515 static struct of_device_id mmc_spi_of_match_table[] = {
1516 { .compatible = "mmc-spi-slot", },
1517 {},
1518 };
1519
1520 static struct spi_driver mmc_spi_driver = {
1521 .driver = {
1522 .name = "mmc_spi",
1523 .owner = THIS_MODULE,
1524 .of_match_table = mmc_spi_of_match_table,
1525 },
1526 .probe = mmc_spi_probe,
1527 .remove = mmc_spi_remove,
1528 };
1529
1530 module_spi_driver(mmc_spi_driver);
1531
1532 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1533 "Hans-Peter Nilsson, Jan Nikitenko");
1534 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1535 MODULE_LICENSE("GPL");
1536 MODULE_ALIAS("spi:mmc_spi");