]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/mmc/host/mmc_spi.c
Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
[mirror_ubuntu-bionic-kernel.git] / drivers / mmc / host / mmc_spi.c
1 /*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27 #include <linux/hrtimer.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
37
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40
41 #include <asm/unaligned.h>
42
43
44 /* NOTES:
45 *
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
50 *
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
54 *
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
59 *
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
62 *
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
66 *
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
69 */
70
71
72 /*
73 * Local protocol constants, internal to data block protocols.
74 */
75
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
81
82 /* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
84 */
85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
88
89 #define MMC_SPI_BLOCKSIZE 512
90
91
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
97 */
98 #define r1b_timeout ktime_set(3, 0)
99
100
101 /****************************************************************************/
102
103 /*
104 * Local Data Structures
105 */
106
107 /* "scratch" is per-{command,block} data exchanged with the card */
108 struct scratch {
109 u8 status[29];
110 u8 data_token;
111 __be16 crc_val;
112 };
113
114 struct mmc_spi_host {
115 struct mmc_host *mmc;
116 struct spi_device *spi;
117
118 unsigned char power_mode;
119 u16 powerup_msecs;
120
121 struct mmc_spi_platform_data *pdata;
122
123 /* for bulk data transfers */
124 struct spi_transfer token, t, crc, early_status;
125 struct spi_message m;
126
127 /* for status readback */
128 struct spi_transfer status;
129 struct spi_message readback;
130
131 /* underlying DMA-aware controller, or null */
132 struct device *dma_dev;
133
134 /* buffer used for commands and for message "overhead" */
135 struct scratch *data;
136 dma_addr_t data_dma;
137
138 /* Specs say to write ones most of the time, even when the card
139 * has no need to read its input data; and many cards won't care.
140 * This is our source of those ones.
141 */
142 void *ones;
143 dma_addr_t ones_dma;
144 };
145
146
147 /****************************************************************************/
148
149 /*
150 * MMC-over-SPI protocol glue, used by the MMC stack interface
151 */
152
153 static inline int mmc_cs_off(struct mmc_spi_host *host)
154 {
155 /* chipselect will always be inactive after setup() */
156 return spi_setup(host->spi);
157 }
158
159 static int
160 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
161 {
162 int status;
163
164 if (len > sizeof(*host->data)) {
165 WARN_ON(1);
166 return -EIO;
167 }
168
169 host->status.len = len;
170
171 if (host->dma_dev)
172 dma_sync_single_for_device(host->dma_dev,
173 host->data_dma, sizeof(*host->data),
174 DMA_FROM_DEVICE);
175
176 status = spi_sync(host->spi, &host->readback);
177
178 if (host->dma_dev)
179 dma_sync_single_for_cpu(host->dma_dev,
180 host->data_dma, sizeof(*host->data),
181 DMA_FROM_DEVICE);
182
183 return status;
184 }
185
186 static int
187 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
188 {
189 u8 *cp = host->data->status;
190
191 timeout = ktime_add(timeout, ktime_get());
192
193 while (1) {
194 int status;
195 unsigned i;
196
197 status = mmc_spi_readbytes(host, n);
198 if (status < 0)
199 return status;
200
201 for (i = 0; i < n; i++) {
202 if (cp[i] != byte)
203 return cp[i];
204 }
205
206 /* REVISIT investigate msleep() to avoid busy-wait I/O
207 * in at least some cases.
208 */
209 if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
210 break;
211 }
212 return -ETIMEDOUT;
213 }
214
215 static inline int
216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
217 {
218 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
219 }
220
221 static int mmc_spi_readtoken(struct mmc_spi_host *host, ktime_t timeout)
222 {
223 return mmc_spi_skip(host, timeout, 1, 0xff);
224 }
225
226
227 /*
228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
231 *
232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233 * newer cards R7 (IF_COND).
234 */
235
236 static char *maptype(struct mmc_command *cmd)
237 {
238 switch (mmc_spi_resp_type(cmd)) {
239 case MMC_RSP_SPI_R1: return "R1";
240 case MMC_RSP_SPI_R1B: return "R1B";
241 case MMC_RSP_SPI_R2: return "R2/R5";
242 case MMC_RSP_SPI_R3: return "R3/R4/R7";
243 default: return "?";
244 }
245 }
246
247 /* return zero, else negative errno after setting cmd->error */
248 static int mmc_spi_response_get(struct mmc_spi_host *host,
249 struct mmc_command *cmd, int cs_on)
250 {
251 u8 *cp = host->data->status;
252 u8 *end = cp + host->t.len;
253 int value = 0;
254 char tag[32];
255
256 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
257 cmd->opcode, maptype(cmd));
258
259 /* Except for data block reads, the whole response will already
260 * be stored in the scratch buffer. It's somewhere after the
261 * command and the first byte we read after it. We ignore that
262 * first byte. After STOP_TRANSMISSION command it may include
263 * two data bits, but otherwise it's all ones.
264 */
265 cp += 8;
266 while (cp < end && *cp == 0xff)
267 cp++;
268
269 /* Data block reads (R1 response types) may need more data... */
270 if (cp == end) {
271 unsigned i;
272
273 cp = host->data->status;
274
275 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
276 * status byte ... and we already scanned 2 bytes.
277 *
278 * REVISIT block read paths use nasty byte-at-a-time I/O
279 * so it can always DMA directly into the target buffer.
280 * It'd probably be better to memcpy() the first chunk and
281 * avoid extra i/o calls...
282 */
283 for (i = 2; i < 9; i++) {
284 value = mmc_spi_readbytes(host, 1);
285 if (value < 0)
286 goto done;
287 if (*cp != 0xff)
288 goto checkstatus;
289 }
290 value = -ETIMEDOUT;
291 goto done;
292 }
293
294 checkstatus:
295 if (*cp & 0x80) {
296 dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
297 tag, *cp);
298 value = -EBADR;
299 goto done;
300 }
301
302 cmd->resp[0] = *cp++;
303 cmd->error = 0;
304
305 /* Status byte: the entire seven-bit R1 response. */
306 if (cmd->resp[0] != 0) {
307 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
308 | R1_SPI_ILLEGAL_COMMAND)
309 & cmd->resp[0])
310 value = -EINVAL;
311 else if (R1_SPI_COM_CRC & cmd->resp[0])
312 value = -EILSEQ;
313 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
314 & cmd->resp[0])
315 value = -EIO;
316 /* else R1_SPI_IDLE, "it's resetting" */
317 }
318
319 switch (mmc_spi_resp_type(cmd)) {
320
321 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
322 * and less-common stuff like various erase operations.
323 */
324 case MMC_RSP_SPI_R1B:
325 /* maybe we read all the busy tokens already */
326 while (cp < end && *cp == 0)
327 cp++;
328 if (cp == end)
329 mmc_spi_wait_unbusy(host, r1b_timeout);
330 break;
331
332 /* SPI R2 == R1 + second status byte; SEND_STATUS
333 * SPI R5 == R1 + data byte; IO_RW_DIRECT
334 */
335 case MMC_RSP_SPI_R2:
336 cmd->resp[0] |= *cp << 8;
337 break;
338
339 /* SPI R3, R4, or R7 == R1 + 4 bytes */
340 case MMC_RSP_SPI_R3:
341 cmd->resp[1] = get_unaligned_be32(cp);
342 break;
343
344 /* SPI R1 == just one status byte */
345 case MMC_RSP_SPI_R1:
346 break;
347
348 default:
349 dev_dbg(&host->spi->dev, "bad response type %04x\n",
350 mmc_spi_resp_type(cmd));
351 if (value >= 0)
352 value = -EINVAL;
353 goto done;
354 }
355
356 if (value < 0)
357 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
358 tag, cmd->resp[0], cmd->resp[1]);
359
360 /* disable chipselect on errors and some success cases */
361 if (value >= 0 && cs_on)
362 return value;
363 done:
364 if (value < 0)
365 cmd->error = value;
366 mmc_cs_off(host);
367 return value;
368 }
369
370 /* Issue command and read its response.
371 * Returns zero on success, negative for error.
372 *
373 * On error, caller must cope with mmc core retry mechanism. That
374 * means immediate low-level resubmit, which affects the bus lock...
375 */
376 static int
377 mmc_spi_command_send(struct mmc_spi_host *host,
378 struct mmc_request *mrq,
379 struct mmc_command *cmd, int cs_on)
380 {
381 struct scratch *data = host->data;
382 u8 *cp = data->status;
383 u32 arg = cmd->arg;
384 int status;
385 struct spi_transfer *t;
386
387 /* We can handle most commands (except block reads) in one full
388 * duplex I/O operation before either starting the next transfer
389 * (data block or command) or else deselecting the card.
390 *
391 * First, write 7 bytes:
392 * - an all-ones byte to ensure the card is ready
393 * - opcode byte (plus start and transmission bits)
394 * - four bytes of big-endian argument
395 * - crc7 (plus end bit) ... always computed, it's cheap
396 *
397 * We init the whole buffer to all-ones, which is what we need
398 * to write while we're reading (later) response data.
399 */
400 memset(cp++, 0xff, sizeof(data->status));
401
402 *cp++ = 0x40 | cmd->opcode;
403 *cp++ = (u8)(arg >> 24);
404 *cp++ = (u8)(arg >> 16);
405 *cp++ = (u8)(arg >> 8);
406 *cp++ = (u8)arg;
407 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
408
409 /* Then, read up to 13 bytes (while writing all-ones):
410 * - N(CR) (== 1..8) bytes of all-ones
411 * - status byte (for all response types)
412 * - the rest of the response, either:
413 * + nothing, for R1 or R1B responses
414 * + second status byte, for R2 responses
415 * + four data bytes, for R3 and R7 responses
416 *
417 * Finally, read some more bytes ... in the nice cases we know in
418 * advance how many, and reading 1 more is always OK:
419 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
420 * - N(RC) (== 1..N) bytes of all-ones, before next command
421 * - N(WR) (== 1..N) bytes of all-ones, before data write
422 *
423 * So in those cases one full duplex I/O of at most 21 bytes will
424 * handle the whole command, leaving the card ready to receive a
425 * data block or new command. We do that whenever we can, shaving
426 * CPU and IRQ costs (especially when using DMA or FIFOs).
427 *
428 * There are two other cases, where it's not generally practical
429 * to rely on a single I/O:
430 *
431 * - R1B responses need at least N(EC) bytes of all-zeroes.
432 *
433 * In this case we can *try* to fit it into one I/O, then
434 * maybe read more data later.
435 *
436 * - Data block reads are more troublesome, since a variable
437 * number of padding bytes precede the token and data.
438 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
439 * + N(AC) (== 1..many) bytes of all-ones
440 *
441 * In this case we currently only have minimal speedups here:
442 * when N(CR) == 1 we can avoid I/O in response_get().
443 */
444 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
445 cp += 2; /* min(N(CR)) + status */
446 /* R1 */
447 } else {
448 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
449 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
450 cp++;
451 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
452 cp += 4;
453 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
454 cp = data->status + sizeof(data->status);
455 /* else: R1 (most commands) */
456 }
457
458 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
459 cmd->opcode, maptype(cmd));
460
461 /* send command, leaving chipselect active */
462 spi_message_init(&host->m);
463
464 t = &host->t;
465 memset(t, 0, sizeof(*t));
466 t->tx_buf = t->rx_buf = data->status;
467 t->tx_dma = t->rx_dma = host->data_dma;
468 t->len = cp - data->status;
469 t->cs_change = 1;
470 spi_message_add_tail(t, &host->m);
471
472 if (host->dma_dev) {
473 host->m.is_dma_mapped = 1;
474 dma_sync_single_for_device(host->dma_dev,
475 host->data_dma, sizeof(*host->data),
476 DMA_BIDIRECTIONAL);
477 }
478 status = spi_sync(host->spi, &host->m);
479
480 if (host->dma_dev)
481 dma_sync_single_for_cpu(host->dma_dev,
482 host->data_dma, sizeof(*host->data),
483 DMA_BIDIRECTIONAL);
484 if (status < 0) {
485 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
486 cmd->error = status;
487 return status;
488 }
489
490 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
491 return mmc_spi_response_get(host, cmd, cs_on);
492 }
493
494 /* Build data message with up to four separate transfers. For TX, we
495 * start by writing the data token. And in most cases, we finish with
496 * a status transfer.
497 *
498 * We always provide TX data for data and CRC. The MMC/SD protocol
499 * requires us to write ones; but Linux defaults to writing zeroes;
500 * so we explicitly initialize it to all ones on RX paths.
501 *
502 * We also handle DMA mapping, so the underlying SPI controller does
503 * not need to (re)do it for each message.
504 */
505 static void
506 mmc_spi_setup_data_message(
507 struct mmc_spi_host *host,
508 int multiple,
509 enum dma_data_direction direction)
510 {
511 struct spi_transfer *t;
512 struct scratch *scratch = host->data;
513 dma_addr_t dma = host->data_dma;
514
515 spi_message_init(&host->m);
516 if (dma)
517 host->m.is_dma_mapped = 1;
518
519 /* for reads, readblock() skips 0xff bytes before finding
520 * the token; for writes, this transfer issues that token.
521 */
522 if (direction == DMA_TO_DEVICE) {
523 t = &host->token;
524 memset(t, 0, sizeof(*t));
525 t->len = 1;
526 if (multiple)
527 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
528 else
529 scratch->data_token = SPI_TOKEN_SINGLE;
530 t->tx_buf = &scratch->data_token;
531 if (dma)
532 t->tx_dma = dma + offsetof(struct scratch, data_token);
533 spi_message_add_tail(t, &host->m);
534 }
535
536 /* Body of transfer is buffer, then CRC ...
537 * either TX-only, or RX with TX-ones.
538 */
539 t = &host->t;
540 memset(t, 0, sizeof(*t));
541 t->tx_buf = host->ones;
542 t->tx_dma = host->ones_dma;
543 /* length and actual buffer info are written later */
544 spi_message_add_tail(t, &host->m);
545
546 t = &host->crc;
547 memset(t, 0, sizeof(*t));
548 t->len = 2;
549 if (direction == DMA_TO_DEVICE) {
550 /* the actual CRC may get written later */
551 t->tx_buf = &scratch->crc_val;
552 if (dma)
553 t->tx_dma = dma + offsetof(struct scratch, crc_val);
554 } else {
555 t->tx_buf = host->ones;
556 t->tx_dma = host->ones_dma;
557 t->rx_buf = &scratch->crc_val;
558 if (dma)
559 t->rx_dma = dma + offsetof(struct scratch, crc_val);
560 }
561 spi_message_add_tail(t, &host->m);
562
563 /*
564 * A single block read is followed by N(EC) [0+] all-ones bytes
565 * before deselect ... don't bother.
566 *
567 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
568 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
569 * collect that single byte, so readblock() doesn't need to.
570 *
571 * For a write, the one-byte data response follows immediately, then
572 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
573 * Then single block reads may deselect, and multiblock ones issue
574 * the next token (next data block, or STOP_TRAN). We can try to
575 * minimize I/O ops by using a single read to collect end-of-busy.
576 */
577 if (multiple || direction == DMA_TO_DEVICE) {
578 t = &host->early_status;
579 memset(t, 0, sizeof(*t));
580 t->len = (direction == DMA_TO_DEVICE)
581 ? sizeof(scratch->status)
582 : 1;
583 t->tx_buf = host->ones;
584 t->tx_dma = host->ones_dma;
585 t->rx_buf = scratch->status;
586 if (dma)
587 t->rx_dma = dma + offsetof(struct scratch, status);
588 t->cs_change = 1;
589 spi_message_add_tail(t, &host->m);
590 }
591 }
592
593 /*
594 * Write one block:
595 * - caller handled preceding N(WR) [1+] all-ones bytes
596 * - data block
597 * + token
598 * + data bytes
599 * + crc16
600 * - an all-ones byte ... card writes a data-response byte
601 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
602 *
603 * Return negative errno, else success.
604 */
605 static int
606 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
607 ktime_t timeout)
608 {
609 struct spi_device *spi = host->spi;
610 int status, i;
611 struct scratch *scratch = host->data;
612
613 if (host->mmc->use_spi_crc)
614 scratch->crc_val = cpu_to_be16(
615 crc_itu_t(0, t->tx_buf, t->len));
616 if (host->dma_dev)
617 dma_sync_single_for_device(host->dma_dev,
618 host->data_dma, sizeof(*scratch),
619 DMA_BIDIRECTIONAL);
620
621 status = spi_sync(spi, &host->m);
622
623 if (status != 0) {
624 dev_dbg(&spi->dev, "write error (%d)\n", status);
625 return status;
626 }
627
628 if (host->dma_dev)
629 dma_sync_single_for_cpu(host->dma_dev,
630 host->data_dma, sizeof(*scratch),
631 DMA_BIDIRECTIONAL);
632
633 /*
634 * Get the transmission data-response reply. It must follow
635 * immediately after the data block we transferred. This reply
636 * doesn't necessarily tell whether the write operation succeeded;
637 * it just says if the transmission was ok and whether *earlier*
638 * writes succeeded; see the standard.
639 */
640 switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
641 case SPI_RESPONSE_ACCEPTED:
642 status = 0;
643 break;
644 case SPI_RESPONSE_CRC_ERR:
645 /* host shall then issue MMC_STOP_TRANSMISSION */
646 status = -EILSEQ;
647 break;
648 case SPI_RESPONSE_WRITE_ERR:
649 /* host shall then issue MMC_STOP_TRANSMISSION,
650 * and should MMC_SEND_STATUS to sort it out
651 */
652 status = -EIO;
653 break;
654 default:
655 status = -EPROTO;
656 break;
657 }
658 if (status != 0) {
659 dev_dbg(&spi->dev, "write error %02x (%d)\n",
660 scratch->status[0], status);
661 return status;
662 }
663
664 t->tx_buf += t->len;
665 if (host->dma_dev)
666 t->tx_dma += t->len;
667
668 /* Return when not busy. If we didn't collect that status yet,
669 * we'll need some more I/O.
670 */
671 for (i = 1; i < sizeof(scratch->status); i++) {
672 if (scratch->status[i] != 0)
673 return 0;
674 }
675 return mmc_spi_wait_unbusy(host, timeout);
676 }
677
678 /*
679 * Read one block:
680 * - skip leading all-ones bytes ... either
681 * + N(AC) [1..f(clock,CSD)] usually, else
682 * + N(CX) [0..8] when reading CSD or CID
683 * - data block
684 * + token ... if error token, no data or crc
685 * + data bytes
686 * + crc16
687 *
688 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
689 * before dropping chipselect.
690 *
691 * For multiblock reads, caller either reads the next block or issues a
692 * STOP_TRANSMISSION command.
693 */
694 static int
695 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
696 ktime_t timeout)
697 {
698 struct spi_device *spi = host->spi;
699 int status;
700 struct scratch *scratch = host->data;
701
702 /* At least one SD card sends an all-zeroes byte when N(CX)
703 * applies, before the all-ones bytes ... just cope with that.
704 */
705 status = mmc_spi_readbytes(host, 1);
706 if (status < 0)
707 return status;
708 status = scratch->status[0];
709 if (status == 0xff || status == 0)
710 status = mmc_spi_readtoken(host, timeout);
711
712 if (status == SPI_TOKEN_SINGLE) {
713 if (host->dma_dev) {
714 dma_sync_single_for_device(host->dma_dev,
715 host->data_dma, sizeof(*scratch),
716 DMA_BIDIRECTIONAL);
717 dma_sync_single_for_device(host->dma_dev,
718 t->rx_dma, t->len,
719 DMA_FROM_DEVICE);
720 }
721
722 status = spi_sync(spi, &host->m);
723
724 if (host->dma_dev) {
725 dma_sync_single_for_cpu(host->dma_dev,
726 host->data_dma, sizeof(*scratch),
727 DMA_BIDIRECTIONAL);
728 dma_sync_single_for_cpu(host->dma_dev,
729 t->rx_dma, t->len,
730 DMA_FROM_DEVICE);
731 }
732
733 } else {
734 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
735
736 /* we've read extra garbage, timed out, etc */
737 if (status < 0)
738 return status;
739
740 /* low four bits are an R2 subset, fifth seems to be
741 * vendor specific ... map them all to generic error..
742 */
743 return -EIO;
744 }
745
746 if (host->mmc->use_spi_crc) {
747 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
748
749 be16_to_cpus(&scratch->crc_val);
750 if (scratch->crc_val != crc) {
751 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
752 "computed=0x%04x len=%d\n",
753 scratch->crc_val, crc, t->len);
754 return -EILSEQ;
755 }
756 }
757
758 t->rx_buf += t->len;
759 if (host->dma_dev)
760 t->rx_dma += t->len;
761
762 return 0;
763 }
764
765 /*
766 * An MMC/SD data stage includes one or more blocks, optional CRCs,
767 * and inline handshaking. That handhaking makes it unlike most
768 * other SPI protocol stacks.
769 */
770 static void
771 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
772 struct mmc_data *data, u32 blk_size)
773 {
774 struct spi_device *spi = host->spi;
775 struct device *dma_dev = host->dma_dev;
776 struct spi_transfer *t;
777 enum dma_data_direction direction;
778 struct scatterlist *sg;
779 unsigned n_sg;
780 int multiple = (data->blocks > 1);
781 u32 clock_rate;
782 ktime_t timeout;
783
784 if (data->flags & MMC_DATA_READ)
785 direction = DMA_FROM_DEVICE;
786 else
787 direction = DMA_TO_DEVICE;
788 mmc_spi_setup_data_message(host, multiple, direction);
789 t = &host->t;
790
791 if (t->speed_hz)
792 clock_rate = t->speed_hz;
793 else
794 clock_rate = spi->max_speed_hz;
795
796 timeout = ktime_add_ns(ktime_set(0, 0), data->timeout_ns +
797 data->timeout_clks * 1000000 / clock_rate);
798
799 /* Handle scatterlist segments one at a time, with synch for
800 * each 512-byte block
801 */
802 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
803 int status = 0;
804 dma_addr_t dma_addr = 0;
805 void *kmap_addr;
806 unsigned length = sg->length;
807 enum dma_data_direction dir = direction;
808
809 /* set up dma mapping for controller drivers that might
810 * use DMA ... though they may fall back to PIO
811 */
812 if (dma_dev) {
813 /* never invalidate whole *shared* pages ... */
814 if ((sg->offset != 0 || length != PAGE_SIZE)
815 && dir == DMA_FROM_DEVICE)
816 dir = DMA_BIDIRECTIONAL;
817
818 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
819 PAGE_SIZE, dir);
820 if (direction == DMA_TO_DEVICE)
821 t->tx_dma = dma_addr + sg->offset;
822 else
823 t->rx_dma = dma_addr + sg->offset;
824 }
825
826 /* allow pio too; we don't allow highmem */
827 kmap_addr = kmap(sg_page(sg));
828 if (direction == DMA_TO_DEVICE)
829 t->tx_buf = kmap_addr + sg->offset;
830 else
831 t->rx_buf = kmap_addr + sg->offset;
832
833 /* transfer each block, and update request status */
834 while (length) {
835 t->len = min(length, blk_size);
836
837 dev_dbg(&host->spi->dev,
838 " mmc_spi: %s block, %d bytes\n",
839 (direction == DMA_TO_DEVICE)
840 ? "write"
841 : "read",
842 t->len);
843
844 if (direction == DMA_TO_DEVICE)
845 status = mmc_spi_writeblock(host, t, timeout);
846 else
847 status = mmc_spi_readblock(host, t, timeout);
848 if (status < 0)
849 break;
850
851 data->bytes_xfered += t->len;
852 length -= t->len;
853
854 if (!multiple)
855 break;
856 }
857
858 /* discard mappings */
859 if (direction == DMA_FROM_DEVICE)
860 flush_kernel_dcache_page(sg_page(sg));
861 kunmap(sg_page(sg));
862 if (dma_dev)
863 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
864
865 if (status < 0) {
866 data->error = status;
867 dev_dbg(&spi->dev, "%s status %d\n",
868 (direction == DMA_TO_DEVICE)
869 ? "write" : "read",
870 status);
871 break;
872 }
873 }
874
875 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
876 * can be issued before multiblock writes. Unlike its more widely
877 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
878 * that can affect the STOP_TRAN logic. Complete (and current)
879 * MMC specs should sort that out before Linux starts using CMD23.
880 */
881 if (direction == DMA_TO_DEVICE && multiple) {
882 struct scratch *scratch = host->data;
883 int tmp;
884 const unsigned statlen = sizeof(scratch->status);
885
886 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
887
888 /* Tweak the per-block message we set up earlier by morphing
889 * it to hold single buffer with the token followed by some
890 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
891 * "not busy any longer" status, and leave chip selected.
892 */
893 INIT_LIST_HEAD(&host->m.transfers);
894 list_add(&host->early_status.transfer_list,
895 &host->m.transfers);
896
897 memset(scratch->status, 0xff, statlen);
898 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
899
900 host->early_status.tx_buf = host->early_status.rx_buf;
901 host->early_status.tx_dma = host->early_status.rx_dma;
902 host->early_status.len = statlen;
903
904 if (host->dma_dev)
905 dma_sync_single_for_device(host->dma_dev,
906 host->data_dma, sizeof(*scratch),
907 DMA_BIDIRECTIONAL);
908
909 tmp = spi_sync(spi, &host->m);
910
911 if (host->dma_dev)
912 dma_sync_single_for_cpu(host->dma_dev,
913 host->data_dma, sizeof(*scratch),
914 DMA_BIDIRECTIONAL);
915
916 if (tmp < 0) {
917 if (!data->error)
918 data->error = tmp;
919 return;
920 }
921
922 /* Ideally we collected "not busy" status with one I/O,
923 * avoiding wasteful byte-at-a-time scanning... but more
924 * I/O is often needed.
925 */
926 for (tmp = 2; tmp < statlen; tmp++) {
927 if (scratch->status[tmp] != 0)
928 return;
929 }
930 tmp = mmc_spi_wait_unbusy(host, timeout);
931 if (tmp < 0 && !data->error)
932 data->error = tmp;
933 }
934 }
935
936 /****************************************************************************/
937
938 /*
939 * MMC driver implementation -- the interface to the MMC stack
940 */
941
942 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
943 {
944 struct mmc_spi_host *host = mmc_priv(mmc);
945 int status = -EINVAL;
946
947 #ifdef DEBUG
948 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
949 {
950 struct mmc_command *cmd;
951 int invalid = 0;
952
953 cmd = mrq->cmd;
954 if (!mmc_spi_resp_type(cmd)) {
955 dev_dbg(&host->spi->dev, "bogus command\n");
956 cmd->error = -EINVAL;
957 invalid = 1;
958 }
959
960 cmd = mrq->stop;
961 if (cmd && !mmc_spi_resp_type(cmd)) {
962 dev_dbg(&host->spi->dev, "bogus STOP command\n");
963 cmd->error = -EINVAL;
964 invalid = 1;
965 }
966
967 if (invalid) {
968 dump_stack();
969 mmc_request_done(host->mmc, mrq);
970 return;
971 }
972 }
973 #endif
974
975 /* issue command; then optionally data and stop */
976 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
977 if (status == 0 && mrq->data) {
978 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
979 if (mrq->stop)
980 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
981 else
982 mmc_cs_off(host);
983 }
984
985 mmc_request_done(host->mmc, mrq);
986 }
987
988 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
989 *
990 * NOTE that here we can't know that the card has just been powered up;
991 * not all MMC/SD sockets support power switching.
992 *
993 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
994 * this doesn't seem to do the right thing at all...
995 */
996 static void mmc_spi_initsequence(struct mmc_spi_host *host)
997 {
998 /* Try to be very sure any previous command has completed;
999 * wait till not-busy, skip debris from any old commands.
1000 */
1001 mmc_spi_wait_unbusy(host, r1b_timeout);
1002 mmc_spi_readbytes(host, 10);
1003
1004 /*
1005 * Do a burst with chipselect active-high. We need to do this to
1006 * meet the requirement of 74 clock cycles with both chipselect
1007 * and CMD (MOSI) high before CMD0 ... after the card has been
1008 * powered up to Vdd(min), and so is ready to take commands.
1009 *
1010 * Some cards are particularly needy of this (e.g. Viking "SD256")
1011 * while most others don't seem to care.
1012 *
1013 * Note that this is one of the places MMC/SD plays games with the
1014 * SPI protocol. Another is that when chipselect is released while
1015 * the card returns BUSY status, the clock must issue several cycles
1016 * with chipselect high before the card will stop driving its output.
1017 */
1018 host->spi->mode |= SPI_CS_HIGH;
1019 if (spi_setup(host->spi) != 0) {
1020 /* Just warn; most cards work without it. */
1021 dev_warn(&host->spi->dev,
1022 "can't change chip-select polarity\n");
1023 host->spi->mode &= ~SPI_CS_HIGH;
1024 } else {
1025 mmc_spi_readbytes(host, 18);
1026
1027 host->spi->mode &= ~SPI_CS_HIGH;
1028 if (spi_setup(host->spi) != 0) {
1029 /* Wot, we can't get the same setup we had before? */
1030 dev_err(&host->spi->dev,
1031 "can't restore chip-select polarity\n");
1032 }
1033 }
1034 }
1035
1036 static char *mmc_powerstring(u8 power_mode)
1037 {
1038 switch (power_mode) {
1039 case MMC_POWER_OFF: return "off";
1040 case MMC_POWER_UP: return "up";
1041 case MMC_POWER_ON: return "on";
1042 }
1043 return "?";
1044 }
1045
1046 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1047 {
1048 struct mmc_spi_host *host = mmc_priv(mmc);
1049
1050 if (host->power_mode != ios->power_mode) {
1051 int canpower;
1052
1053 canpower = host->pdata && host->pdata->setpower;
1054
1055 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1056 mmc_powerstring(ios->power_mode),
1057 ios->vdd,
1058 canpower ? ", can switch" : "");
1059
1060 /* switch power on/off if possible, accounting for
1061 * max 250msec powerup time if needed.
1062 */
1063 if (canpower) {
1064 switch (ios->power_mode) {
1065 case MMC_POWER_OFF:
1066 case MMC_POWER_UP:
1067 host->pdata->setpower(&host->spi->dev,
1068 ios->vdd);
1069 if (ios->power_mode == MMC_POWER_UP)
1070 msleep(host->powerup_msecs);
1071 }
1072 }
1073
1074 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1075 if (ios->power_mode == MMC_POWER_ON)
1076 mmc_spi_initsequence(host);
1077
1078 /* If powering down, ground all card inputs to avoid power
1079 * delivery from data lines! On a shared SPI bus, this
1080 * will probably be temporary; 6.4.2 of the simplified SD
1081 * spec says this must last at least 1msec.
1082 *
1083 * - Clock low means CPOL 0, e.g. mode 0
1084 * - MOSI low comes from writing zero
1085 * - Chipselect is usually active low...
1086 */
1087 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1088 int mres;
1089 u8 nullbyte = 0;
1090
1091 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1092 mres = spi_setup(host->spi);
1093 if (mres < 0)
1094 dev_dbg(&host->spi->dev,
1095 "switch to SPI mode 0 failed\n");
1096
1097 if (spi_write(host->spi, &nullbyte, 1) < 0)
1098 dev_dbg(&host->spi->dev,
1099 "put spi signals to low failed\n");
1100
1101 /*
1102 * Now clock should be low due to spi mode 0;
1103 * MOSI should be low because of written 0x00;
1104 * chipselect should be low (it is active low)
1105 * power supply is off, so now MMC is off too!
1106 *
1107 * FIXME no, chipselect can be high since the
1108 * device is inactive and SPI_CS_HIGH is clear...
1109 */
1110 msleep(10);
1111 if (mres == 0) {
1112 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1113 mres = spi_setup(host->spi);
1114 if (mres < 0)
1115 dev_dbg(&host->spi->dev,
1116 "switch back to SPI mode 3"
1117 " failed\n");
1118 }
1119 }
1120
1121 host->power_mode = ios->power_mode;
1122 }
1123
1124 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1125 int status;
1126
1127 host->spi->max_speed_hz = ios->clock;
1128 status = spi_setup(host->spi);
1129 dev_dbg(&host->spi->dev,
1130 "mmc_spi: clock to %d Hz, %d\n",
1131 host->spi->max_speed_hz, status);
1132 }
1133 }
1134
1135 static int mmc_spi_get_ro(struct mmc_host *mmc)
1136 {
1137 struct mmc_spi_host *host = mmc_priv(mmc);
1138
1139 if (host->pdata && host->pdata->get_ro)
1140 return !!host->pdata->get_ro(mmc->parent);
1141 /*
1142 * Board doesn't support read only detection; let the mmc core
1143 * decide what to do.
1144 */
1145 return -ENOSYS;
1146 }
1147
1148 static int mmc_spi_get_cd(struct mmc_host *mmc)
1149 {
1150 struct mmc_spi_host *host = mmc_priv(mmc);
1151
1152 if (host->pdata && host->pdata->get_cd)
1153 return !!host->pdata->get_cd(mmc->parent);
1154 return -ENOSYS;
1155 }
1156
1157 static const struct mmc_host_ops mmc_spi_ops = {
1158 .request = mmc_spi_request,
1159 .set_ios = mmc_spi_set_ios,
1160 .get_ro = mmc_spi_get_ro,
1161 .get_cd = mmc_spi_get_cd,
1162 };
1163
1164
1165 /****************************************************************************/
1166
1167 /*
1168 * SPI driver implementation
1169 */
1170
1171 static irqreturn_t
1172 mmc_spi_detect_irq(int irq, void *mmc)
1173 {
1174 struct mmc_spi_host *host = mmc_priv(mmc);
1175 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1176
1177 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1178 return IRQ_HANDLED;
1179 }
1180
1181 struct count_children {
1182 unsigned n;
1183 struct bus_type *bus;
1184 };
1185
1186 static int maybe_count_child(struct device *dev, void *c)
1187 {
1188 struct count_children *ccp = c;
1189
1190 if (dev->bus == ccp->bus) {
1191 if (ccp->n)
1192 return -EBUSY;
1193 ccp->n++;
1194 }
1195 return 0;
1196 }
1197
1198 static int mmc_spi_probe(struct spi_device *spi)
1199 {
1200 void *ones;
1201 struct mmc_host *mmc;
1202 struct mmc_spi_host *host;
1203 int status;
1204
1205 /* MMC and SD specs only seem to care that sampling is on the
1206 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1207 * should be legit. We'll use mode 0 since it seems to be a
1208 * bit less troublesome on some hardware ... unclear why.
1209 */
1210 spi->mode = SPI_MODE_0;
1211 spi->bits_per_word = 8;
1212
1213 status = spi_setup(spi);
1214 if (status < 0) {
1215 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1216 spi->mode, spi->max_speed_hz / 1000,
1217 status);
1218 return status;
1219 }
1220
1221 /* We can use the bus safely iff nobody else will interfere with us.
1222 * Most commands consist of one SPI message to issue a command, then
1223 * several more to collect its response, then possibly more for data
1224 * transfer. Clocking access to other devices during that period will
1225 * corrupt the command execution.
1226 *
1227 * Until we have software primitives which guarantee non-interference,
1228 * we'll aim for a hardware-level guarantee.
1229 *
1230 * REVISIT we can't guarantee another device won't be added later...
1231 */
1232 if (spi->master->num_chipselect > 1) {
1233 struct count_children cc;
1234
1235 cc.n = 0;
1236 cc.bus = spi->dev.bus;
1237 status = device_for_each_child(spi->dev.parent, &cc,
1238 maybe_count_child);
1239 if (status < 0) {
1240 dev_err(&spi->dev, "can't share SPI bus\n");
1241 return status;
1242 }
1243
1244 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1245 }
1246
1247 /* We need a supply of ones to transmit. This is the only time
1248 * the CPU touches these, so cache coherency isn't a concern.
1249 *
1250 * NOTE if many systems use more than one MMC-over-SPI connector
1251 * it'd save some memory to share this. That's evidently rare.
1252 */
1253 status = -ENOMEM;
1254 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1255 if (!ones)
1256 goto nomem;
1257 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1258
1259 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1260 if (!mmc)
1261 goto nomem;
1262
1263 mmc->ops = &mmc_spi_ops;
1264 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1265
1266 mmc->caps = MMC_CAP_SPI;
1267
1268 /* SPI doesn't need the lowspeed device identification thing for
1269 * MMC or SD cards, since it never comes up in open drain mode.
1270 * That's good; some SPI masters can't handle very low speeds!
1271 *
1272 * However, low speed SDIO cards need not handle over 400 KHz;
1273 * that's the only reason not to use a few MHz for f_min (until
1274 * the upper layer reads the target frequency from the CSD).
1275 */
1276 mmc->f_min = 400000;
1277 mmc->f_max = spi->max_speed_hz;
1278
1279 host = mmc_priv(mmc);
1280 host->mmc = mmc;
1281 host->spi = spi;
1282
1283 host->ones = ones;
1284
1285 /* Platform data is used to hook up things like card sensing
1286 * and power switching gpios.
1287 */
1288 host->pdata = spi->dev.platform_data;
1289 if (host->pdata)
1290 mmc->ocr_avail = host->pdata->ocr_mask;
1291 if (!mmc->ocr_avail) {
1292 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1293 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1294 }
1295 if (host->pdata && host->pdata->setpower) {
1296 host->powerup_msecs = host->pdata->powerup_msecs;
1297 if (!host->powerup_msecs || host->powerup_msecs > 250)
1298 host->powerup_msecs = 250;
1299 }
1300
1301 dev_set_drvdata(&spi->dev, mmc);
1302
1303 /* preallocate dma buffers */
1304 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1305 if (!host->data)
1306 goto fail_nobuf1;
1307
1308 if (spi->master->dev.parent->dma_mask) {
1309 struct device *dev = spi->master->dev.parent;
1310
1311 host->dma_dev = dev;
1312 host->ones_dma = dma_map_single(dev, ones,
1313 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1314 host->data_dma = dma_map_single(dev, host->data,
1315 sizeof(*host->data), DMA_BIDIRECTIONAL);
1316
1317 /* REVISIT in theory those map operations can fail... */
1318
1319 dma_sync_single_for_cpu(host->dma_dev,
1320 host->data_dma, sizeof(*host->data),
1321 DMA_BIDIRECTIONAL);
1322 }
1323
1324 /* setup message for status/busy readback */
1325 spi_message_init(&host->readback);
1326 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1327
1328 spi_message_add_tail(&host->status, &host->readback);
1329 host->status.tx_buf = host->ones;
1330 host->status.tx_dma = host->ones_dma;
1331 host->status.rx_buf = &host->data->status;
1332 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1333 host->status.cs_change = 1;
1334
1335 /* register card detect irq */
1336 if (host->pdata && host->pdata->init) {
1337 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1338 if (status != 0)
1339 goto fail_glue_init;
1340 }
1341
1342 /* pass platform capabilities, if any */
1343 if (host->pdata)
1344 mmc->caps |= host->pdata->caps;
1345
1346 status = mmc_add_host(mmc);
1347 if (status != 0)
1348 goto fail_add_host;
1349
1350 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1351 mmc->class_dev.bus_id,
1352 host->dma_dev ? "" : ", no DMA",
1353 (host->pdata && host->pdata->get_ro)
1354 ? "" : ", no WP",
1355 (host->pdata && host->pdata->setpower)
1356 ? "" : ", no poweroff",
1357 (mmc->caps & MMC_CAP_NEEDS_POLL)
1358 ? ", cd polling" : "");
1359 return 0;
1360
1361 fail_add_host:
1362 mmc_remove_host (mmc);
1363 fail_glue_init:
1364 if (host->dma_dev)
1365 dma_unmap_single(host->dma_dev, host->data_dma,
1366 sizeof(*host->data), DMA_BIDIRECTIONAL);
1367 kfree(host->data);
1368
1369 fail_nobuf1:
1370 mmc_free_host(mmc);
1371 dev_set_drvdata(&spi->dev, NULL);
1372
1373 nomem:
1374 kfree(ones);
1375 return status;
1376 }
1377
1378
1379 static int __devexit mmc_spi_remove(struct spi_device *spi)
1380 {
1381 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1382 struct mmc_spi_host *host;
1383
1384 if (mmc) {
1385 host = mmc_priv(mmc);
1386
1387 /* prevent new mmc_detect_change() calls */
1388 if (host->pdata && host->pdata->exit)
1389 host->pdata->exit(&spi->dev, mmc);
1390
1391 mmc_remove_host(mmc);
1392
1393 if (host->dma_dev) {
1394 dma_unmap_single(host->dma_dev, host->ones_dma,
1395 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1396 dma_unmap_single(host->dma_dev, host->data_dma,
1397 sizeof(*host->data), DMA_BIDIRECTIONAL);
1398 }
1399
1400 kfree(host->data);
1401 kfree(host->ones);
1402
1403 spi->max_speed_hz = mmc->f_max;
1404 mmc_free_host(mmc);
1405 dev_set_drvdata(&spi->dev, NULL);
1406 }
1407 return 0;
1408 }
1409
1410
1411 static struct spi_driver mmc_spi_driver = {
1412 .driver = {
1413 .name = "mmc_spi",
1414 .bus = &spi_bus_type,
1415 .owner = THIS_MODULE,
1416 },
1417 .probe = mmc_spi_probe,
1418 .remove = __devexit_p(mmc_spi_remove),
1419 };
1420
1421
1422 static int __init mmc_spi_init(void)
1423 {
1424 return spi_register_driver(&mmc_spi_driver);
1425 }
1426 module_init(mmc_spi_init);
1427
1428
1429 static void __exit mmc_spi_exit(void)
1430 {
1431 spi_unregister_driver(&mmc_spi_driver);
1432 }
1433 module_exit(mmc_spi_exit);
1434
1435
1436 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1437 "Hans-Peter Nilsson, Jan Nikitenko");
1438 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1439 MODULE_LICENSE("GPL");